JP5281863B2 - Dye, dye-sensitized solar cell and method for producing the same - Google Patents

Dye, dye-sensitized solar cell and method for producing the same Download PDF

Info

Publication number
JP5281863B2
JP5281863B2 JP2008254292A JP2008254292A JP5281863B2 JP 5281863 B2 JP5281863 B2 JP 5281863B2 JP 2008254292 A JP2008254292 A JP 2008254292A JP 2008254292 A JP2008254292 A JP 2008254292A JP 5281863 B2 JP5281863 B2 JP 5281863B2
Authority
JP
Japan
Prior art keywords
dye
general formula
solar cell
sensitized solar
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008254292A
Other languages
Japanese (ja)
Other versions
JP2010084003A (en
Inventor
英司 米田
グラッチェル ミカエル
カジャ ナジルディン モハメド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2008254292A priority Critical patent/JP5281863B2/en
Publication of JP2010084003A publication Critical patent/JP2010084003A/en
Application granted granted Critical
Publication of JP5281863B2 publication Critical patent/JP5281863B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)
  • Pyridine Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dye to become a constituting material of a dye-sensitized solar cell having a high conversion efficiency and excelling in the durability. <P>SOLUTION: The dye is represented by formula (1): ML<SP>1</SP>L<SP>2</SP>L<SP>3</SP>(M is a group 8 to 10 element in the long periodic table; and L<SP>1</SP>, L<SP>2</SP>and L<SP>3</SP>are bidentate ligands represented by respective specific formulae), and is, for example, a compound of formula (1a). <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、色素、色素増感太陽電池及びその製造方法に関し、更に詳しくは、高い変換効率を示し、耐候性及び耐熱性等の耐久性にも優れた色素増感太陽電池の構成材料となる色素、色素増感太陽電池及びその製造方法に関する。   The present invention relates to a dye, a dye-sensitized solar cell, and a method for producing the same. More specifically, the present invention provides a constituent material for a dye-sensitized solar cell that exhibits high conversion efficiency and excellent durability such as weather resistance and heat resistance. The present invention relates to a dye, a dye-sensitized solar cell, and a method for manufacturing the same.

エネルギー問題に対する関心が高まるとともに、光、特に太陽光を効率よく電気に変換することができる太陽電池の研究が盛んになってきた。例えば、アモルファスシリコンや多結晶シリコンを利用したシリコン系の太陽電池が普及し始めている。   As interest in energy problems increases, research on solar cells that can efficiently convert light, particularly sunlight, into electricity has become active. For example, silicon-based solar cells using amorphous silicon or polycrystalline silicon have begun to spread.

しかし、シリコン系太陽電池は、製造コストが高く、また、高純度シリコンを安価かつ大量に供給することが困難であるために、一般に広く普及するには限界があるといわれている。   However, since silicon-based solar cells are expensive to manufacture and it is difficult to supply a large amount of high-purity silicon at a low price, it is generally said that there are limits to their widespread use.

そこで、近年、色素増感太陽電池が関心を集めている。色素増感太陽電池は、発電効率が高いこと、製造コストが比較的低いこと、酸化チタン等の安価な酸化物半導体を高純度に精製することなく原料として使用できること、製造に際して使用する設備が安価で済むこと等、シリコン系太陽電池と比較して多くの利点を有している。従って、次世代の太陽電池として期待されている(例えば、特許文献1及び2参照)。   In recent years, therefore, dye-sensitized solar cells have attracted attention. Dye-sensitized solar cells have high power generation efficiency, relatively low manufacturing costs, inexpensive oxide semiconductors such as titanium oxide can be used as raw materials without being purified to high purity, and equipment used for manufacturing is inexpensive This has many advantages over silicon-based solar cells. Therefore, it is expected as a next-generation solar cell (see, for example, Patent Documents 1 and 2).

色素増感太陽電池は、通常の電池と同様に、陽極と、陰極と、電解質とを備えているが、陰極が、透明導電性ガラスからなる基材と、その表面に形成された酸化物薄膜電極とを有しており、この酸化物薄膜電極に特定の色素が吸着されている構造に特徴がある。   The dye-sensitized solar cell includes an anode, a cathode, and an electrolyte, as in a normal battery. The cathode is a base material made of transparent conductive glass, and an oxide thin film formed on the surface thereof. And a structure in which a specific dye is adsorbed to the oxide thin film electrode.

従来、酸化物薄膜電極に吸着させる色素としては、下記式(10)で表される色素(「N719」と呼ばれる色素)、または下記式(11)で表される色素(「ブラック・ダイ」と呼ばれる色素)が知られている(例えば、非特許文献1及び2参照)。   Conventionally, as a dye to be adsorbed on an oxide thin film electrode, a dye represented by the following formula (10) (a dye called “N719”) or a dye represented by the following formula (11) (“black dye”) (Referred to as non-patent documents 1 and 2).

Figure 0005281863
(但し、上記式(10)において、TBAはテトラブチルアンモニウムイオンである。)
Figure 0005281863
(However, in the above formula (10), TBA + is a tetrabutylammonium ion.)

Figure 0005281863
(但し、上記式(11)において、TBAはテトラブチルアンモニウムイオンである。)
Figure 0005281863
(However, in the above formula (11), TBA + is a tetrabutylammonium ion.)

米国特許第4927721号明細書US Pat. No. 4,927,721 国際公開第98/50393号パンフレットInternational Publication No. 98/50393 Pamphlet J.Am.Chem.Soc.,115,6382−6390(1993)J. et al. Am. Chem. Soc. 115, 6382-6390 (1993) J.Am.Chem.Soc.,123,1613−1624(2001)J. et al. Am. Chem. Soc. , 123, 1613-1624 (2001)

しかしながら、前記色素を用いた色素増感太陽電池、特にN719を用いた色素増感太陽電池は、高い変換効率を示すものの、耐久性(耐候性、耐熱性等)の面で十分満足できるものではなく、解決すべき課題を残すものであった。即ち、現在のところ、高い変換効率を示し、耐久性(耐候性、耐熱性等)の面でも十分満足できる色素増感太陽電池は開示されておらず、高い変換効率を示し、耐久性(耐候性、耐熱性等)に優れた色素増感太陽電池の開発が切望されている。   However, a dye-sensitized solar cell using the dye, particularly a dye-sensitized solar cell using N719, exhibits high conversion efficiency, but is not sufficiently satisfactory in terms of durability (weather resistance, heat resistance, etc.). There was no problem to be solved. That is, at present, there is no disclosure of a dye-sensitized solar cell that exhibits high conversion efficiency and is sufficiently satisfactory in terms of durability (weather resistance, heat resistance, etc.), and exhibits high conversion efficiency and durability (weather resistance). Development of a dye-sensitized solar cell having excellent properties, heat resistance, and the like is eagerly desired.

本発明は、このような従来技術の有する問題に鑑みてなされたものであり、高い変換効率を示し、耐候性及び耐熱性等の耐久性にも優れた色素増感太陽電池の構成材料となる色素、この色素を用いた色素増感太陽電池、及び、この色素増感太陽電池の製造方法を提供するものである。   The present invention has been made in view of such problems of the prior art, and is a constituent material of a dye-sensitized solar cell that exhibits high conversion efficiency and excellent durability such as weather resistance and heat resistance. The present invention provides a dye, a dye-sensitized solar cell using the dye, and a method for producing the dye-sensitized solar cell.

本発明者は、前記課題を解決すべき鋭意検討を重ねた結果、特定構造の化合物を配位子とする色素によって、前記従来技術の課題を解決できることを見出し、本発明を完成した。具体的には、本発明により、以下の色素、色素増感太陽電池及びその製造方法が提供される。   As a result of intensive studies to solve the above problems, the present inventor has found that the problems of the prior art can be solved by using a dye having a compound having a specific structure as a ligand, and completed the present invention. Specifically, the present invention provides the following dyes, dye-sensitized solar cells, and methods for producing the same.

[1] 下記一般式(1)で表される色素。
(1):ML
(但し、Mは長周期律表上の8〜10族の元素であり、Lは下記一般式(2)で表される二座配位子であり、Lは下記一般式(3)で表される二座配位子であり、Lは下記一般式(4)で表される二座配位子である。)
[1] A dye represented by the following general formula (1).
(1): ML 1 L 2 L 3
(However, M is an element of group 8-10 on the long periodic table, L 1 is a bidentate ligand represented by the following general formula (2), and L 2 is the following general formula (3). L 3 is a bidentate ligand represented by the following general formula (4).

Figure 0005281863
(但し、前記一般式(2)において、R及びRは相互に独立して、下記一般式(2−1)〜(2−3)で示される構造のうちのいずれか1つである。)
Figure 0005281863
(However, in the general formula (2), R 1 and R 2 are each independently one of the structures represented by the following general formulas (2-1) to (2-3). .)

Figure 0005281863
(但し、前記一般式(2−1)において、nは0〜5の整数であり、Aはカチオンである。)
Figure 0005281863
(However, in the general formula (2-1), n 1 is an integer of 0 to 5, A is a cation.)

Figure 0005281863
(但し、前記一般式(2−2)において、nは1〜5の整数であり、Aはカチオンである。)
Figure 0005281863
(However, in the general formula (2-2), n 2 is an integer from 1 to 5, A is a cation.)

Figure 0005281863
(但し、前記一般式(2−3)において、nは0〜5の整数であり、nは1〜3の整数であり、Aはカチオンである。)
Figure 0005281863
(However, in the general formula (2-3), n 3 is an integer from 0 to 5, n 4 is an integer from 1 to 3, A is a cation.)

Figure 0005281863
(但し、前記一般式(3)において、Xはハロゲン原子であり、nは0〜2の整数である。)
Figure 0005281863
(However, in the formula (3), X is a halogen atom, n 5 is an integer of 0 to 2.)

Figure 0005281863
(但し、前記一般式(4)において、n及びnは相互に独立して、1〜3の整数であり、R及びRは相互に独立して、炭素数1〜20の炭化水素基である。)
Figure 0005281863
(However, the general formula (4), n 6 and n 7 are independently of one another, an integer from 1 to 3, R 3 and R 4 independently of one another, a hydrocarbon having 1 to 20 carbon atoms It is a hydrogen group.)

[2] 前記一般式(1)におけるMがルテニウムである前記[1]に記載の色素。 [2] The dye according to [1], wherein M in the general formula (1) is ruthenium.

[3] 陽極と、陰極と、電解質と、を備え、前記陰極は、透明導電性ガラスからなる基材と、前記基材の表面に形成された酸化物薄膜電極と、を有しており、前記酸化物薄膜電極には、前記[1]または[2]に記載の色素が吸着されている色素増感太陽電池。 [3] An anode, a cathode, and an electrolyte, wherein the cathode has a base material made of transparent conductive glass, and an oxide thin film electrode formed on the surface of the base material. A dye-sensitized solar cell in which the dye according to [1] or [2] is adsorbed on the oxide thin film electrode.

[4] 透明導電性ガラスからなる基材と、前記基材の表面に形成された酸化物薄膜電極と、を有する陰極用部材に、前記[1]または[2]に記載の色素と塩基とを含有する色素溶液を接触させて、前記酸化物薄膜電極に前記色素を吸着させた陰極を得る陰極形成工程を備える色素増感太陽電池の製造方法。 [4] A dye and base as described in [1] or [2] above, on a cathode member having a base material made of transparent conductive glass and an oxide thin film electrode formed on the surface of the base material. The manufacturing method of a dye-sensitized solar cell provided with the cathode formation process which contacts the pigment | dye solution containing this and obtains the cathode which made the said oxide thin film electrode adsorb | suck the said pigment | dye.

[5] 前記塩基の濃度が0.0001〜50mNである前記色素溶液を用いる前記[4]に記載の色素増感太陽電池の製造方法。 [5] The method for producing a dye-sensitized solar cell according to [4], wherein the dye solution having a base concentration of 0.0001 to 50 mN is used.

本発明の色素は、高い変換効率を示し、耐候性及び耐熱性等の耐久性にも優れた色素増感太陽電池の構成材料となるという効果を奏するものである。   The pigment | dye of this invention shows the effect that it becomes a constituent material of the dye-sensitized solar cell which shows high conversion efficiency and was excellent also in durability, such as a weather resistance and heat resistance.

本発明の色素増感太陽電池は、高い変換効率を示し、耐候性及び耐熱性等の耐久性にも優れるという効果を奏するものである。   The dye-sensitized solar cell of the present invention exhibits a high conversion efficiency and an effect of being excellent in durability such as weather resistance and heat resistance.

本発明の色素増感太陽電池の製造方法は、高い変換効率を示し、耐候性及び耐熱性等の耐久性にも優れた色素増感太陽電池を製造することができるという効果を奏するものである。   The method for producing a dye-sensitized solar cell of the present invention has an effect of producing a dye-sensitized solar cell that exhibits high conversion efficiency and excellent durability such as weather resistance and heat resistance. .

以下、本発明を実施するための最良の形態について説明するが、本発明は以下の実施の形態に限定されるものではない。即ち、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対し適宜変更、改良等が加えられたものも本発明の範囲に属することが理解されるべきである。   Hereinafter, the best mode for carrying out the present invention will be described, but the present invention is not limited to the following embodiment. That is, it is understood that modifications and improvements as appropriate to the following embodiments are also within the scope of the present invention based on ordinary knowledge of those skilled in the art without departing from the spirit of the present invention. Should be.

[1]色素:
本発明の色素の一実施形態は、下記一般式(1)で表されるものである。このような色素は、高い変換効率を示し、耐候性及び耐熱性等の耐久性にも優れた色素増感太陽電池の構成材料となるものである。
(1):ML
(但し、Mは長周期律表上の8〜10族の元素であり、Lは下記一般式(2)で表される二座配位子であり、Lは下記一般式(3)で表される二座配位子であり、Lは下記一般式(4)で表される二座配位子である。)
[1] Dye:
One embodiment of the coloring matter of the present invention is represented by the following general formula (1). Such a dye is a constituent material of a dye-sensitized solar cell that exhibits high conversion efficiency and is excellent in durability such as weather resistance and heat resistance.
(1): ML 1 L 2 L 3
(However, M is an element of group 8-10 on the long periodic table, L 1 is a bidentate ligand represented by the following general formula (2), and L 2 is the following general formula (3). L 3 is a bidentate ligand represented by the following general formula (4).

一般式(1)において、「M」は中心原子であり、長周期律表上の8〜10族の元素からなる金属原子である。「8〜10族の元素」としては、具体的には、8族の元素である、鉄、ルテニウム、オスミウム、9族の元素である、コバルト、ロジウム、イリジウム、10族の元素である、ニッケル、パラジウム、白金を挙げることができる。本発明の色素は、「M」がルテニウムであるものが好ましい。Mがルテニウムであると、錯体の色を操作しやすいという利点がある。   In the general formula (1), “M” is a central atom, which is a metal atom composed of a group 8 to 10 element on the long periodic table. As the “Group 8-10 element”, specifically, the Group 8 element, iron, ruthenium, osmium, the Group 9 element, cobalt, rhodium, iridium, the Group 10 element, nickel, , Palladium, and platinum. The dye of the present invention is preferably one in which “M” is ruthenium. When M is ruthenium, there is an advantage that the color of the complex can be easily manipulated.

Figure 0005281863
(但し、前記一般式(2)において、R及びRは相互に独立して、下記一般式(2−1)〜(2−3)で示される構造のうちのいずれか1つである。)
Figure 0005281863
(However, in the general formula (2), R 1 and R 2 are each independently one of the structures represented by the following general formulas (2-1) to (2-3). .)

Figure 0005281863
(但し、前記一般式(2−1)において、nは0〜5の整数であり、Aはカチオンである。)
Figure 0005281863
(However, in the general formula (2-1), n 1 is an integer of 0 to 5, A is a cation.)

Figure 0005281863
(但し、前記一般式(2−2)において、nは1〜5の整数であり、Aはカチオンである。)
Figure 0005281863
(However, in the general formula (2-2), n 2 is an integer from 1 to 5, A is a cation.)

Figure 0005281863
(前記一般式(2−3)において、nは0〜5の整数であり、nは1〜3の整数であり、Aはカチオンである。)
Figure 0005281863
(In the general formula (2-3), n 3 is an integer of 0 to 5, n 4 is an integer of 1 to 3, and A is a cation.)

Figure 0005281863
(但し、前記一般式(3)において、Xはハロゲン原子であり、nは0〜2の整数である。)
Figure 0005281863
(However, in the formula (3), X is a halogen atom, n 5 is an integer of 0 to 2.)

Figure 0005281863
(但し、前記一般式(4)において、n及びnは相互に独立して、1〜3の整数であり、R及びRは相互に独立して、炭素数1〜20の炭化水素基である。)
Figure 0005281863
(However, the general formula (4), n 6 and n 7 are independently of one another, an integer from 1 to 3, R 3 and R 4 independently of one another, a hydrocarbon having 1 to 20 carbon atoms It is a hydrogen group.)

一般式(2−1)〜(2−3)中、Aはカチオンであり、カチオンの中でも、水素イオン、テトラブチルアンモニウムイオン、ナトリウムイオン、カリウムイオン、またはリチウムイオンであることが好ましい。   In general formulas (2-1) to (2-3), A is a cation, and among the cations, hydrogen ions, tetrabutylammonium ions, sodium ions, potassium ions, or lithium ions are preferable.

上述した一般式(3)で表される二座配位子(化合物)としては、例えば、2−フェニルピリジン(下記式(3a)で表される化合物)、下記一般式(3b)で表される化合物を挙げることができる。   Examples of the bidentate ligand (compound) represented by the general formula (3) described above include 2-phenylpyridine (a compound represented by the following formula (3a)) and the following general formula (3b). Can be mentioned.

Figure 0005281863
Figure 0005281863

Figure 0005281863
(但し、上記一般式(3b)において、Xはハロゲン原子である。)
Figure 0005281863
(However, in the above general formula (3b), X is a halogen atom.)

下記一般式(3b)で表される化合物としては、具体的には、2−(2,4−ジフルオロフェニル)ピリジン、2−(2,4−ジクロロフェニル)ピリジン、2−(2,4−ジブロモフェニル)ピリジンなどを挙げることができる。   Specific examples of the compound represented by the following general formula (3b) include 2- (2,4-difluorophenyl) pyridine, 2- (2,4-dichlorophenyl) pyridine, and 2- (2,4-dibromo). And phenyl) pyridine.

本発明の色素の具体例としては、下記式(1a)〜(1d)で表される化合物(色素)等を挙げることができる。   Specific examples of the dye of the present invention include compounds (dyes) represented by the following formulas (1a) to (1d).

Figure 0005281863
Figure 0005281863

Figure 0005281863
Figure 0005281863

Figure 0005281863
Figure 0005281863

Figure 0005281863
Figure 0005281863

本発明の色素は、例えば、以下のようにして製造することができる。まず、溶媒中で、長周期律表上の8〜10族の元素と一般式(2)で表される二座配位子(化合物)とを反応させて第一の反応溶液を得る。次に、得られた第一の反応溶液に一般式(4)で表される二座配位子(化合物)を加えて反応させて第二の反応溶液を得る。次に、得られた第二の反応溶液から溶媒を留去して析出物を得た後、得られた析出物と一般式(3)で表される二座配位子(化合物)とを混合して反応させて第三の反応溶液を得る。次に、得られた第三の反応溶液にアルコール、エーテルを添加し、得られた沈殿物をろ過することによって本発明の色素を製造することができる。上記アルコールとしては、例えば、メタノール、エタノールなどを挙げることができる。また、エーテルとしては、例えば、ジエチルエーテル、ジブチルエーテルなどを挙げることができる。なお、これらは単独でまたは2種以上を使用することができる。   The dye of the present invention can be produced, for example, as follows. First, a first reaction solution is obtained by reacting a group 8-10 element on the long periodic table with a bidentate ligand (compound) represented by the general formula (2) in a solvent. Next, the bidentate ligand (compound) represented by the general formula (4) is added to the obtained first reaction solution and reacted to obtain a second reaction solution. Next, after removing the solvent from the obtained second reaction solution to obtain a precipitate, the obtained precipitate and the bidentate ligand (compound) represented by the general formula (3) are combined. Mix and react to obtain a third reaction solution. Next, the pigment | dye of this invention can be manufactured by adding alcohol and ether to the obtained 3rd reaction solution, and filtering the obtained precipitate. Examples of the alcohol include methanol and ethanol. Examples of ethers include diethyl ether and dibutyl ether. These may be used alone or in combination of two or more.

[2]色素増感太陽電池:
本発明の色素増感太陽電池の一実施形態は、陽極と、陰極と、電解質と、を備えており、陰極は、透明導電性ガラスからなる基材と、この基材の表面に形成された酸化物薄膜電極と、を有している。そして、酸化物薄膜電極には、本発明の色素が吸着されている。このような色素増感太陽電池は、高い変換効率を示し、耐候性及び耐熱性等の耐久性にも優れるものである。
[2] Dye-sensitized solar cell:
One embodiment of the dye-sensitized solar cell of the present invention includes an anode, a cathode, and an electrolyte. The cathode is formed on a substrate made of transparent conductive glass and the surface of the substrate. An oxide thin film electrode. The dye of the present invention is adsorbed on the oxide thin film electrode. Such a dye-sensitized solar cell exhibits high conversion efficiency and is excellent in durability such as weather resistance and heat resistance.

「陽極」は、導電性を有する物質で構成されているものである。そして、構成物質の種類について特に制限はないが、例えば、透明導電性ガラスからなる基材の表面に、微量の白金または導電性カーボンを付着させたものを好適に用いることができる。「透明導電性ガラス」としては、例えば、酸化スズ、インジウム−スズ酸化物(ITO)からなるガラス等を用いることができる。   The “anode” is composed of a conductive material. The type of the constituent material is not particularly limited. For example, a material obtained by adhering a small amount of platinum or conductive carbon to the surface of a base material made of transparent conductive glass can be suitably used. As the “transparent conductive glass”, for example, glass made of tin oxide or indium-tin oxide (ITO) can be used.

「陰極」は、透明導電性ガラスからなる基材と、この基材の表面に形成された酸化物薄膜電極と、を有しており、酸化物薄膜電極には、既に述べた本発明の色素が吸着されているものである。「透明導電性ガラス」としては、上記陽極を構成する透明導電性ガラスと同様のものなどを用いることができる。「基材」の形状については特に制限はなく、例えば、板状のもの等を用いることができる。   The “cathode” has a base material made of transparent conductive glass and an oxide thin film electrode formed on the surface of the base material. The oxide thin film electrode includes the dye of the present invention described above. Is adsorbed. As the “transparent conductive glass”, the same as the transparent conductive glass constituting the anode can be used. There is no restriction | limiting in particular about the shape of a "base material", For example, a plate-shaped thing etc. can be used.

「酸化物薄膜電極」は酸化物からなる薄膜であり、この酸化物薄膜電極を構成する酸化物としては、例えば、金属酸化物、より具体的には、酸化チタン、酸化ニオブ、酸化亜鉛、酸化スズ、酸化タングステン、酸化インジウム等を挙げることができる。これらの酸化物の中でも、酸化チタン、酸化ニオブ、酸化スズが好ましく、酸化チタンが特に好ましい。この酸化物薄膜電極は、本発明の色素を吸着させた状態で用いる。色素を吸着させる方法は、特に制限はないが、後述する「色素の吸着」で説明する方法を採用することが好ましい。   The “oxide thin film electrode” is a thin film made of an oxide. Examples of the oxide constituting the oxide thin film electrode include metal oxide, more specifically, titanium oxide, niobium oxide, zinc oxide, and oxide. Tin, tungsten oxide, indium oxide, etc. can be mentioned. Among these oxides, titanium oxide, niobium oxide and tin oxide are preferable, and titanium oxide is particularly preferable. This oxide thin film electrode is used in a state where the dye of the present invention is adsorbed. The method for adsorbing the dye is not particularly limited, but the method described in “Adsorption of dye” described later is preferably employed.

酸化物薄膜電極の膜厚は、例えば、2〜30μmであることが好ましく、4〜15μmであることが更に好ましく、6〜12μmであることが特に好ましい。上記膜厚が2μm未満であると、酸化物薄膜電極に色素が吸着しないおそれがある。一方、30μm超であると、酸化物薄膜電極を光が透過しないおそれがある。   The film thickness of the oxide thin film electrode is, for example, preferably 2 to 30 μm, more preferably 4 to 15 μm, and particularly preferably 6 to 12 μm. There exists a possibility that a pigment | dye may not adsorb | suck to an oxide thin film electrode as the said film thickness is less than 2 micrometers. On the other hand, if the thickness exceeds 30 μm, light may not be transmitted through the oxide thin film electrode.

「電解質」としては、液体又は固体の電解質であり、このような電解質を含む溶液等を用いてもよい。これらの中でも、レドックス電解質を用いることが好ましい。「レドックス電解質」とは、レドックス系を構成する物質(酸化剤、還元剤)を含有する溶液であり、例えば、下記式(5)に示すようなレドックス系(I/I3−系)を構成する、ヨウ素及びヨウ素のイミダゾリウム塩を含む溶液を好適に用いることができる。この溶液の溶媒としては、電気化学的に不活性な物質、例えば、アセトニトリル、プロピオニトリル等を好適に用いることができる。
(5):I +2e←→3I+I
The “electrolyte” is a liquid or solid electrolyte, and a solution containing such an electrolyte may be used. Among these, it is preferable to use a redox electrolyte. The “redox electrolyte” is a solution containing a substance constituting the redox system (oxidant, reducing agent). For example, a redox system (I / I 3− system) represented by the following formula (5) is used. A solution containing iodine and an imidazolium salt of iodine can be preferably used. As the solvent of this solution, an electrochemically inert substance such as acetonitrile or propionitrile can be suitably used.
(5): I 3 + 2e ← → 3I + I 2

本発明の色素増感太陽電池は、陽極と陰極の間を電解質が満たすものであればよく、具体的には、容器中に電解質溶液を満たし、この電解質溶液中に、陽極と陰極とが対向するように配置して製造することができる。   The dye-sensitized solar cell of the present invention only needs to have an electrolyte between the anode and the cathode. Specifically, the container is filled with the electrolyte solution, and the anode and the cathode are opposed to each other in the electrolyte solution. Can be arranged and manufactured.

[3]色素増感太陽電池の製造方法:
本発明の色素増感太陽電池の製造方法の一実施形態は、透明導電性ガラスからなる基材と、この基材の表面に形成された酸化物薄膜電極と、を有する陰極用部材に対して、本発明の色素と塩基とを含有する色素溶液を接触させ、上記酸化物薄膜電極に上記色素を吸着させた陰極を得る陰極形成工程を備える方法である。このような方法によると、高い変換効率を示し、耐候性及び耐熱性等の耐久性にも優れた色素増感太陽電池を製造することができる。
[3] Method for producing dye-sensitized solar cell:
One embodiment of a method for producing a dye-sensitized solar cell of the present invention is a cathode member having a base material made of transparent conductive glass and an oxide thin film electrode formed on the surface of the base material. And a cathode forming step of obtaining a cathode in which a dye solution containing the dye of the present invention and a base is brought into contact with the oxide thin film electrode to adsorb the dye. According to such a method, a dye-sensitized solar cell exhibiting high conversion efficiency and excellent durability such as weather resistance and heat resistance can be produced.

[3−1]酸化物薄膜電極の形成:
本発明の色素増感太陽電池の製造方法が備える陰極形成工程は、陰極を構成する酸化物薄膜電極に色素を吸着させる操作を含むものである。そのため、酸化物薄膜電極に色素を吸着させることに先立って、酸化物薄膜電極を有する陰極用部材を用意する。陰極用部材の酸化物薄膜電極は、その形成方法については特に制限はないが、例えば、上述した酸化物薄膜電極を構成するための酸化物の微粒子を、適当な分散媒に懸濁させて酸化物スラリーを調製し、このスラリーを透明導電性ガラスからなる基材の表面に塗布して塗膜を形成し、形成した塗膜から溶媒を除去した後、加熱する等の方法により形成することができる。このようにして陰極用部材を得ることができる。
[3-1] Formation of oxide thin film electrode:
The cathode forming step provided in the method for producing a dye-sensitized solar cell of the present invention includes an operation of adsorbing the dye to the oxide thin film electrode constituting the cathode. Therefore, before adsorb | sucking a pigment | dye to an oxide thin film electrode, the member for cathodes which has an oxide thin film electrode is prepared. The method of forming the oxide thin film electrode of the cathode member is not particularly limited. For example, the oxide fine particles for constituting the oxide thin film electrode described above are oxidized by suspending in an appropriate dispersion medium. It is possible to form a product slurry, apply the slurry to the surface of a substrate made of transparent conductive glass to form a coating film, remove the solvent from the formed coating film, and then heat the slurry. it can. In this way, a negative electrode member can be obtained.

なお、陰極形成工程に用いる透明導電性ガラスとしては、既に上述した透明導電性ガラスと同様のものを好適に用いることができる。酸化物スラリーの塗布量は、特に制限はないが、得られる酸化物薄膜電極の膜厚が6〜20μmとなる量であることが好ましい。   In addition, as a transparent conductive glass used for a cathode formation process, the thing similar to the transparent conductive glass already mentioned above can be used suitably. Although there is no restriction | limiting in particular in the application quantity of an oxide slurry, It is preferable that it is the quantity from which the film thickness of the oxide thin film electrode obtained will be 6-20 micrometers.

[3−2]色素の吸着:
酸化物薄膜電極に色素を吸着させること、即ち、色素の吸着は、透明導電性ガラスからなる基材と、その表面に形成された酸化物薄膜電極とを有する陰極用部材に対して、本発明の色素と塩基とを含有する色素溶液を接触させることにより行う。
[3-2] Dye adsorption:
The dye is adsorbed on the oxide thin film electrode, that is, the adsorption of the dye is performed according to the present invention for a cathode member having a substrate made of transparent conductive glass and an oxide thin film electrode formed on the surface thereof. This is carried out by bringing a dye solution containing the dye and the base into contact with each other.

「色素溶液」は、本発明の色素、即ち、上記一般式(1)で表される色素と塩基とを含有する溶液である。色素溶液は、本発明の色素を0.1〜10mmol/Lの濃度で含有するものが好ましい。色素の濃度を0.1mmol/L以上とすることによって、酸化物薄膜電極に十分に色素を吸着させることが可能となる。一方、10mmol以下とすることによって、色素同士が吸着してしまう不具合を抑制することができる。このような効果を、より確実に発揮させるためには、色素の濃度を0.2〜5mmol/Lとすることが更に好ましく、0.5〜2mmol/Lとすることが特に好ましい。   The “dye solution” is a solution containing the dye of the present invention, that is, the dye represented by the general formula (1) and a base. The dye solution preferably contains the dye of the present invention at a concentration of 0.1 to 10 mmol / L. By setting the concentration of the pigment to 0.1 mmol / L or more, the pigment can be sufficiently adsorbed on the oxide thin film electrode. On the other hand, when the amount is 10 mmol or less, it is possible to suppress a problem that the dyes are adsorbed. In order to exhibit such an effect more reliably, the concentration of the dye is more preferably 0.2 to 5 mmol / L, and particularly preferably 0.5 to 2 mmol / L.

「色素溶液」が含有する塩基は、無機塩基であってもよいし、有機塩基であってもよい。   The base contained in the “dye solution” may be an inorganic base or an organic base.

「無機塩基」としては、例えば、アルカリ金属の水酸化物、アルカリ金属の炭酸塩、アルカリ金属の硫化物、アルカリ土類金属の水酸化物等を挙げることができる。   Examples of the “inorganic base” include alkali metal hydroxides, alkali metal carbonates, alkali metal sulfides, alkaline earth metal hydroxides, and the like.

「アルカリ金属の水酸化物」としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等を挙げることができる。「アルカリ金属の炭酸塩」としては、例えば、炭酸リチウム、炭酸ナトリウム、炭酸カリウム等を挙げることができる。「アルカリ金属の硫化物」としては、例えば、硫化リチウム、硫化ナトリウム、硫化カリウム等を挙げることができる。「アルカリ土類金属の水酸化物」としては、例えば、水酸化カルシウム、水酸化マグネシウム等を挙げることができる。   Examples of the “alkali metal hydroxide” include lithium hydroxide, sodium hydroxide, potassium hydroxide and the like. Examples of the “alkali metal carbonate” include lithium carbonate, sodium carbonate, potassium carbonate and the like. Examples of the “alkali metal sulfide” include lithium sulfide, sodium sulfide, potassium sulfide and the like. Examples of the “alkaline earth metal hydroxide” include calcium hydroxide and magnesium hydroxide.

「有機塩基」としては、例えば、一級〜三級アミン化合物、四級アンモニウムの水酸化物、四級アンモニウムの炭酸塩、四級アンモニウムの硫化物、四級ホスホニウムの水酸化物、四級ホスホニウムの炭酸塩、四級ホスホニウムの硫化物、芳香環中に窒素原子を有する含窒素ヘテロ芳香族化合物、芳香族アミン化合物等を挙げることができる。   Examples of the “organic base” include primary to tertiary amine compounds, quaternary ammonium hydroxides, quaternary ammonium carbonates, quaternary ammonium sulfides, quaternary phosphonium hydroxides, and quaternary phosphonium compounds. Examples thereof include carbonates, quaternary phosphonium sulfides, nitrogen-containing heteroaromatic compounds having a nitrogen atom in the aromatic ring, and aromatic amine compounds.

「一級〜三級アミン化合物」としては、例えば、メチルアミン、エチルアミン等の一級アミン;ジメチルアミン、ジエチルアミン等の二級アミン;トリメチルアミン、トリエチルアミン等の三級アミン等を挙げることができる。   Examples of the “primary to tertiary amine compound” include primary amines such as methylamine and ethylamine; secondary amines such as dimethylamine and diethylamine; tertiary amines such as trimethylamine and triethylamine.

「四級アンモニウムの水酸化物」としては、例えば、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド等を挙げることができる。「四級アンモニウムの炭酸塩」としては、例えば、テトラメチルアンモニウムカルボネート、テトラブチルアンモニウムカルボネート等を挙げることができる。「四級アンモニウムの硫化物」としては、例えば、テトラメチルアンモニウムスルフェート、テトラブチルアンモニウムスルフェート等を挙げることができる。   Examples of the “quaternary ammonium hydroxide” include tetraethylammonium hydroxide and tetrabutylammonium hydroxide. Examples of the “quaternary ammonium carbonate” include tetramethylammonium carbonate and tetrabutylammonium carbonate. Examples of the “quaternary ammonium sulfide” include tetramethylammonium sulfate and tetrabutylammonium sulfate.

「四級ホスホニウムの水酸化物」としては、例えば、テトラメチルホスホニウムヒドロキシド、テトラブチルホスホニウムヒドロキシド等を挙げることができる。「四級ホスホニウムの炭酸塩」としては、例えば、テトラメチルホスホニウムカルボネート、テトラブチルホスホニウムカルボネート等を挙げることができる。「四級ホスホニウムの硫化物」としては、例えば、テトラメチルホスホニウムスルフェート、テトラブチルホスホニウムスルフェート等を挙げることができる。   Examples of the “quaternary phosphonium hydroxide” include tetramethylphosphonium hydroxide and tetrabutylphosphonium hydroxide. Examples of the “quaternary phosphonium carbonate” include tetramethylphosphonium carbonate, tetrabutylphosphonium carbonate, and the like. Examples of the “quaternary phosphonium sulfide” include tetramethylphosphonium sulfate, tetrabutylphosphonium sulfate, and the like.

「含窒素ヘテロ芳香族化合物」としては、例えば、ピリジン、ピロール、ルチジン等を挙げることができる。「芳香族アミン化合物」としては、例えば、アニリン、メチルアニリン、ジメチルアニリン等を挙げることができる。   Examples of the “nitrogen-containing heteroaromatic compound” include pyridine, pyrrole, lutidine and the like. Examples of the “aromatic amine compound” include aniline, methylaniline, dimethylaniline and the like.

これらの塩基の中でも、ブレンステッド塩基を用いることが好ましく、有機塩基を用いることが更に好ましく、四級アンモニウムの水酸化物、四級アンモニウムの炭酸塩を用いることが特に好ましく、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、テトラメチルアンモニウムカルボネート、テトラブチルアンモニウムカルボネートを用いることが最も好ましく、最も好ましいものの中でも、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシドが好ましい。   Among these bases, it is preferable to use a Bronsted base, more preferably an organic base, particularly preferably a quaternary ammonium hydroxide, a quaternary ammonium carbonate, tetraethylammonium hydroxide, Most preferably, tetrabutylammonium hydroxide, tetramethylammonium carbonate, and tetrabutylammonium carbonate are used, and among the most preferable ones, tetraethylammonium hydroxide and tetrabutylammonium hydroxide are preferable.

色素溶液は、上記塩基を0.0001〜50mNの濃度で含有するものが好ましく、0.001〜20mNの濃度で含有するものが更に好ましく、0.01〜10mNの濃度で含有するものが特に好ましい。   The dye solution preferably contains the above base at a concentration of 0.0001 to 50 mN, more preferably contains 0.001 to 20 mN, and particularly preferably contains 0.01 to 10 mN. .

色素溶液の溶媒としては、例えば、水、極性有機溶媒、またはこれらの混合溶媒を用いることが好ましい。極性有機溶媒としては、例えば、エーテル、アルコール、ニトリル、アミド、スルホキシド等を挙げることができる。   As a solvent for the dye solution, for example, water, a polar organic solvent, or a mixed solvent thereof is preferably used. Examples of the polar organic solvent include ether, alcohol, nitrile, amide, sulfoxide and the like.

「エーテル」としては、例えば、ジエチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル等を挙げることができる。「アルコール」としては、例えば、エタノール、メタノール、イソプロピルアルコール、ブタノール等を挙げることができる。「ニトリル」としては、例えば、アセトニトリル、ベンゾニトリル、プロピオノニトリル等を挙げることができる。「アミド」としては、例えば、ジメチルホルムアミド、ジメチルアセトアミド等を挙げることができる。「スルホキシド」としては、例えば、ジメチルスルホキシド等を挙げることができる。   Examples of the “ether” include diethyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether and the like. Examples of the “alcohol” include ethanol, methanol, isopropyl alcohol, butanol and the like. Examples of “nitrile” include acetonitrile, benzonitrile, propiononitrile, and the like. Examples of “amide” include dimethylformamide, dimethylacetamide and the like. Examples of the “sulfoxide” include dimethyl sulfoxide.

これらの溶媒の中でも、アルコール、ニトリル、またはアミドを用いることが好ましく、エタノール、メタノール、ブタノール、またはアセトニトリルを用いることが更に好ましい。また、溶媒の混合溶媒としては、アルコールとニトリルとの混合溶媒を用いることが好ましく、ブタノールとアセトニトリルとの混合溶媒を用いることが更に好ましい。   Among these solvents, alcohol, nitrile, or amide is preferably used, and ethanol, methanol, butanol, or acetonitrile is more preferably used. Moreover, as a mixed solvent of a solvent, it is preferable to use the mixed solvent of alcohol and nitrile, and it is still more preferable to use the mixed solvent of butanol and acetonitrile.

陰極用部材と色素溶液とを接触させる方法については、特に制限はないが、陰極用部材を色素溶液に浸漬する方法などを挙げることができる。   The method for bringing the cathode member into contact with the dye solution is not particularly limited, and examples thereof include a method of immersing the cathode member in the dye solution.

陰極用部材を色素溶液に浸漬する場合、浸漬時間は、0.5〜100時間とすることが好ましく、2〜50時間とすることが更に好ましく、12〜24時間とすることが特に好ましい。また、浸漬の際の温度は、0〜100℃とすることが好ましく、温度を10〜50℃とすることが更に好ましい。   When the cathode member is immersed in the dye solution, the immersion time is preferably 0.5 to 100 hours, more preferably 2 to 50 hours, and particularly preferably 12 to 24 hours. Moreover, it is preferable that the temperature in the case of immersion shall be 0-100 degreeC, and it is still more preferable that temperature shall be 10-50 degreeC.

[3−3]色素増感太陽電池の形成:
本発明の色素増感太陽電池の製造方法は、上記陰極形成工程の後、容器中に電解質溶液を満たし、この電解質溶液中に、対向する陽極と陰極とを配置するようにして色素増感太陽電池を得る電池形成工程を行うことができる。
[3-3] Formation of dye-sensitized solar cell:
In the method for producing a dye-sensitized solar cell of the present invention, after the cathode formation step, the container is filled with an electrolyte solution, and the anode and cathode facing each other are disposed in the electrolyte solution. A battery forming step for obtaining a battery can be performed.

電解質溶液は、既に上述した電解質を含有する溶液である。また、陽極は、既に上述したものを好適に用いることができる。   The electrolyte solution is a solution that already contains the electrolyte described above. Moreover, what was already mentioned above can be used suitably for an anode.

陽極と陰極とは、これらの間にスペーサーを挟み込ませると、陽極と陰極とを所望の間隔で離隔させた状態で対向させることができる。また、電解質として固体電解質を用いる場合には、例えば、陰極、固体電解質、及び陽極を、この順番で順次積層させることによって、陽極と陰極とを所望の間隔で離隔させた状態で対向させることができる。   When a spacer is sandwiched between the anode and the cathode, the anode and the cathode can be opposed to each other with a desired distance therebetween. Further, when a solid electrolyte is used as the electrolyte, for example, the cathode, the solid electrolyte, and the anode are sequentially laminated in this order so that the anode and the cathode are opposed to each other at a desired interval. it can.

以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例、比較例中の「部」及び「%」は、特に断らない限り質量基準である。また、各種物性値の測定方法、及び諸特性の評価方法を以下に示す。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples. In the examples and comparative examples, “parts” and “%” are based on mass unless otherwise specified. Moreover, the measuring method of various physical-property values and the evaluation method of various characteristics are shown below.

(実施例1)[色素の合成]:
下記式(1a)で示される化合物(以下、「色素T1」と記す場合がある)を合成した。
Example 1 [Synthesis of Dye]:
A compound represented by the following formula (1a) (hereinafter sometimes referred to as “dye T1”) was synthesized.

Figure 0005281863
Figure 0005281863

まず、減圧脱気を行った後、窒素雰囲気下においた無水N,N−ジメチルホルムアミド25mLに、二塩化(p−シメン)ルテニウム(II)100mg及び減圧乾燥した下記式(6)で表される化合物148mgを添加して溶液を調製し、この溶液を、10分間、窒素気流下においた。その後、窒素雰囲気下で、上記溶液を撹拌しながら100℃にて4時間反応させて、第一の反応溶液を得た。この第一の反応溶液に、下記式(7)で表される化合物76mgを加え、10分間、窒素気流下においた。その後、引き続き撹拌しながら、窒素雰囲気下で、150℃にて4時間反応させて第二の反応溶液を得た。   First, after degassing under reduced pressure, 100 mg of (p-cymene) ruthenium (II) dichloride and 25 mg of anhydrous N, N-dimethylformamide in a nitrogen atmosphere and the following formula (6) dried under reduced pressure are represented. 148 mg of compound was added to prepare a solution, and this solution was placed under a nitrogen stream for 10 minutes. Thereafter, the above solution was stirred at 100 ° C. for 4 hours under a nitrogen atmosphere to obtain a first reaction solution. To this first reaction solution, 76 mg of a compound represented by the following formula (7) was added, and placed in a nitrogen stream for 10 minutes. Thereafter, the mixture was reacted at 150 ° C. for 4 hours under a nitrogen atmosphere with continuous stirring to obtain a second reaction solution.

Figure 0005281863
Figure 0005281863

Figure 0005281863
Figure 0005281863

反応終了後、第二の反応溶液を放冷して室温まで降温させ、溶媒を留去させた後、N,N−ジメチルホルムアミド5mLを加え、その溶液を水100mLに滴下して、析出物を得た。減圧脱気を行った後、窒素雰囲気下においたエチレングリコール20mLに、濾過によって得られた上記析出物100mg及び減圧乾燥した2−(2,4−ジフルオロフェニル)ピリジン(一般式(3b)で表される化合物)42mgを添加して反応させて第三の反応溶液を調製し、10分間窒素気流下においた。窒素雰囲気下で、第三の反応溶液を撹拌しながら160℃にて2時間反応させて反応液を得た。この反応液に、テトラブチルアンモニウムヒドロキシド266mgを加え、引き続き撹拌しながら、窒素雰囲気下、160℃にて4時間反応させた。   After completion of the reaction, the second reaction solution is allowed to cool to room temperature, the solvent is distilled off, 5 mL of N, N-dimethylformamide is added, the solution is added dropwise to 100 mL of water, and the precipitate is collected. Obtained. After degassing under reduced pressure, 100 mg of the precipitate obtained by filtration and 2- (2,4-difluorophenyl) pyridine (general formula (3b)) dried under reduced pressure were added to 20 mL of ethylene glycol in a nitrogen atmosphere. Compound 42) was added and reacted to prepare a third reaction solution, which was placed in a nitrogen stream for 10 minutes. Under a nitrogen atmosphere, the third reaction solution was reacted at 160 ° C. for 2 hours with stirring to obtain a reaction solution. To this reaction solution, 266 mg of tetrabutylammonium hydroxide was added, and the mixture was reacted at 160 ° C. for 4 hours under a nitrogen atmosphere with continuous stirring.

反応終了後、反応液を放冷して室温まで降温させ、0.1N硝酸を滴下してpHを5.0に調整し、ジエチルエーテル50mL、及びメタノール15mLを加えて、析出物を得た。一晩静置した後、濾過して析出物を得、得られた析出物を乾燥することにより、55mgの精製物を得た。この精製物をH−NMRで分析したところ、上記式(1a)で表される化合物(色素T1)であることが確認できた。本実施例のH−NMRの分析結果を以下に示す。 After completion of the reaction, the reaction solution was allowed to cool to room temperature, 0.1N nitric acid was added dropwise to adjust the pH to 5.0, and 50 mL of diethyl ether and 15 mL of methanol were added to obtain a precipitate. After allowing to stand overnight, filtration was performed to obtain a precipitate, and the obtained precipitate was dried to obtain 55 mg of a purified product. When this purified product was analyzed by 1 H-NMR, it was confirmed that it was a compound (dye T1) represented by the above formula (1a). The analysis result of 1 H-NMR of this example is shown below.

H−NMR(CDOD、400MHz、δ(ppm));δ=9.05(1H)、8.95(1H)、8.60(2H)、8.30(2H)8.10(1H)、7.90(1H)、7.85(1H)、7.80(1H)、7.78(1H)、7.68(1H)、7.62(1H)、7.58(1H)、7.40(1H)、7.38(1H)、7.25(1H)、7.00(1H)、6.85(4H)、6.10(1H)、3.25(12H)、3.24(1H)、3.22(12H)、3.19(12H)、3.02(16H)、2.56−1.25(36H) 1 H-NMR (CD 3 OD, 400 MHz, δ (ppm)); δ = 9.05 (1H), 8.95 (1H), 8.60 (2H), 8.30 (2H) 8.10 ( 1H), 7.90 (1H), 7.85 (1H), 7.80 (1H), 7.78 (1H), 7.68 (1H), 7.62 (1H), 7.58 (1H) ), 7.40 (1H), 7.38 (1H), 7.25 (1H), 7.00 (1H), 6.85 (4H), 6.10 (1H), 3.25 (12H) 3.24 (1H), 3.22 (12H), 3.19 (12H), 3.02 (16H), 2.56-1.25 (36H)

(実施例2)
下記式(1c)で表される化合物(以下、「色素T2」と記す場合がある)を合成した。
(Example 2)
A compound represented by the following formula (1c) (hereinafter sometimes referred to as “dye T2”) was synthesized.

Figure 0005281863
Figure 0005281863

まず、減圧脱気を行った後、窒素雰囲気下においた無水N,N−ジメチルホルムアミド25mLに、二塩化(p−シメン)ルテニウム(II)100mg及び減圧乾燥した上記式(6)で表される化合物148mgを添加して溶液を調製し、10分間、窒素気流下においた。その後、窒素雰囲気下で、上記溶液を撹拌しながら100℃にて4時間反応させて第一の反応溶液を得た。この第一の反応溶液に、下記式(8)で表される化合物76mgを加え、10分間、窒素気流下においた。その後、引き続き撹拌しながら、窒素雰囲気下、150℃にて4時間反応させて第二の反応溶液を得た。   First, after degassing under reduced pressure, 100 mg of (p-cymene) ruthenium (II) dichloride and 25 mg of anhydrous N, N-dimethylformamide in a nitrogen atmosphere and the above formula (6) dried under reduced pressure are represented. A solution was prepared by adding 148 mg of the compound and placed under a nitrogen stream for 10 minutes. Thereafter, the solution was reacted at 100 ° C. for 4 hours with stirring in a nitrogen atmosphere to obtain a first reaction solution. To this first reaction solution, 76 mg of a compound represented by the following formula (8) was added, and placed in a nitrogen stream for 10 minutes. Thereafter, the mixture was reacted at 150 ° C. for 4 hours under a nitrogen atmosphere with continuous stirring to obtain a second reaction solution.

Figure 0005281863
Figure 0005281863

反応終了後、第二の反応溶液を放冷して室温まで降温させ、溶媒を留去させた後、N,N−ジメチルホルムアミド5mLを加え、その溶液を水100mLに滴下して、析出物を得た。減圧脱気を行った後、窒素雰囲気下においたエチレングリコール20mLに、濾過によって得られた上記析出物100mg及び減圧乾燥した2−(2,4−ジフルオロフェニル)ピリジン(一般式(3b)で表される化合物)42mg添加して反応させて第三の反応溶液を調製し、10分間窒素気流下においた。窒素雰囲気下で、第三の反応溶液を撹拌しながら160℃にて2時間反応させて反応液を得た。この反応液に、テトラブチルアンモニウムヒドロキシド266mgを加え、引き続き撹拌しながら、窒素雰囲気下、160℃にて4時間反応させた。   After completion of the reaction, the second reaction solution is allowed to cool to room temperature, the solvent is distilled off, 5 mL of N, N-dimethylformamide is added, the solution is added dropwise to 100 mL of water, and the precipitate is collected. Obtained. After degassing under reduced pressure, 100 mg of the precipitate obtained by filtration and 2- (2,4-difluorophenyl) pyridine (general formula (3b)) dried under reduced pressure were added to 20 mL of ethylene glycol in a nitrogen atmosphere. Compound 42) was added and reacted to prepare a third reaction solution, which was placed in a nitrogen stream for 10 minutes. Under a nitrogen atmosphere, the third reaction solution was reacted at 160 ° C. for 2 hours with stirring to obtain a reaction solution. To this reaction solution, 266 mg of tetrabutylammonium hydroxide was added, and the mixture was reacted at 160 ° C. for 4 hours under a nitrogen atmosphere with continuous stirring.

反応終了後、反応液を放冷して室温まで降温させ、0.1N硝酸を滴下してpHを5.0に調整し、ジエチルエーテル50mL、及びメタノール15mLを加えて、析出物を得た。一晩静置した後、濾過して析出物を得、得られた析出物を、実施例1に準じた方法で処理することにより、55mgの精製物を得た。この精製物をH−NMRで分析したところ、上記式(1c)で表される化合物(色素T2)であることが確認できた。本実施例のH−NMRの分析結果を以下に示す。 After completion of the reaction, the reaction solution was allowed to cool to room temperature, 0.1N nitric acid was added dropwise to adjust the pH to 5.0, and 50 mL of diethyl ether and 15 mL of methanol were added to obtain a precipitate. After leaving still overnight, it filtered, the deposit was obtained, and the obtained deposit was processed by the method according to Example 1, and 55 mg of purified products were obtained. When this purified product was analyzed by 1 H-NMR, it was confirmed that it was a compound represented by the above formula (1c) (dye T2). The analysis result of 1 H-NMR of this example is shown below.

H−NMR(CDOD、400MHz、δ(ppm));δ=9.05(1H)、8.95(1H)、8.60(2H)、8.30(2H)8.10(1H)、8.05(2H)、7.90(1H)、7.87(2H)、7.85(1H)、7.80(1H)、7.78(1H)、7.68(1H)、7.62(1H)、7.58(1H)、7.40(1H)、7.38(1H)、7.25(1H)、7.00(1H)、6.85(4H)、6.10(1H)、3.25(12H)、3.24(1H)、3.22(12H)、3.19(12H)、3.02(16H)、2.56−1.25(36H) 1 H-NMR (CD 3 OD, 400 MHz, δ (ppm)); δ = 9.05 (1H), 8.95 (1H), 8.60 (2H), 8.30 (2H) 8.10 ( 1H), 8.05 (2H), 7.90 (1H), 7.87 (2H), 7.85 (1H), 7.80 (1H), 7.78 (1H), 7.68 (1H) ), 7.62 (1H), 7.58 (1H), 7.40 (1H), 7.38 (1H), 7.25 (1H), 7.00 (1H), 6.85 (4H) 6.10 (1H), 3.25 (12H), 3.24 (1H), 3.22 (12H), 3.19 (12H), 3.02 (16H), 2.56-1.25 (36H)

下記式(1d)で表される化合物(以下、「色素T3」と記す場合がある)を合成した。   A compound represented by the following formula (1d) (hereinafter sometimes referred to as “dye T3”) was synthesized.

Figure 0005281863
Figure 0005281863

まず、減圧脱気を行った後、窒素雰囲気下においた無水N,N−ジメチルホルムアミド25mLに、二塩化(p−シメン)ルテニウム(II)100mg及び減圧乾燥した上記式(6)で表される化合物148mgを添加して溶液を調製し、この溶液を、10分間、窒素気流下においた。その後、窒素雰囲気下で、上記溶液を撹拌しながら100℃にて4時間反応させて、第一の反応溶液を得た。この第一の反応溶液に、下記式(9)で表される化合物76mgを加え、10分間、窒素気流下においた。その後、引き続き撹拌しながら、窒素雰囲気下で、150℃にて4時間反応させて第二の反応溶液を得た。   First, after degassing under reduced pressure, 100 mg of (p-cymene) ruthenium (II) dichloride and 25 mg of anhydrous N, N-dimethylformamide in a nitrogen atmosphere and the above formula (6) dried under reduced pressure are represented. 148 mg of compound was added to prepare a solution, and this solution was placed under a nitrogen stream for 10 minutes. Thereafter, the above solution was stirred at 100 ° C. for 4 hours under a nitrogen atmosphere to obtain a first reaction solution. To this first reaction solution, 76 mg of a compound represented by the following formula (9) was added, and placed in a nitrogen stream for 10 minutes. Thereafter, the mixture was reacted at 150 ° C. for 4 hours under a nitrogen atmosphere with continuous stirring to obtain a second reaction solution.

Figure 0005281863
Figure 0005281863

反応終了後、第二の反応溶液を放冷して室温まで降温させ、溶媒を留去させた後、N,N−ジメチルホルムアミド5mLを加え、その溶液を水100mLに滴下して、析出物を得た。減圧脱気を行った後、窒素雰囲気下においたエチレングリコール20mLに、濾過によって得られた上記析出物100mg及び減圧乾燥した2−(2,4−ジフルオロフェニル)ピリジン(一般式(3b)で表される化合物)42mgを添加して反応させて第三の反応溶液を調製し、10分間窒素気流下においた。窒素雰囲気下で、第三の反応溶液を撹拌しながら160℃にて2時間反応させて反応液を得た。この反応液に、テトラブチルアンモニウムヒドロキシド266mgを加え、引き続き撹拌しながら、窒素雰囲気下、160℃にて4時間反応させた。   After completion of the reaction, the second reaction solution is allowed to cool to room temperature, the solvent is distilled off, 5 mL of N, N-dimethylformamide is added, the solution is added dropwise to 100 mL of water, and the precipitate is collected. Obtained. After degassing under reduced pressure, 100 mg of the precipitate obtained by filtration and 2- (2,4-difluorophenyl) pyridine (general formula (3b)) dried under reduced pressure were added to 20 mL of ethylene glycol in a nitrogen atmosphere. Compound 42) was added and reacted to prepare a third reaction solution, which was placed in a nitrogen stream for 10 minutes. Under a nitrogen atmosphere, the third reaction solution was reacted at 160 ° C. for 2 hours with stirring to obtain a reaction solution. To this reaction solution, 266 mg of tetrabutylammonium hydroxide was added, and the mixture was reacted at 160 ° C. for 4 hours under a nitrogen atmosphere with continuous stirring.

反応終了後、反応液を放冷して室温まで降温させ、0.1N硝酸を滴下してpHを5.0に調整し、ジエチルエーテル50mL、及びメタノール15mLを加えて、析出物を得た。一晩静置した後、濾過して析出物を得、得られた析出物を、実施例1に準じた方法で処理することにより、55mgの精製物を得た。この精製物をH−NMRで分析したところ、前記式(1d)で表される化合物(色素T3)であることが確認できた。本実施例のH−NMRの分析結果を以下に示す。 After completion of the reaction, the reaction solution was allowed to cool to room temperature, 0.1N nitric acid was added dropwise to adjust the pH to 5.0, and 50 mL of diethyl ether and 15 mL of methanol were added to obtain a precipitate. After leaving still overnight, it filtered, the deposit was obtained, and the obtained deposit was processed by the method according to Example 1, and 55 mg of purified products were obtained. When this purified product was analyzed by 1 H-NMR, it was confirmed that it was a compound represented by the formula (1d) (dye T3). The analysis result of 1 H-NMR of this example is shown below.

H−NMR(CDOD、400MHz、δ(ppm));δ=9.04(1H)、8.95(1H)、8.58(2H)、8.28(2H)8.10(1H)、8.05(2H)、7.90(1H)、7.87(2H)、7.84(1H)、7.80(1H)、7.78(1H)、7.65(1H)、7.62(1H)、7.58(1H)、7.40(1H)、7.38(1H)、7.25(1H)、7.00(1H)、6.85(4H)、6.10(1H)、3.25(12H)、3.24(1H)、3.22(12H)、3.19(12H)、3.02(16H)、2.56−1.25(36H) 1 H-NMR (CD 3 OD, 400 MHz, δ (ppm)); δ = 9.04 (1H), 8.95 (1H), 8.58 (2H), 8.28 (2H) 8.10 ( 1H), 8.05 (2H), 7.90 (1H), 7.87 (2H), 7.84 (1H), 7.80 (1H), 7.78 (1H), 7.65 (1H) ), 7.62 (1H), 7.58 (1H), 7.40 (1H), 7.38 (1H), 7.25 (1H), 7.00 (1H), 6.85 (4H) 6.10 (1H), 3.25 (12H), 3.24 (1H), 3.22 (12H), 3.19 (12H), 3.02 (16H), 2.56-1.25 (36H)

(実施例4)[色素増感太陽電池の製造]:
(1)陽極の製造:
まず、透明導電性ガラスからなる基材(厚さ4mm、酸化スズ製、抵抗値=10Ω/cm)の表面に白金を焼結して陽極を得た。
(Example 4) [Production of dye-sensitized solar cell]:
(1) Production of anode:
First, platinum was sintered on the surface of a base material (thickness 4 mm, made of tin oxide, resistance value = 10 Ω / cm 2 ) made of transparent conductive glass to obtain an anode.

(2)酸化物薄膜電極の製造:
アセチルアセトン0.4mLとイオン交換水20mLの混合媒体中に、酸化チタン微粒子12g及び分散剤(商品名「Triton X−100」、アルドリッチ社製)0.2gを添加し、酸化物スラリーを調製した。この酸化物スラリーを、上記陽極の製造に用いたのと同じ透明導電性ガラスからなる基材の表面に塗布し、空気雰囲気中、500℃で0.5時間加熱することにより、透明導電性ガラスからなる基材の表面に、酸化チタンからなる酸化物薄膜電極を形成して、陰極用部材を得た。
(2) Production of oxide thin film electrode:
In a mixed medium of 0.4 mL of acetylacetone and 20 mL of ion-exchanged water, 12 g of titanium oxide fine particles and 0.2 g of a dispersant (trade name “Triton X-100”, manufactured by Aldrich) were added to prepare an oxide slurry. By applying this oxide slurry to the surface of the substrate made of the same transparent conductive glass as used in the production of the anode, and heating in an air atmosphere at 500 ° C. for 0.5 hour, the transparent conductive glass An oxide thin film electrode made of titanium oxide was formed on the surface of the base material made of to obtain a cathode member.

(3)色素溶液の調製:
実施例1で合成した色素T1と塩基とをエタノールに溶解させて、色素の濃度が0.5mmol/Lである色素溶液を調製した。
(3) Preparation of dye solution:
The dye T1 synthesized in Example 1 and the base were dissolved in ethanol to prepare a dye solution having a dye concentration of 0.5 mmol / L.

(4)陰極の製造:
上記陰極用部材を上記色素溶液中に、23℃にて24時間浸漬することにより、陰極用部材の酸化物薄膜電極に色素を吸着させて陰極を製造した。
(4) Production of cathode:
The cathode member was immersed in the dye solution at 23 ° C. for 24 hours to adsorb the dye to the oxide thin film electrode of the cathode member to produce a cathode.

(5)電解質溶液の製造:
アセトニトリル/バレロニトリル混合溶媒(体積比:85/15)に、グアニジウムチオシアネートを0.1mol/L、ヨウ素を0.03mol/L、1−ブチル−3−メチルイミダゾリウムヨードニウム塩を0.6mol/L、及び、t−ブチルピリジンを0.5mol/Lの濃度で溶解させて電解質溶液E1(表1中、「E1」と示す)を製造した。
(5) Production of electrolyte solution:
Acetonitrile / valeronitrile mixed solvent (volume ratio: 85/15), guanidinium thiocyanate 0.1 mol / L, iodine 0.03 mol / L, 1-butyl-3-methylimidazolium iodonium salt 0.6 mol / L and t-butylpyridine were dissolved at a concentration of 0.5 mol / L to prepare an electrolyte solution E1 (shown as “E1” in Table 1).

(6)色素増感太陽電池の製造:
まず、陽極の白金焼結面と陰極の酸化物薄膜電極形成面とが対向し、両電極の間隔が25μmとなるように、陽極と陰極を容器中に配置した。その後、この容器中に電解質溶液E1を注入し、色素増感太陽電池を製造した。製造した色素増感太陽電池について以下の評価を行った。
(6) Production of dye-sensitized solar cell:
First, the anode and the cathode were placed in a container so that the platinum sintered surface of the anode and the oxide thin film electrode forming surface of the cathode face each other and the distance between the electrodes was 25 μm. Then, electrolyte solution E1 was inject | poured in this container, and the dye-sensitized solar cell was manufactured. The following evaluation was performed about the manufactured dye-sensitized solar cell.

変換効率(発電効率):
製造した色素増感太陽電池に対して、ソーラーシミュレーターを用いて、疑似太陽光を100mW/cmの照度で照射し、変換効率(%)を測定した。また、測定した変換効率(%)について、変換効率が9%以上の場合は「○」(良好)とし、9%未満で6%以上の場合は「△」とし、6%未満の場合は「×」(不良)として評価を行った。
Conversion efficiency (power generation efficiency):
The produced dye-sensitized solar cell was irradiated with pseudo-sunlight at an illuminance of 100 mW / cm 2 using a solar simulator, and the conversion efficiency (%) was measured. In addition, regarding the measured conversion efficiency (%), when the conversion efficiency is 9% or more, “Good” (good), when less than 9% and 6% or more, “△”, when less than 6%, Evaluation was performed as “x” (defect).

本実施例の色素増感太陽電池は、変換効率(発電効率)が9.56%であり、その評価が「○」であった。なお、評価結果を表1に示す。   The dye-sensitized solar cell of this example had a conversion efficiency (power generation efficiency) of 9.56%, and the evaluation was “◯”. The evaluation results are shown in Table 1.

Figure 0005281863
Figure 0005281863

(実施例5〜9、比較例1,2)
表1に示す色素及び電解質溶液を用いた以外は、実施例4と同様にして色素増感太陽電池を製造した。製造した色素増感太陽電池について変換効率(発電効率)の評価を行った。評価結果を表1に示す。
(Examples 5 to 9, Comparative Examples 1 and 2)
A dye-sensitized solar cell was produced in the same manner as in Example 4 except that the dye and electrolyte solution shown in Table 1 were used. The conversion efficiency (power generation efficiency) of the manufactured dye-sensitized solar cell was evaluated. The evaluation results are shown in Table 1.

なお、表1中、「N719」は、市販の色素「N719」(上記式(12)で表される色素)である。また、「E2」は、アセトニトリル/バレロニトリル混合溶媒(体積比:85/15)に、リチウムヨードニウム塩を0.1mol/L、ヨウ素を0.05mol/L及び1−ブチル−3−メチルイミダゾリウムヨードニウム塩を0.6mol/Lの濃度で溶解させて製造した電解質溶液である。   In Table 1, “N719” is a commercially available dye “N719” (a dye represented by the above formula (12)). “E2” is acetonitrile / valeronitrile mixed solvent (volume ratio: 85/15), lithium iodonium salt 0.1 mol / L, iodine 0.05 mol / L, and 1-butyl-3-methylimidazolium. An electrolyte solution produced by dissolving an iodonium salt at a concentration of 0.6 mol / L.

(実施例10〜12、比較例3)
表2に示す色素及び電解質溶液を用いた以外は、実施例4と同様にして色素増感太陽電池を製造した。製造した色素増感太陽電池について以下の評価を行った。
(Examples 10 to 12, Comparative Example 3)
A dye-sensitized solar cell was produced in the same manner as in Example 4 except that the dye and electrolyte solution shown in Table 2 were used. The following evaluation was performed about the manufactured dye-sensitized solar cell.

変換効率及び耐久性:
製造した色素増感太陽電池を、333K、100mW/cmの雰囲気下で保持した。保持後の色素増感型太陽電池に対して、ソーラーシミュレーターを用いて、疑似太陽光を100mW/cmの照度で30日間照射し、当初変換効率(変換効率A)と30日経過後の変換効率(変換効率B)を測定した。そして、変換効率A(表2中、「変換効率(当初)」と示す)の値が、4%以上の場合は「○」(良好)とし、4%未満の場合は「×」(不良)として評価した。また、変換効率B(表2中、「変換効率(30日経過後)」と示す)の値が、2%以上の場合は「○」(良好)とし、2%未満の場合は「×」(不良)として評価した。
Conversion efficiency and durability:
The produced dye-sensitized solar cell was held under an atmosphere of 333 K, 100 mW / cm 2 . The dye-sensitized solar cell after holding is irradiated with pseudo sunlight at an illuminance of 100 mW / cm 2 for 30 days using a solar simulator, and the initial conversion efficiency (conversion efficiency A) and the conversion efficiency after 30 days have passed. (Conversion efficiency B) was measured. When the value of conversion efficiency A (shown as “conversion efficiency (initial)” in Table 2) is 4% or more, it is “◯” (good), and when it is less than 4%, “×” (bad). As evaluated. Moreover, when the value of the conversion efficiency B (shown as “conversion efficiency (after 30 days)” in Table 2) is 2% or more, it is “◯” (good), and when it is less than 2%, “×” ( Bad).

また、測定した変換効率Aの値及び変換効率Bの値から、変換効率Aに対する変換効率Bの百分率(表2中、「B/A(%)」と示す)を算出して耐久性の評価を行った。評価基準は、上記百分率の値が60%以上の場合は「○」(良好)とし、60%未満の場合は「×」(不良)とした。評価結果を表2に示す。   Further, the percentage of the conversion efficiency B with respect to the conversion efficiency A (shown as “B / A (%)” in Table 2) is calculated from the measured value of the conversion efficiency A and the value of the conversion efficiency B to evaluate durability. Went. The evaluation criteria were “◯” (good) when the percentage value was 60% or more, and “x” (bad) when the percentage value was less than 60%. The evaluation results are shown in Table 2.

Figure 0005281863
Figure 0005281863

なお、表2中、「E3」は、3−メトキシプロピオニトリルに、グアニジウムチオシアネートを0.1mol/L、ヨウ素を0.15mol/L、1−メチル3−プロピルイミダゾリウムヨードニウム塩を1.0mol/L、N−ブチルベンジミダゾル(N−Butylbenzimidazole)を0.5mol/Lの濃度で溶解させて製造した電解質溶液である。   In Table 2, “E3” means 3-methoxypropionitrile, guanidinium thiocyanate 0.1 mol / L, iodine 0.15 mol / L, 1-methyl 3-propylimidazolium iodonium salt 1 It is an electrolyte solution produced by dissolving 0.0 mol / L of N-butylbenzimidazole at a concentration of 0.5 mol / L.

表1に示すように、実施例1〜3の色素(色素T1〜T3)を用いた、実施例4〜9の色素増感太陽電池は、N719を用いた、比較例1及び2の色素増感太陽電池と同等の高い変換効率を示すことが確認できた。また、表2に示すように、実施例1〜3の色素(色素T1〜T3)を用いた、実施例10〜12の色素増感太陽電池は、N719を用いた比較例3の色素増感太陽電池に比して、高い耐久性を示した。   As shown in Table 1, the dye-sensitized solar cells of Examples 4 to 9 using the dyes of Examples 1 to 3 (dyes T1 to T3) were dye-sensitized of Comparative Examples 1 and 2 using N719. It was confirmed that the conversion efficiency was as high as that of the solar cell. Moreover, as shown in Table 2, the dye-sensitized solar cells of Examples 10 to 12 using the dyes of Examples 1 to 3 (Dyes T1 to T3) are dye-sensitized of Comparative Example 3 using N719. High durability compared to solar cells.

本発明の色素は、色素増感太陽電池の材料として好適に用いることができる。   The dye of the present invention can be suitably used as a material for a dye-sensitized solar cell.

本発明の色素増感太陽電池は、高い変換効率を示し、耐候性及び耐熱性等の耐久性にも優れるため、シリコン系太陽電池に代わる次世代の太陽電池として好適に用いることができる。   Since the dye-sensitized solar cell of the present invention exhibits high conversion efficiency and is excellent in durability such as weather resistance and heat resistance, it can be suitably used as a next-generation solar cell that replaces a silicon-based solar cell.

本発明の色素増感太陽電池の製造方法は、高い変換効率を示し、耐候性及び耐熱性等の耐久性にも優れるため、シリコン系太陽電池に代わる次世代の色素増感太陽電池を好適に製造することができる。   Since the method for producing a dye-sensitized solar cell of the present invention exhibits high conversion efficiency and excellent durability such as weather resistance and heat resistance, a next-generation dye-sensitized solar cell that replaces a silicon-based solar cell is preferably used. Can be manufactured.

Claims (5)

下記一般式(1)で表される色素。
(1):ML
(但し、Mは長周期律表上の8〜10族の元素であり、Lは下記一般式(2)で表される二座配位子であり、Lは下記一般式(3)で表される二座配位子であり、Lは下記一般式(4)で表される二座配位子である。)
Figure 0005281863
(但し、前記一般式(2)において、R及びRは相互に独立して、下記一般式(2−1)〜(2−3)で示される構造のうちのいずれか1つである。)
Figure 0005281863
(但し、前記一般式(2−1)において、nは0〜5の整数であり、Aはカチオンである。)
Figure 0005281863
(但し、前記一般式(2−2)において、nは1〜5の整数であり、Aはカチオンである。)
Figure 0005281863
(但し、前記一般式(2−3)において、nは0〜5の整数であり、nは1〜3の整数であり、Aはカチオンである。)
Figure 0005281863
(但し、前記一般式(3)において、Xはハロゲン原子であり、nは0〜2の整数である。)
Figure 0005281863
(但し、前記一般式(4)において、n及びnは相互に独立して、1〜3の整数であり、R及びRは相互に独立して、炭素数1〜20の炭化水素基である。)
The pigment | dye represented by following General formula (1).
(1): ML 1 L 2 L 3
(However, M is an element of group 8-10 on the long periodic table, L 1 is a bidentate ligand represented by the following general formula (2), and L 2 is the following general formula (3). L 3 is a bidentate ligand represented by the following general formula (4).
Figure 0005281863
(However, in the general formula (2), R 1 and R 2 are each independently one of the structures represented by the following general formulas (2-1) to (2-3). .)
Figure 0005281863
(However, in the general formula (2-1), n 1 is an integer of 0 to 5, A is a cation.)
Figure 0005281863
(However, in the general formula (2-2), n 2 is an integer from 1 to 5, A is a cation.)
Figure 0005281863
(However, in the general formula (2-3), n 3 is an integer from 0 to 5, n 4 is an integer from 1 to 3, A is a cation.)
Figure 0005281863
(However, in the formula (3), X is a halogen atom, n 5 is an integer of 0 to 2.)
Figure 0005281863
(However, the general formula (4), n 6 and n 7 are independently of one another, an integer from 1 to 3, R 3 and R 4 independently of one another, a hydrocarbon having 1 to 20 carbon atoms It is a hydrogen group.)
前記一般式(1)におけるMがルテニウムである請求項1に記載の色素。   The dye according to claim 1, wherein M in the general formula (1) is ruthenium. 陽極と、陰極と、電解質と、を備え、
前記陰極は、透明導電性ガラスからなる基材と、前記基材の表面に形成された酸化物薄膜電極と、を有しており、前記酸化物薄膜電極には、請求項1または2に記載の色素が吸着されている色素増感太陽電池。
An anode, a cathode, and an electrolyte;
The said cathode has the base material which consists of transparent conductive glass, and the oxide thin film electrode formed in the surface of the said base material, The said oxide thin film electrode is described in Claim 1 or 2. A dye-sensitized solar cell in which the dye is adsorbed.
透明導電性ガラスからなる基材と、前記基材の表面に形成された酸化物薄膜電極と、を有する陰極用部材に、請求項1または2に記載の色素と塩基とを含有する色素溶液を接触させて、前記酸化物薄膜電極に前記色素を吸着させた陰極を得る陰極形成工程を備える色素増感太陽電池の製造方法。   A dye solution containing the dye and the base according to claim 1 or 2 on a cathode member having a base material made of transparent conductive glass and an oxide thin film electrode formed on the surface of the base material. A method for producing a dye-sensitized solar cell, comprising a cathode forming step of obtaining a cathode in which the dye is adsorbed to the oxide thin film electrode by contact. 前記塩基の濃度が0.0001〜50mNである前記色素溶液を用いる請求項4に記載の色素増感太陽電池の製造方法。   The manufacturing method of the dye-sensitized solar cell of Claim 4 using the said dye solution whose density | concentration of the said base is 0.0001-50mN.
JP2008254292A 2008-09-30 2008-09-30 Dye, dye-sensitized solar cell and method for producing the same Expired - Fee Related JP5281863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008254292A JP5281863B2 (en) 2008-09-30 2008-09-30 Dye, dye-sensitized solar cell and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008254292A JP5281863B2 (en) 2008-09-30 2008-09-30 Dye, dye-sensitized solar cell and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010084003A JP2010084003A (en) 2010-04-15
JP5281863B2 true JP5281863B2 (en) 2013-09-04

Family

ID=42248279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008254292A Expired - Fee Related JP5281863B2 (en) 2008-09-30 2008-09-30 Dye, dye-sensitized solar cell and method for producing the same

Country Status (1)

Country Link
JP (1) JP5281863B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010046412B4 (en) 2010-09-23 2022-01-13 Merck Patent Gmbh metal-ligand coordination compounds
DE102010054525A1 (en) 2010-12-15 2012-04-26 Merck Patent Gmbh Organic electroluminescent device
JP2012146632A (en) * 2010-12-21 2012-08-02 Sony Corp Dye, dye-sensitized photoelectric conversion element, electronic device, and building
DE102010055902A1 (en) 2010-12-23 2012-06-28 Merck Patent Gmbh Organic electroluminescent device
JP2014508822A (en) * 2011-01-14 2014-04-10 ソルヴェイ(ソシエテ アノニム) Phthalocyanine dye, method for producing the same, and use thereof in dye-sensitized solar cells
WO2012126566A1 (en) 2011-03-24 2012-09-27 Merck Patent Gmbh Organic ionic functional materials
EP2707911B1 (en) 2011-05-12 2017-07-05 Merck Patent GmbH Compositions and electronic devices
DE102012016192A1 (en) 2011-08-19 2013-02-21 Merck Patent Gmbh New compounds capable of forming hydrogen bonds are useful in electronic device, e.g. organic electroluminescent device, organic light-emitting transistor and organic light-emitting electrochemical cell
JP5770115B2 (en) * 2012-01-20 2015-08-26 シャープ株式会社 Photoelectric conversion element and dye-sensitized solar cell
US9695354B2 (en) 2012-11-20 2017-07-04 Merck Patent Gmbh Formulation in high-purity solvent for producing electronic devices
CN103554996B (en) * 2013-10-11 2016-03-02 华中科技大学 The ruthenium complex dye of cation and the dye sensitization solar battery of preparation thereof
US10672997B2 (en) 2016-06-20 2020-06-02 Universal Display Corporation Organic electroluminescent materials and devices
US10862054B2 (en) 2016-06-20 2020-12-08 Universal Display Corporation Organic electroluminescent materials and devices

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4377148B2 (en) * 2003-03-26 2009-12-02 三井化学株式会社 Material for photoelectric conversion element and photoelectric conversion element
EP1904508B1 (en) * 2005-06-30 2009-08-12 Koninklijke Philips Electronics N.V. Electro luminescent metal complexes
JP2007112987A (en) * 2005-09-22 2007-05-10 Sumitomo Chemical Co Ltd Compound, photoelectric conversion element and photoelectrochemical cell
TWI319424B (en) * 2006-05-11 2010-01-11 Univ Nat Central Photosensitizer dye
EP2036955B1 (en) * 2007-09-17 2012-05-16 JSR Corporation Dyestuff, dye-sensitized solar cell, and method for manufacturing same
AU2009200356B2 (en) * 2008-02-19 2011-03-10 National Central University Photosensitizer Dye
US7645879B2 (en) * 2008-02-19 2010-01-12 National Central University Photosensitizer dye

Also Published As

Publication number Publication date
JP2010084003A (en) 2010-04-15

Similar Documents

Publication Publication Date Title
JP5281863B2 (en) Dye, dye-sensitized solar cell and method for producing the same
JP2009067976A (en) Dyestuff, dye-sensitized solar cell, and method for manufacturing the same
Rensmo et al. High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes
US20110100467A1 (en) Binuclear ruthenium complex dye, ruthenium-osmium complex dye, photoelectric conversion element using any one of the complex dyes, and photochemical cell
US20110214740A1 (en) Photochemical cell comprising semiconductor particles sensitized with binuclear metal complex dye and electrolyte solution mainly composed of ionic liquid
US7615636B2 (en) Ruthenium complexes with tridentate heterocyclic ligand and dye-sensitized solar cells using the same
Sookhakian et al. Layer-by-layer electrodeposited reduced graphene oxide-copper nanopolyhedra films as efficient platinum-free counter electrodes in high efficiency dye-sensitized solar cells
JP5003865B2 (en) Binuclear metal complex dye solution, photoelectric conversion element using this solution, and photochemical battery
JP5293190B2 (en) Method for producing binuclear metal complex
JP5170357B2 (en) Photoelectric conversion element and photochemical battery
JP5428312B2 (en) Photoelectric conversion element and photochemical battery
KR20110095439A (en) Ammonium imidazolium salt and electrolyte composition for dye-sensitized sollar cells containing the salt
KR20070004834A (en) Dye and dye-sensitized solar cell
JP2005330469A (en) Dye and dye-sensitized solar cell
JP2005116367A (en) Low temperature type organic molten salt, photoelectric transfer element and photoelectric cell
JP5917011B2 (en) Method for producing photoelectric conversion element and method for producing photoelectrochemical cell
KR101158767B1 (en) New imidazolium salts and electrolyte composition for dye-sensitized sollar cells containing the salt
Brugnati et al. Electron transfer mediators for photoelectrochemical cells based on Cu (I) metal complexes
JP2011195745A (en) Dye and dye-sensitized solar cell using the same
JP5493857B2 (en) Dinuclear ruthenium complex dye, dinuclear ruthenium complex dye acidic aqueous solution and method for producing the same
WO2009102068A1 (en) Binuclear ruthenium complex dye solution, photoelectric conversion device using photosensitized semiconductor particle obtained by using the complex dye solution, and photochemical cell using the photoelectric conversion device
KR100553337B1 (en) Copolymer containing imidazolium polymers, method for preparing the same, electrolytes for dye-sensitized solar cells containing the same and dye-sensitized solar cells
JP5682574B2 (en) A photochemical battery comprising semiconductor fine particles sensitized with a dinuclear ruthenium complex dye and an electrolyte solution containing an ammonium salt compound or a phosphonium salt compound
JP2007059293A (en) Dye-sensitized solar cell and manufacturing method of same
JP2009129652A (en) Photoelectric conversion element and photochemical battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130527

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5281863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees