JP5275867B2 - 5自由度誤差測定装置 - Google Patents

5自由度誤差測定装置 Download PDF

Info

Publication number
JP5275867B2
JP5275867B2 JP2009074027A JP2009074027A JP5275867B2 JP 5275867 B2 JP5275867 B2 JP 5275867B2 JP 2009074027 A JP2009074027 A JP 2009074027A JP 2009074027 A JP2009074027 A JP 2009074027A JP 5275867 B2 JP5275867 B2 JP 5275867B2
Authority
JP
Japan
Prior art keywords
axis
rotating body
error
interference
coordinate system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009074027A
Other languages
English (en)
Other versions
JP2010223887A (ja
Inventor
正人 明田川
栄樹 奥山
高志 村木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Motor Wheel Co Ltd
Original Assignee
Central Motor Wheel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Motor Wheel Co Ltd filed Critical Central Motor Wheel Co Ltd
Priority to JP2009074027A priority Critical patent/JP5275867B2/ja
Publication of JP2010223887A publication Critical patent/JP2010223887A/ja
Application granted granted Critical
Publication of JP5275867B2 publication Critical patent/JP5275867B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、軸受に取り付けられた回転体もしくは軸受それ自体あるいは其の一部を構成する回転体の回転に伴って回転体の径方向の2軸と軸方向の1軸および傾斜方向の2軸に生じる運動誤差を同時に計測する5自由度誤差測定装置に関する。
各種の軸受、更には、各種のNC工作機械等に装着されるエンドミルや回転砥石等を初めとする回転体の回転に伴って発生する運動誤差の許容範囲は、加工精度の高水準化の要求等のために、近年ますます厳しいものになってきている。
回転体に生じる運動誤差としては、回転体の径方向の直交2軸の平面内で生じるラジアルモーションと、回転体の軸方向の1軸に沿って生じるアキシャルモーション、および、回転体の軸が傾斜する向きで2軸の回りに生じるアンギュラモーションといった都合5軸方向の誤差がある。
ラジアルモーション,アキシヤルモーションの運動誤差はナノメートルレベル以下の範囲に、また、アンギュラモーションの運動誤差は秒レベル以下の範囲に納めることが望ましい。
従来、回転体の運動誤差測定は、真円度や真球度の高い参照試料を用い、反転法を含むマルチステップ法あるいはマルチプローブ法により行っていたが、最終的な測定結果を得るためには参照試料の真円度や真球度の誤差を分離するための手続が必要であり、後処理が煩雑化する問題があった。
一方、非接触で回転体の回転に関連する誤差を測定する方法としては、直線帯状の光反射部と光透過部を交互に備えたエンコーダスケールや光学ヘッドからなるアキシャルエンコーダが既に非特許文献1として提案され、また、2軸に微細形状を持つスケール用素子とセンサヘッドからなる3軸変位センサによって検出される干渉信号を利用してX−Yの直交2軸方向の移動変位あるいはX−Y−Zの直交3軸方向の移動変位を同時に測定するようにした回折光干渉型3軸ナノ変位センサが非特許文献2として提案されている。
前者のアキシャルエンコーダは専ら回転体のアキシャルモーションに関連する1軸方向の運動誤差の測定に特化したものである。
また、後者の回折光干渉型3軸ナノ変位センサはラジアルモーションとアキシャルモーションに関連する3軸方向の運動誤差の測定が可能であるが、基本的に、スケール用素子上の一点とセンサヘッドとの位置関係を特定して3軸方向の運動誤差を測定する構成であるため、そのままでは、スケール用素子の姿勢変化、つまり、回転体の軸が傾斜する向きに生じるアンギュラモーションに関連する2軸方向の運動誤差の測定が行なえないといった不便さがある。
木本誠二・野村光由・柴田隆行・村上良彦・堀内宰・枡田正美 共著,「2008年度精密工学会秋季大会学術講演会講演論文集"アキシャルエンコーダの試作"」,社団法人精密工学会,p.583 木村彰秀・荒井義和・高偉 共著,「2008年度精密工学会秋季大会学術講演会講演論文集"回折光干渉型3軸ナノ変位センサに関する研究(第3報)"」,社団法人精密工学会,p.233
そこで、本発明の課題は、複雑な後処理を必要とせず、回転体の回転に伴って生じるラジアルモーション,アキシャルモーション,アンギュラモーションを合わせた都合5軸方向の運動誤差を高精度で測定することのできるコンパクトな構造の5自由度誤差測定装置を提供することにある。
本発明の5自由度誤差測定装置は、軸受に取り付けられた回転体もしくは軸受あるいは其の一部を構成する回転体の回転に伴って前記回転体の径方向の2軸と軸方向の1軸および傾斜方向の2軸に生じる運動誤差を計測するための5自由度誤差測定装置であり、前記課題を達成するため、特に、
前記回転体の外周面に、該回転体の回転軸の方向に一定の間隔を置いて設けられた複数の周溝から形成された回折格子面を備えると共に、
前記回転体の径方向に相当するセンサ座標系第1軸と前記周溝の並び方向に相当するセンサ座標系第2軸に沿った回折格子面の相対移動変位を検出する2軸干渉センサユニットを、前記外周面から前記回転体の径方向外側に間隙をおいて、かつ、前記回転体の径方向において相互に重合しないようにして前記回転体の周方向の相異なる少なくとも3つの位置に固定配備し、
前記回転体の直径方向に沿って同時に位置しない少なくとも2つの前記2軸干渉センサユニットから出力されるセンサ座標系第1軸の干渉信号の各々から得られる各移動量に基いて前記回転体の径方向の2軸に生じる運動誤差を求めると共に、少なくとも3つの前記2軸干渉センサユニットから出力されるセンサ座標系第2軸の干渉信号の各々から得られる各移動量の少なくとも1つに基いて前記回転体の軸方向の1軸に生じる運動誤差を求め、かつ、少なくとも3つの前記2軸干渉センサユニットから出力されるセンサ座標系第2軸の干渉信号の各々から得られる各移動量の少なくとも2つずつの組み合わせに基いて前記回転体の傾斜方向の2軸に生じる運動誤差を求める誤差演算手段を備えたことを特徴とする構成を有する。
このように、2軸干渉センサユニットの各々が、回転体の径方向に相当するセンサ座標系第1軸と周溝の並び方向つまり回転軸の方向に相当するセンサ座標系第2軸に沿った回折格子面の相対移動変位を検出するように構成され、その各々が、回転体の外周面から回転体の径方向外側に間隙をおいて、かつ、回転体の径方向において相互に重合しないようにして前記回転体の周方向の相異なる少なくとも3つの位置に固定配備されているので、回転体の同じ直径方向に沿って位置しない少なくとも2つの2軸干渉センサユニットから出力されるセンサ座標系第1軸の干渉信号の各々によって、回転体の回転で発生する運動誤差のうち、方向性が異なる少なくとも2つの径方向の運動誤差を測定することができる。2つの2軸干渉センサユニットのセンサ座標系第1軸が成す角は設計段階で既知であるから、これら少なくとも2つの運動誤差を誤差演算手段によって合成することによって、回転体の径方向の直交2軸(X,Y軸)の平面内で生じるラジアルモーションに関連する運動誤差Δx,Δyを求めることが可能となる。
また、少なくとも3つの2軸干渉センサユニットから出力されるセンサ座標系第2軸の干渉信号は、その各々が周溝の並び方向つまり回転軸の方向の移動変位に相当する値であるから、少なくとも3つの2軸干渉センサユニットから出力されるセンサ座標系第2軸の干渉信号の各々から得られる各移動量の少なくとも1つに基いて、回転体の軸方向の1軸(Z軸)で生じるアキシャルモーションに関連する1軸方向の運動誤差Δzを求めることができる。
更に、少なくとも3つの2軸干渉センサユニットは、その各々が回転体の径方向外側の異なる位置で周溝の並び方向つまり回転軸の方向の移動変位を検知するから、回転体の周方向で相異なる位置に固定配備された少なくとも3つの2軸干渉センサユニットから出力されるセンサ座標系第2軸の干渉信号の各々から得られる各移動量の少なくとも2つずつの組み合わせ、より具体的には、相互にY軸方向に離間した2軸干渉センサユニットから得られるセンサ座標系第2軸の移動量の偏差と相互にX軸方向に離間した2軸干渉センサユニットから得られるセンサ座標系第2軸の移動量の偏差の各々に基いて、回転体の軸が傾斜する向きで直交2軸(X,Y軸)の周りに生じるアンギュラモーションに関連する運動誤差Δu,Δv、すなわち、Y軸方向で位置の異なる少なくとも2つの2軸干渉センサユニットから出力されるセンサ座標系第2軸の干渉信号の各々から得られる移動量の偏差に関連するX軸周りの姿勢変化Δuと、X軸方向に位置の異なる少なくとも2つの2軸干渉センサユニットから出力されるセンサ座標系第2軸の干渉信号の各々から得られる移動量の偏差に関連するY軸周りの姿勢変化Δvを求めることが可能となる。
また、2軸干渉センサユニットは回転体の一端面の側に纏めて配置されているので、全体的な構造が肥大化するといった不都合も生じない。
より具体的には、前記3つの2軸干渉センサユニットのうちの2つを前記回転体の直径方向に沿って配備すると共に他の1つを該直径方向に対して直交する半径上に配備し、
前記誤差演算手段は、
直径方向に沿って配備された前記2つの2軸干渉センサユニットから出力されるセンサ座標系第1軸の干渉信号の各々から得られる各移動量の平均を前記回転体の径方向の1軸に生じる運動誤差とし、かつ、半径上に配備された前記1つの2軸干渉センサユニットから出力されるセンサ座標系第1軸の干渉信号から得られる移動量を前記回転体の径方向の他の1軸に生じる運動誤差とすると共に、
3つの前記2軸干渉センサユニットから出力されるセンサ座標系第2軸の干渉信号の各々から得られる各移動量の平均を前記回転体の軸方向の1軸に生じる運動誤差とし、
直径方向に沿って配備された前記2つの2軸干渉センサユニットから出力されるセンサ座標系第2軸の干渉信号の各々から得られる各移動量の平均と半径上に配備された前記1つの2軸干渉センサユニットから出力されるセンサ座標系第2軸の干渉信号から得られる移動量との偏差に基いて前記回転体の傾斜方向の1軸に生じる運動誤差を求め、かつ、直径方向に沿って配備された前記2つの2軸干渉センサユニットから出力されるセンサ座標系第2軸の干渉信号の各々から得られる各移動量の偏差に基いて前記回転体の傾斜方向の他の1軸に生じる運動誤差を求めるように構成することが望ましい。
このようにして、3つの2軸干渉センサユニットのうちの2つを前記回転体の直径方向に沿って配備すると共に他の1つを該直径方向に対して直交する半径上に配備した構成では、直径方向に沿って配備された前記2つの2軸干渉センサユニットから出力されるセンサ座標系第1軸の干渉信号の各々から得られる各移動量の平均を前記回転体の径方向の1軸、例えば、X軸方向の運動誤差Δxとすると共に、これに直交する半径方向つまりY軸上に配備された他の1つの2軸干渉センサユニットから出力されるセンサ座標系第1軸の干渉信号から得られる移動量を前記回転体の径方向の他の1軸すなわちY軸方向の運動誤差Δyとすることができる。2つの2軸干渉センサユニットのセンサ座標系第1軸が回転体の径方向の1軸(X軸)に沿い、同時に、他の1つの2軸干渉センサユニットのセンサ座標系第1軸が前記1軸と直交する他の1軸(Y軸)に沿うかたちで配置されているので、座標変換等の処理を行なうことなく、回転体の径方向の直交2軸(X,Y軸)におけるラジアルモーションの運動誤差を直ちに求めることができ、演算処理の所要時間が短縮される。
また、3つの2軸干渉センサユニットから出力されるセンサ座標系第2軸の干渉信号の各々から得られる各移動量の平均を前記回転体の軸方向の1軸(Z軸)に生じるアキシャルモーションに関連する運動誤差Δzとする。回転体の周方向において相異なる3つの位置で測定された各移動量の平均を回転体の軸方向の1軸(Z軸)に生じるアキシャルモーションの運動誤差Δzとしているので、回転体にアンギュラ方向の姿勢変化Δu,Δvが生じている場合であっても、アキシャルモーションの運動誤差Δzを正確に求めることが可能となる。
更に、直径方向の1軸(X軸)に沿って配備された前記2つの2軸干渉センサユニットから出力されるセンサ座標系第2軸の干渉信号の各々から得られる各移動量の平均と此れに直交する半径方向の1軸(Y軸)に沿って配備された前記1つの2軸干渉センサユニットから出力されるセンサ座標系第2軸の干渉信号から得られる移動量との偏差に基いて回転体の軸が傾斜する向きで直交2軸の1つ(X軸)の周りに生じるアンギュラモーションに関連する運動誤差である姿勢変化Δuを求め、また、直径方向の1軸(X軸)に沿って配備された前記2つの2軸干渉センサユニットから出力されるセンサ座標系第2軸の干渉信号の各々から得られる各移動量の偏差に基いて回転体の軸が傾斜する向きで直交2軸の他の1つ(Y軸)の周りに生じるアンギュラモーションに関連する運動誤差である姿勢変化Δvを求めることができる。ラジアルモーションの運動誤差の場合と同様、2つの2軸干渉センサユニットのセンサ座標系第1軸が回転体の径方向の1軸(X軸)に沿い、同時に、他の1つの2軸干渉センサユニットのセンサ座標系第1軸が前記1軸と直交する他の1軸(Y軸)に沿うかたちで配置されているため、複雑な座標変換の処理を行なう必要がなく、X軸の周りの姿勢変化ΔuとY軸の周りの姿勢変化Δvを容易に求めることができ、演算処理の所要時間が短縮される。
前記構成に加え、更に、前記回転体を回転させる回転駆動手段を設け、前記誤差演算手段は、前記回転体が〔1/n〕回転する毎に前記回転体の径方向の2軸と軸方向の1軸および傾斜方向の2軸に生じる運動誤差を求めて前記回転体の絶対的な回転角度に対応させて記憶するデータ記憶手段と、該データ記憶手段から読み出されたデータを可視表示するデータ表示手段を備えるようにしてもよい。
回転体を〔1/n〕回転の刻みで回転させ、各回転角度において回転体の径方向の2軸と軸方向の1軸および傾斜方向の2軸に生じる運動誤差を求めて回転体の絶対的な回転角度に対応させてデータ記憶手段に記憶させ、更にデータ記憶手段のデータを読み出してデータ表示手段に可視表示することにより、回転体の各回転角度で生じる5軸方向の運動誤差を容易に把握することができる。
また、前記回転体が〔m+(1/n)〕回転する毎に前記回転体の径方向の2軸と軸方向の1軸および傾斜方向の2軸に生じる運動誤差を求めて前記回転体の絶対的な回転角度に対応させて記憶するように構成してもよい。
このような構成を適用した場合、5軸方向の運動誤差は回転体がm回転する毎に〔1/n〕回転相当の回転角度だけずらされて測定され、この値がデータ記憶手段に記憶されることになるので、測定やデータの書き込みに必要とされる処理の所要時間が長い場合、あるいは、回転体の回転速度が相当に速い場合であっても無理なく演算処理を行なって、各回転角度で生じる5軸方向の運動誤差を容易に把握することができる。
例えば、m=2,n=36とした場合、運動誤差の測定および演算とデータの記憶処理は、回転体が〔2×360+10〕°すなわち730°回転する度に行えば済むので、実際には10°の絶対回転角度で運動誤差の測定が行われるにも関わらず、演算やデータの記憶処理は、回転体が730°回転する間に行なえばよいことになる。
本発明の5自由度誤差測定装置は、回転体の外周面に該回転体の回転軸の方向に一定の間隔を置いて設けられた複数の周溝から形成される回折格子面を設け、回転体の径方向に相当するセンサ座標系第1軸と周溝の並び方向に相当するセンサ座標系第2軸に沿った回折格子面の相対移動変位を検出する2軸干渉センサユニットを回転体の外周面から回転体の径方向外側に間隙をおいて、かつ、相互に重合しないようにして回転体の周方向の相異なる少なくとも3つの位置に固定配備し、これら少なくとも3つの2軸干渉センサユニットのセンサ座標系第1軸の干渉信号から得られる移動量すなわち回転体の径方向で方向性が異なる少なくとも2つの移動量に基いて回転体の径方向の直交2軸の平面内で生じるラジアルモーションに関連する運動誤差を求めると共に、少なくとも3つの2軸干渉センサユニットから出力されるセンサ座標系第2軸の干渉信号の各々から得られる移動量すなわち回転体の軸方向に生じる移動量の少なくとも1つに基いてアキシャルモーションに関連する1軸方向の運動誤差を求め、更に、回転体の周方向で相異なる位置に固定配備された少なくとも3つの2軸干渉センサユニットから出力されるセンサ座標系第2軸の干渉信号の各々から得られる各移動量の少なくとも2つずつの組み合わせに基いて回転体の軸が傾斜する向きで回転体の径方向の直交2軸の周りに生じるアンギュラモーションに関連する運動誤差である軸周りの姿勢変化を求めるようにしているので、参照試料の真円度や真球度の誤差を分離するといった煩雑な後処理を行なわなくても、回転体の回転に伴って生じるラジアルモーション,アキシャルモーション,アンギュラモーションを合わせた都合5軸方向の運動誤差を直接的に高精度で測定することができる。
特に、3つの2軸干渉センサユニットのうちの2つを回転体の直径方向に沿って配備すると共に他の1つを該直径方向に対して直交する半径上に配備し、直径方向に沿って配備された2つの2軸干渉センサユニットから出力されるセンサ座標系第1軸の干渉信号の各々から得られる各移動量の平均を回転体の径方向の1軸に生じる運動誤差とする一方、半径上に配備された他の1つの2軸干渉センサユニットから出力されるセンサ座標系第1軸の干渉信号から得られる移動量を回転体の径方向の他の1軸に生じる運動誤差とし、3つの2軸干渉センサユニットから出力されるセンサ座標系第2軸の干渉信号の各々から得られる各移動量の平均を回転体の軸方向の1軸に生じる運動誤差とすると共に、直径方向に沿って配備された前記2つの2軸干渉センサユニットから出力されるセンサ座標系第2軸の干渉信号の各々から得られる各移動量の平均と此れに直交する半径上に配備された前記他の1つの2軸干渉センサユニットから出力されるセンサ座標系第2軸の干渉信号から得られる移動量との偏差に基いて回転体の傾斜方向の1軸に生じる運動誤差を求め、更に、直径方向に沿って配備された前記2つの2軸干渉センサユニットから出力されるセンサ座標系第2軸の干渉信号の各々から得られる各移動量の偏差に基いて回転体の傾斜方向の他の1軸に生じる運動誤差を求めるようにすることで、座標変換等の複雑な処理を行なうことなく、回転体の径方向の直交2軸におけるラジアルモーションの運動誤差と、その1軸の周りの姿勢変化および他の1軸の周りの姿勢変化であるアンギュラモーションの運動誤差を短時間で容易に求めることができ、しかも、回転体の軸方向の1軸に生じるアキシャルモーションに関連する運動誤差をより正確に求めることができるようになる。
更に、回転体を回転させる回転駆動手段を設け、回転体が〔1/n〕回転する毎に回転体の径方向の2軸と軸方向の1軸および傾斜方向の2軸に生じる運動誤差を求めて回転体の絶対的な回転角度に対応させてデータ記憶手段に記憶させ、データ記憶手段のデータを読み出してデータ表示手段に可視表示する構成とすることで、各回転角度で生じる5軸方向の運動誤差を容易に把握することができる。
また、回転体が〔m+(1/n)〕回転する毎に回転体の径方向の2軸と軸方向の1軸および傾斜方向の2軸に生じる運動誤差を求めて回転体の絶対的な回転角度に対応させて記憶させる構成とすることで、測定やデータの書き込みに必要とされる処理の所要時間が長い場合、あるいは、回転体の回転速度が相当に速い場合であっても無理なく演算処理を行なって、各回転角度で生じる5軸方向の運動誤差を容易に把握することが可能となる。
本発明を適用した一実施形態の5自由度誤差測定装置1の一部を構成する3つの2軸干渉センサユニットと回転体の外周面に設けられた回折格子面との位置の対応関係を簡略化して示した概念図であり、このうち、図1(a)は回転体を上方から見た平面図、また、図1(b)は回転体を手前から見た立面図である。 同実施形態における2軸干渉センサユニットの作動原理について簡単に示した機能ブロック図である。 2軸干渉センサユニットのフォトダイオードの位置に90°位相の異なる干渉光を生成させて別のフォトダイオードで干渉信号を測定するようにした他の2軸干渉センサユニットの一例について簡略化して示した構成図であり、図3(a)では2軸干渉センサユニットをY軸に沿った方向の視点で示し、また、図3(b)では2軸干渉センサユニットをZ軸に沿った方向の視点で示している。 回転体の一種であるチャックを回転駆動するNC工作機械と該NC工作機械を駆動制御する数値制御装置、および、NC工作機械のコラムヘッドに固定配備された3つの2軸干渉センサユニットとチャック側の回折格子面を主要部として構成される5自由度誤差測定装置の本体部、ならびに、5自由度誤差測定装置の誤差演算手段として機能するパーソナルコンピュータ等の接続関係について簡略化して示したブロック図である。 誤差演算手段にインストールされた誤差測定用プログラムの概要について示したフローチャートである。 誤差測定用プログラムの概要について示したフローチャートの続きである。 誤差測定用プログラムの概要について示したフローチャートの続きである。 誤差測定用プログラムの概要について示したフローチャートの続きである。 誤差演算手段のデータ記憶手段に生成されるデータ記憶ファイルの論理構成を示した概念図である。 1回転信号が出力される時のチャックの絶対回転角度を0°と規定した場合のチャックの絶対回転角度と通算回転角度との関係を示した概念図で、図10(a)は絶対回転角度が0°で通算回転角度が0°の時の状態、図10(b)は絶対回転角度が10°で通算回転角度が〔360×m+10〕°の時の状態、図10(c)は絶対回転角度が350°で通算回転角度が〔360×(n−1)・m+(n−1)・10〕°の時の状態について示している。
以下、図面を参照して本発明の実施形態について具体的に説明する。
図1は本発明を適用した一実施形態の5自由度誤差測定装置1の一部を構成する3つの2軸干渉センサユニットS1,S2,S3と、回転体の一種であるチャック2の外周面に設けられた回折格子面3との位置の対応関係を簡略化して示した概念図であり、このうち、図1(a)はチャック2を上方から見た平面図、また、図1(b)はチャック2を手前から見た立面図である。
回折格子面3は、図1(b)に示されるように、チャック2の外周面に、該チャック2の回転軸CLの方向に一定の間隔を置いて設けられた複数の周溝によって形成されている。回折格子面3を形成する部分のチャック2の外周面は可能な限り正確な円筒状に加工し、また、周溝のピッチも可能な限り一定に加工する必要がある。
2軸干渉センサユニットS1,S2,S3の各々は、センサ座標系第1軸とセンサ座標系第2軸の直交2軸方向で測定対象物の相対移動変位を検出するもので、このうち2軸干渉センサユニットS1,S2の各々は、其のセンサ座標系第1軸をチャック2の直径方向の1つ、つまり、図1(a)に示されるX軸の方向に沿わせて、図1(b)に示されるように、チャック2の外周面から径方向外側に或る程度の間隔を置いて、図示しないNC工作機械のコラムヘッドに固定配備されている。
また、2軸干渉センサユニットS3は、前述の1つの直径方向すなわちX軸に対して直交する他の1つの半径方向であるY軸にセンサ座標系第1軸を沿わせて、図1(a)に示されるように、チャック2の外周面から径方向外側に或る程度の間隔を置いて、図示しないNC工作機械のコラムヘッドに固定配備されている。
つまり、3つの2軸干渉センサユニットS1,S2,S3のセンサ座標系第1軸は、共にチャック2の径方向に相当する向きで測定対象物である回折格子面3の相対移動変位を検出し、また、全ての2軸干渉センサユニットS1,S2,S3のセンサ座標系第2軸は、共に回折格子面3における周溝の並び方向すなわちチャック2の軸方向と一致するZ軸方向に相当する向きで測定対象物である回折格子面3の相対移動変位を検出するようになっており、その各々は、チャック2の外周面からチャック2の径方向外側に間隙をおいて、かつ、チャック2の径方向において相互に重合しないようにしてチャック2の周方向の相異なる少なくとも3つの位置に固定配備されていることになる。
図2は2軸干渉センサユニットS1,S2,S3の作動原理について簡単に示した機能ブロック図である。
2軸干渉センサユニットS1,S2,S3の構成は同様であるから、ここでは、センサ座標系第1軸で回折格子面3のX軸方向の相対移動変位を検出すると共にセンサ座標系第2軸で回折格子面3のZ軸方向の相対移動変位を検出する2軸干渉センサユニットS1(X−Zセンサ)を例にとって構成を説明する。
なお、図2に示される回折格子面3は図1(a)および図1(b)における回折格子面3の一部を取り出して示したもので、回折格子面3の溝の並び方向は図2においてはZ軸の方向となっている。
2軸干渉センサユニットS1は、図2に示されるように、概略において、レーザー光の出力源となるレーザーダイオード4と、反射鏡5〜8およびビームスプリッタ9〜10と、1/4波長板11〜16および1/2波長板17と、参照用の固定ミラー18、ならびに、フォトダイオードPD11〜PD12によって構成される。
以上の構成において、レーザーダイオード4から出射されたレーザ光Aは反射鏡5〜6を経由してビームスプリッタ9に入射し、参照用の固定ミラー18に向かうレーザ光A1と、X軸に沿って回折格子面3に向かうレーザ光A2に分割される。
このうち、固定ミラー18に向かうレーザ光A1は、1/4波長板16を経由して固定ミラー18に照射されて固定ミラー18で反射され、其のまま逆の経路を辿って1/4波長板16を介してビームスプリッタ9に入射する。
また、X軸に沿って回折格子面3に向かうレーザ光A2は、1/4波長板11を経由して回折格子面3に照射され、回折格子面3の回折格子によって0次光Bと±1次光B1,B2に分割される。
このうち、0次光Bは其のまま逆の経路を辿って1/4波長板11を介してビームスプリッタ9に入射し、固定ミラー18で反射されたレーザ光A1と結合されて干渉光となり、1/4波長板15を経由してフォトダイオードPD12に入射する。
また、+1次光B1は1/4波長板13と1/2波長板17を経由して反射鏡8に到達し、反射鏡8で反射されてビームスプリッタ10に入射し、−1次光B2は、1/4波長板12を経由して反射鏡7に到達し、反射鏡7で反射されてビームスプリッタ10に入射する。そして、これらの±1次光B1,B2がビームスプリッタ10で結合されて干渉光となり、この干渉光が1/4波長板14を介してフォトダイオードPD11に入射する。
フォトダイオードPD11,PD12で検出される干渉信号IPD11,IPD12は、2軸干渉センサユニットS1に対する回折格子のZ軸方向の変位ΔzとX軸方向の変位Δx、および、回折格子のピッチdおよび光源の波長λにより、次の式(1),式(2)で表すことができる(但し、A,Bは任意の振幅)。
Figure 0005275867
従って、式(1)と式(2)を連立させてΔxとΔzについて解くことにより、X軸方向の変位ΔxとZ方向の変位Δzを測定することが可能である。
演算処理自体に関しては既に非特許文献2等でも公知となっているので、詳細な説明は省略する。
更に、フォトダイオードPD11,PD12の位置に90°位相の異なる干渉光を生成させ、それを新たなフォトダイオードで検出すれば、回折格子面3の移動方向の判別と位相補間も可能である。例えば、光源の波長を650nm,回折格子のピッチを1μmとした場合、θm=40.5°で1/2000の位相補間が可能とすれば、Z軸方向に0.25nm,X軸方向に0.16nmの分解能が得られる。
図3は図2の構成に加え、更に、フォトダイオードPD11,PD12の位置に90°位相の異なる干渉光を生成させて別のフォトダイオードで干渉信号を測定するようにした2軸干渉センサユニットS1の他の一例について簡略化して示した構成図であり、図3(a)では2軸干渉センサユニットS1をY軸に沿った方向の視点で示し、また、図3(b)では2軸干渉センサユニットS1をZ軸に沿った方向の視点で示している。
図3の2軸干渉センサユニットS1は、図2に示される2軸干渉センサユニットS1の光学系を変更して反射鏡5〜6を省略し、更に、図2に示される2軸干渉センサユニットS1における1/4波長板14とフォトダイオードPD11の間に干渉光の一部を分岐させるためのビームスプリッタ21を新たに配置して1/2波長板19を併設することにより、別のフォトダイオードPD11’によって、フォトダイオードPD11で検出される干渉信号に対して90°位相の異なる干渉信号を測定すると共に(以上、図3(a)参照)、図2に示される2軸干渉センサユニットS1における1/4波長板15とフォトダイオードPD12の間に干渉光の一部を分岐させるためのビームスプリッタ22を新たに配置して1/2波長板20を併設することにより、別のフォトダイオードPD12’によって、フォトダイオードPD12で検出される干渉信号に対して90°位相の異なる干渉信号を測定するようにしたものである。
既に述べた通り、他の2軸干渉センサユニットS2(X−Zセンサ),S3(Y−Zセンサ)の構成に関しては、前述の2軸干渉センサユニットS1と同様であるので、詳細な説明は省略する。
2軸干渉センサユニットS2,S3に関しても、前記と同様、図3に示されるような構成を適用することにより、回折格子面3の移動方向の判別と位相補間が可能となる。
2軸干渉センサユニットS2は、2軸干渉センサユニットS1のフォトダイオードPD11〜PD12に相当するフォトダイオードPD21〜PD22を備え、2軸干渉センサユニットS3は、2軸干渉センサユニットS1のフォトダイオードPD11〜PD12に相当するフォトダイオードPD31〜PD32を備えている。
以下、2軸干渉センサユニットS2のフォトダイオードPD21〜PD22で検出される干渉信号をIPD21〜IPD22と規定し、2軸干渉センサユニットS3のフォトダイオードPD31〜PD32で検出される干渉信号をIPD31〜IPD32と規定する。
図4は回転体の一種であるチャック2を備えたNC工作機械23と該NC工作機械23を駆動制御する数値制御装置24、および、既に述べた設置条件のもとでNC工作機械23の図示しないコラムヘッドに固定配備された2軸干渉センサユニットS1,S2,S3とチャック2側の回折格子面3を主要部として構成される5自由度誤差測定装置1の本体部25、ならびに、5自由度誤差測定装置1の誤差演算手段26として機能するパーソナルコンピュータ等の接続関係について簡略化して示したブロック図であり、このうち、本体部25と誤差演算手段26とを併せたものが5自由度誤差測定装置1である。
NC工作機械23は、例えば、竪型フライス盤等のものである。回転砥石を利用する平面研削盤等のNC工作機械23にあってはスピンドル(主軸)がチャック2すなわち回転体に相当する。無論、エンドミルやドリルビットあるいは回転砥石等を回転体と考えても差し支えない。
NC工作機械23は、一般に、各軸X,Y,Z方向のテーブル送りについては、各軸のサーボモータと数値制御装置24による位置,速度,電流ループの処理を利用して厳密な位置決め処理が行なわれるようになっているが、チャック2やスピンドルの回転に関しては厳密な回転角度の制御は行われず、単に、オープンループでの速度制御が行われるだけであり、チャック2やスピンドルの回転角度が規定位置と一致した時点で、NC工作機械23から数値制御装置24に1回転信号が送出されるようになっている。チャック2やスピンドルの回転速度は数値制御装置24に設けられたマニュアル・データ・インプッタ(MDI)を利用した手動設定やAPT等のNC加工プログラムを利用した設定が可能である。
この実施形態では、チャック2を回転させるNC工作機械23の図示しない主軸モータが5自由度誤差測定装置1における回転駆動手段として機能することになる。
誤差演算手段26は市販のパーソナルコンピュータやワークステーションあるいは専用の制御装置等によって構成することが可能である。
誤差演算手段26の主要部は、演算処理用のマイクロプロセッサ27と、マイクロプロセッサ27の基本的な制御プログラムを格納したROM28、および、演算データの一時記憶等に用いられるRAM29と、各種のアプリケーションプログラム等を格納したハードディスク30、および、他の外部装置等との接続に用いられるインターフェイス31によって構成され、マイクロプロセッサ27の入出力回路32には、マン・マシン・インターフェイスとして機能するキーボード33やディスプレイ34が接続されている。
この実施形態では、ディスプレイ34が誤差演算手段26のデータ表示手段として機能し、また、RAM29とハードディスク30が誤差演算手段26のデータ記憶手段として機能することになる。
5自由度誤差測定装置1の本体部25に配備された2軸干渉センサユニットS1のフォトダイオードPD11〜PD12で検出される干渉信号IPD11〜IPD12および2軸干渉センサユニットS2のフォトダイオードPD21〜PD22で検出される干渉信号IPD21〜IPD22と2軸干渉センサユニットS3のフォトダイオードPD31〜PD32で検出される干渉信号IPD31〜IPD32の各々は、入出力回路32を介して誤差演算手段26のマイクロプロセッサ27に読み込まれ、また、NC工作機械23から数値制御装置24に送出される1回転信号も、入出力回路32を介して誤差演算手段26のマイクロプロセッサ27に読み込まれるようになっている。
図5〜図8は誤差演算手段26のハードディスク30にアプリケーションプログラムの1つとしてインストールされた誤差測定用プログラムの概要について示したフローチャートである。
次に、図5〜図8を参照して5自由度誤差測定装置1の全体的な処理動作について具体的に説明する。
但し、この時点では既にNC工作機械23および数値制御装置24は稼動状態にあり、NC工作機械23の主軸モータによってチャック2が回転駆動されており、図5〜図8に示されるような誤差測定用プログラムが実行対象プログラムとして読み出されて、パーソナルコンピュータ等からなる誤差演算手段1のハードディスク30からRAM29に展開されているものとする。
誤差測定用プログラムの実行を開始したマイクロプロセッサ27は、まず、入出力回路32を介して、数値制御装置24から、チャック2に対して設定されている主軸回転数の現在値を読み込む(ステップa1)。
次いで、マイクロプロセッサ27は、主軸回転数の大小に応じ、ハードディスク30に登録された図示しないデータ設定ファイルから、主軸回転数に応じた誤差測定のために必要とされる待機計数mの値を選択し、更に、ステップa1の処理で読み込んだ主軸回転数に基いてチャック2の1回転所要時間を求め、ユーザがキーボード33を介して入力した測定分割数nの値と上述の1回転所要時間とに基いて、基本的なサンプリング周期Δtを算出する(ステップa2)。
待機計数mの値は、主軸回転数の値が大きくなればなるほど大きく、また、主軸回転数の値が小さくなればなるほど小さくなるように、更に、主軸回転数がマイクロプロセッサ27の処理速度によって決まる一定の値よりも小さければ0となるように、データ設定ファイルに登録されている。
従って、主軸回転数が一定の値よりも小さくチャック2の回転速度との比較においてマイクロプロセッサ27の処理速度が十分であれば、誤差演算手段26の主要部を構成するマイクロプロセッサ27は、待機計数mの値としてデータ設定ファイルから値0を選択し、チャック2が〔1/n〕回転する毎に、つまり、基本的なサンプリング周期Δt毎に誤差の測定を実行する。
また、これとは逆に、主軸回転数が大きくチャック2の回転速度との比較においてマイクロプロセッサ27の処理速度が不十分となるような場合には、誤差演算手段26の主要部を構成するマイクロプロセッサ27は、主軸回転数の大きさに応じてデータ設定ファイルから整数値m=1,2,3,・・・の一つを選択し、チャック2が〔m+(1/n)〕回転する毎に誤差の測定を実行することになる。この場合、実質的なサンプリング周期は〔1回転所要時間×m+Δt〕である。
よって、主軸回転数が比較的小さいフライス盤等のNC工作機械23にも、また、主軸回転数が比較的大きい平面研削盤等のNC工作機械23にも対処することができ、理論的には、ジググラインダー等の高速回転型のNC工作機械23にも対応することが可能である。
このようにして待機計数mと基本的なサンプリング周期Δtに関連する初期設定処理が終了すると、マイクロプロセッサ27は、チャック2の回転回数を計数するカウンタiの値と誤差の測定回数を計数するカウンタjの値を共に0に初期化し(ステップa3〜ステップa4)、待機計数mとして値0が選択されているのか其れ以外の整数値が選択されているのかを判定する(ステップa5)。
ステップa5の判定結果が真となって待機計数mの値が0であることが明らかとなった場合には、チャック2の〔1/n〕回転毎、言い換えれば、基本的なサンプリング周期Δtで誤差の測定を実行する設定であることを意味し、また、ステップa5の判定結果が偽となって待機計数mの値が0以外の値であることが明らかとなった場合には、チャック2が〔m+(1/n)〕回転する毎つまり〔1回転所要時間×m+Δt〕のサンプリング周期で誤差の測定を実行する設定であることを意味する。
従って、ステップa5の判定結果が真となった場合には、マイクロプロセッサ27は、まず、数値制御装置24および入出力回路32を介してNC工作機械23から最初の1回転信号が入力されるまで待機し(ステップa22)、最初の1回転信号の入力が確認された時点で、誤差測定に関わる図8のSUB(A)の処理を直ちに実行する(ステップa23)。
SUB(A)の処理を開始したマイクロプロセッサ27は、まず、5自由度誤差測定装置1の本体部25に配備された2軸干渉センサユニットS1,S2,S3のフォトダイオードPD11〜PD12,PD21〜PD22,PD31〜PD32で検出されている干渉信号IPD11〜IPD12,IPD21〜IPD22,IPD31〜IPD32の各々を読み込む(図8のステップb1)。
次いで、誤差演算手段26の主要部を構成するマイクロプロセッサ27は、2軸干渉センサユニットS1のフォトダイオードPD11〜PD12で検出されている干渉信号IPD11〜IPD12の値と前述の式(1),式(2)に基いて、2軸干渉センサユニットS1が検出しているX軸方向の変位Δx1と2軸干渉センサユニットS1が検出しているZ方向の変位Δz1を求める。
また、マイクロプロセッサ27は、2軸干渉センサユニットS2のフォトダイオードPD21〜PD22で検出されている干渉信号IPD21〜IPD22の値を前述の式(1),式(2)におけるIPD11〜IPD12に置き換えて上記と同様の処理を実行することにより、2軸干渉センサユニットS2が検出しているX軸方向の変位Δx2と2軸干渉センサユニットS2が検出しているZ方向の変位Δz2を求める。
更に、マイクロプロセッサ27は、2軸干渉センサユニットS3のフォトダイオードPD31〜PD32で検出されている干渉信号IPD31〜IPD32の値を前述の式(1),式(2)におけるIPD11〜IPD12に置き換えて上記と同様の処理を実行することにより、2軸干渉センサユニットS3が検出しているY軸方向の変位Δy3と2軸干渉センサユニットS3が検出しているZ方向の変位Δz3を求める(以上、ステップb2)。
次いで、誤差演算手段26の主要部を構成するマイクロプロセッサ27は、回転体であるチャック2の直径方向の1つであるX軸に沿って配備された2軸干渉センサユニットS1,S2の各々から得られたセンサ座標系第1軸方向の移動量Δx1,Δx2の平均〔(Δx1+Δx2)/2〕を求め、この値をチャック2の径方向の1軸つまりX軸の方向に生じる運動誤差Δx(変位)とする。
また、マイクロプロセッサ27は、上述の直径方向つまりX軸と直交する半径方向のY軸に沿って配備された2軸干渉センサユニットS3から得られたセンサ座標系第1軸方向の移動量Δy3をチャック2の径方向の他の1軸つまりY軸の方向に生じる運動誤差Δy(変位)とする。
そして、マイクロプロセッサ27は、3つの2軸干渉センサユニットS1,S2,S3から得られたセンサ座標系第2軸方向の移動量Δz1,Δz2,Δz3の平均〔(Δz1+Δz2+Δz3)/3〕を求め、この値をチャック2の軸方向の1軸つまりZ軸の方向に生じる運動誤差Δz(変位)とする。
また、マイクロプロセッサ27は、上述の直径方向つまりX軸に沿って配備された2軸干渉センサユニットS1,S2から得られたセンサ座標系第2軸方向の移動量Δz1,Δz2の平均〔(Δz1+Δz2)/2〕と此れに直交する半径方向のY軸に沿って配備された2軸干渉センサユニットS3から得られたセンサ座標系第2軸方向の移動量Δz3との偏差Δz’すなわち〔Δz3−(Δz1+Δz2)/2〕と、回折格子面3を形成した部分のチャック2の外周面の半径r(図1(a)参照)に基いて、チャック2の傾斜方向の1軸、つまり、X軸周りに生じる姿勢変化の運動誤差Δu(角度)を求める。運動誤差Δuを求めるための関数fは具体的にはtan−1(Δz’/r)である。
そして、更に、マイクロプロセッサ27は、直径方向の1つであるX軸に沿って配備された2軸干渉センサユニットS1,S2から得られたセンサ座標系第2軸方向の移動量Δz1,Δz2の偏差Δz”すなわち〔Δz1−Δz2〕と、回折格子面3を形成した部分のチャック2の外周面の直径2r(図1(a)参照)に基いて、チャック2の傾斜方向の他の1軸、つまり、Y軸周りに生じる姿勢変化の運動誤差Δv(角度)を求める。運動誤差Δvを求めるための関数gは具体的にはtan−1(Δz”/2r)である(以上、ステップb3)。
このようにしてSUB(A)の処理が終わり、チャック2の径方向の直交2軸X,Yの平面内で生じるラジアルモーションに関連する運動誤差Δx,Δyと、チャック2の軸方向つまりZ軸に沿って生じるアキシャルモーションに関連する運動誤差Δzと、チャック2の中心軸が傾斜する向きで2軸X,Yの回りに生じるアンギュラモーションに関連する傾斜方向の運動誤差Δu,Δvが求められると、マイクロプロセッサ27は、カウンタjの現在値に基いて、誤差演算手段26のデータ記憶手段として機能するRAM29内のデータ記憶ファイル(図9参照)のアドレスjのフィールドに、Δx,Δy,Δz,Δu,Δvの値を書き込み(図6のステップa24)、サンプリング周期計測タイマに基本的なサンプリング周期Δtの値をセットして計時を開始させ(ステップa25)、サンプリング周期計測タイマが設定時間の計時を終了するのを待機する(ステップa26)。
そして、サンプリング周期計測タイマによる計時が終了してステップa26の判定結果が真となり、SUB(A)に示されるような前回の誤差測定処理が行なわれてからの経過時間が基本的なサンプリング周期Δtに達したこと、つまり、チャック2がインクリメンタルに〔1/n〕回転だけ回転したことが確認されると、マイクロプロセッサ27はカウンタjの値を1インクリメントし(ステップa27)、カウンタjの現在値が測定分割数nに達しているか否かを判定する(ステップa28)。
カウンタjの現在値が測定分割数nに達しておらずステップa28の判定結果が真となった場合には、チャック2の1回転分に相当する回数の誤差測定が現時点では未だ完了していないことを意味するので、マイクロプロセッサ27は、前記と同様にしてステップa23〜ステップa28の処理を繰り返し実行し、SUB(A)の誤差測定処理でΔx,Δy,Δz,Δu,Δvの値を求め、更新されたカウンタjの現在値に基いて、図9のデータ記憶ファイルのアドレスjのフィールドに、Δx,Δy,Δz,Δu,Δvの値を書き込み、改めて基本的なサンプリング周期Δtが経過するまで待機する(以上、ステップa23〜ステップa28)。
よって、基本的なサンプリング周期Δtが経過してチャック2が〔1/n〕回転する度にSUB(A)に示されるような誤差測定処理が繰り返し実行され、最終的に、カウンタjの現在値が測定分割数nに達した時点でステップa28の判定結果が偽となり、チャック2の1回転分に相当する回数の誤差測定が完了する。
従って、仮に、測定分割数nの値が36に設定されているとするなら、チャック2が10°回転する度にΔx,Δy,Δz,Δu,Δvの値が測定され、これらのデータが其の都度のカウンタjの現在値に基いて図9のデータ記憶ファイルのアドレスjのフィールドに書き込まれることになる。例えば、1回転信号が出力される時のチャック2の絶対回転角度を0°と規定すれば、1回転信号の出力時点つまりチャック2の回転角度が0°の時(図10(a)参照)のΔx,Δy,Δz,Δu,Δvの値が図9のデータ記憶ファイルのアドレス0のフィールドに書き込まれ、チャック2の絶対的な回転角度が10°の時(図10(b)参照)のΔx,Δy,Δz,Δu,Δvの値が図9のデータ記憶ファイルのアドレス1のフィールドに書き込まれ、チャック2の絶対的な回転角度が20°の時のΔx,Δy,Δz,Δu,Δvの値が図9のデータ記憶ファイルのアドレス2のフィールドに書き込まれ、・・・、最終的に、チャック2の絶対的な回転角度が350°の時(図10(c)参照)のΔx,Δy,Δz,Δu,Δvの値が図9のデータ記憶ファイルのアドレス35(=n−1)のフィールドに書き込まれ、これと同一処理周期内でカウンタjの値が1インクリメントされてj=36(=n)となり、ステップa28の判定結果が偽となる。
このようにしてステップa28の判定結果が偽となり、チャック2の1回転分に相当する回数の誤差測定が完了したことが確認されると、マイクロプロセッサ27は、図9のデータ記憶ファイルのアドレス0〜アドレスn−1に記憶されているΔx,Δy,Δz,Δu,Δvのデータを全て読み出し、データ記憶ファイルのアドレスつまりチャック2の絶対的な回転角度とΔx,Δy,Δz,Δu,Δvのデータとを対応させて、誤差演算手段26のデータ表示手段として機能するディスプレイ34に可視表示する(図7のステップa17)。
データの可視表示に際しては図9に示されるようなデータ内容を其のまま数値表示することも可能であるが、この表示はチャック2の1回転毎に更新されるので、数値の変化を眼で追うことは難しく、スプライン曲線等を利用したグラフ表示とすることが望ましい。X,Y,Z,U(X軸周りの回転),V(Y軸周りの回転)の各軸を並列して絶対回転角度とΔx,Δy,Δz,Δu,Δvとの対応関係を表示してもよいし、あるいは、X,Y,Z,U,Vの軸を共通化して各軸毎のグラフの表示色を変えることで絶対回転角度とΔx,Δy,Δz,Δu,Δvとの対応関係を表示してもよい。この種のモニタ表示については既に周知である。
次いで、誤差演算手段26の主要部を構成するマイクロプロセッサ27は、データ記憶手段として機能するハードディスク30に、チャック2の1回転分に相当するn組の誤差測定データΔx,Δy,Δz,Δu,Δvを登録した図9のデータ記憶ファイルを記憶させる(ステップa18)。
ハードディスク30には図9のデータ記憶ファイルの情報をkセット分だけ保存する記憶領域が予め予約されており、常時、最近のkセット分のデータ記憶ファイルの内容が保存される。具体的には、ハードディスク30の予約済み記憶領域に図9と同等のファイル形式を有する保存用データ記憶ファイルがkセット分だけ生成されており、ステップa17の表示更新処理が終る度に、マイクロプロセッサ27が、ファイル選択指標wの値を0〜〔k−1〕の範囲でサイクリックにインクリメントし、ファイル選択指標wの現在値に相当する保存用データ記憶ファイル〔w〕に図9のデータ記憶ファイルの情報を上書きして保存することにより、w=0〜〔k−1〕のk個の保存用データ記憶ファイル〔w〕に対して図9のデータ記憶ファイルを循環的に上書きし、保存用データ記憶ファイル〔0〕,保存用データ記憶ファイル〔1〕,保存用データ記憶ファイル〔2〕,・・・,保存用データ記憶ファイル〔k−1〕に、最近のkセット分のデータ記憶ファイルの内容を保存するようになっている。
次いで、誤差演算手段26の主要部を構成するマイクロプロセッサ27は、ユーザの操作によってキーボード33から測定終了指令が入力されているか否かを判定する(ステップa19)。
そして、測定終了指令が入力されておらずステップa19の判定結果が偽となった場合には、マイクロプロセッサ27は再びステップa4の処理に復帰してカウンタjの値を0に初期化し、前記と同様にして、ステップa5,ステップa22〜ステップa28,ステップa17〜ステップa19の処理を繰り返し実行する。
そして、最終的に、ステップa19の判定結果が真となり、ユーザの操作によってキーボード33から測定終了指令が入力されたことが確認されると、マイクロプロセッサ27は、誤差演算手段26のデータ記憶手段として機能するハードディスク30からkセット分の保存用データ記憶ファイルを全て読み出し、チャック2の各絶対回転角度毎、例えば、10°毎のデータをΔx,Δy,Δz,Δu,Δv毎個別に平均し、チャック2の径方向の直交2軸X,Yの平面内で生じるラジアルモーションに関連する運動誤差であるΔx,Δyの平均値と、チャック2の軸方向つまりZ軸に沿って生じるアキシャルモーションに関連する運動誤差であるΔzの平均値と、チャック2の中心軸が傾斜する向きで2軸X,Yの回りに生じるアンギュラモーションに関連する傾斜方向の運動誤差であるΔu,Δvの平均値を求め(ステップa20)、これらの値を1回転信号出力時の回転角度を基準とするチャック2の絶対的な回転角度、例えば、0°,10°,20°,・・・,350°に対応させて、誤差演算手段26のデータ表示手段として機能するディスプレイ34に可視表示する(ステップa21)。
表示の形態に関しては前記と同様にスプライン曲線等を利用したグラフ表示が可能であるが、この場合は特に最終的な結果表示であるから、内容分析等の必要上、図9に示されるような形式でデータ内容の平均を数値表示することが望ましい。
これに対し、待機計数mと基本的なサンプリング周期Δtに関連する初期設定処理が終了した時点で行われる前述のステップa5の判定処理の結果が偽となり、待機計数mの値として0以外の整数値が選択されていることが明らかとなった場合には、チャック2が〔m+(1/n)〕回転する毎に誤差の測定を実行する必要があることを意味するので、マイクロプロセッサ27は、数値制御装置24および入出力回路32を介してNC工作機械23から1回転信号が入力されるのを待ち(ステップa6)、1回転信号が入力される度にカウンタiの値を1インクリメントし(ステップa7)、カウンタiの現在値が待機計数mに達するまで待機する(ステップa8)。この間、誤差測定処理は行なわれない。
そして、カウンタiの現在値が待機計数mに達したことがステップa8の判定処理で確認されると、マイクロプロセッサ27は、チャック2の回転回数を計数するカウンタiの値を改めて0に初期化し(ステップa9)、誤差の測定回数を計数するカウンタjの現在値に基いて、基本的なサンプリング周期Δtをj倍した値を求め(ステップa10)、この値をサンプリング周期計測タイマにセットして計時を開始させた後(ステップa11)、サンプリング周期計測タイマが設定時間の計時を終了するまで待機する(ステップa12)。
そして、サンプリング周期計測タイマによる計時が終了してステップa12の判定結果が真となると、マイクロプロセッサ27は、前記と同様にSUB(A)の処理を実行してΔx,Δy,Δz,Δu,Δvの値を求め(ステップa13)、誤差の測定回数を計数するカウンタjの現在値に基いて、図9のデータ記憶ファイルのアドレスjのフィールドに、Δx,Δy,Δz,Δu,Δvの値を書き込む(ステップa14)。
誤差測定用プログラムを開始した直後の段階ではカウンタjの初期値は0であるから(ステップa4参照)、誤差測定用プログラムを開始してから最初に実行されるステップa10の処理では〔Δt×0〕すなわち0の値がサンプリング周期計測タイマにセットされ、ステップa12の判定処理は直ちに真となるので、事実上、1回転信号の入力と同時にSUB(A)の処理が実行され、このときのカウンタjの現在値0に基いて、図9のデータ記憶ファイルのアドレス0のフィールドに、1回転信号入力時点のチャック2の回転角度すなわち絶対回転角度0°に対応したΔx,Δy,Δz,Δu,Δvの値が書き込まれることになる。
次いで、マイクロプロセッサ27は、カウンタjの値を1インクリメントし(ステップa15)、カウンタjの現在値が測定分割数nに達しているか否かを判定する(ステップa16)。
カウンタjの現在値が測定分割数nに達しておらずステップa16の判定結果が真となった場合には、チャック2の1回転分に相当する回数の誤差測定が現時点では未だ完了していないことを意味する。
従って、この場合、マイクロプロセッサ27は、ステップa6の処理に復帰した後、前記と同様にしてステップa6〜ステップa8の処理を繰り返し実行し、1回転信号が改めて待機計数mに相当する回数だけ入力されるまで待機する(以上、ステップa6〜ステップa8)。
そして、ステップa8の判定結果が偽となってカウンタiの現在値が待機計数mに達したこと、つまり、SUB(A)に示されるような前回の誤差測定処理が行なわれてからのチャック2の回転数がm回に達したことが確認されると、誤差演算手段26の主要部を構成するマイクロプロセッサ27は、改めてカウンタiの値を0に初期化し(ステップa9)、カウンタjの現在値に基いて、基本的なサンプリング周期Δtをj倍した値を求め(ステップa10)、この値をサンプリング周期計測タイマにセットして計時を開始させ(ステップa11)、サンプリング周期計測タイマが設定時間の計時を終了するのを待機する(ステップa12)。
そして、サンプリング周期計測タイマによる計時が終了してステップa12の判定結果が真となると、誤差演算手段26の主要部を構成するマイクロプロセッサ27は、前記と同様にSUB(A)の誤差測定処理を実行してΔx,Δy,Δz,Δu,Δvの値を求め(ステップa13)、カウンタjの現在値に基いて、図9のデータ記憶ファイルのアドレスjのフィールドにΔx,Δy,Δz,Δu,Δvの値を書き込む(ステップa14)。
この段階では、カウンタjの値は初期値である0から1に更新されているので(ステップa15参照)、ステップa10の処理では〔Δt×1〕すなわちΔtの値がサンプリング周期計測タイマにセットされる。従って、ステップa12の判定結果は、前述したm回目の1回転信号が確認されてから更にΔtが経過した時点、つまり、SUB(A)に示される前回の誤差測定処理が行なわれてからのチャック2の回転数が〔m+(1/n)〕回転に達した時点で真となる。そして、前記と同様にしてSUB(A)の処理が実行され、カウンタjの現在値1に基いて、図9のデータ記憶ファイルのアドレス1のフィールドに、チャック2の回転数が〔m+(1/n)〕回転に達した時点のチャック2の回転角度、すなわち、絶対回転角度10°(回転量としてはm×360°+10°)に対応したΔx,Δy,Δz,Δu,Δvの値が書き込まれることになる。
次いで、マイクロプロセッサ27は、カウンタjの値を更に1インクリメントし(ステップa15)、カウンタjの現在値が測定分割数nに達しているか否かを判定する(ステップa16)。
そして、カウンタjの現在値が測定分割数nに達しておらず、ステップa16の判定結果が真となった場合には、この時点では未だチャック2の1回転分に相当する回数の誤差測定が完了していないことを意味するので、誤差演算手段26の主要部を構成するマイクロプロセッサ27は、ステップa6の処理に復帰した後、前記と同様にしてステップa6〜ステップa16の処理を繰り返し実行する。
ステップa6〜ステップa16の処理が繰り返し実行される間、カウンタjの値は逐次1刻みでインクリメントされるので、ステップa12の待機時間も逐次Δtずつ増大し、その都度のm回目の1回転信号が検出されてからSUB(A)に示される誤差測定処理が行なわれるまでの待機時間は0,Δt,2Δt,・・・,(n−1)Δtと順に増大し、これに応じて1回転信号検出時点の絶対回転角度0°を基準とするチャック2の回転量も〔0/n〕=0回転,〔1/n〕回転(例えば10°),〔2/n〕回転(例えば20°),〔3/n〕回転(例えば30°),・・・,〔(n−1)/n〕回転(例えば350°)と増大する。
この結果、チャック2が〔m+(1/n)〕回転する毎にΔx,Δy,Δz,Δu,Δvの値が測定され、これらのデータが其の都度のカウンタjの現在値に基いて図9のデータ記憶ファイルのアドレスjのフィールドに書き込まれることになる。例えば、1回転信号が出力される時のチャック2の絶対回転角度を0°としてn=36と規定すれば、チャック2の絶対回転角度が0°で例えばチャック2の通算回転角度が0°の時(図10(a)参照)のΔx,Δy,Δz,Δu,Δvの値が図9のデータ記憶ファイルのアドレス0のフィールドに書き込まれ、チャック2の絶対回転角度が10°で例えばチャック2の通算回転角度が〔360×m+10〕°の時(図10(b)参照)のΔx,Δy,Δz,Δu,Δvの値が図9のデータ記憶ファイルのアドレス1のフィールドに書き込まれ、チャック2の絶対回転角度が20°で例えばチャック2の通算回転角度が〔360×2・m+2・10〕°の時のΔx,Δy,Δz,Δu,Δvの値が図9のデータ記憶ファイルのアドレス2のフィールドに書き込まれ、・・・、チャック2の絶対回転角度が340°で例えばチャック2の通算回転角度が〔360×(n−2)・m+(n−2)・10〕°の時のΔx,Δy,Δz,Δu,Δvの値が図9のデータ記憶ファイルのアドレス34(=n−2)のフィールドに書き込まれ、最終的に、チャック2の絶対回転角度が350°で例えばチャック2の通算回転角度が〔360×(n−1)・m+(n−1)・10〕°の時(図10(c)参照)のΔx,Δy,Δz,Δu,Δvの値が図9のデータ記憶ファイルのアドレス35(=n−1)のフィールドに書き込まれ、これと同一処理周期内でカウンタjの値が1インクリメントされてj=36(=n)となり、ステップa16の判定結果が偽となる。
なお、チャック2の絶対回転角度が350°のときのチャック2の通算回転角度〔360×(n−1)・m+(n−1)・10〕°からチャック2の絶対回転角度が340°のときのチャック2の通算回転角度が〔360×(n−2)・m+(n−2)・10〕°を減算して得られる値〔360・m+10〕°から明らかなように、実際にSUB(A)に示される誤差測定処理が行なわれる周期はチャック2が〔m+(1/n)〕回転する周期と同じである。
従って、SUB(A)に示される誤差測定処理、特に、Δx1,Δz1,Δx2,Δz2,Δy3,Δz3を求めるために必要とされる比較的複雑なステップb2の処理にチャック2の〔1/n〕回転所要時間以上の時間を要するような場合、つまり、測定やデータの書き込みに必要とされる処理の所要時間が長い場合、あるいは、チャック2の回転速度が相当に速い場合であっても、誤差演算手段26の主要部を構成するマイクロプロセッサ27は、無理なく演算処理を行なって、各回転角度毎たとえば10°毎に、5軸方向の運動誤差Δx,Δy,Δz,Δu,Δvを確実に測定することができる。
また、2軸干渉センサユニットS1,S2,S3のフォトダイオードPD11〜PD12,PD21〜PD22,PD31〜PD32で検出されている干渉信号の読み込みに関わるステップb1の処理は、干渉信号の値をRAM29の記憶領域に一時的にラッチするだけの単純な処理であり、ステップb2の測定処理のように処理時間を要するものではないので、この処理によって遅れが生じる心配はない。
このようにしてステップa16の判定結果が偽となり、チャック2の1回転分に相当する回数の誤差測定が完了したことが確認されると、マイクロプロセッサ27は、図9のデータ記憶ファイルのアドレス0〜アドレスn−1に記憶されているΔx,Δy,Δz,Δu,Δvのデータを全て読み出し、データ記憶ファイルのアドレスつまりチャック2の絶対的な回転角度とΔx,Δy,Δz,Δu,Δvのデータとを対応させて、誤差演算手段26のデータ表示手段として機能するディスプレイ34に可視表示する(ステップa17)。
データの可視表示に際しては図9に示されるようなデータ内容を其のまま数値表示することも可能であるが、この表示はチャック2のm回転毎に更新されるので、数値の変化を眼で追うことは難しく、スプライン曲線等を利用したグラフ表示とすることが望ましい。X,Y,Z,U,Vの各軸を並列して絶対回転角度とΔx,Δy,Δz,Δu,Δvとの対応関係を表示してもよいし、あるいは、X,Y,Z,U,Vの軸を共通化して各軸毎のグラフの表示色を変えることで絶対回転角度とΔx,Δy,Δz,Δu,Δvとの対応関係を表示してもよい。
次いで、誤差演算手段26の主要部を構成するマイクロプロセッサ27は、データ記憶手段として機能するハードディスク30に、チャック2の1回転分に相当するn組の誤差測定データΔx,Δy,Δz,Δu,Δvを登録した図9のデータ記憶ファイルを記憶させ(ステップa18)、ユーザの操作によってキーボード33から測定終了指令が入力されているか否かを判定する(ステップa19)。
そして、測定終了指令が入力されておらずステップa19の判定結果が偽となった場合には、マイクロプロセッサ27は再びステップa4の処理に復帰してカウンタjの値を0に初期化し、前記と同様にして、ステップa5〜ステップa19の処理を繰り返し実行する。
そして、最終的に、ステップa19の判定結果が真となり、ユーザの操作によってキーボード33から測定終了指令が入力されたことが確認されると、マイクロプロセッサ27は、誤差演算手段26のデータ記憶手段として機能するハードディスク30からkセット分の保存用データ記憶ファイルを全て読み出し、チャック2の各絶対回転角度毎、例えば、10°毎のデータをΔx,Δy,Δz,Δu,Δv毎個別に平均し、チャック2の径方向の直交2軸X,Yの平面内で生じるラジアルモーションに関連する運動誤差であるΔx,Δyの平均値と、チャック2の軸方向つまりZ軸に沿って生じるアキシャルモーションに関連する運動誤差であるΔzの平均値と、チャック2の中心軸が傾斜する向きで2軸X,Yの回りに生じるアンギュラモーションに関連する傾斜方向の運動誤差であるΔu,Δvの平均値を求め(ステップa20)、これらの値を1回転信号出力時の回転角度を基準とするチャック2の絶対的な回転角度、例えば、0°,10°,20°,・・・,350°に対応させて、誤差演算手段26のデータ表示手段として機能するディスプレイ34に可視表示する(ステップa21)。
表示の形態に関しては前記と同様にスプライン曲線等を利用したグラフ表示も可能であるが、この場合は特に最終的な結果表示であるから、内容分析等の必要上、図9に示されるような形式でデータ内容の平均を数値表示することが望ましい。
以上の実施形態では、2つの2軸干渉センサユニットS1,S2のセンサ座標系第1軸をチャック2の径方向の1軸(X軸)に沿わせ、同時に、他の1つの2軸干渉センサユニットS3のセンサ座標系第1軸を他の1軸(Y軸)に沿わせるかたちで配置することにより、座標変換等の処理を行なうことなく、チャック2の径方向の直交2軸(X,Y)におけるラジアルモーションの運動誤差Δx,Δyやチャック2の軸の傾斜方向の2軸(U,V)におけるアンギュラモーションの運動誤差Δu,Δvを求め、演算処理の所要時間を短縮するようにしているが、本質的には、2軸干渉センサユニットS1,S2,S3は相互に重合しないようにしてチャック2の周方向の相異なる3つの位置に固定配備されていれば、その取り付け位置は問わない。
例えば、2つの2軸干渉センサユニットS1,S2のセンサ座標系第1軸がX軸に対して或る角度で交差し、2軸干渉センサユニットS3のセンサ座標系第1軸がY軸に対して或る角度で交差しているとしても、2軸干渉センサユニットS1,S2,S3のセンサ座標系第1軸方向の移動量に対して行列式を乗じる等の座標変換処理を行なうようにすれば、これらの2軸干渉センサユニットS1〜S3のセンサ座標系第1軸の出力をX軸方向の変位やY軸方向の変位に変換したりすることが可能である。
また、精度は落ちるが、図8に示されるステップb3の処理でチャック2の直径方向の1つであるX軸に沿って配備された2つのX−Zセンサである2軸干渉センサユニットS1,S2の各々から得られたセンサ座標系第1軸方向の移動量Δx1,Δx2の平均〔(Δx1+Δx2)/2〕を運動誤差Δxとして求める代わりに、直径方向に沿って配備された2つの2軸干渉センサユニットS1,S2のうちの何れか一方のセンサ座標系第1軸方向の移動量Δx1、もしくは、Δx2を直ちにX軸方向の運動誤差Δxとすることも可能である。
更に、図8に示されるステップb3の処理で3つの2軸干渉センサユニットS1,S2,S3から出力されるセンサ座標系第2軸方向の各移動量Δz1,Δz2,Δz3の平均をアキシャルモーションに関連する運動誤差Δzとして求める代わりに、何れか2つの2軸干渉センサユニットから出力されるセンサ座標系第2軸方向の各移動量の平均、あるいは、何れか1つの2軸干渉センサユニットから出力されるセンサ座標系第2軸方向の移動量そのものをアキシャルモーションの運動誤差Δzとすることも可能である。但し、そのようにした場合は、チャック2にアンギュラ方向の姿勢変化(Δu,Δv)が生じている場合にアキシャルモーションの運動誤差Δzの値が不正確となる。
また、図8に示されるステップb3の処理で2軸干渉センサユニットS1,S2から得られたセンサ座標系第2軸方向の移動量Δz1,Δz2の平均〔(Δz1+Δz2)/2〕を求めずに、X軸に沿って配備された2つの2軸干渉センサユニットS1,S2のうちの何れか一方のセンサ座標系第2軸方向の移動量Δz1もしくはΔz2とY軸に沿って配備された2軸干渉センサユニットS3から出力されるセンサ座標系第2軸方向の移動量との偏差つまり〔Δz3−Δz1〕もしくは〔Δz3−Δz2〕に基いて、チャック2の軸が傾斜する向きでX軸の周りに生じるアンギュラモーションに関連する運動誤差である姿勢変化Δuを求めることも可能である。但し、そのようにした場合は、チャック2にアンギュラ方向の姿勢変化Δvが生じている場合に運動誤差Δuの値が不正確となる。
図4では数値制御装置24と独立したパーソナルコンピュータ等によって5自由度誤差測定装置1の誤差演算手段26を構成しているが、図5〜図8に示されるような誤差測定用プログラムをマルチタスク処理で構成し、数値制御装置24における他のマルチタスク処理、たとえば、NCプログラムの1ブロックの読み込み,実行データの作成に関わる前処理,各軸のサーボモータの制御のためのパルス分配処理等と実質的に並列的に実行するようにすれば、独立したパーソナルコンピュータ等からなる誤差演算手段26は不要である。
そうした場合には、数値制御装置24のマイクロプロセッサそれ自体が5自由度誤差測定装置1の誤差演算手段26として機能することになる。
何れの場合も、チャック2等の回転体を実際に使用する場合と同じ条件下、例えば、エンドミルや回転砥石あるいはドリルビット等を装着して加工プログラムを実行する場合と同じ条件下で5軸方向の運動誤差Δx,Δy,Δz,Δu,Δvを測定することができるので、アップカットやダウンカットといった切削様式の相違あるいは1回の切り込み量の大小といった様々な加工条件を反映させてラジアルモーション,アキシャルモーション,アンギュラモーションの各誤差を測定できるメリットがある。
また、リアルタイムで得られる運動誤差Δx,Δy,Δz,Δu,Δvの測定値を利用して数値制御装置24で切り込み量や工具経路等を補正制御するようにすれば、より精密な加工を実現することも可能である。
無論、チャック2等の回転体を回転させる回転駆動手段としてNC工作機械23の主軸モータを利用する代わりに、専用のステッピングモータ等を利用した試験装置でチャック2等の回転体を回転させるようにし、この試験装置に5自由度誤差測定装置1の本体部25すなわち2軸干渉センサユニットS1,S2,S3を取り付けて、運動誤差Δx,Δy,Δz,Δu,Δvを測定するようにしてもよい。
この場合、実際に加工を行うわけではないからチャック2等の回転体の回転速度は任意の設定速度とすることができ、また、例えば〔1/n〕毎に回転体の回転を完全に停止させて誤差測定処理を行なうこともできるので、測定精度は更に向上する。
何れの場合も、他の参照試料(例えば、円柱や球体)を用いて誤差測定を行う必要はなく、非接触式の2軸干渉センサユニットS1,S2,S3からの干渉信号を其のまま利用して演算処理を行なうことによって運動誤差Δx,Δy,Δz,Δu,Δvを求めることができるので、参照試料の真円度や真球度の誤差を分離するための後処理の煩わしさはなく、また、参照試料の介在によって測定誤差が増大するといった心配もない。
1 5自由度誤差測定装置
2 チャック(回転体)
3 回折格子面
4 レーザーダイオード
5〜8 反射鏡
9〜10 ビームスプリッタ
11〜16 1/4波長板
17 1/2波長板
18 固定ミラー
19〜20 1/2波長板
21〜22 ビームスプリッタ
23 NC工作機械(回転駆動手段)
24 数値制御装置
25 5自由度誤差測定装置の本体部
26 誤差演算手段(パーソナルコンピュータ等)
27 マイクロプロセッサ
28 ROM
29 RAM(データ記憶手段)
30 ハードディスク(データ記憶手段)
31 インターフェイス
32 入出力回路
33 キーボード
34 ディスプレイ(データ表示手段)
A,A1,A2 レーザ光
B 0次光
B1 +1次光
B2 −1次光
r 回折格子面を形成した部分のチャックの外周面の半径
2r 回折格子面を形成した部分のチャックの外周面の直径
CL 回転体の回転中心
PD11〜PD12 フォトダイオード
PD11’〜PD12’ フォトダイオード
S1 2軸干渉センサユニット
S2 2軸干渉センサユニット
S3 2軸干渉センサユニット

Claims (4)

  1. 軸受に取り付けられた回転体もしくは軸受あるいは其の一部を構成する回転体の回転に伴って前記回転体の径方向の2軸と軸方向の1軸および傾斜方向の2軸に生じる運動誤差を計測するための5自由度誤差測定装置であって、
    前記回転体の外周面に、該回転体の回転軸の方向に一定の間隔を置いて設けられた複数の周溝から形成される回折格子面を備えると共に、
    前記回転体の径方向に相当するセンサ座標系第1軸と前記周溝の並び方向に相当するセンサ座標系第2軸に沿った回折格子面の相対移動変位を検出する2軸干渉センサユニットを、前記外周面から前記回転体の径方向外側に間隙をおいて、かつ、前記回転体の径方向において相互に重合しないようにして前記回転体の周方向の相異なる少なくとも3つの位置に固定配備し、
    前記回転体の直径方向に沿って同時に位置しない少なくとも2つの前記2軸干渉センサユニットから出力されるセンサ座標系第1軸の干渉信号の各々から得られる各移動量に基いて前記回転体の径方向の2軸に生じる運動誤差を求めると共に、少なくとも3つの前記2軸干渉センサユニットから出力されるセンサ座標系第2軸の干渉信号の各々から得られる各移動量の少なくとも1つに基いて前記回転体の軸方向の1軸に生じる運動誤差を求め、かつ、少なくとも3つの前記2軸干渉センサユニットから出力されるセンサ座標系第2軸の干渉信号の各々から得られる各移動量の少なくとも2つずつの組み合わせに基いて前記回転体の傾斜方向の2軸に生じる運動誤差を求める誤差演算手段を備えたことを特徴とする5自由度誤差測定装置。
  2. 前記3つの2軸干渉センサユニットのうちの2つを前記回転体の直径方向に沿って配備すると共に他の1つを該直径方向に対して直交する半径上に配備し、
    前記誤差演算手段は、
    直径方向に沿って配備された前記2つの2軸干渉センサユニットから出力されるセンサ座標系第1軸の干渉信号の各々から得られる各移動量の平均を前記回転体の径方向の1軸に生じる運動誤差とし、かつ、半径上に配備された前記1つの2軸干渉センサユニットから出力されるセンサ座標系第1軸の干渉信号から得られる移動量を前記回転体の径方向の他の1軸に生じる運動誤差とすると共に、
    3つの前記2軸干渉センサユニットから出力されるセンサ座標系第2軸の干渉信号の各々から得られる各移動量の平均を前記回転体の軸方向の1軸に生じる運動誤差とし、
    直径方向に沿って配備された前記2つの2軸干渉センサユニットから出力されるセンサ座標系第2軸の干渉信号の各々から得られる各移動量の平均と半径上に配備された前記1つの2軸干渉センサユニットから出力されるセンサ座標系第2軸の干渉信号から得られる移動量との偏差に基いて前記回転体の傾斜方向の1軸に生じる運動誤差を求め、かつ、直径方向に沿って配備された前記2つの2軸干渉センサユニットから出力されるセンサ座標系第2軸の干渉信号の各々から得られる各移動量の偏差に基いて前記回転体の傾斜方向の他の1軸に生じる運動誤差を求めるように構成されていることを特徴とする請求項1記載の5自由度誤差測定装置。
  3. 前記回転体を回転させる回転駆動手段を有し、前記誤差演算手段は、前記回転体が〔1/n〕回転する毎に前記回転体の径方向の2軸と軸方向の1軸および傾斜方向の2軸に生じる運動誤差を求めて前記回転体の絶対的な回転角度に対応させて記憶するデータ記憶手段と、該データ記憶手段から読み出されたデータを可視表示するデータ表示手段を備えていることを特徴とする請求項1または請求項2のうち何れか一項に記載の5自由度誤差測定装置。
  4. 前記回転体を回転させる回転駆動手段を更に備え、前記誤差演算手段は、前記回転体が〔m+(1/n)〕回転する毎に前記回転体の径方向の2軸と軸方向の1軸および傾斜方向の2軸に生じる運動誤差を求めて前記回転体の絶対的な回転角度に対応させて記憶するデータ記憶手段と、該データ記憶手段から読み出されたデータを可視表示するデータ表示手段を備えていることを特徴とする請求項1または請求項2のうち何れか一項に記載の5自由度誤差測定装置。
JP2009074027A 2009-03-25 2009-03-25 5自由度誤差測定装置 Active JP5275867B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009074027A JP5275867B2 (ja) 2009-03-25 2009-03-25 5自由度誤差測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009074027A JP5275867B2 (ja) 2009-03-25 2009-03-25 5自由度誤差測定装置

Publications (2)

Publication Number Publication Date
JP2010223887A JP2010223887A (ja) 2010-10-07
JP5275867B2 true JP5275867B2 (ja) 2013-08-28

Family

ID=43041216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009074027A Active JP5275867B2 (ja) 2009-03-25 2009-03-25 5自由度誤差測定装置

Country Status (1)

Country Link
JP (1) JP5275867B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101210911B1 (ko) 2010-12-08 2012-12-12 광주과학기술원 이송장치의 운동 오차 측정 기능을 겸비한 5자유도 운동 측정 장치
CN102411379B (zh) * 2011-09-05 2014-06-25 广东顺德三扬科技有限公司 一种精确控制拉链长度的装置和控制方法
CN109141225B (zh) * 2017-06-19 2020-11-13 河南科技大学 基于圆光栅的轴系五、六自由度误差测量方法及测量***
CN112444197B (zh) * 2019-08-28 2022-06-14 Ykk株式会社 拉头检查装置
CN111457837B (zh) * 2020-04-15 2021-11-16 大连理工高邮研究院有限公司 一种圆光栅及电涡流传感器实时测量转台五自由度运动误差的测量装置
CN112536644B (zh) * 2020-11-11 2022-04-12 湖北文理学院 机床加工测试件建立运动误差模型的方法

Also Published As

Publication number Publication date
JP2010223887A (ja) 2010-10-07

Similar Documents

Publication Publication Date Title
JP5275866B2 (ja) 5自由度誤差測定装置
US8494800B2 (en) Method and program for identifying mechanical errors
JP5275867B2 (ja) 5自由度誤差測定装置
US8680806B2 (en) Numerically controlled machine tool and numerical control device
Weikert R-test, a new device for accuracy measurements on five axis machine tools
Jywe et al. Non-bar, an optical calibration system for five-axis CNC machine tools
JP4612086B2 (ja) ワークの計測基準点設定機能を有する工作機械
JP2016155185A (ja) 工作機械の誤差同定方法
WO2002032620A1 (fr) Dispositif et procede de mesure, machine-outil dotee dudit dispositif, et procede de traitement de piece
Lei et al. Error measurement of five-axis CNC machines with 3D probe–ball
US9506745B2 (en) Error measurement method and machine tool
CN112008496A (zh) 机床对象物的位置计测方法及位置计测***
JP5355037B2 (ja) 精度測定方法及び数値制御工作機械の誤差補正方法並びに誤差補正機能を有した数値制御工作機械
KR20190053115A (ko) 나사산의 게이지리스 측정 방법 및 시스템
Kwaśny et al. Survey of machine tool error measuring methods
US9829349B2 (en) Method of compensating command value for rotation angle
Ni et al. Geometric Error Measurement and Identification for Rotational Axes of a Five-Axis CNC Machine Tool.
WO2016034855A1 (en) Coordinate measuring method and apparatus for inspecting workpieces, comprising generating measurement correction values using a reference shape that is known not to deviate substantially from a perfect form
Fang et al. Simultaneous calibration of probe parameters and location errors of rotary axes on multi-axis CNC machines by using a sphere
JP7321067B2 (ja) 工作機械の反転誤差計測方法
JP4950443B2 (ja) キャリブレーションゲージ
IBARAKI et al. 3240 Construction of an error map of rotary axes by static R-test
JP6403298B1 (ja) Nc加工装置及び加工部品の製造方法
Chen et al. Geometric Error Measurement of Rotary Axes on Five-Axis Machine Tools: A Review
CN113711143A (zh) 数控装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130516

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5275867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250