JP2005116367A - Low temperature type organic molten salt, photoelectric transfer element and photoelectric cell - Google Patents

Low temperature type organic molten salt, photoelectric transfer element and photoelectric cell Download PDF

Info

Publication number
JP2005116367A
JP2005116367A JP2003349858A JP2003349858A JP2005116367A JP 2005116367 A JP2005116367 A JP 2005116367A JP 2003349858 A JP2003349858 A JP 2003349858A JP 2003349858 A JP2003349858 A JP 2003349858A JP 2005116367 A JP2005116367 A JP 2005116367A
Authority
JP
Japan
Prior art keywords
organic
molten salt
temperature
low
organic molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003349858A
Other languages
Japanese (ja)
Other versions
JP4420645B2 (en
Inventor
Masahito Nakabayashi
正仁 中林
Hiroyuki Ono
弘幸 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lintec Corp
Original Assignee
Lintec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lintec Corp filed Critical Lintec Corp
Priority to JP2003349858A priority Critical patent/JP4420645B2/en
Publication of JP2005116367A publication Critical patent/JP2005116367A/en
Application granted granted Critical
Publication of JP4420645B2 publication Critical patent/JP4420645B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Conductive Materials (AREA)
  • Secondary Cells (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide low temperature type organic molten salt which has a molten liquid form configuration at normal room temperature and has hard volatility, and is superior in safety and durability as well as having high ion conductivity, and a photoelectric transfer element using this organic molten salt and a photoelectric cell. <P>SOLUTION: This low temperature type organic molten salt which contains two kinds or more of organic salt composed of nitrogen-contained heterocyclic cation having been introduced with an alkyl group of the number of carbons 3 or less and anion corresponding to it, and in which the kind of anion of all the organic salt is identical and at least one kind of the organic salt is solid at a temperature 70°C, and a photoelectric transfer element having a charge transporting layer made of this organic molten salt and a photoelectric cell using this photoelectric transfer element are provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、低温型有機溶融塩、光電変換素子及び光電池に関する。さらに詳しくは、本発明は、通常室温にて融液状の形態を有すると共に、難揮発性であって、安全性、耐久性に優れ、かつ高イオン伝導度を有し、例えば太陽電池やリチウムイオン電池などの電解液として、あるいは化学反応溶媒などとして好適な低温型有機溶融塩、この有機溶融塩からなる電荷輸送層を有する光電変換素子及び該光電変換素子を用いてなる太陽電池などの光電池に関するものである。   The present invention relates to a low-temperature type organic molten salt, a photoelectric conversion element, and a photovoltaic cell. More specifically, the present invention usually has a molten liquid form at room temperature, is hardly volatile, has excellent safety and durability, and has high ionic conductivity, such as solar cells and lithium ions. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-temperature organic molten salt suitable as an electrolytic solution for a battery or the like as a chemical reaction solvent, a photoelectric conversion element having a charge transport layer made of the organic molten salt, and a photovoltaic cell such as a solar cell using the photoelectric conversion element. Is.

大量の化石燃料の使用で引き起こされる二酸化炭素濃度増加による地球温暖化や、人口増加に伴うエネルギー需要の増大による化石燃料の枯渇などが、世界的規模で重要な問題となってきている。そのため、近年、無限で有害物質を発生しない太陽光の利用が精力的に検討されている。この太陽光の利用の一つとして太陽電池がある。
上記太陽電池には、光電変換素子が用いられる。該光電変換素子は、太陽電池などの光電池以外に、各種光センサーや複写機などにも用いられている。この光電変換素子としては、金属を用いたもの、半導体を用いたもの、有機顔料や色素を用いたもの、これらを組み合わせたものなど、様々な方式が実用化されているが、最近、色素によって増感した半導体微粒子を用いた光電変換素子(以下、色素増感光電変換素子と称する。)並びにこれを作製するための材料及び製造技術が開示されている(例えば、特許文献1及び特許文献2参照)。この技術は、半導体微粒子として酸化チタンなどの安価な半導体を高純度に精製することなく、用いることができるため、このような色素増感光電変換素子は、低コストで製造し得るという利点を有する。したがって、この光電変換素子を用いた色素増感太陽電池は、環境負荷が少なく、低コスト型太陽電池として注目されている。
しかしながら、前記色素増感光電変換素子においては、電荷輸送層として有機溶媒や水を含む電解液が用いられるため、有機溶媒や水の揮発による素子の耐久性や安全性の問題があった。
一方、近年、有機イオン性液体は、イオンのみから構成され、低粘度で高極性を有し、かつ難揮発性であるという、一般の液体と大きく異なる特徴を有することから、高イオン伝導性液体(電解液)、反応溶媒、抽出分離溶媒などとしての応用研究が積極的になされている。
例えば、このような有機イオン性液体を、前記の色素増感光電変換素子における難揮発性の電解液として利用することが報告されている(例えば、非特許文献1参照)。この報告においては、融点が室温以下のヘキシルメチルイミダゾリウムヨウ化物が用いられている。しかしながら、この有機イオン性液体は、イオン伝導度が低いため、これを用いた光電変換素子は、変換効率が低く、その改善が望まれていた。
光電変換素子に用いられる有機電解液としては、難揮発性であって、イオン伝導度が高く、電荷輸送能に優れることが要求される。色素増感太陽電池の有機電解液としては、アニオン種がI-又はI3 -であるものが用いられ、これまで報告されているヨウ化物アニオンをもつ有機イオン性液体の中で、高い変換効率を与えるものとして、1−メチル−3−プロピルイミダゾリウムヨージドが知られている。しかしながら、このようなヨウ化物イオンをアニオンとする有機イオン性液体は一般に粘度が高く、単独で用いた場合には、有機溶媒を用いた電解液と比較して変換効率は低い。そこで、2種以上の化合物を含む有機イオン性液体の開発研究が行われている。例えば、総炭素数7以下の1−メチル−3−アルキルイミダゾリウムヨージド及びヨウ素を含有する電解液組成物であって、前記電解液組成物中のカチオンの70モル%以上が総炭素数7以下の1−メチル−3−アルキルイミダゾリウムイオンであり、かつ前記電解液組成物中のアニオンの30モル%以上がヨウ化物イオンである電解液組成物が開示されている(例えば、特許文献3参照)。
しかしながら、この技術においては、実施例から分かるように、1−メチル−3−アルキルイミダゾリウムヨージドと、このものとはアニオン種が異なる有機塩とを混合して、電解液組成物を製造しており、したがって、該組成物中に異なるアニオン種を含むことから、該組成物を製造する際の操作が煩雑になるのを免れない。また、その一成分が1−メチル−3−アルキルイミダゾリウムヨージドと限定されているため、適用される光電変換素子の種類が制限されるという問題がある。
米国特許第4927721号明細書 特表平10−504521号公報 特開2003−31270号公報 「J.Electrochem.Soc.」、第143巻、第3099〜3108頁(1996年)
Global warming due to an increase in carbon dioxide concentration caused by the use of a large amount of fossil fuel, and depletion of fossil fuel due to an increase in energy demand accompanying population growth, have become important problems on a global scale. Therefore, in recent years, the use of sunlight that does not generate infinite and harmful substances has been energetically studied. One of the uses of sunlight is a solar battery.
A photoelectric conversion element is used for the solar cell. The photoelectric conversion element is used for various photosensors, copying machines and the like in addition to photovoltaic cells such as solar cells. Various types of photoelectric conversion elements have been put to practical use, such as those using metals, those using semiconductors, those using organic pigments and dyes, and combinations thereof. A photoelectric conversion element using sensitized semiconductor fine particles (hereinafter referred to as a dye-sensitized photoelectric conversion element), and a material and a manufacturing technique for producing the photoelectric conversion element are disclosed (for example, Patent Document 1 and Patent Document 2). reference). Since this technique can use an inexpensive semiconductor such as titanium oxide as semiconductor fine particles without purifying it with high purity, such a dye-sensitized photoelectric conversion element has an advantage that it can be manufactured at low cost. . Therefore, the dye-sensitized solar cell using this photoelectric conversion element has a low environmental load and has attracted attention as a low-cost solar cell.
However, in the dye-sensitized photoelectric conversion element, since an electrolytic solution containing an organic solvent and water is used as the charge transport layer, there are problems in durability and safety of the element due to volatilization of the organic solvent and water.
On the other hand, in recent years, organic ionic liquids are composed of only ions, have low viscosity, high polarity, and hardly volatility, and have characteristics that are greatly different from general liquids. Application research as (electrolyte), reaction solvent, extraction separation solvent, etc. has been actively conducted.
For example, it has been reported that such an organic ionic liquid is used as a hardly volatile electrolytic solution in the dye-sensitized photoelectric conversion element (for example, see Non-Patent Document 1). In this report, hexylmethylimidazolium iodide having a melting point below room temperature is used. However, since this organic ionic liquid has low ionic conductivity, a photoelectric conversion element using the organic ionic liquid has low conversion efficiency, and improvement thereof has been desired.
The organic electrolyte used for the photoelectric conversion element is required to be hardly volatile, have high ionic conductivity, and excellent charge transport ability. As the organic electrolyte of the dye-sensitized solar cell, an organic electrolyte having an anion species of I or I 3 is used. Among the organic ionic liquids having an iodide anion reported so far, high conversion efficiency 1-methyl-3-propylimidazolium iodide is known as a compound that gives However, such an organic ionic liquid having an iodide ion as an anion generally has a high viscosity, and when used alone, conversion efficiency is low as compared with an electrolytic solution using an organic solvent. Therefore, research on the development of organic ionic liquids containing two or more compounds has been conducted. For example, an electrolytic solution composition containing 1-methyl-3-alkylimidazolium iodide and iodine having a total carbon number of 7 or less, wherein 70 mol% or more of the cations in the electrolytic solution composition has a total carbon number of 7 There is disclosed an electrolytic solution composition which is the following 1-methyl-3-alkylimidazolium ion and 30 mol% or more of anions in the electrolytic solution composition are iodide ions (for example, Patent Document 3). reference).
However, in this technique, as can be seen from the examples, an electrolyte composition is produced by mixing 1-methyl-3-alkylimidazolium iodide and an organic salt having a different anionic species. Therefore, since different anion species are contained in the composition, it is inevitable that the operation for producing the composition becomes complicated. In addition, since one component is limited to 1-methyl-3-alkylimidazolium iodide, there is a problem that the types of photoelectric conversion elements to be applied are limited.
US Pat. No. 4,927,721 Japanese National Patent Publication No. 10-504521 Japanese Patent Laid-Open No. 2003-31270 “J. Electrochem. Soc.”, 143, 3099-3108 (1996).

本発明は、このような事情のもとで、通常室温にて融液状の形態を有すると共に、難揮発性であって、安全性、耐久性に優れ、かつ高イオン伝導度を有し、例えば太陽電池やリチウムイオン電池などの電解液として、あるいは化学反応溶媒などとして好適な低温型有機溶融塩、この有機溶融塩を有する光電変換素子及び該光電変換素子を用いてなる光電池を提供することを目的としてなされたものである。   Under such circumstances, the present invention usually has a molten liquid form at room temperature, is hardly volatile, has excellent safety and durability, and has high ionic conductivity. To provide a low-temperature type organic molten salt suitable as an electrolytic solution for a solar cell, a lithium ion battery or the like, or as a chemical reaction solvent, a photoelectric conversion element having the organic molten salt, and a photovoltaic cell using the photoelectric conversion element. It was made as a purpose.

本発明者は、前記目的を達成するために鋭意研究を重ねた結果、特定の構造の有機塩を2種以上含み、その少なくとも1種が温度70℃において固体である低温型有機溶融塩により、その目的を達成し得ることを見出し、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、
(1)炭素数3以下のアルキル基が導入されてなる窒素含有複素環式カチオンとそれに対応するアニオンとからなる有機塩の2種以上を含み、かつ全ての有機塩のアニオン種が同一であって、有機塩の少なくとも1種が、温度70℃において固体であることを特徴とする低温型有機溶融塩(以下、低温型有機溶融塩Iと称する。)、
(2)炭素数3以下のアルキル基が導入されてなる窒素含有複素環式カチオンとそれに対応するアニオンI-とからなる有機塩の2種以上を含むと共に、ヨウ素が溶解されており、かつ有機塩の少なくとも1種が、温度70℃において固体であることを特徴とする低温型有機溶融塩(以下、低温型有機溶融塩IIと称する。)、
(3)有機塩の2種以上が、温度70℃において固体である(1)又は(2)記載の低温型有機溶融塩、
(4)窒素含有複素環式カチオンの環の員数が異なる2種の有機塩を含む(1)又は(2)記載の低温型有機溶融塩、
(5)窒素含有複素環式カチオンに導入されているアルキル基が、炭素数2以下のものである(1)又は(2)記載の低温型有機溶融塩、
(6)(1)ないし(5)のいずれかに記載の低温型有機溶融塩からなる電荷輸送層を有することを特徴とする光電変換素子、及び
(7)(6)に記載の光電変換素子を用いたことを特徴とする光電池、
を提供するものである。
As a result of intensive studies to achieve the above object, the present inventor has obtained a low-temperature type organic molten salt containing two or more organic salts having a specific structure, at least one of which is solid at a temperature of 70 ° C. It has been found that the object can be achieved, and the present invention has been completed based on this finding.
That is, the present invention
(1) It contains two or more organic salts consisting of a nitrogen-containing heterocyclic cation into which an alkyl group having 3 or less carbon atoms is introduced and an anion corresponding thereto, and all the organic salts have the same anion species. And at least one organic salt is a solid at a temperature of 70 ° C., a low-temperature type organic molten salt (hereinafter referred to as a low-temperature type organic molten salt I),
(2) Contains two or more organic salts consisting of a nitrogen-containing heterocyclic cation into which an alkyl group having 3 or less carbon atoms is introduced and an anion I corresponding thereto, in which iodine is dissolved, and organic A low-temperature type organic molten salt (hereinafter referred to as low-temperature type organic molten salt II), characterized in that at least one of the salts is solid at a temperature of 70 ° C .;
(3) The low-temperature type organic molten salt according to (1) or (2), wherein two or more of the organic salts are solid at a temperature of 70 ° C.
(4) The low-temperature type organic molten salt according to (1) or (2), comprising two types of organic salts having different ring members of the nitrogen-containing heterocyclic cation,
(5) The low-temperature organic molten salt according to (1) or (2), wherein the alkyl group introduced into the nitrogen-containing heterocyclic cation is one having 2 or less carbon atoms,
(6) A photoelectric conversion element comprising a charge transport layer comprising the low-temperature type organic molten salt according to any one of (1) to (5), and (7) the photoelectric conversion element according to (6) A photovoltaic cell characterized by using
Is to provide.

本発明によれば、通常室温にて融液状の形態を有すると共に、難揮発性であって、安全性、耐久性に優れ、かつ高イオン伝導度を有し、例えば太陽電池やリチウムイオン電池などの電解液として、あるいは化学反応溶媒などとして好適な低温型有機溶融塩、この有機溶融塩からなる電荷輸送層を有する光電変換素子及び該光電変換素子を用いてなる太陽電池などの光電池を提供することができる。   According to the present invention, it usually has a molten liquid form at room temperature, is hardly volatile, has excellent safety and durability, and has high ionic conductivity, such as a solar battery or a lithium ion battery. A low-temperature type organic molten salt suitable as an electrolyte solution or a chemical reaction solvent, a photoelectric conversion element having a charge transport layer made of the organic molten salt, and a photovoltaic cell such as a solar cell using the photoelectric conversion element be able to.

本発明の低温型有機溶融塩には、低温型有機溶融塩I及びIIの2つの態様がある。上記低温型有機溶融塩Iは、カチオンとそれに対応するアニオンとからなる有機塩の2種以上を含むものであって、カチオンとしては炭素数3以下のアルキル基が導入されてなる窒素含有複素環式カチオンが用いられ、そして、アニオンとしては、全ての有機塩において、同一種のものが用いられる。一方、低温型有機溶融塩IIは、炭素数3以下のアルキル基が導入されてなる窒素含有複素環式カチオンとそれに対応するアニオンI-とからなる有機塩の2種以上を含むと共に、ヨウ素が溶解されてなるものである。
前記炭素数3以下のアルキル基が導入されてなる窒素含有複素環式カチオンにおいて、環を構成する窒素原子の数は、通常1〜3であり、環構造としては、窒素原子が1個であるピロール環、ピロリジン環、ピリジン環、ピペリジン環、インドール環、イソインドール環、キノリン環、イソキノリン環、窒素原子が2個であるイミダゾール環、ピラゾール環、ピリダジン環、ピリミジン環、ピラジン環、ピペラジン環、インダゾール環、キナゾリン環、キノキサリン環、窒素原子が3個であるトリアゾール環、トリアジン環などがあるが、これらの中で、ピロリジン環、ピリジン環、イミダゾール環、ピラゾール環、トリアゾール環が好ましい。
窒素含有複素環式カチオンに導入される炭素数3以下のアルキル基としては、メチル基、エチル基、プロピル基を例示することができ、その導入数としては特に制限はないが、通常1〜3の範囲である。その導入位置は、少なくとも1つのアルキル基が窒素原子に導入されていることが好ましい。また、1つのカチオンに複数のアルキル基が導入されている場合、それらは同一でも異なっていてもよい。
本発明の低温型有機溶融塩におけるカチオンとしては、以下に示されるCA−1〜CA−15などを例示することができる。
The low-temperature type organic molten salt of the present invention has two embodiments, low-temperature type organic molten salts I and II. The low-temperature organic molten salt I contains two or more organic salts composed of a cation and a corresponding anion, and the cation is a nitrogen-containing heterocyclic ring into which an alkyl group having 3 or less carbon atoms is introduced. The formula cation is used, and as the anion, the same kind is used in all organic salts. On the other hand, the low-temperature type organic molten salt II contains two or more organic salts composed of a nitrogen-containing heterocyclic cation into which an alkyl group having 3 or less carbon atoms is introduced and an anion I corresponding to the nitrogen-containing heterocyclic cation. It is dissolved.
In the nitrogen-containing heterocyclic cation into which the alkyl group having 3 or less carbon atoms is introduced, the number of nitrogen atoms constituting the ring is usually 1 to 3, and the ring structure has one nitrogen atom. Pyrrole ring, pyrrolidine ring, pyridine ring, piperidine ring, indole ring, isoindole ring, quinoline ring, isoquinoline ring, imidazole ring having two nitrogen atoms, pyrazole ring, pyridazine ring, pyrimidine ring, pyrazine ring, piperazine ring, There are an indazole ring, a quinazoline ring, a quinoxaline ring, a triazole ring having 3 nitrogen atoms, a triazine ring, and the like. Among these, a pyrrolidine ring, a pyridine ring, an imidazole ring, a pyrazole ring, and a triazole ring are preferable.
Examples of the alkyl group having 3 or less carbon atoms to be introduced into the nitrogen-containing heterocyclic cation include a methyl group, an ethyl group, and a propyl group, and the introduction number is not particularly limited, but usually 1 to 3 Range. The introduction position is preferably such that at least one alkyl group is introduced into the nitrogen atom. When a plurality of alkyl groups are introduced into one cation, they may be the same or different.
Examples of the cation in the low-temperature organic molten salt of the present invention include CA-1 to CA-15 shown below.

Figure 2005116367
本発明の低温型有機溶融塩Iにおいては、その中に含まれる全ての有機塩は、同一のアニオン種を有するものであり、該アニオン種としては、I-、I3 -、SCN-、BF4 -、PF4 -、ClO4 -、(CF3SO2)2-、(CF3CF2SO2)2-、CH3SO3 -、CF3SO3 -、CF3COO-、Ph4-、(CF3SO2)3-などを例示することができる。なお、Phはフェニル基である。これらのアニオンの中で、太陽電池用として、特にI-、I3 -が好ましい。
一方、本発明の低温型有機溶融塩IIにおいては、アニオンとしてI-を有すると共に、ヨウ素が溶解されている。
本発明の低温型有機溶融塩においては、有機塩として、少なくとも1種が、温度70℃において固体であるものが用いられる。該有機塩の融点がこのように高くても、本発明では2種以上を混合することにより、低温型有機溶融塩となる。なお、本発明において、低温型有機溶融塩とは、少なくとも温度70℃以下においても、融液状態となる有機塩を指す。
前記の温度70℃において固体である有機塩としては、アニオン種がI-である場合、カチオン種が、例えば前述のCA−1(78℃)、CA−2(77℃)、CA−4(81℃)、CA−5(117℃)、CA−8(113℃)、CA−10(84℃)、CA−14(100℃)、CA−15(101℃)であるものなどを挙げることができる。なお( )内の値は示差走査熱量計で測定した融点を示す。
Figure 2005116367
In the low-temperature type organic molten salt I of the present invention, all organic salts contained therein have the same anion species, and the anion species include I , I 3 , SCN , BF. 4 , PF 4 , ClO 4 , (CF 3 SO 2 ) 2 N , (CF 3 CF 2 SO 2 ) 2 N , CH 3 SO 3 , CF 3 SO 3 , CF 3 COO , Examples thereof include Ph 4 B , (CF 3 SO 2 ) 3 C − and the like. Note that Ph is a phenyl group. Among these anions, I and I 3 are particularly preferable for solar cells.
On the other hand, in the low-temperature type organic molten salt II of the present invention, I is contained as an anion and iodine is dissolved.
In the low-temperature type organic molten salt of the present invention, an organic salt that is solid at a temperature of 70 ° C. is used. Even if the melting point of the organic salt is so high, a low-temperature organic molten salt is obtained by mixing two or more of them in the present invention. In the present invention, the low-temperature type organic molten salt refers to an organic salt that is in a melt state even at a temperature of 70 ° C. or lower.
As the organic salt that is solid at the temperature of 70 ° C., when the anion species is I , the cation species is, for example, the above-mentioned CA-1 (78 ° C.), CA-2 (77 ° C.), CA-4 ( 81 ° C), CA-5 (117 ° C), CA-8 (113 ° C), CA-10 (84 ° C), CA-14 (100 ° C), CA-15 (101 ° C). Can do. The values in parentheses indicate melting points measured with a differential scanning calorimeter.

本発明の低温型有機溶融塩における2種以上の有機塩の配合割合については特に制限はなく、得られる混合有機塩が、所定の温度で融液状になり、かつそのイオン伝導度ができるだけ高くなるように配合するのがよい。
本発明の低温型有機溶融塩は、好ましい態様として、(1)その中に含まれる有機塩の2種以上が、それぞれ温度70℃において固体であるもの、(2)窒素含有複素環式カチオンの環の員数が異なる2種の有機塩を含むもの、又は(3)窒素含有複素環式カチオンに導入されているアルキル基の炭素数が2以下であるもの、を挙げることができる。
このような性状を有する本発明の低温型有機溶融塩は、通常室温にて融液状の形態を有する有機イオン性液体であって、難揮発性で安全性、耐久性に優れ、高イオン伝導性液体(電解液)、反応溶媒、抽出分離溶媒などとして用いることができる。上記高イオン伝導性液体としての用途には、例えばリチウムイオン電池などの電解液、太陽電池などの光電池に用いられる電荷輸送層等がある。
本発明の低温型有機溶融塩を光電池の電荷輸送層として用いる場合には、アニオン種がI-である低温型有機溶融塩にヨウ素を溶解させることによって、酸化還元対を形成させて使用することが好ましい。このような場合、溶解するヨウ素の量は、該低温型有機溶融塩100重量部に対して、0.1〜20重量部程度が好ましい。
本発明の低温型有機溶融塩には、光電変換素子の短絡電流を向上させるなどの目的で、所望により、本発明の効果が損なわれない範囲で、無機塩を添加してもよい。好ましい無機塩としてはアルカリ金属もしくはアルカリ土類金属塩(Lil、NaI、KI、MgI2、CaI2、SrI2、CF3COOLi、CF3COONa、LiSCN、LiBF4、LiN(SO2CF3)2、LiPF6、LiClO4、NaSCN、KSCN、RbBF4、CsPF6等)等が挙げられる。これらの中ではリチウム塩が特に好ましい。また、光電変換素子の開放電圧を向上させるなどの目的で、所望により、本発明の効果が損なわれない範囲で、ピリジン類を添加してもよい。常温で液体で、かつ沸点が150℃以上の置換ピリジンが好ましく、イオン性の置換基を有するピリジンが特に好ましい。
さらに、リチウムイオン電池や光電池の電荷輸送層として用いる場合には、液漏れの防止や耐久性の向上を目的としてゲル化(固体化)させて使用してもよい。ゲル化の方法としては、例えばポリアクリロニトリル、ポリフッ化ビニリデンなどのポリマー添加によりゲル化させる方法、「Chem.Lett.」885(1996年)、「J.Chem.Soc.,Chem.Commun.」、545(1997年)などに記載されたオイルゲル化剤の添加による方法、多官能モノマー類の重合による方法、ポリマーの架橋反応によってゲル化させる方法などを利用することができる。
The blending ratio of two or more organic salts in the low-temperature type organic molten salt of the present invention is not particularly limited, and the obtained mixed organic salt becomes a melt at a predetermined temperature and its ionic conductivity is as high as possible. It is better to blend as follows.
The low-temperature type organic molten salt of the present invention has, as a preferred embodiment, (1) two or more organic salts contained therein are solid at a temperature of 70 ° C., and (2) a nitrogen-containing heterocyclic cation. Examples include those containing two kinds of organic salts having different ring members, and (3) those in which the alkyl group introduced into the nitrogen-containing heterocyclic cation has 2 or less carbon atoms.
The low-temperature type organic molten salt of the present invention having such properties is an organic ionic liquid having a molten liquid form at room temperature, and is hardly volatile, excellent in safety and durability, and has high ionic conductivity. It can be used as a liquid (electrolytic solution), a reaction solvent, an extraction separation solvent, and the like. Applications as the high ion conductive liquid include, for example, an electrolyte solution such as a lithium ion battery, a charge transport layer used in a photovoltaic cell such as a solar battery, and the like.
When the low-temperature type organic molten salt of the present invention is used as a charge transport layer of a photovoltaic cell, it is used by forming an oxidation-reduction pair by dissolving iodine in the low-temperature type organic molten salt whose anion species is I −. Is preferred. In such a case, the amount of iodine dissolved is preferably about 0.1 to 20 parts by weight with respect to 100 parts by weight of the low-temperature organic molten salt.
For the purpose of improving the short-circuit current of the photoelectric conversion element, an inorganic salt may be added to the low-temperature type organic molten salt of the present invention as desired within a range that does not impair the effects of the present invention. Preferred inorganic salts alkali metal or alkaline earth metal salts (Lil, NaI, KI, MgI 2, CaI 2, SrI 2, CF 3 COOLi, CF 3 COONa, LiSCN, LiBF 4, LiN (SO 2 CF 3) 2 , LiPF 6 , LiClO 4 , NaSCN, KSCN, RbBF 4 , CsPF 6, etc.). Of these, lithium salts are particularly preferred. Further, for the purpose of improving the open circuit voltage of the photoelectric conversion element, pyridines may be added as desired within a range that does not impair the effects of the present invention. A substituted pyridine having a liquid temperature at normal temperature and a boiling point of 150 ° C. or higher is preferred, and a pyridine having an ionic substituent is particularly preferred.
Furthermore, when used as a charge transport layer of a lithium ion battery or a photovoltaic cell, it may be gelled (solidified) for the purpose of preventing liquid leakage and improving durability. Examples of the gelation method include a method of gelation by adding a polymer such as polyacrylonitrile and polyvinylidene fluoride, “Chem. Lett.” 885 (1996), “J. Chem. Soc., Chem. Commun.”, 545 (1997) or the like, a method by addition of an oil gelling agent, a method by polymerization of polyfunctional monomers, a method of gelation by a polymer crosslinking reaction, or the like can be used.

次に、本発明の光電変換素子は、前述の本発明の低温型有機溶融塩からなる電荷輸送層を有するものであり、具体的には、導電性支持体、その上に設けてなる色素が吸着した半導体微粒子層、前記電荷輸送層及び対極を少なくとも有する素子である。以下、色素が吸着した半導体微粒子層を感光層と称する。
上記導電性支持体としては、従来光電変換素子に使用されているものを用いることができる。例えば金属のように支持体そのものに導電性があるもの、または表面に導電剤を含む導電層を有するガラスあるいはプラスチックの支持体を用いることができる。この導電性支持体は表面抵抗が低い程よい。好ましい表面抵抗の範囲は100Ω/□以下であり、さらに好ましくは40Ω/□以下である。表面抵抗の下限には特に制限はないが、通常0.1Ω/□程度である。
導電性支持体側から光を照射する場合には、導電性支持体は実質的に透明であるのが好ましい。実質的に透明であるとは、光の透過率が10%以上であることを意味し、50%以上であるのが好ましく、70%以上がより好ましい。
感光層は、色素が吸着した半導体微粒子層を前記導電性支持体上に設けることにより形成することができる。該色素としては、例えば金属錯体系色素、メチン系色素、ポルフィリン系色素、フタロシアニン系色素などが好ましく用いられる。半導体としては、シリコン、ゲルマニウムのような単体半導体、あるいは金属のカルコゲニドに代表される化合物半導体、またはペロブスカイト構造を有する化合物等を使用することができる。
Next, the photoelectric conversion element of the present invention has a charge transport layer composed of the above-described low-temperature type organic molten salt of the present invention. Specifically, a conductive support and a dye provided thereon are provided. An element having at least an adsorbed semiconductor fine particle layer, the charge transport layer, and a counter electrode. Hereinafter, the semiconductor fine particle layer on which the dye is adsorbed is referred to as a photosensitive layer.
As said electroconductive support body, what is conventionally used for the photoelectric conversion element can be used. For example, a glass substrate or a plastic substrate having a conductive layer including a conductive agent on the surface thereof, such as metal, can be used. The conductive support preferably has a lower surface resistance. The range of the surface resistance is preferably 100Ω / □ or less, more preferably 40Ω / □ or less. The lower limit of the surface resistance is not particularly limited, but is usually about 0.1Ω / □.
When irradiating light from the conductive support side, the conductive support is preferably substantially transparent. The term “substantially transparent” means that the light transmittance is 10% or more, preferably 50% or more, and more preferably 70% or more.
The photosensitive layer can be formed by providing a semiconductor fine particle layer on which a dye is adsorbed on the conductive support. As the dye, for example, metal complex dyes, methine dyes, porphyrin dyes, phthalocyanine dyes and the like are preferably used. As the semiconductor, a single semiconductor such as silicon or germanium, a compound semiconductor typified by a metal chalcogenide, a compound having a perovskite structure, or the like can be used.

導電性支持体上に半導体微粒子層を形成する方法としては、半導体微粒子の分散液またはコロイド溶液を導電性支持体上に塗布する方法、ゾル−ゲル法等がある。半導体微粒子への色素の吸着は、色素の溶液中に半導体微粒子層を有する導電性支持体を浸漬するか、色素の溶液を半導体微粒子層に塗布する方法を用いることができる。
また、電荷輸送層には、前述の本発明の低温型有機溶融塩が用いられる。電荷輸送層の形成方法に関しては2通りの方法がある。1つは感光層の上に先に対極を貼り合わせておき、その間隙に該有機溶融塩を挟み込む方法である。もう1つは感光層上に直接、電荷輸送層を付与する方法で、対極はその後付与することになる。
対極は通常前述の導電性支持体と同様に導電性層を有する支持体を用いることもできるが、強度や密封性が十分に保たれるような構成では支持体は必ずしも必要ではない。対極に用いる材料の具体例としては、白金、金、銀、銅、アルミニウム、ロジウム、インジウム等の金属、炭素、スズドープ酸化インジウム(ITO)、フッ素ドープ酸化スズ(FTO)等の導電性金属酸化物等が挙げられる。
Examples of a method for forming a semiconductor fine particle layer on a conductive support include a method in which a dispersion or colloidal solution of semiconductor fine particles is applied on a conductive support, a sol-gel method, and the like. Adsorption of the dye to the semiconductor fine particles can be performed by immersing a conductive support having a semiconductor fine particle layer in the dye solution or by applying a solution of the dye to the semiconductor fine particle layer.
In addition, the low-temperature organic molten salt of the present invention described above is used for the charge transport layer. There are two methods for forming the charge transport layer. One is a method in which a counter electrode is first bonded on the photosensitive layer, and the organic molten salt is sandwiched between the gaps. The other is a method in which a charge transport layer is provided directly on the photosensitive layer, and a counter electrode is subsequently provided.
As the counter electrode, a support having a conductive layer can be used in the same manner as the conductive support described above, but the support is not necessarily required in a configuration in which the strength and the sealing performance are sufficiently maintained. Specific examples of materials used for the counter electrode include metals such as platinum, gold, silver, copper, aluminum, rhodium, and indium, and conductive metal oxides such as carbon, tin-doped indium oxide (ITO), and fluorine-doped tin oxide (FTO). Etc.

導電性支持体と対極のいずれか一方又は両方から光を照射してよいので、感光層に光が到達するためには、導電性支持体と対極の少なくとも一方が実質的に透明であればよい。発電効率の向上の観点からは、導電性支持体を透明にして光を導電性支持体側から入射させるのが好ましい。この場合対極は光を反射する性質を有するのが好ましい。このような対極としては、金属又は導電性酸化物を蒸着したガラス又はプラスチック、あるいは金属薄膜を使用できる。
この光電変換素子においては、対極と導電性支持体の短絡を防止するため、導電性支持体と感光層の間には、緻密な半導体の薄膜層を下塗り層として予め塗設しておくことが好ましい。また、電極として作用する導電性支持体と対極の一方又は両方の外側表面、導電層と基板の間などに、保護層、反射防止層等の機能性層を設けてもよい。これらの機能性層の形成には、その材質に応じて塗布法、蒸着法、貼り付け法等を用いることができる。
Since light may be irradiated from either or both of the conductive support and the counter electrode, in order for light to reach the photosensitive layer, at least one of the conductive support and the counter electrode may be substantially transparent. . From the viewpoint of improving the power generation efficiency, it is preferable to make the conductive support transparent so that light is incident from the conductive support side. In this case, the counter electrode preferably has a property of reflecting light. As such a counter electrode, glass or plastic deposited with a metal or a conductive oxide, or a metal thin film can be used.
In this photoelectric conversion element, in order to prevent a short circuit between the counter electrode and the conductive support, a dense semiconductor thin film layer may be previously applied as an undercoat layer between the conductive support and the photosensitive layer. preferable. Moreover, you may provide functional layers, such as a protective layer and an antireflection layer, between the electroconductive support body which acts as an electrode, and the outer surface of one or both of a counter electrode, a conductive layer, and a board | substrate. For forming these functional layers, a coating method, a vapor deposition method, a bonding method, or the like can be used depending on the material.

次に、本発明の光電池は、上記本発明の光電変換素子に外部負荷で仕事をさせるようにしたものである。光電池のうち、本発明のように電荷輸送材料が主としてイオン輸送材料からなる場合を特に光電気化学電池と呼び、また、太陽光による発電を主目的とする場合を太陽電池と呼ぶ。光電池は構成物の劣化や内容物の揮散を防止するために、側面をポリマーや接着剤等で密封するのが好ましい。導電性支持体及び対極にリードを介して接続される外部回路自体は公知のものでよい。
本発明の光電変換素子を太陽電池に適用する場合も、そのセル内部の構造は基本的に上述した光電変換素子の構造と同じである。また、本発明の光電変換素子を用いた色素増感型太陽電池は、従来の太陽電池モジュールと基本的には同様のモジュール構造をとりうる。太陽電池モジュールは、一般的には金属、セラミック等の支持基板の上にセルが構成され、その上を充填樹脂や保護ガラス等で覆い、支持基板の反対側から光を取り込む構造をとるが、支持基板に強化ガラス等の透明材料を用い、その上にセルを構成してその透明の支持基板側から光を取り込む構造とすることも可能である。
Next, the photovoltaic cell of the present invention is one in which the photoelectric conversion element of the present invention is caused to work with an external load. Of the photovoltaic cells, the case where the charge transport material is mainly composed of an ion transport material as in the present invention is particularly called a photoelectrochemical cell, and the case where the main purpose is power generation by sunlight is called a solar cell. In order to prevent deterioration of components and volatilization of the contents of the photovoltaic cell, it is preferable to seal the side surface with a polymer or an adhesive. The external circuit itself connected to the conductive support and the counter electrode via a lead may be a known one.
Even when the photoelectric conversion element of the present invention is applied to a solar cell, the structure inside the cell is basically the same as the structure of the photoelectric conversion element described above. Moreover, the dye-sensitized solar cell using the photoelectric conversion element of the present invention can basically have the same module structure as a conventional solar cell module. The solar cell module generally has a structure in which cells are formed on a support substrate such as metal or ceramic, and the cell is covered with a filling resin or protective glass, and light is taken in from the opposite side of the support substrate. It is also possible to use a transparent material such as tempered glass for the support substrate, configure a cell thereon, and take in light from the transparent support substrate side.

次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
なお、各例における有機塩又はその混合物の融点の測定は、示差走査熱量計(DSC)の吸熱ピークにより、また、各例で得られた太陽電池の性能評価は、JIS C 8973に準拠して行った。
実施例1
下記の有機塩a〜gの7種を常法に従い合成し、その融点を測定した。いずれの有機塩も70℃において固体であった。
a:(CA−2)I-、融点77℃
b:(CA−4)I-、融点81℃
c:(CA−5)I-、融点117℃
d:(CA−8)I-、融点113℃
e:(CA−10)I-、融点84℃
f:(CA−14)I-、融点100℃
g:(CA−15)I-、融点101℃
[( )内の記号は、明細書本文で例示したカチオンの種類を示す。]
上記有機塩それぞれをメタノールに溶解し、各有機塩溶液を調製した。次に、異なる2種の有機塩溶液を、有機塩のモル比が1:1となるように混合したのち、減圧によってメタノールを除去し、さらに、100℃、1330Paの条件で、3日間減圧乾燥を行った。常温常圧に戻し、1日後に形態を観察した。いずれの組合せも単独での融点より低温で液体であった。その結果を第1表に示す。なお、第1表において、○印は、室温(25℃)において液体(過冷却状態を含む)であるものを示す。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
In addition, the measurement of the melting point of the organic salt or a mixture thereof in each example is based on the endothermic peak of a differential scanning calorimeter (DSC), and the performance evaluation of the solar cell obtained in each example is based on JIS C 8873. went.
Example 1
Seven types of the following organic salts a to g were synthesized according to a conventional method, and their melting points were measured. All organic salts were solid at 70 ° C.
a: (CA-2) I , melting point 77 ° C.
b: (CA-4) I , melting point 81 ° C.
c: (CA-5) I , melting point 117 ° C.
d: (CA-8) I , melting point 113 ° C.
e: (CA-10) I , melting point 84 ° C.
f: (CA-14) I , melting point 100 ° C.
g: (CA-15) I , melting point 101 ° C.
[The symbols in parentheses indicate the types of cations exemplified in the text of the specification. ]
Each organic salt was dissolved in methanol to prepare each organic salt solution. Next, after mixing two different organic salt solutions so that the molar ratio of the organic salts is 1: 1, the methanol is removed under reduced pressure, and further dried under reduced pressure for 3 days at 100 ° C. and 1330 Pa. Went. After returning to normal temperature and pressure, the morphology was observed after 1 day. All the combinations were liquid at a temperature lower than the melting point alone. The results are shown in Table 1. In Table 1, a circle indicates a liquid (including a supercooled state) at room temperature (25 ° C.).

Figure 2005116367
Figure 2005116367

第1表から明らかなように、70℃で固体である高融点の有機塩を適宜複数混合することにより、少なくとも70℃以下の温度で融液状の混合有機塩を得ることができることが分かる。   As is apparent from Table 1, it is understood that a mixed organic salt in a molten state can be obtained at a temperature of at least 70 ° C. or less by appropriately mixing a plurality of high melting point organic salts that are solid at 70 ° C.

実施例2
(1)光電極の作製
二酸化チタン粒子[日本アエロジル社製、「Degussa P−25」]12g、水3.6mL、アセチルアセトン[関東化学社製]0.4mLを混合し、乳鉢を用いて強く分散した。次いで撹拌を続けながら水16mLを徐々に加え、さらにノニオン性界面活性剤[アルドリッチ社製、「TritonX−100」]0.2mLを加えて分散液とした。
次に、フッ素をドープした酸化スズをコートしてなる透明導電ガラス板[日本板硝子社製、表面抵抗10Ω/□]の導電面に、上記の分散液をガラス棒を用いて塗布した。その際、透明導電ガラス板の大きさは20×20mmとし、塗布面積が1cmとなるように電極の両端に粘着テープを貼り付け、この粘着テープの厚みをギャップとして塗布を行った。
塗布後、粘着テープを剥離し、室温で8時間乾燥したのち、電気炉[ヤマト科学社製マッフル炉]を用いて450℃で30分間焼成を行った。この電極を電気炉から取り出し、約80℃まで冷却したのち、ルテニウム色素[化学名:cis−ビス(イソチオシアナト)ビス(2,2'−ビピリジル−4,4'−ジカルボキシラト)−ルテニウム(II)、Solaronix社製、「ルテニウム535」]のエタノール溶液(3×10-4モル/L)に24時間浸漬することによって、酸化チタン粒子の表面に、増感色素を吸着させた。この電極を色素溶液から取り出し、エタノールで洗浄し、乾燥処理して光電極とした。この電極の酸化チタン層の厚みを測定したところ、約7μmであった。
(2)対極
上記(1)で用いたものと同じ透明導電ガラス板の導電面に白金をスパッタリングしたものを、対極として用いた。
(3)太陽電池セルの作製
上記(1)で得られた光電極と上記(2)で得られた対極を厚さ25μmのPETフィルムをスペーサとして重ね合わせ、その隙間に電解液を注入し、太陽電池セルを作製した。なお、電解液は、第2表に示すモル比1:1の2種の混合物に、ヨウ素を1/20モル比の割合で溶解したものを用いた。
この太陽電池の性能測定結果を第3表に示す。
Example 2
(1) Production of photoelectrode 12 g of titanium dioxide particles [manufactured by Nippon Aerosil Co., Ltd., “Degussa P-25”], 3.6 mL of water, and 0.4 mL of acetylacetone [manufactured by Kanto Chemical Co., Ltd.] are mixed and dispersed strongly using a mortar. did. Next, 16 mL of water was gradually added while stirring was continued, and 0.2 mL of a nonionic surfactant [manufactured by Aldrich, “Triton X-100”] was added to obtain a dispersion.
Next, the above dispersion was applied to the conductive surface of a transparent conductive glass plate coated with fluorine-doped tin oxide [manufactured by Nippon Sheet Glass Co., Ltd., surface resistance 10Ω / □] using a glass rod. At that time, the size of the transparent conductive glass plate was 20 × 20 mm, and an adhesive tape was attached to both ends of the electrode so that the application area was 1 cm 2, and the adhesive tape was applied with the thickness of the adhesive tape as a gap.
After the application, the adhesive tape was peeled off, dried at room temperature for 8 hours, and then baked at 450 ° C. for 30 minutes using an electric furnace [Yamato Kagaku Muffle Furnace]. The electrode was taken out of the electric furnace and cooled to about 80 ° C., and then the ruthenium dye [chemical name: cis-bis (isothiocyanato) bis (2,2′-bipyridyl-4,4′-dicarboxylato) -ruthenium (II The sensitizing dye was adsorbed on the surface of the titanium oxide particles by immersing in an ethanol solution (3 × 10 −4 mol / L) of “Ruthenium 535” manufactured by Solaronix for 24 hours. This electrode was taken out from the dye solution, washed with ethanol, and dried to obtain a photoelectrode. When the thickness of the titanium oxide layer of this electrode was measured, it was about 7 μm.
(2) Counter electrode The same electrode used in (1) above was obtained by sputtering platinum on the conductive surface of the same transparent conductive glass plate as the counter electrode.
(3) Production of solar battery cell The photoelectrode obtained in (1) above and the counter electrode obtained in (2) above are overlapped with a 25 μm thick PET film as a spacer, and an electrolyte is injected into the gap, A solar battery cell was produced. In addition, the electrolyte solution used what melt | dissolved the iodine in the ratio of 1/20 molar ratio in the 2 types of mixture of the molar ratio 1: 1 shown in Table 2 was used.
The performance measurement results of this solar cell are shown in Table 3.

Figure 2005116367
Figure 2005116367

Figure 2005116367
Figure 2005116367

第2表から、単独の塩では高い融点を有しているにもかかわらず、2種混合により、融点の低下が起こるか、あるいは融点をもたないガラス形成液体となることが分かる。また、これまで報告されているヨウ化物アニオンをもつイオン性液体の中で、光電変換素子に用いた場合、高い変換効率が得られているのは、1−メチル−2−プロピルイミダゾリウムヨージド[(CA−3)I-]であるが、第2表、第3表から、この化合物と比較しても、高いイオン伝導度を示し、高い変換効率を与える2種混合塩を得ることができることが分かる。
From Table 2, it can be seen that, even though a single salt has a high melting point, the mixing of the two types results in a decrease in the melting point or a glass-forming liquid having no melting point. Among the ionic liquids having iodide anions that have been reported so far, high conversion efficiency is obtained when used for a photoelectric conversion element. 1-methyl-2-propylimidazolium iodide is obtained. Although it is [(CA-3) I ], from Tables 2 and 3, it is possible to obtain a binary mixed salt that exhibits high ionic conductivity and gives high conversion efficiency even when compared with this compound. I understand that I can do it.

Claims (7)

炭素数3以下のアルキル基が導入されてなる窒素含有複素環式カチオンとそれに対応するアニオンとからなる有機塩の2種以上を含み、かつ全ての有機塩のアニオン種が同一であって、有機塩の少なくとも1種が、温度70℃において固体であることを特徴とする低温型有機溶融塩。   It includes two or more organic salts consisting of a nitrogen-containing heterocyclic cation into which an alkyl group having 3 or less carbon atoms is introduced and an anion corresponding to the nitrogen-containing heterocyclic cation. A low-temperature organic molten salt characterized in that at least one of the salts is solid at a temperature of 70 ° C. 炭素数3以下のアルキル基が導入されてなる窒素含有複素環式カチオンとそれに対応するアニオンI-とからなる有機塩の2種以上を含むと共に、ヨウ素が溶解されており、かつ有機塩の少なくとも1種が、温度70℃において固体であることを特徴とする低温型有機溶融塩。 It contains two or more organic salts consisting of a nitrogen-containing heterocyclic cation into which an alkyl group having 3 or less carbon atoms is introduced and an anion I corresponding thereto, in which iodine is dissolved, and at least of the organic salt One type is a low-temperature organic molten salt characterized in that it is solid at a temperature of 70 ° C. 有機塩の2種以上が、温度70℃において固体である請求項1又は2記載の低温型有機溶融塩。   The low temperature type organic molten salt according to claim 1 or 2, wherein two or more of the organic salts are solid at a temperature of 70 ° C. 窒素含有複素環式カチオンの環の員数が異なる2種の有機塩を含む請求項1又は2記載の低温型有機溶融塩。   The low-temperature type organic molten salt according to claim 1 or 2, comprising two kinds of organic salts having different ring members of the nitrogen-containing heterocyclic cation. 窒素含有複素環式カチオンに導入されているアルキル基が、炭素数2以下のものである請求項1又は2記載の低温型有機溶融塩。   The low temperature organic molten salt according to claim 1 or 2, wherein the alkyl group introduced into the nitrogen-containing heterocyclic cation has 2 or less carbon atoms. 請求項1ないし5のいずれかに記載の低温型有機溶融塩からなる電荷輸送層を有することを特徴とする光電変換素子。   A photoelectric conversion element comprising a charge transport layer made of the low-temperature organic molten salt according to claim 1. 請求項6に記載の光電変換素子を用いたことを特徴とする光電池。   A photovoltaic cell comprising the photoelectric conversion element according to claim 6.
JP2003349858A 2003-10-08 2003-10-08 Low temperature organic molten salt, photoelectric conversion element and photovoltaic cell Expired - Lifetime JP4420645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003349858A JP4420645B2 (en) 2003-10-08 2003-10-08 Low temperature organic molten salt, photoelectric conversion element and photovoltaic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003349858A JP4420645B2 (en) 2003-10-08 2003-10-08 Low temperature organic molten salt, photoelectric conversion element and photovoltaic cell

Publications (2)

Publication Number Publication Date
JP2005116367A true JP2005116367A (en) 2005-04-28
JP4420645B2 JP4420645B2 (en) 2010-02-24

Family

ID=34541611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003349858A Expired - Lifetime JP4420645B2 (en) 2003-10-08 2003-10-08 Low temperature organic molten salt, photoelectric conversion element and photovoltaic cell

Country Status (1)

Country Link
JP (1) JP4420645B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007504619A (en) * 2003-09-19 2007-03-01 エルジー・ケム・リミテッド Non-aqueous lithium secondary battery with improved cycle characteristics and / or high temperature stability
JP2007234745A (en) * 2006-02-28 2007-09-13 Hayashibara Biochem Lab Inc Ionic liquid and its use
JP2008156597A (en) * 2006-09-05 2008-07-10 Nippon Synthetic Chem Ind Co Ltd:The Ionic liquid composition and method of using the same
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
WO2011086664A1 (en) * 2010-01-12 2011-07-21 トヨタ自動車株式会社 Liquid hydrophobic phase transition substance, and battery comprising same
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell
US11114623B2 (en) 2015-04-27 2021-09-07 Board Of Trustees Of Michigan State University Organic salts for high voltage organic and transparent solar cells

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107552091A (en) * 2017-09-25 2018-01-09 河南大学 N, N dialkyl group asymmetry pyrazolium ion liquid and the method using its catalytically synthesizing cyclic carbonate ester

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007504619A (en) * 2003-09-19 2007-03-01 エルジー・ケム・リミテッド Non-aqueous lithium secondary battery with improved cycle characteristics and / or high temperature stability
JP2007234745A (en) * 2006-02-28 2007-09-13 Hayashibara Biochem Lab Inc Ionic liquid and its use
JP4744324B2 (en) * 2006-02-28 2011-08-10 株式会社林原生物化学研究所 Ionic liquids and their uses
JP2008156597A (en) * 2006-09-05 2008-07-10 Nippon Synthetic Chem Ind Co Ltd:The Ionic liquid composition and method of using the same
EP2845882A2 (en) 2008-10-29 2015-03-11 Fujifilm Corporation Dye, Photoelectric Conversion Element and Photoelectrochemical Cell
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
WO2011086664A1 (en) * 2010-01-12 2011-07-21 トヨタ自動車株式会社 Liquid hydrophobic phase transition substance, and battery comprising same
AU2010342201B2 (en) * 2010-01-12 2013-07-25 Toyota Jidosha Kabushiki Kaisha Liquid hydrophobic phase transition substance, and battery comprising same
JP5553072B2 (en) * 2010-01-12 2014-07-16 トヨタ自動車株式会社 Liquid hydrophobic phase change material and battery using the same
CN102714316A (en) * 2010-01-12 2012-10-03 丰田自动车株式会社 Liquid hydrophobic phase transition substance, and battery comprising same
US9142856B2 (en) 2010-01-12 2015-09-22 Toyota Jidosha Kabushiki Kaisha Liquid hydrophobic phase transition substance, and battery comprising same
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell
US11114623B2 (en) 2015-04-27 2021-09-07 Board Of Trustees Of Michigan State University Organic salts for high voltage organic and transparent solar cells

Also Published As

Publication number Publication date
JP4420645B2 (en) 2010-02-24

Similar Documents

Publication Publication Date Title
Wang et al. Ambient temperature plastic crystal electrolyte for efficient, all-solid-state dye-sensitized solar cell
JP5404058B2 (en) Ionic liquid electrolyte
KR101024876B1 (en) Photovoltaic cells utilizing mesh electrodes
KR101381873B1 (en) Polymer gel electrolyte composition, the preparing method for the composition, and dye-sensitized solar cell comprising the electrolyte
TWI345840B (en) Electrolyte composition and photoelectric conversion element using same
US20090133746A1 (en) Solid-State Electrolyte Composition Containing Liquid Crystal Materials and Dye-Sensitized Solar Cells Using the Same
Lin et al. Multifunctional iodide-free polymeric ionic liquid for quasi-solid-state dye-sensitized solar cells with a high open-circuit voltage
JP6011443B2 (en) Semiconductor layer for dye-sensitized solar cell and electrode member for dye-sensitized solar cell
JP2004055536A (en) Dye-sensitized solar cell
AU2004303035B2 (en) Electrolyte composition and photoelectric converter using same
Chatzivasiloglou et al. The influence of the metal cation and the filler on the performance of dye-sensitized solar cells using polymer-gel redox electrolytes
JP4420645B2 (en) Low temperature organic molten salt, photoelectric conversion element and photovoltaic cell
JP4522673B2 (en) Electrolyte composition, photoelectric conversion device using the same, and dye-sensitized solar cell
JPWO2014017535A1 (en) Composition for photoelectric conversion layer and photoelectric conversion element
KR20150089689A (en) Electrolyte for dye-sensitized solar cell and dye-sensitized solar cell including the same
JP2015115110A (en) Method of manufacturing dye-sensitized solar cell, and dye-sensitized solar cell
JP2003346928A (en) Dye sensitized solar battery
JP4802478B2 (en) Dye-sensitized solar cell
WO2012121264A1 (en) Photoelectric conversion device and method for manufacturing same
JP5109111B2 (en) Photoelectric conversion element
JP6568354B2 (en) Electrolyte, electrolyte for photoelectric conversion element, photoelectric conversion element, and dye-sensitized solar cell
JP6044767B2 (en) Dye-sensitized solar cell
JP2017050385A (en) Electrolyte and dye-sensitized solar battery
JP2014222580A (en) Electrolyte for photoelectric conversion element, photoelectric conversion element using the same, and dye-sensitized solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4420645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term