JP5267174B2 - 光造形装置及び造形ベース - Google Patents

光造形装置及び造形ベース Download PDF

Info

Publication number
JP5267174B2
JP5267174B2 JP2009023104A JP2009023104A JP5267174B2 JP 5267174 B2 JP5267174 B2 JP 5267174B2 JP 2009023104 A JP2009023104 A JP 2009023104A JP 2009023104 A JP2009023104 A JP 2009023104A JP 5267174 B2 JP5267174 B2 JP 5267174B2
Authority
JP
Japan
Prior art keywords
modeling
light
photocurable resin
optical system
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009023104A
Other languages
English (en)
Other versions
JP2010179496A (ja
Inventor
裕之 安河内
信宏 木原
淳一 葛迫
雅人 中倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2009023104A priority Critical patent/JP5267174B2/ja
Priority to CN2010101042747A priority patent/CN101791858B/zh
Priority to EP10000727.7A priority patent/EP2213443B1/en
Priority to US12/693,617 priority patent/US8113813B2/en
Publication of JP2010179496A publication Critical patent/JP2010179496A/ja
Application granted granted Critical
Publication of JP5267174B2 publication Critical patent/JP5267174B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

本発明は、光硬化性樹脂に光を照射することで硬化層を形成し、この硬化層を積層して所望の形状の立体造形物を形成する光造形装置、及びこの光造形装置に用いられる、立体造形物を支持する造形ベースに関する。
従来から3次元CAD(Computer Aided Design)データを用いて、所望の形状の造形物を形成する光造形装置が広く知られている。
光造形装置に用いられる光造形法として、一般的に、自由液面法と、規制液面法とが知られている。
下記特許文献1には、自由液面法を用いた光造形装置が開示されている。この光造形装置では、樹脂容器内に光硬化性樹脂が注入され、光硬化性樹脂の液面下近傍にテーブル(造形ベース)が配置される。このテーブル上の、未硬化樹脂の液面(自由液面)の上方から光が照射され、テーブル上に1層目の硬化層が形成される。次に、テーブルが下降され、再び未硬化樹脂の液面の上方から光が照射されて、1層目の硬化層上に、2層目の硬化層が形成される。この動作を繰り返すことで、立体モデル(立体造形物)がテーブル上に形成される。
自由液面法が用いられる場合、光硬化性樹脂の液面が開放されているので、例えば、テーブルが下降されたときに、液面が乱れてしまう。これにより、高精度の立体造形物を形成することが困難であるという問題がある。このため、特許文献1に記載の光造形装置では、スキージが液面上で移動され、光硬化性樹脂の液面が均一化される。
上記のように、自由液面法では、液面の乱れが問題となる。そこで、光硬化性樹脂の液面を規制する、規制液面法が用いられる場合がある。
下記特許文献2には、規制液面法を用いた光造形装置が開示されている。この光造形装置では、底面にガラス板などの透過部材を有する樹脂容器に光硬化性樹脂が注入され、光透過部材の近傍にステージ(造形ベース)が配置される。光硬化性樹脂を硬化させるための光は、透過部材の下方から照射される。この光により、透過部材と、ステージとの間の未硬化樹脂が硬化され1層目の硬化層が形成される。1層目の硬化層が形成されると、ステージが上昇され、2層目の硬化層が形成される。この動作を繰り返すことで、3次元立体物(立体造形物)が形成される。
特開2007−90619号公報(段落[0004]〜[0006]、図4、図5) 特開2000−043150号公報(段落[0007]、図12)
しかしながら、規制液面法が用いられる場合、光により光硬化性樹脂が硬化されて形成された硬化層が、ガラス板などの透過部材に粘着しまうといった問題がある。これにより、造形ベースが上昇されるときに、透過部材と、硬化層との境界面において、硬化層(立体造形物)に破損が生じてしまい、高精度な立体造形物を形成することができない、といった問題が生じる。
以上のような事情に鑑み、本発明の目的は、高精度な立体造形物を形成可能な光造形装置及びこの光造形装置に用いられる造形ベースを提供することにある。
上記目的を達成するため、本発明の一形態に係る光造形装置は、光透過部材と、造形ベースと、移動機構とを具備する。
前記光透過部材は、規制面を有し、前記光硬化性樹脂を硬化させるための光を透過させる。
前記規制面は、光硬化性樹脂の液面を規制する。
前記造形ベースは、支持面と、第1の端部と、第2の端部とを有する。
前記支持面は、前記規制面に対向し、前記光により硬化された前記光硬化性樹脂が段階的に積層されて形成される立体造形物を支持する。
前記第2の端部は、前記第1の端部とは反対側の端部である。
前記移動機構は、前記第1の端部側から前記第2の端部側にかけて、徐々に前記支持面が前記規制面から離れるように、前記造形ベースを前記光透過部材から離れる方向に移動させる。
本発明では、造形ベースが光透過部材から離れる方向に移動される際に、支持面が第1の端部側から第2の端部側にかけて、徐々に前記規制面から離れる。この場合、規制面及び硬化層(立体造形物)の境界面において、硬化層には、規制面に対して斜め方向に力が加わることになる。これにより、規制面に粘着した硬化層を規制面からスムーズに剥離することができる。その結果、硬化層の破損を防止することができ、高精度な立体造形物を形成することができる。
上記光造形装置において、前記造形ベースは、第1の部材と、第2の部材と、弾性体とを有していてもよい。
前記第1の部材は、前記移動機構に連結される。
前記第2の部材は、前記支持面を有し、前記第1の端部側で、前記第1の部材に回動可能に連結される。
前記弾性体は、前記第2の端部側で、前記第1の部材及び前記第2の部材を連結する。
本発明では、支持面を有する第2の部材が、移動機構に連結された第1の部材に対して、第1の端部側で回動可能に連結され、第2の端部側で弾性体を介して連結される。これにより、造形ベースが光透過部材から離れる方向に移動される際に、支持面が第1の端部側から第2の端部側にかけて、徐々に前記規制面から離れる。これにより、規制面に粘着した硬化層を規制面からスムーズに剥離することができる。
また、規制面から硬化層が剥離された場合には、弾性体の収縮により第1の部材と第2の部材とを引き付けることができる。これにより、光硬化性樹脂が硬化される際には、規制面に対して、支持面を例えば平行な状態に保つことができる。
上記光造形装置において、前記弾性体は、前記光硬化性樹脂が硬化するときの収縮により、前記支持面が前記規制面側に引き付けられる力よりも強い力で、前記第1の部材及び前記2の部材を引き付けてもよい。
本発明では、光硬化性樹脂が硬化するときの収縮により、支持面が規制面側に引き付けられてしまうことを防止することができる。これにより、さらに高精度な立体造形物を形成することができる。
上記光造形装置は、前記第1の部材及び前記第2の部材とが引き付けられた状態で、前記第1の部材及び第2の部材を固定するロック機構をさらに具備していてもよい。
本発明では、光硬化性樹脂が硬化するときの収縮により、支持面が規制面側に引き付けられてしまうことを防止することができる。これにより、さらに高精度な立体造形物を形成することができる。
上記光造形装置において、前記造形ベースは、支持面上に薄膜状に形成された樹脂層をさらに有していてもよい。
これにより、硬化層(立体造形物)が支持面側から剥離してしまうことを防止することができる。
本発明の一形態に係る造形ベースは、第1の部材と、第2の部材と、弾性体とを具備する。
前記第1の部材は、第1の端部と、前記第1の端部とは反対側の第2の端部とを有する。
第2の部材は、支持面を有し、前記第1の端部側で、前記第1の部材に回動可能に連結される。
前記支持面は、光により硬化された光硬化性樹脂が段階的に積層されて形成される立体造形物を支持する。
前記弾性体は、前記第2の端部側で、前記第1の部材及び前記第2の部材を連結する。
以上のように、本発明によれば、高精度な立体造形物を形成可能な光造形装置及びこの光造形装置に用いられる造形ベースを提供することができる。
本発明の一実施形態に係る光造形装置の全体構成を示す模式図である。 光造形装置が備える造形ベースを示す拡大図である。 光学系の構成を示す図である。 対物レンズの機能を説明するための模式図である。 両側テレセントリック結像光学系を説明するための模式図である。 光学系によりn層目の硬化層が形成される場合の動作について説明するための図であり、ワーク全体領域Wall及び目標全体領域fall(n層目の硬化層)を示す平面図である。 ワーク小領域W32及び目標小領域f32を示す拡大図である。 造形ベースが上方に移動されるときの動作を説明するための図である。 他の実施の形態に係る光造形装置が有する造形ベースを示す拡大図である。 造形ベースが上方に移動されるときの動作について説明するための図である。
以下、本発明の実施の形態を図面に基づき説明する。
<第1実施形態>
[光造形装置の全体構成、及び造形ベースの構成]
図1は、本発明の第1実施形態に係る光造形装置の全体構成を示す模式図である。図2は、光造形装置が備える造形ベースを示す拡大図である。なお、本明細書中で説明する、各図では、図面を分かりやすく表示するため、光造形装置や、光造形装置が有する各部材等の大きさを実際の寸法とは異なって表示する場合がある。
これらの図に示すように、光造形装置100は、液状の光硬化性樹脂1を収容する容器10と、容器10内の液状の光硬化性樹脂1に浸漬され、立体造形物2を支持する造形ベース20とを備えている。また、光造形装置100は、造形ベース20を容器10内で移動させる移動機構30と、光硬化性樹脂1を硬化させるための光を光硬化性樹脂1に照射する光学系40とを備えている。
容器10は、底面部に、光学系40から照射される光を透過させる光透過板11を有している。光透過板11は、光透過板11の上面11aにおいて、光硬化性樹脂1の液面(光学系40からの光が照射される液面)を規制している。本明細書中では、光透過板11の上面11aを規制面11aと呼ぶ。
光透過板11は、例えば、ガラスや光透過性樹脂などにより構成されるが、光学系40からの光を透過することができる材料であれば、何が用いられても構わない。
容器10内に収容される光硬化性樹脂1としては、例えば、エポキシ系、ウレタン系などの紫外線硬化性樹脂が用いられる。しかし、光硬化性樹脂1は、可視光硬化性樹脂であってもよく、光硬化性樹脂1の材料は、特に限定されない。
造形ベース20は、基準プレート21(第1の部材)と、基準プレート21の下方に配置され、基準プレート21に支持される造形プレート22(第2の部材)とを備えている。また、造形ベース20は、造形ベース20の第1の端部20A側(図1、2中、右側)で、基準プレート21及び造形プレート22を回動可能に支持するヒンジ部材23を備えている。さらに、造形ベース20は、造形ベース20の第2の端部20B側(図1、2中、左側)で、基準プレート21及び造形プレート22を連結するバネ部材24を備えている。
基準プレート21は、第1の端部20A側にヒンジ部材23が設けられ、第2の端部20B側にバネ部材24を支持するバネ支持部25を有している。基準プレート21は、基準プレート21の上部において、移動機構30のアーム部32と連結されている。これにより、造形ベース20は、移動機構30により容器10内を移動可能とされる。
造形プレート22は、第1の端部20A側の一部が略直角に折れ曲がった形状とされており、この折れ曲がった部分にヒンジ部材23が設けられる。また、造形プレート22は、第2の端部20B側にバネ部材24の支持するバネ支持部26を有している。
造形プレート22の底面22aは、光学系40から照射される光により硬化された光硬化性樹脂(硬化層)が段階的に積層されて形成される立体造形物2を支持する支持面22aとして機能する。
基準プレート21及び造形プレート22は、例えば、金属や樹脂などにより構成されが、材料は特に限定されない。
バネ部材24は、一端部が基準プレート21のバネ支持部25に連結され、他端部が造形プレート22のバネ支持部26に連結される。バネ部材24は、基準プレート21及び造形プレート22を所定の力で引き付けている。バネ部材24が基準プレート21及び造形プレート22を引き付ける力は、規制面11a上の光硬化性樹脂1が硬化されるときに光硬化性樹脂1が収縮する力よりも強く設定されている。
光硬化性樹脂1に光学径40からの光が照射されて硬化層が形成されるとき、光硬化性樹脂1が収縮し、造形プレート22が下方(規制面11a側)に引き付けられてしまう。そこで、バネ部材24が基準プレート及び造形プレート22を引き付ける力は、光硬化性樹脂1が収縮するときの力よりも大きく設定される。これにより、光硬化性樹脂1が収縮し、造形プレート22が下方へ移動してしまうことを防止することができるので、高精度な立体造形物2の形成が実現される。
なお、バネ部材24の代わりにゴムなどの他の弾性体が用いられても構わない。
移動機構30は、移動機構本体31と、移動機構本体31に設けられ、基準プレート21の上部と連結されるアーム部32とを有する。移動機構本体31は、アーム部32を介して、造形ベース20を容器10内で、垂直方向(z軸方向)、及び水平方向(x軸方向及びy軸方向)に移動させる。なお、移動機構30による造形ベース20の移動は、例えば図示しないCPU(Central Processing Unit)などの制御部により制御される。
光学系40は、光透過板11を介して、規制面11a上の液状の光硬化性樹脂1に光を下方から照射し、光硬化性樹脂1を硬化させる。
[光学系の構成]
図3は、光学系40の構成を示す図である。
図3に示すように、光学系40は、規制面11a上の光硬化性樹脂1に光を走査するビームスキャン光学系50と、光硬化性樹脂1の一定領域毎に一括して光を照射する一括露光光学系70とを備えている。また、光学系40は、ビームスキャン光学系50の光路と、一括露光光学系70の光路とを合成するためのビームスプリッタ81とを備えている。
まず、ビームスキャン光学系50について説明する。
ビームスキャン光学系50は、第1の光源51と、走査部52と、コリメータレンズ53と、アナモルフィックレンズ54と、ビームエキスパンダ55と、ビームスプリッタ56と、反射光検出部57と、シャッタ58とを含む。
第1の光源51は、例えば、青〜紫外域程度の比較的波長の短いレーザ光を放射する半導体レーザが用いられる。第1の光源51は、半導体レーザに限られず、ガスレーザが用いられてもよい。
コリメータレンズ53は、第1の光源51から放射された光ビームの発散角を変換して略平行光とする。アナモルフィックレンズ54は、コリメータレンズ53から出射された略楕円形状の光ビームを整形して略円形状とする。ビームエキスパンダ55は、アナモルフィックレンズ54から出射された光ビームのビーム径を後述する対物レンズ82の開口、NA(開口数)等に適した所望のビーム径に変換する。
シャッタ58は、光硬化性樹脂1に照射される光ビームの通過、遮蔽を制御する。すなわち、シャッタ58は、ビームスキャン光学系50による描画の、オン、オフを制御する。
ビームスプリッタ56は、第1の光源51から放射された光ビームを透過させるとともに、光硬化性樹脂1で反射された反射光を反射光検出部57へと導く。
反射光検出部57は、光硬化性樹脂1に反射され、各光学部品を経由してビームスプリッタ56で反射された反射光を検出する。光造形装置100は、反射光を反射光検出部57で検出することによりフォーカス補正を実行することが可能とされている。反射光検出部57によりフォーカス補正用の信号を検出する方法として、例えば、非点収差法、三角測量法などを用いた方法が挙げられる。
また、光造形装置100は、上述の反射光検出部57により、光ビームが走査されている位置の光硬化性樹脂1が未硬化部、又は硬化部のいずれかであるかを検出することが可能とされている。光硬化性樹脂1は、硬化すると反射率が変化する性質があるので、この関係が利用される。
走査部52は、第1のガルバノミラー61と、第2のガルバノミラー62とを含む。また、走査部52は、第1及び第2のガルバノミラー61、62の間に配置された第1のリレーレンズ63と、第2のガルバノミラー62及びビームスプリッタ81との間に配置された第2のリレーレンズ64とを含む。さらに、走査部52は、ビームスプリッタ81及び光透過板11との間に配置された対物レンズ82を含む。
第1及び第2のガルバノミラー61、62は、それぞれ、所定の方向に回転可能とされたミラー等の反射部と、電気信号に応じて反射部の回転方向の角度を調整するモータ等の調整部とを有する。
第1のガルバノミラー61は、反射部及び調整部により、ビームエキスパンダ55から入射された光ビームを偏向し、光ビームを規制面11aに平行な面内でx軸方向に走査させる。第2のガルバノミラー62は、反射部及び調整部により光ビームを偏向し、光ビームを規制面11aに平行な面内でy軸方向に走査させる。なお、第1及び第2のガルバノミラー61、62の代わりに、ポリゴンミラー等を用いても構わない。
対物レンズ82は、一又は複数のレンズにより構成される。対物レンズ82は、前側焦点位置である物側焦点位置がビームスプリッタ81の反射透過面81aに一致するように、かつ、後側焦点位置である像側焦点位置が規制面11a上の光硬化性樹脂1に一致するように配置される。対物レンズ82は、第1及び第2のガルバノミラー61,62によりx軸方向及びy軸方向に走査され、ビームスプリッタ81で反射されて入射された光ビームを、規制面11a上の光硬化性樹脂1に結像させる。
図4は、対物レンズ82の機能を説明するための図である。
図4に示すように、対物レンズ82は、入射角θに比例した像高Yをもち、焦点距離fと入射角θとの積が像高Yとなるような関係(Y=f×θ)を有するfθレンズが用いられる。対物レンズ82としてfθレンズが用いられることで、第1のガルバノミラー61及び第2のガルバノミラー62によりx軸方向及びy軸方向に走査された光ビームを、規制面11a上の光硬化性樹脂1に平行な面内において等速度で走査させることができる。これにより、走査速度がばらつくことによる、設計形状と実際の硬化層の形状との違いが発生することを防止することができる。
第1のリレーレンズ63は、一又は複数のレンズにより構成され、第1のガルバノミラー61で反射された光ビームを第2のガルバノミラー62上の反射面に結像させる。第1のリレーレンズ63は、第1のガルバノミラー61で偏向され、第2のガルバノミラー62及び第2のリレーレンズ64を経由した後の光ビームが、対物レンズ82の物側焦点位置(反射透過面81aの中心)を通過するように光ビームを導く。
第2のリレーレンズ64は、一又は複数のレンズにより構成され、第2のガルバノミラー62で反射された光ビームをビームスプリッタ81の反射透過面81a上に結像させる。第2のリレーレンズ64は、第2のガルバノミラー62で偏向された光ビームが、対物レンズ82の物側焦点位置(反射透過面81aの中心)を通過するように光ビームを導く。
このような機能を有する第1及び第2のリレーレンズ63,64は、両側テレセントリック結像光学系となるように構成されている。
図5は、両側テレセントリック結像光学系を説明するための模式図である。
図5に示された光学系は、両側テレセントリック結像光学系の代表例であって「4f光学系」と呼ばれる光学系である。
例えば、最も前方側の位置に配置されたレンズの前焦点位置に第1のガルバノミラー61または第2のガルバノミラー62に相当する物体面Poが配置される。また、最も後方側の位置に配置されたレンズの後焦点位置に第2のガルバノミラー62またはビームスプリッタ81に相当する像面Piが配置される。この場合、物体面Po上の任意の位置で集光された光ビームが発散して入射されたとき、像面Pi側の対応する位置に収束されることとなる。そして、物体面Po上の任意の位置から平行光として入射した光ビームは、像面Pi側の対応する位置に平行光として入射することとなる。このように、両側テレセントリック結像光学系は、像面側から所定の位置、所定の方向で入射した平行光を、像面側の対応する位置に、対応する方向で平行光を出射させることとなる。
次に、一括露光光学系70について説明する。
一括露光光学系70は、第2の光源71と、反射型の空間光変調部72と、第1の集光レンズ73と、ビームインテグレータ74と、反射部75と、第2の集光レンズ76と、シャッタ77とを含む。
第2の光源71には、例えば、高出力な青色LED(Light Emitting Diode)が用いられる。
ビームインテグレータ74は、第2の光源から放射さらた光を均一化する。ビームインテグレータ74としては、フライアイタイプや、ライトロッドタイプ等を用いることができる。
シャッタ77は、第2の光源71と、ビームインテグレータ74との間に設けられる。シャッタ77は、光硬化性樹脂1に照射される光の通過・遮蔽を制御する。すなわち、シャッタ77は、一括露光光学系70による露光のオン・オフ制御をする。
反射部75は、例えばミラー等により構成され、ビームインテグレータ74からの光を反射してビームスプリッタ81側に導く。
第1の集光レンズ73は、反射部75とビームスプリッタ81との間に設けられ、入射した光をビームスプリッタ81の反射透過面81aに集光させる。
ビームスプリッタ81は、第2の光源71から放射されビームインテグレータ74、反射部75及び第1の集光レンズ73を介して入射した光を第2の集光レンズ76及び空間光変調部72側に導く。また、ビームスプリッタ81は、空間光変調部72により空間変調された光と、上述の走査部52により走査された光ビームとを合成して、規制面11a上の光硬化性樹脂1へと導く。
ビームスプリッタ81として、例えば、P偏光成分を略透過し、S偏光成分を略反射する反射透過面81aを有するような偏光ビームスプリッタが用いられる。
第2の光源71から放射され、ビームインテグレータ74、反射部75及び第1の集光レンズ73を介してビームスプリッタ81に入射される光は、S偏光成分とされる。このS偏光成分の光は、ビームスプリッタ81に反射されて空間光変調部72に入射することとなる。
ビームスプリッタ81及び空間光変調部72に所定の偏光光で光を入射するために第2の光源71と第1の集光レンズ73との間の光路中に所定の偏光板を設けるように構成してもよい。
空間光変調部72として、例えば、互いに対向配置された透明基板及び駆動回路基板と、この透明基板及び駆動回路基板の間に封入された液晶からなる液晶層とを有する反射型液晶素子78が用いられる。反射型液晶素子78は、駆動回路基板の主面に設けられた反射画素電極の各画素毎に駆動信号に基づいて、投影しようとする画像に対応して液晶の分子の配列を変え、反射する光の偏光状態を変化させる。
反射型液晶素子78に入射する光は、透明基板に略直交する方向から入射することとなる。反射型液晶素子78に入射された光は、駆動信号に基づいて偏光面が変調され、第2の集光レンズ76を通過した後にビームスプリッタ81でP偏光成分が透過することで強度変調が行われ、対物レンズ82を介して規制面11a上の光硬化性樹脂1に照射される。
反射型液晶素子78の画素数は、例えば、縦横1000×1000からなる100万画素とされる。
空間光変調部72として、反射型液晶素子78が用いられるとして説明したが、これに限られない。例えば、空間光変調部72として、傾き角度が変化する微小な反射ミラーを複数配列して構成されるデジタルミラーマイクロデバイスが用いられてもよい。
第2の集光レンズ76は、空間光変調部72と、ビームスプリッタ81との間に設けられ、空間光変調部72により空間光変調された光を対物レンズ82の前焦点に集光させる。第2の集光レンズ76は、対物レンズ82とともに、空間光変調部72で変調された光を規制面11a上の光硬化性樹脂1に結像するための投影光学系として機能する。また、第2の集光レンズ76は、空間光変調部72により空間変調された光が対物レンズ82を通過する際のディストーションを補正するレンズ群により構成され、ディスクトーションを最大限低減させることができる。
[動作説明]
次に、光造形装置100の動作について説明する。
(n層目の硬化層が形成される場合の動作)
まず、ビームスキャン光学系50及び一括露光光学系70を有する光学系40によりn層目の硬化層が形成される場合の動作について説明する。
図6は、この動作を説明するための図であり、ワーク全体領域Wall及び目標全体領域fall(n層目の硬化層)を示す平面図である。
図6に示すように、ワーク全体領域Wallは、例えば、10cm×10cmとされる。ワーク全体領域Wallの大きさ(10cm×10cm)は、移動機構30による造形ベース20の水平方向(x軸方向及びy軸方向)への移動範囲を変更することで適宜変更することができる。
目標全体領域fallは、ワーク全体領域Wall内における所定領域であって、n層目の硬化層に相当する領域である。図6では、一例として、目標全体領域fallがワーク全体領域Wallの中央に位置する場合を挙げたが、目標全体領域fallは、硬化層毎、あるいは立体造形物2の形状毎に異なる。
ワーク全体領域Wallは、例えば、1cm×1cmの小領域(以下、ワーク小領域Wxy)に区分されている。ワーク小領域Wxyの大きさ(1cm×1cm)は、第2の集光レンズ76及び対物レンズ82の構成を変えることで適宜変更することができる。なお、以降では、ワーク小領域Wxy内の目標領域を目標小領域fxyと呼ぶ。
図7は、ワーク小領域W32及び目標小領域f32を示す拡大図である。
図7に示すように、ワーク小領域Wxyは、10μm×10μm程度の大きさの微小領域axyに区分されている。この微小領域axyは、100万画素(1000×1000)により構成された反射型液晶素子78の1画素に対応する領域である。微小領域axyの大きさ(10μm×10μm)は、反射型液晶素子78の画素数を変更することで適宜変更することができる。
図7に示すように、ワーク小領域W32内に目標小領域f32がある場合、光造形装置100は、一括露光光学系70により目標小領域f32の大部分を占める領域f32’(以下、一括描画領域f32’)を一括描画(一括露光)する。すなわち、光造形装置100は、一括露光光学系70の空間光変調部72により空間変調された光により一括描画領域f32’の粗描画を行う。この場合、一括露光光学系70により10μm程度のオーダで粗描画が行われる。
また、光造形装置100は、ビームスキャン光学系50の走査部52により走査された光ビームにより、目標小領域f32の境界部分近傍の領域f32’’(以下、微細描画領域f32’’)の微細描画を行う。この場合、ビームスキャン光学系50により1μm程度のオーダで微細描画が行われる。
ビームスキャン光学系50による微細描画は、微細描画領域f32’’をベクタースキャンすることにより実行されてもよいし、微細描画領域f32’’をラスタースキャンすることにより実行されてもよい。あるいは、ベクタースキャンとラスタースキャンの組み合わせにより微細描画が実行されてもよい。
ワーク小領域W32において目標小領域f32の光硬化性樹脂1が硬化されると、光造形装置100は、移動機構30により造形ベース20をx軸方向、あるいはy軸方向に移動させる。そして、光造形装置100は、次のワーク小領域Wxyの目標小領域fxyの光硬化性樹脂を硬化させる。この動作が繰り返されることにより、n層目の硬化層が形成される。
なお、光造形装置100は、移動機構30により、造形ベース20を水平方向(x軸方向、y軸方向)に移動させる代わりに、光学系40を水平方向に移動させてもよい。
本実施形態に係る光造形装置100の光学系40は、ビームスキャン光学系50と、一括露光光学系70とにより構成されているので、硬化層を高精度かつ高速に形成することができる。さらに、光造形装置100は、移動機構30により造形ベース20を水平方向に移動させ、ワーク小領域Wxy毎に硬化層を形成して1層の硬化層を形成しているので、断面積の大きな硬化層を高精度かつ高速に形成することもできる。
(造形ベースが上方に移動される場合の動作)
次に、光学系40によりn層目の硬化層が形成され、次のn+1層目の硬化層を形成するために、移動機構30により造形ベース20が上方(z軸方向)に移動される場合の動作について説明する。
図8は、造形ベース20が上方に移動されるときの動作を説明するための図である。
図8(A)に示すように、光学系40により、規制面11a上の光硬化性樹脂1に光が照射され、n層目の硬化層が形成される。これにより、造形プレート22の支持面22aには、1〜n層目までの立体造形物2が形成される。
n層目の硬化層が形成されると、図8(B)に示すように、移動機構30により造形ベース20が上方へ移動される。造形ベース20が上方に移動されると、第2の端部20B側でバネ部材24が伸び、造形プレート22が、基準プレート21に対して第1の端部20A側でヒンジ部材23を介して回動する。
このとき、支持面22aが第1の端部20A側から第2の端部20B側にかけて徐々に規制面11aから離れ、n層目の硬化層と、規制面11aの境界面において、硬化層には、規制面11aに対して斜め方向に力が加わることになる。これにより、規制面11aに粘着したn層目の硬化層を規制面11aからスムーズに剥離することができる。その結果、硬化層の破損を防止することができ、高精度な立体造形物2を形成することができる。さらに、立体造形物2が支持面22aから剥がれてしまうことを防止することもできる。
n層目の硬化層(立体造形物2)が規制面11aから剥離されると、図8(C)に示すように、バネ部材24により造形プレート22が基準プレート21側に引き付けられ、支持面22aが規制面11aに対して平行な状態となる。
造形プレート22の支持面22aが規制面11aに平衡となった状態における、立体造形物2の下面と、規制面11aとの距離d、つまり、移動機構30により造形ベース20が上方に移動される距離dは、例えば、10μm〜100μmとされる。立体造形物2の下面と、規制面との距離d(10μm〜100μm)は、硬化層一層当たりの厚みに相当する。
光造形装置100は、移動機構30により造形ベース20を上方に移動させると、再び、光学系40により規制面11a上の光硬化性樹脂1に光を照射し、n+1層目の硬化層を形成する。この動作が繰り返され、所望の形状の立体造形物2が形成される。
上記したように、本実施形態に係る光造形装置100の造形ベース20によれば、硬化層の破損などを防止することができるので、高精度な立体造形物2の形成が実現される。さらに、本実施形態に係る光造形装置100の造形ベース20は、極めて単純な構造であるため、コスト的にも有利である。
さらに、バネ部材24は、上述のように、硬化層が形成される際の樹脂収縮よりも強い力で基準プレート21及び造形プレート22を引き付けている。従って、硬化層が形成されるときの樹脂収縮により、造形プレート22が下方(規制面11a側)に移動してしまうことを防止することができる。
ところで、本実施形態に係る光造形装置100の光学系40は、上述のように、ビームスキャン光学系50と、一括露光光学系70とにより構成されているので、硬化層を高精度に形成することができる。従って、本実施形態に係る光造形装置100は、光学系40により高精度に形成された硬化層を、造形ベース20により破損することなく上方に移動させることができるので、極めて高精度な立体造形物2の形成が可能となる。
また、本実施形態に係る光造形装置100では、上述のように、移動機構30により造形ベース20を水平方向に移動させ、ワーク小領域Wxy毎に硬化層を形成して1層の硬化層を形成しているので、断面積の大きな硬化層を高精度に形成することができる。このように、断面積の大きな硬化層が形成された場合に、仮に、造形ベース20の支持面22aを規制面11aに平行な状態で上方に移動させてしまうと、硬化層が規制面11aに粘着して硬化層が破損してしまう可能性が高い。すなわち、断面積の大きな硬化層が形成された場合、比較的大きな力で硬化層を規制面11aから引き剥がさなければならないので、硬化層が破損してしまう可能性が高い。一方、本実施系形態に係る光造形装置100の造形ベース20は、硬化層に規制面11aに対して斜め方向に力を加えることができるため、断面積の大きな硬化層であっても、スムーズに硬化層を規制面11aから剥離することができる。従って、本実施形態に係る光造形装置100は、断面積の大きな立体造形物2を高精度に形成することも可能である。
<第2実施形態>
次に、本発明の第2実施形態について説明する。
第2実施形態では、造形ベースにロック機構が設けられている点が上述の第1実施形態と異なる。したがって、その点を中心に説明する。なお、第2実施形態以降の説明では、上述の第1実施形態に係る光造形装置と同様の構成、機能を有する部材等については同一符号を付し、説明を省略し、または簡略化する。
図9は、本実施形態に係る光造形装置100が有する造形ベース90を示す拡大図である。
本実施形態に係る造形ベース90は、第2の端部90B側にそれぞれバネ支持部25、26を有する基準プレート21及び造形プレート22と、第1の端部90A側で基準プレート21及び造形プレート22を回動可能に支持するヒンジ部材23とを備えている。また、造形ベース90は、バネ支持部25、26に連結され、第2の端部90B側で基準プレート21及び造形プレート22を所定の力でひきつけるバネ部材24を有している。
さらに、造形ベース90は、基準プレート21及び造形プレート22がバネ部材24に引き付けられた状態で、基準プレート21及び造形プレート22を固定するロック機構94を備えている。
ロック機構94は、例えば、造形ベース90の第2の端部90B側に配置される。ロック機構94が設けられる位置は、造形ベース90の中央であってもよく、造形ベース90第1の端部90A側であってもよい。
ロック機構94は、基準プレート21及び造形プレート22を固定するロック部材91と、基準プレート21の上部に設けられ、ロック部材91を回動可能に支持する軸92と、軸92を回転駆動させるモータ93とを有する。
ロック部材91は、バネ支持部25及びバネ支持部26を挟み込んで固定することで、基準プレート21及び造形プレート22の位置関係を固定する。ロック部材91は、金属や樹脂などにより形成されるが、材料は特に限定されない。
モータ93は、光造形装置100の制御部と電気的に接続される。モータ93は、制御部の制御により軸92を回転駆動させることでロック部材91を回動させ、ロック部材91による基準プレート21及び造形プレート22のロック状態と、非ロック状態とを切り替える。
次に、移動機構30により造形ベース90が上方に移動される場合の動作について説明する。
図10は、その動作を説明するための図である。
図10(A)に示すように、光学系40により規制面11a状の光硬化性樹脂1に光が照射され、n層目の硬化層が形成されると、モータ93の駆動により軸92が回転され、ロック部材91が回動される。これにより、ロック部材91による基準プレート21及び造形プレートのロック状態が解除される。
ロック状態が解除されると、図10(B)に示すように、移動機構30により造形ベース90が上方に移動される。造形ベース90が上方に移動されると、造形プレート22が、基準プレート21に対して第1の端部20A側でヒンジ部材23を介して回動する。
このとき、n層目の硬化層と、規制面11aの境界面において、硬化層には、規制面11aに対して斜め方向に力が加わることになるので、規制面11aに粘着したn層目の硬化層を規制面11aからスムーズに剥離することができる。
n層目の硬化層(立体造形物2)が規制面11aから剥離されると、図10(C)に示すように、バネ部材24により造形プレート22が基準プレート21側に引き付けられ、支持面22aが規制面11aに対して平行な状態となる。
造形プレート22の支持面22aが規制面11aに平行な状態となると、モータ93の駆動により軸92が先ほどとは反対方向に回転され、ロック部材91が先ほどとは反対方向に回動される。これにより、基準プレート21及び造形プレート22がロック部材91によりロックされる。
基準プレート21及び造形プレート22がロック状態とされると、光学系40により規制面11a上の光硬化性樹脂1に光が照射されてn+1層目の硬化層が形成される。このとき、造形プレート22は、基準プレート21に固定されているので、造形プレート22が、光硬化性樹脂1の樹脂収縮により下方へ移動してしまうことを防止することができる。
n+1層目の硬化層が形成されると、ロック状態が解除され(図10(A)参照)、造形ベース20が上方に移動される(図10(B)参照)。上記各動作が繰り返されることで立体造形物2が形成される。
第2実施形態に係る造形ベース90では、ロック機構94により、樹脂収縮による造形ベース20の下方への移動が防止されるので、高精度な立体造形物2の形成が実現される。
なお、第2実施形態に係る造形ベース90のバネ部材24は、樹脂収縮よりも強い力で基準プレート21及び造形プレート22を引き付けていなくてもよい。すなわち、本実施形態では、樹脂収縮による造形プレート22の下方への移動は、ロック機構94により防止されているため、バネ部材24は、樹脂収縮よりも強い力で基準プレート21及び造形プレート22を引き付けていなくてもよい。
第2実施形態の説明では、ロック機構94が、ロック部材91、軸92及びモータ93により構成されるとして説明した。しかし、ロック機構94の構成は、これに限られない。
ロック機構94は、基準プレート21及び造形プレート22のロック状態と、非ロック状態とを切り替えることができる形態であれば、どのような構成であってもよい。
<各種変形例>
上述の各実施系形態では、光学系40がビームスキャン光学系50及び一括露光光学系70により構成されるとして説明した。しかし、これに限られず、光学系40として、一般的に用いられる光学系40が用いられてもよい。例えば、光学系40として、透過型のSLM(Spatial Light Modulator)投影方式の光学系40が用いられてもよいし、ガルバノミラー等が用いられたビームスキャン方式の光学系40が用いられてもよい。このように、一般的な光学系40が用いられた場合にも、造形ベース20により、硬化層(立体造形物)が破損してしまうことを防止することができるので、高精度な立体造形物2を形成することが可能である。
また、上述の各実施形態では、ワーク全体領域Wallがワーク小領域Wxyに区分され、光学系40によりワーク小領域Wxy毎に硬化層が形成されて1層の硬化層が形成される、として説明した。しかし、これに限られず、光学系40により一層の硬化層が一度に形成されてもよい。この場合、ワーク全体領域Wallは、ワーク小領域Wxyに区分されていなくてもよい。
造形プレート22の支持面22aにあらかじめ、薄膜状に形成された樹脂層が形成されていてもよい。この樹脂層は、例えば、紫外線硬化性樹脂等の光硬化性樹脂により構成される。樹脂層は、液状の光硬化性樹脂が支持面22aにスピンコートされた後、光が照射されて硬化されることで形成される。この場合、立体造形物2を構成する一層目の硬化層は、支持面22a上の樹脂層上に形成される。
樹脂層に用いられる光硬化性樹脂は、立体造形物2の形成に用いられる光硬化性樹脂1と同等の材料であってもよい。また、この場合、造形プレート22は、アクリル樹脂などの樹脂により構成されてもよい。
これにより、造形プレート22と、立体造形物2との密着性を向上させることができるので、造形ベース20(あるいは、造形ベース90)が上方に移動されるときに、立体造形物2が支持面22aから剥がれてしまうことを防止することができる。これにより、さらに、高精度の立体造形物2を形成することが可能となる。
1…光硬化性樹脂
2…立体造形物
11…光透過板
11a…規制面
20、90…造形ベース
21…基準プレート
22…造形プレート
22a…支持面
24…バネ部材
30…移動機構
40…光学系
94…ロック機構

Claims (5)

  1. 光硬化性樹脂の液面を規制する規制面を有し、前記光硬化性樹脂を硬化させるための光を透過させる光透過部材と、
    前記規制面に対向し、前記光により硬化された前記光硬化性樹脂が段階的に積層されて形成される立体造形物を支持する支持面と、第1の端部と、前記第1の端部とは反対側の第2の端部とを有する造形ベースと、
    前記第1の端部側から前記第2の端部側にかけて、徐々に前記支持面が前記規制面から離れるように、前記造形ベースを前記光透過部材から離れる方向に移動させる移動機構と
    を具備し、
    前記造形ベースは、
    前記移動機構に連結される第1の部材と、
    前記支持面を有し、前記第1の端部側で、前記第1の支持部材に回動可能に連結された第2の部材と、
    前記第2の端部側で、前記第1の部材及び前記第2の部材を連結する弾性体とを有する
    光造形装置。
  2. 請求項に記載の光造形装置であって、
    前記弾性体は、前記光硬化性樹脂が硬化するときの収縮により、前記支持面が前記規制面側に引き付けられる力よりも強い力で、前記第1の部材及び前記2の部材を引き付ける
    光造形装置。
  3. 請求項に記載の光造形装置であって、
    前記第1の部材及び前記第2の部材とが引き付けられた状態で、前記第1の部材及び第2の部材を固定するロック機構をさらに具備する光造形装置。
  4. 請求項1に記載の光造形装置であって、
    前記造形ベースは、支持面上に薄膜状に形成された樹脂層をさらに有する
    光造形装置。
  5. 第1の端部と、前記第1の端部とは反対側の第2の端部とを有する第1の支持部材と、
    光により硬化された光硬化性樹脂が段階的に積層されて形成される立体造形物を支持する支持面を有し、前記第1の端部側で、前記第1の支持部材に回動可能に連結された第2の支持部材と、
    前記第2の端部側で、前記第1の支持部材及び前記第2の支持部材を連結する弾性体と
    を具備する造形ベース。
JP2009023104A 2009-02-03 2009-02-03 光造形装置及び造形ベース Expired - Fee Related JP5267174B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009023104A JP5267174B2 (ja) 2009-02-03 2009-02-03 光造形装置及び造形ベース
CN2010101042747A CN101791858B (zh) 2009-02-03 2010-01-25 光学成形设备和成形基座
EP10000727.7A EP2213443B1 (en) 2009-02-03 2010-01-25 Optical shaping apparatus and shaping base
US12/693,617 US8113813B2 (en) 2009-02-03 2010-01-26 Optical shaping apparatus and shaping base

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009023104A JP5267174B2 (ja) 2009-02-03 2009-02-03 光造形装置及び造形ベース

Publications (2)

Publication Number Publication Date
JP2010179496A JP2010179496A (ja) 2010-08-19
JP5267174B2 true JP5267174B2 (ja) 2013-08-21

Family

ID=42199031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009023104A Expired - Fee Related JP5267174B2 (ja) 2009-02-03 2009-02-03 光造形装置及び造形ベース

Country Status (4)

Country Link
US (1) US8113813B2 (ja)
EP (1) EP2213443B1 (ja)
JP (1) JP5267174B2 (ja)
CN (1) CN101791858B (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201211747D0 (en) * 2012-07-03 2012-08-15 Univ Warwick Additive manufacturing apparatus
DE102013207243B4 (de) * 2013-04-22 2019-10-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und verfahren zur herstellung einer struktur aus aushärtbarem material durch abformung
AT514496B1 (de) * 2013-06-17 2015-04-15 Way To Production Gmbh Anlage zum schichtweisen Aufbau eines Körpers und Entformvorrichtung hiefür
US9452567B2 (en) * 2013-08-27 2016-09-27 Kao-Chih Syao Stereolithography apparatus
GB2521396A (en) * 2013-12-18 2015-06-24 Skf Ab A machine for grinding a work-piece
WO2016049666A1 (de) 2014-09-29 2016-04-07 Way To Production Gmbh Anlage zum schichtweisen aufbau eines körpers und entformvorrichtung hiefür
CN104441663A (zh) * 2014-12-02 2015-03-25 苏州佳世达光电有限公司 一种3d打印机
CN105313333A (zh) * 2015-04-29 2016-02-10 博纳云智(天津)科技有限公司 一种光固化3d打印机及其工作方法
CN105172138B (zh) * 2015-08-19 2017-11-28 珠海天威飞马打印耗材有限公司 平台组件、数字光处理三维打印机及平台组件的工作方法
CN105150541A (zh) * 2015-09-29 2015-12-16 许冬 一种光固化3d打印机渐离式被动剥离装置
WO2017079774A2 (de) * 2015-11-12 2017-05-18 Klaus Stadlmann Stereolithographie-vorrichtung mit kartuscheneinrichtung
AT517956B1 (de) * 2015-12-22 2017-06-15 Klaus Stadlmann Dr Verfahren zur Erzeugung eines dreidimensionalen Körpers
US20170182716A1 (en) * 2015-12-29 2017-06-29 Young Optics Inc. Apparatus and method for three-dimensional printing
KR101780928B1 (ko) * 2016-01-05 2017-09-26 주식회사 덴티스 3차원 프린터 및 이의 광출력 장치
US10479068B2 (en) * 2016-03-23 2019-11-19 3D Systems, Inc. Additive manufacturing vertical stage for moving photocured material in a non-perpendicular direction from the image plane
US10214002B2 (en) * 2016-09-30 2019-02-26 Xyzprinting, Inc. Three dimensional printing apparatus and three dimensional printing method thereof
US10022794B1 (en) 2017-01-13 2018-07-17 General Electric Company Additive manufacturing using a mobile build volume
US10478893B1 (en) 2017-01-13 2019-11-19 General Electric Company Additive manufacturing using a selective recoater
US9956612B1 (en) 2017-01-13 2018-05-01 General Electric Company Additive manufacturing using a mobile scan area
EP3418033B1 (de) * 2017-06-19 2020-01-01 Cubicure GmbH Verfahren und vorrichtung zur lithographiebasierten generativen fertigung von dreidimensionalen formkörpern
NL2019204B1 (en) * 2017-07-07 2019-01-16 Atum Holding B V Apparatus to create objects and semi-rigid substrate therefor
US11571743B2 (en) 2017-11-13 2023-02-07 General Electric Company Systems and methods for additive manufacturing
JP2019098644A (ja) * 2017-12-04 2019-06-24 カンタツ株式会社 3次元造形装置、3次元造形装置の制御方法および3次元造形装置の制御プログラム
CN110587981A (zh) * 2018-06-13 2019-12-20 三纬国际立体列印科技股份有限公司 立体打印装置
CN110434333B (zh) * 2019-08-13 2021-11-23 浙江工业大学 一种面成型金属增材制造方法
JP7409603B2 (ja) 2019-12-16 2024-01-09 キヤノン株式会社 光造形装置、及び該装置を用いた光造形方法
EP3984721A1 (de) * 2020-10-15 2022-04-20 Ivoclar Vivadent AG Verfahren zur prozessteuerung eines 3d-stereolithographie-prozesses

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2617547A (en) * 1949-11-14 1952-11-11 Whetstine B Pridy Pipe loading device
JPS6039831B2 (ja) * 1979-11-12 1985-09-07 三菱製鋼株式会社 免震床
US5554336A (en) * 1984-08-08 1996-09-10 3D Systems, Inc. Method and apparatus for production of three-dimensional objects by stereolithography
US4617081A (en) * 1985-02-04 1986-10-14 Bleau Charles D Side flap fold apparatus for a disk envelope
DE3622540A1 (de) * 1986-07-04 1988-01-07 Bayer Ag Verfahren zur herstellung von spannungsarmen formteilen
EP0378623A1 (en) * 1988-06-02 1990-07-25 LEE, Kan-Chee Object safety protection and force measurement
US5876550A (en) * 1988-10-05 1999-03-02 Helisys, Inc. Laminated object manufacturing apparatus and method
JPH02107843A (ja) * 1988-10-14 1990-04-19 Hitachi Ltd 三次元免震装置
US4988069A (en) * 1989-11-27 1991-01-29 Baxter International Inc. Stepping motor mounting
DE4013291C2 (de) * 1990-04-26 1995-03-16 Spieth Holztechnik Gmbh Sprungbrett
US5158858A (en) * 1990-07-05 1992-10-27 E. I. Du Pont De Nemours And Company Solid imaging system using differential tension elastomeric film
US5770123A (en) * 1994-09-22 1998-06-23 Ebara Corporation Method and apparatus for energy beam machining
JPH10277790A (ja) * 1997-04-10 1998-10-20 Toyota Motor Corp 加熱圧縮成形用金型
JP2000043150A (ja) * 1998-07-31 2000-02-15 Kimiyuki Mitsui 光造形方法及び光造形装置並びに複合機械部品
JP3336280B2 (ja) * 1998-11-25 2002-10-21 株式会社デンケン 光造形装置
DE19939616C5 (de) * 1999-08-20 2008-05-21 Eos Gmbh Electro Optical Systems Vorrichtung zur generativen Herstellung eines dreidimensionalen Objektes
US6814564B2 (en) * 1999-08-30 2004-11-09 Pactiv Corporation Mold with fluid driven form keys
DE19961992A1 (de) * 1999-12-22 2001-07-05 Behr Automotive Gmbh Verfahren und Vorrichtung zur Oberflächenbeschichtung eines Innenausbauteiles für Kraftfahrzeuge
US7318718B2 (en) * 2000-06-06 2008-01-15 Teijin Seiki Co., Ltd. Stereolithographic apparatus and method for manufacturing three-dimensional object
US6419203B1 (en) * 2001-07-20 2002-07-16 Chi Hung Dang Vibration isolator with parallelogram mechanism
DE10256672B4 (de) * 2002-12-04 2019-05-09 Envisiontec Gmbh Verfahren zur Trennung stereolithographisch ausgehärteter Materialschichten von einer Kontaktfläche
CA2436267C (en) * 2003-07-30 2010-07-27 Control And Metering Limited Vibrating table assembly for bag filling apparatus
FR2863543B1 (fr) * 2003-12-16 2007-11-02 Airbus France Procede de formage par estampage a chaud de pieces de tolerie complexes en materiau composite et outillage pour sa mise en oeuvre
JP2005231333A (ja) * 2004-02-17 2005-09-02 Chubu Nippon Kogyo Kk 規制液面方式による光造形装置の造形ベース
DE102004022606A1 (de) * 2004-05-07 2005-12-15 Envisiontec Gmbh Verfahren zur Herstellung eines dreidimensionalen Objekts mit verbesserter Trennung ausgehärteter Materialschichten von einer Bauebene
JP4384010B2 (ja) * 2004-11-05 2009-12-16 キヤノン株式会社 シート搬送装置及び画像形成装置
TWI261308B (en) * 2005-03-02 2006-09-01 Ind Tech Res Inst Micro-nanometer transfer printer
JP4701008B2 (ja) * 2005-05-25 2011-06-15 東芝機械株式会社 ジンバル機構を備えた転写装置
JP2007090619A (ja) 2005-09-28 2007-04-12 Matsushita Electric Ind Co Ltd 光造形装置
US7520740B2 (en) * 2005-09-30 2009-04-21 3D Systems, Inc. Rapid prototyping and manufacturing system and method
KR101239979B1 (ko) * 2006-03-08 2013-03-06 삼성전자주식회사 디스플레이장치
US8102505B2 (en) * 2007-03-20 2012-01-24 Asml Netherlands B.V. Lithographic apparatus comprising a vibration isolation support device
US20100166906A1 (en) * 2007-05-23 2010-07-01 Pioneer Corporation Inprint equipment
JP2009023104A (ja) 2007-07-17 2009-02-05 Oshima Denki Seisakusho:Kk 射出成形用金型
TWI444282B (zh) * 2007-10-19 2014-07-11 Showa Denko Kk 樹脂壓模(stamper)之製造方法及製造裝置及壓印(imprint)方法、以及磁性記錄媒體及磁性記錄再生裝置
DK2052693T4 (da) * 2007-10-26 2021-03-15 Envisiontec Gmbh Proces og fri-formfabrikationssystem til at fremstille en tredimensionel genstand
JP5002422B2 (ja) * 2007-11-14 2012-08-15 株式会社日立ハイテクノロジーズ ナノプリント用樹脂スタンパ
JP5234319B2 (ja) * 2008-01-21 2013-07-10 ソニー株式会社 光造形装置および光造形方法
JP5232077B2 (ja) * 2009-06-02 2013-07-10 株式会社日立ハイテクノロジーズ 微細構造転写装置

Also Published As

Publication number Publication date
US20100196526A1 (en) 2010-08-05
EP2213443A2 (en) 2010-08-04
US8113813B2 (en) 2012-02-14
CN101791858A (zh) 2010-08-04
CN101791858B (zh) 2013-11-06
EP2213443A3 (en) 2013-03-13
EP2213443B1 (en) 2014-01-08
JP2010179496A (ja) 2010-08-19

Similar Documents

Publication Publication Date Title
JP5267174B2 (ja) 光造形装置及び造形ベース
JP5018076B2 (ja) 光造形装置及び光造形方法
JP5088114B2 (ja) 光造形装置
JP4957242B2 (ja) 光造形装置
JP5023975B2 (ja) 光造形装置及び光造形方法
JP5234319B2 (ja) 光造形装置および光造形方法
JP5024001B2 (ja) 光造形装置および光造形方法
RU2671740C1 (ru) Стереолитографическое устройство с улучшенным оптическим блоком
CN1677240A (zh) 曝光装置
JP2009113294A (ja) 光造形装置及び光造形方法
CN110722795B (zh) 一种一次成型的多面lcd光源3d打印装置
JP2009083240A (ja) 光造形装置
JP2008162189A (ja) 光造形装置
EP3938177B1 (en) Method and system for calibration of optics modules for additive fabrication devices
JP5045402B2 (ja) 光造形装置
JP2009166448A (ja) 光造形装置および光造形方法
JP2008238652A (ja) 光造形方法及び光造形装置
WO2018062008A1 (ja) 三次元造形装置、三次元物体製造方法および三次元造形プログラム
JP2021094753A (ja) 光造形装置、及び該装置を用いた光造形方法
JP2009137230A (ja) 光造形装置
JP2009160859A (ja) 光造形装置および光造形方法、並びに光造形物
JP2009220292A (ja) 光造形装置
CN113064329A (zh) 一种基于光纤端超透镜的笔光刻***和制备方法
CN111319257A (zh) 光固化型3d打印设备及其图像曝光***
JPH0516247A (ja) 光学的造形法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130422

R151 Written notification of patent or utility model registration

Ref document number: 5267174

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees