JP5266533B2 - Method for manufacturing organic electroluminescence element and lighting device - Google Patents

Method for manufacturing organic electroluminescence element and lighting device Download PDF

Info

Publication number
JP5266533B2
JP5266533B2 JP2010033301A JP2010033301A JP5266533B2 JP 5266533 B2 JP5266533 B2 JP 5266533B2 JP 2010033301 A JP2010033301 A JP 2010033301A JP 2010033301 A JP2010033301 A JP 2010033301A JP 5266533 B2 JP5266533 B2 JP 5266533B2
Authority
JP
Japan
Prior art keywords
organic
light emitting
layer
emitting layer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010033301A
Other languages
Japanese (ja)
Other versions
JP2011171092A (en
Inventor
朱里 佐藤
宏 石代
知是 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2010033301A priority Critical patent/JP5266533B2/en
Publication of JP2011171092A publication Critical patent/JP2011171092A/en
Application granted granted Critical
Publication of JP5266533B2 publication Critical patent/JP5266533B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To effectively and continuously manufacture organic electroluminescence elements of high-luminescence effect in low drive voltage and of little voltage rise in continuous drive. <P>SOLUTION: In the manufacturing method of the organic electroluminescence elements, a substrate has a pair of electrodes and an organic laminated body including an organic light emitting layer between the electrodes. At least one of the electrodes is a transparent conductive film including a metallic nanowire. The organic light emitting layer is manufactured in a wet process. Coated with a coating liquid, the organic light emitting layer is heated up under a reduced pressure environment. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明はウェットプロセスを含む方法で作製する有機エレクトロルミネッセンス素子の製造方法および該製造方法により製造されたエレクトロルミネッセンス素子を具備した照明装置に関する。詳しくは、発光効率が高く、駆動電圧が低く、且つ連続駆動時の駆動電圧上昇が低い長寿命な有機エレクトロルミネッセンス素子の製造方法と照明装置に関する。   The present invention relates to a method for manufacturing an organic electroluminescent element manufactured by a method including a wet process, and a lighting device including the electroluminescent element manufactured by the manufacturing method. Specifically, the present invention relates to a method for manufacturing a long-life organic electroluminescence element and a lighting device that have high luminous efficiency, low driving voltage, and low driving voltage increase during continuous driving.

発光型の電子デバイスとして、エレクトロルミネッセンスデバイス(以下、ELDと略記する)がある。ELDの構成要素としては、無機エレクトロルミネッセンス素子(以下、無機EL素子とも言う)や有機エレクトロルミネッセンス素子(以下、有機EL素子とも言う)が挙げられる。無機EL素子は平面型光源として使用されてきたが、発光素子を駆動させるためには交流の高電圧が必要である。   As a light-emitting electronic device, there is an electroluminescence device (hereinafter abbreviated as ELD). As an ELD component, an inorganic electroluminescence element (hereinafter also referred to as an inorganic EL element) and an organic electroluminescence element (hereinafter also referred to as an organic EL element) can be given. Inorganic EL elements have been used as planar light sources, but an alternating high voltage is required to drive the light emitting elements.

一方、有機エレクトロルミネッセンス素子は、発光する化合物を含有する発光層を陰極と陽極で挟んだ構成を有し、発光層に電子及び正孔を注入して、再結合させることにより励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光・リン光)を利用して発光する素子であり、数V〜数十V程度の電圧で発光が可能であり、更に自己発光型であるために視野角に富み、視認性が高く、薄膜型の完全固体素子であるために省スペース、携帯性等の観点から注目されている。発光効率の向上のためには、有機エレクトロルミネッセンス素子を構成する有機機能層の一部において、それぞれ個別の機能を有する材料を複数混合して構成する、所謂ホスト−ゲスト型を用いることが一般的となりつつある。   On the other hand, an organic electroluminescence device has a structure in which a light emitting layer containing a compound that emits light is sandwiched between a cathode and an anode, and excitons (excitons) by injecting electrons and holes into the light emitting layer and recombining them. Is a device that emits light by using light emission (fluorescence / phosphorescence) when this exciton is deactivated, and can emit light at a voltage of several V to several tens of V, and further self-emission. Since it is a type, it has a wide viewing angle, high visibility, and since it is a thin-film type completely solid element, it has attracted attention from the viewpoints of space saving, portability, and the like. In order to improve the luminous efficiency, it is common to use a so-called host-guest type in which a part of the organic functional layer constituting the organic electroluminescence element is composed of a mixture of materials having individual functions. It is becoming.

また、有機エレクトロルミネッセンス素子は、従来実用に供されてきた主要な光源、例えば、発光ダイオードや冷陰極管と異なり、面光源であることからも大きな特徴である。この特性を有効に活用できる用途として、照明用光源や様々なディスプレイのバックライトがある。特に近年、需要の増加が著しい液晶フルカラーディスプレイのバックライトとして用いることも好適である。   The organic electroluminescence element is also a major feature because it is a surface light source, unlike main light sources that have been put to practical use, such as light emitting diodes and cold cathode tubes. Applications that can effectively utilize this characteristic include illumination light sources and various display backlights. In particular, it is also suitable to be used as a backlight of a liquid crystal full color display whose demand has been increasing in recent years.

有機エレクトロルミネッセンス素子の製造方法としては、蒸着法、ウェットプロセス(スピンコート法、キャスト法、インクジェット法、スプレー法、印刷法)等(以下、塗布法とも言う)があるが、真空プロセスを必要とせず連続生産が簡便であるという理由で、近年はロール状の成形体を得るロールtoロールによるウェットプロセス生産が注目されている。   As a method for producing an organic electroluminescence element, there are a vapor deposition method, a wet process (spin coating method, casting method, ink jet method, spray method, printing method) and the like (hereinafter also referred to as a coating method), but a vacuum process is required. In recent years, wet process production by roll-to-roll to obtain a roll-shaped molded body has been attracting attention because continuous production is simple.

しかしながら、ウェットプロセスでのフィルムの製造工程においては、フィルム搬送にローラーによる曲げ部分を複数設けたりローラーによる巻き取りを設けたりすることが生産性の観点や設備の小型化といった観点から好ましい。透明電極として有機EL素子において従来用いられてきた材料(仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物、具体的には、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO、IDIXO(In−ZnO)等)を主成分とする透明導電膜を用いた場合、電極の剛性により割れ故障が生じ、ロールtoロール生産に適さないという課題があった。 However, in the film manufacturing process in the wet process, it is preferable to provide a plurality of bent portions by rollers or to take up by rollers in film conveyance from the viewpoint of productivity and miniaturization of equipment. Materials conventionally used in organic EL elements as transparent electrodes (metals, alloys, electrically conductive compounds and mixtures thereof having a high work function (4 eV or more), specifically metals such as Au, CuI, indium tin oxide (ITO), SnO 2 , ZnO, IDIXO (In 2 O 3 —ZnO), etc.), when a transparent conductive film is used as a main component, crack failure occurs due to the rigidity of the electrode, which is not suitable for roll-to-roll production. There was a problem.

このような問題点を回避しうる透明導電材料として、π共役系高分子に代表される導電性高分子材料が挙げられる。一般に導電性高分子は、二重結合と単結合が交互に並んだ(π共役を主鎖とする)構造を持ち、導電性はこの構造に由来する。π共役系高分子は、一般の高分子と異なり導電経路は有するものの、自由に動ける電荷(キャリア)が存在しないためそれ自身では導電性を発現しない。しかし、無機半導電体のようにドーピングによって自由に動けるキャリアを注入することで導電性を付与することができる。導電性高分子材料を用いると、適当な溶媒に溶解または分散し、必要に応じてバインダー成分を加えて塗布や印刷することによって透明導電素子を形成することができる(例えば特開平6−273964号公報)。しかし、真空成膜法によるITOやZnO等の金属酸化物透明導電素子に較べると、導電性は低くかつ透明性にも劣る。   Examples of the transparent conductive material that can avoid such problems include conductive polymer materials represented by π-conjugated polymers. In general, a conductive polymer has a structure in which double bonds and single bonds are alternately arranged (with π conjugation as a main chain), and conductivity is derived from this structure. Unlike a general polymer, a π-conjugated polymer has a conductive path but does not exhibit conductivity by itself because there is no charge (carrier) that can move freely. However, conductivity can be imparted by injecting carriers that can move freely by doping, such as an inorganic semiconductor. When a conductive polymer material is used, a transparent conductive element can be formed by dissolving or dispersing in a suitable solvent and adding or printing a binder component as necessary (for example, JP-A-6-273964). Publication). However, compared to metal oxide transparent conductive elements such as ITO and ZnO formed by vacuum film formation, the conductivity is low and the transparency is also poor.

金属酸化物や導電性高分子に較べ、Ag、Cu、Au等の金属材料の導電率は2桁以上高く導電性の観点では好ましいが、透明性を確保できないという問題があった。それに対して、均質な金の超薄膜を形成することにより導電性と透明性を両立できることが報告されている(例えば富山県工業技術センター技術情報誌,No.95号(2004))。しかし、均質な金の超薄膜を形成するには、デュアルイオンビームスパッタ法という特殊な真空成膜法が必要であり、製造コスト軽減、環境負荷軽減の実現は困難と考えられる。液相成膜が可能な透明導電材料技術として、金属ナノワイヤ(例えば、CNT(カーボンナノチューブ)や金属ナノワイヤ)をメッシュ状に形成し、これを導電体として透明導電膜を形成する方法が提案されている(例えば、特許文献2、特許文献3参照)。   Compared to metal oxides and conductive polymers, the conductivity of metal materials such as Ag, Cu, and Au is two orders of magnitude higher, which is preferable from the viewpoint of conductivity, but there is a problem that transparency cannot be secured. On the other hand, it has been reported that both conductivity and transparency can be achieved by forming a uniform gold ultrathin film (for example, Toyama Prefectural Industrial Technology Center, Technical Information No. 95 (2004)). However, in order to form a uniform ultra-thin gold film, a special vacuum film forming method called a dual ion beam sputtering method is required, and it is considered difficult to reduce the manufacturing cost and the environmental load. As a transparent conductive material technology capable of liquid phase film formation, a method of forming a metal nanowire (for example, CNT (carbon nanotube) or metal nanowire) in a mesh shape and using this as a conductor to form a transparent conductive film has been proposed. (For example, see Patent Document 2 and Patent Document 3).

しかし、このようなフレキシブルな透明導電膜を電極として用いたとしても、ウェットプロセスで作製した有機EL素子の性能は、蒸着法により作製された素子に比べて十分な素子性能ではない。特に駆動電圧や連続駆動時の電圧上昇が高くなる傾向にある。この原因として、ウェットプロセスで作製した膜は、層間の混合や膜のモルフォロジー変化等によりドライプロセスで作製したものと膜の状態が異なっているためにキャリアの移動阻害、あるいは膜内残留溶媒の存在で残留溶媒が駆動時にキャリアの移動を阻害するトラップ成分として働くため、電圧上昇が起こりやすい傾向にあると考えられる。また、キャリアがトラップされることで層内がキャリア過多の状態になるため劣化が促進され、キャリアトラップが増大し、連続駆動時の電圧が上昇しやすい傾向にある可能性がある。   However, even if such a flexible transparent conductive film is used as an electrode, the performance of the organic EL device produced by the wet process is not sufficient as compared with the device produced by the vapor deposition method. In particular, the driving voltage and the voltage rise during continuous driving tend to increase. The cause of this is that the film produced by the wet process is different from the one produced by the dry process due to inter-layer mixing or film morphology change, etc., and the movement of carriers is inhibited, or the presence of residual solvent in the film. Thus, the residual solvent works as a trap component that hinders the movement of carriers during driving, and thus it is considered that the voltage tends to increase. Further, since carriers are trapped in the layer because the carriers are trapped, deterioration is accelerated, carrier traps increase, and the voltage during continuous driving may tend to increase.

従来、蒸着法で作製した素子に比べて性能が劣るウェットプロセスで作製した有機EL素子の、発光層の性能を向上させる手段として、ラビング処理による配向処理を、π−共役型高分子に施すことで光源自体に偏光性を付与し、輝度向上を目的とした技術が開示されている(例えば、特許文献4参照)。しかしながら、該特許文献4記載の方法では、非常に薄膜に製膜された面に直接接触して加工を施すため、膜面に傷が入ったり、削り取られたりするという問題があった。さらに、本法は膜面にローラーなどで印加する方法ではあるものの、これにより膜の密度を制御するという思想とは異なったものである。また、透明金属ナノワイヤを含む透明導電膜を電極として用いることを特徴とはしていない。   As a means for improving the performance of the light emitting layer of an organic EL device produced by a wet process that is inferior to a device produced by a conventional vapor deposition method, an alignment treatment by rubbing treatment is applied to the π-conjugated polymer. Discloses a technique for imparting polarization to the light source itself and improving luminance (see, for example, Patent Document 4). However, the method described in Patent Document 4 has a problem that the film surface is scratched or scraped off because the processing is performed by directly contacting the surface formed into a very thin film. Furthermore, although this method is a method in which the film surface is applied with a roller or the like, it is different from the idea of controlling the film density by this method. Moreover, it is not characterized by using the transparent conductive film containing transparent metal nanowire as an electrode.

また、有機層表面のラビング処理を行うために発生する損傷を防ぐ目的で、該有機層が積層される第1電極の表面に、有機層積層前にラビング処理を行う技術が、記載されている(例えば特許文献5参照)。しかしながらこの方法も、有機層積層前の電極に印加する方法であり、有機層の膜密度の制御には無関係の技術である。   In addition, for the purpose of preventing damage that occurs due to the rubbing treatment on the surface of the organic layer, a technique is described in which the rubbing treatment is performed on the surface of the first electrode on which the organic layer is laminated before the organic layer is laminated. (For example, refer to Patent Document 5). However, this method is also a method of applying to the electrode before the organic layer lamination, and is a technique unrelated to the control of the film density of the organic layer.

また、有機層形成時、もしくは形成後に、該有機層の周囲を大気圧よりも大きな圧力で加圧及び加熱し、残留溶媒の除去とともに隣接層との密着性を向上させる技術が開示されている(例えば特許文献6参照)。しかしながら本法では、有機層構成材料のTgよりも高い温度で加熱する必要があり、Tgが高い材料を用いなければならない場合は、基材へのダメージのために、有機エレクトロルミネッセンス素子の特徴でもある曲面状に作製できるといったフレキシビリティー性の確保が困難になるといった問題があった。   In addition, a technique is disclosed in which the periphery of the organic layer is pressurized and heated at a pressure larger than atmospheric pressure during or after the formation of the organic layer to remove the residual solvent and improve the adhesion with the adjacent layer. (For example, refer to Patent Document 6). However, in this method, it is necessary to heat at a temperature higher than the Tg of the organic layer constituting material, and when a material having a high Tg must be used, the characteristics of the organic electroluminescence element are also used due to damage to the substrate. There has been a problem that it is difficult to ensure flexibility such that a curved surface can be produced.

また、導電性繊維を有する透明導電膜が透明PETフィルムの上に設けられた透明導電フィルムは透明導電膜のひび割れが無く、該透明導電フィルムに、有機発光層をウェットプロセスで積層して、発光ムラの無い有機エレクトロルミネッセンス素子を作製できることが特許文献1に記載されている。   In addition, the transparent conductive film in which the transparent conductive film having conductive fibers is provided on the transparent PET film has no cracks in the transparent conductive film, and an organic light emitting layer is laminated on the transparent conductive film by a wet process to emit light. Patent Document 1 describes that an organic electroluminescence element without unevenness can be produced.

しかし、特許文献1にも、有機発光層をウェットプロセスで積層して作製された有機EL素子において、発光効率を向上し、駆動電圧を低減し、連続駆動時の電圧上昇を抑制する手段は記載されていない。   However, Patent Document 1 also describes means for improving luminous efficiency, reducing driving voltage, and suppressing voltage rise during continuous driving in an organic EL element manufactured by laminating organic light emitting layers by a wet process. It has not been.

また、特許文献1の透明導電膜上に有機発光層等の有機層を積層し、その上に電極層を設けたときに、透明導電膜の金属ナノワイヤが有機発光層の外に露出し、陽極と陰極が短絡することがある。また、有機発光層のピンホールにより陽極と陰極が短絡し、発光しない場合がある。   Moreover, when organic layers, such as an organic light emitting layer, are laminated | stacked on the transparent conductive film of patent document 1, and the electrode layer was provided on it, the metal nanowire of a transparent conductive film will be exposed out of an organic light emitting layer, and an anode And the cathode may be short-circuited. Moreover, the anode and the cathode may be short-circuited by the pinhole of the organic light emitting layer, and light may not be emitted.

特開2009−252493号公報JP 2009-252493 A 特表2006−519712号公報JP 2006-519712 A 米国特許出願公開第2007/0074316A1号明細書US Patent Application Publication No. 2007 / 0074316A1 特開平8−306954号公報JP-A-8-306954 特開2005−100976号公報Japanese Patent Laid-Open No. 2005-100706 特開2005−26000号公報JP 2005-26000 A

本発明は、上記技術的背景に鑑みなされたものであり、その目的は、有機発光層をウェットプロセスで積層し、金属ナノワイヤを有する透明導電膜を用いることにより、ロールtoロールで効率良く生産することができ、透明導電膜の陽極と陰極との短絡故障が無く、発光効率が高く、低駆動電圧であり、且つ連続駆動時の電圧上昇が少ない有機エレクトロルミネッセンス素子を生産時故障少なく作製することにある。   The present invention has been made in view of the above-described technical background, and an object thereof is to efficiently produce roll-to-roll by using a transparent conductive film in which an organic light emitting layer is laminated by a wet process and metal nanowires are used. An organic electroluminescence device capable of producing an organic electroluminescence device that has no short-circuit failure between the anode and the cathode of the transparent conductive film, has high luminous efficiency, low driving voltage, and little voltage increase during continuous driving can be produced. It is in.

本発明の上記目的は下記の構成1〜7により達成される。
具体的に本発明によれば、構成1において、有機発光層の塗布液が、塗布された後、基板に張力をかけながら、減圧環境下で加熱される工程を有することを特徴とする有機エレクトロルミネッセンス素子の製造方法が提供される。
The above object of the present invention is achieved by the following configurations 1 to 7 .
Specifically, according to the present invention, the organic electroluminescent layer coating liquid according to the first aspect of the present invention includes a step of heating in a reduced pressure environment while applying tension to the substrate after being applied. A method for manufacturing a luminescent device is provided.

1.基板上に、一対の電極と、該電極間に有機発光層を含む有機積層体を有し、該電極の少なくとも1つが、金属ナノワイヤを含む透明導電膜であり、該有機発光層がウェットプロセスで作製される有機エレクトロルミネッセンス素子の製造方法において、該有機発光層の塗布液が、塗布された後、減圧環境下で加熱される工程を有することを特徴とする有機エレクトロルミネッセンス素子の製造方法。   1. A substrate has an organic laminate including an organic light emitting layer between a pair of electrodes and the electrode, and at least one of the electrodes is a transparent conductive film including metal nanowires, and the organic light emitting layer is formed by a wet process. In the manufacturing method of the organic electroluminescent element produced, after the coating liquid of this organic light emitting layer is apply | coated, it has the process heated under reduced pressure environment, The manufacturing method of the organic electroluminescent element characterized by the above-mentioned.

金属ナノワイヤを含有する透明導電膜はフレキシブルであり、その上に、正孔輸送層、有機発光層等を積層してローラー間を屈曲して搬送しても、剥離が生じにくい。   The transparent conductive film containing metal nanowires is flexible, and even if a hole transport layer, an organic light emitting layer, and the like are laminated thereon and bent and conveyed between rollers, peeling does not easily occur.

また、金属ナノワイヤが透明導電膜および有機発光層から突出することによる陰極との短絡は、塗布された有機発光層を減圧環境下で加熱乾燥することにより、有機発光層が有機溶剤を多く含む段階では減圧にすることにより有機発光層の温度を低くし、粘度が高く流れにくくなるために、突出した金属ナノワイヤを覆った状態を保ちやすい。乾燥が進んで、溶媒が十分に除去された段階では、加熱してももはや流れることは無い。このため、金属ナノワイヤが有機発光層から突出せず、その上に設けられる陰極との短絡が防止されると考えられる。   In addition, the short circuit with the cathode due to the metal nanowire protruding from the transparent conductive film and the organic light emitting layer is a stage in which the organic light emitting layer contains a large amount of an organic solvent by heating and drying the applied organic light emitting layer in a reduced pressure environment. Then, by reducing the pressure, the temperature of the organic light emitting layer is lowered, the viscosity is high, and it is difficult to flow. Therefore, it is easy to keep the state of covering the protruding metal nanowires. At the stage where the drying has progressed and the solvent has been sufficiently removed, it no longer flows even when heated. For this reason, it is thought that a metal nanowire does not protrude from an organic light emitting layer, and a short circuit with the cathode provided on it is prevented.

また、有機発光層を塗布後、減圧して加熱することにより、有機発光層の膜密度(体積密度)が向上し、蒸着により形成された発光層の密度に近くなると考えられる。密度が高まることにより、キャリアが移動しやすくなり、発光効率が向上し、駆動電圧が低下し、連続駆動時の電圧上昇が小さくなると推定される。   Further, it is considered that the film density (volume density) of the organic light-emitting layer is improved by applying the organic light-emitting layer after being reduced in pressure, and is close to the density of the light-emitting layer formed by vapor deposition. It is estimated that the increase in density facilitates the movement of carriers, improves the light emission efficiency, reduces the driving voltage, and reduces the voltage increase during continuous driving.

2.前記基板上に前記有機発光層を有する有機エレクトロルミネッセンス素子の製造方法において、該有機発光層を塗布した後、該基板に張力をかけながら、減圧環境下で加熱する工程を有することを特徴とする、前記1に記載の有機エレクトロルミネッセンス素子の製造方法。   2. In the method of manufacturing an organic electroluminescent element having the organic light emitting layer on the substrate, the method includes a step of heating in a reduced pressure environment while applying tension to the substrate after applying the organic light emitting layer. The manufacturing method of the organic electroluminescent element of said 1 ..

前記有機発光層の乾燥時に、更に張力を掛けることにより、ホストおよびドーパントが配向し、キャリアが移動しやすくなるために、発光効率が向上し、駆動電圧が低下し、連続駆動時の電圧上昇が小さくなると推定される。   By further applying tension when the organic light emitting layer is dried, the host and the dopant are oriented and carriers are easily moved, so that the light emission efficiency is improved, the drive voltage is lowered, and the voltage during continuous drive is increased. Estimated to be smaller.

3.前記基板が、フレキシブル性を有する材料を含有することを特徴とする前記1または2に記載の有機エレクトロルミネッセンス素子の製造方法。   3. 3. The method for producing an organic electroluminescent element according to 1 or 2, wherein the substrate contains a flexible material.

前記フレキシブルな基板を用いることにより、歩留まりが良好なロールtoロールの生産が可能である。   By using the flexible substrate, it is possible to produce a roll-to-roll with a good yield.

4.前記有機発光層の膜密度(A)と、該有機発光層と同じ組成の材料を蒸着することにより形成された有機発光層の膜密度(B)とが下記式を満足することを特徴とする前記1〜3のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法。   4). The film density (A) of the organic light emitting layer and the film density (B) of the organic light emitting layer formed by depositing a material having the same composition as the organic light emitting layer satisfy the following formula: The manufacturing method of the organic electroluminescent element of any one of said 1-3.

0g/cm≦(B)−(A)≦0.15g/cm
膜密度差を0〜0.15g/cmとすることにより、外部取り出し効率を向上し、駆動電圧および連続駆動時の電圧上昇を抑えることが出来る。
0 g / cm 3 ≦ (B) − (A) ≦ 0.15 g / cm 3
By setting the film density difference to 0 to 0.15 g / cm 3 , the external extraction efficiency can be improved, and the drive voltage and the voltage increase during continuous drive can be suppressed.

5.前記有機発光層の膜密度(A)と、該有機発光層と同じ組成の材料を蒸着することにより形成された有機発光層の膜密度(B)とが下記式を満足することを特徴とする前記1〜3のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法。   5. The film density (A) of the organic light emitting layer and the film density (B) of the organic light emitting layer formed by depositing a material having the same composition as the organic light emitting layer satisfy the following formula: The manufacturing method of the organic electroluminescent element of any one of said 1-3.

0g/cm≦(B)−(A)≦0.10g/cm
膜密度差を0〜0.10g/cmとすることにより、更に外部取り出し効率を向上し、駆動電圧および連続駆動時の電圧上昇を抑えることが出来る。膜密度差を小さくすることにより、ウェットプロセスにより形成された有機発光層中のキャリアの移動度が向上し、上記性能が向上したものと考えられる。
0 g / cm 3 ≦ (B) − (A) ≦ 0.10 g / cm 3
By setting the film density difference to 0 to 0.10 g / cm 3 , the external extraction efficiency can be further improved, and the drive voltage and voltage increase during continuous drive can be suppressed. By reducing the film density difference, it is considered that the carrier mobility in the organic light emitting layer formed by the wet process is improved, and the above performance is improved.

6.前記減圧環境の圧力が0.05kPa以上0.5kPa以下であることを特徴とする前記1〜5のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法。   6). 6. The method for producing an organic electroluminescent element according to any one of 1 to 5, wherein the pressure in the reduced pressure environment is 0.05 kPa or more and 0.5 kPa or less.

圧力が0.05kPa以上であれば、有機発光層の発泡による故障が起こりにくく、0.5kPa以下であれば、短絡故障が低減し、有機発光層の膜密度が高くなる。   If the pressure is 0.05 kPa or more, failure due to foaming of the organic light emitting layer hardly occurs, and if it is 0.5 kPa or less, short circuit failure is reduced and the film density of the organic light emitting layer is increased.

7.前記1〜6のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法によって作成された有機エレクトロルミネッセンス素子を具備することを特徴とする照明装置。   7). An illuminating device comprising the organic electroluminescence element produced by the method for producing an organic electroluminescence element according to any one of 1 to 6 above.

本発明により、高い発光効率、低い駆動電圧に加え、連続駆動時の電圧上昇が小さい有機エレクトロルミネッセンス素子を、収率良く連続的に製造することができる。   According to the present invention, it is possible to continuously produce an organic electroluminescence device with a high yield, a low driving voltage, and a small voltage increase during continuous driving with a high yield.

以下、本発明の有機EL素子の各構成要素の詳細について順次説明するが、本発明はこれらに限定されるものではない。   Hereinafter, although the detail of each component of the organic EL element of this invention is demonstrated one by one, this invention is not limited to these.

本発明においては、ホスト−ゲスト型の発光層を有する有機EL素子を、電極として金属ナノワイヤを含む透明導電膜を用い、かつ、少なくとも有機発光層をウェットプロセスで作製し、該有機発光層は塗布後、減圧環境下で加熱されることを特徴とする。   In the present invention, an organic EL device having a host-guest type light-emitting layer is prepared using a transparent conductive film containing metal nanowires as an electrode, and at least the organic light-emitting layer is produced by a wet process, and the organic light-emitting layer is applied. Then, it is heated in a reduced pressure environment.

特許文献2、特許文献3にあるような透明導電膜は、膜保持機能をポリマー等の有機物により発現し、かつ、導電機能を金属ナノワイヤにて確保する構造となっているため、透明導電膜のひび割れを回避し、高い歩留まりで生産することが可能となったと考えられる。   Since the transparent conductive film as in Patent Document 2 and Patent Document 3 has a structure in which a film holding function is expressed by an organic substance such as a polymer and the conductive function is secured by metal nanowires, It is thought that it became possible to avoid cracks and produce at a high yield.

また、このような素子を作製することにより、発光効率や駆動電圧が改善する理由は定かではないが、有機層積層体作製時において乾燥時の加熱・圧力条件を制御することにより、素子作製時には必要不可欠である一方作製後には不要となり残存することで性能劣化の主原因の一つとなりうる残存溶媒を徹底的に除去し、膜密度を高めることで、正孔とエレクトロンの再結合の機会の減少を抑制できると考えられる。あるいは、膜のモルフォロジーをより真空蒸着法で作製したものに近似させていると予想される。   In addition, although the reason why the luminous efficiency and driving voltage are improved by producing such an element is not certain, by controlling the heating and pressure conditions during drying during the production of the organic layer laminate, the element can be produced. While it is indispensable, it is not necessary after fabrication, and it remains unnecessary, and by thoroughly removing the residual solvent that can be one of the main causes of performance degradation and increasing the film density, there is an opportunity for recombination of holes and electrons. It is thought that the decrease can be suppressed. Alternatively, it is expected that the film morphology is more approximate to that produced by vacuum deposition.

尚、本発明に関する膜密度は、X線反射率測定法により求めることができる。極低角度、例えば0.2〜2度の範囲の反射率を測定し、得られた反射率曲線をフレネルの式より求められる多層膜試料の反射率の式にフィッティングすることにより求められる。フィッティングの方法については、L.G.Parratt.Phis.Rev.,95 359(1954年)を参考にすることができる。   In addition, the film density regarding this invention can be calculated | required by the X-ray reflectivity measuring method. It is obtained by measuring the reflectance in a very low angle, for example, in the range of 0.2 to 2 degrees, and fitting the obtained reflectance curve to the reflectance formula of the multilayer film sample obtained from the Fresnel formula. For the fitting method, see L.C. G. Parrat. Phis. Rev. 95 359 (1954).

《有機EL素子の層構成》
次に、本発明の有機EL素子の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
<< Layer structure of organic EL element >>
Next, although the preferable specific example of the layer structure of the organic EL element of this invention is shown below, this invention is not limited to these.

(i)陽極/発光層/電子輸送層/陰極
(ii)陽極/正孔輸送層/発光層/電子輸送層/陰極
(iii)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
(iv)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
(v)陽極/陽極バッファー層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
この内、陽極と陰極を除いた各層を総称して有機積層体とも言う。
(I) Anode / light emitting layer / electron transport layer / cathode (ii) Anode / hole transport layer / light emitting layer / electron transport layer / cathode (iii) Anode / hole transport layer / light emitting layer / hole blocking layer / electron Transport layer / cathode (iv) Anode / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode buffer layer / cathode (v) Anode / anode buffer layer / hole transport layer / light emitting layer / hole Blocking layer / electron transport layer / cathode buffer layer / cathode Among these, the layers excluding the anode and the cathode are collectively referred to as an organic laminate.

以下に各層について説明する。   Each layer will be described below.

《発光層》
発光層とは、電極または電子輸送層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する物質が有機化合物である場合に有機発光層という。発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよいが、層間での励起子の失活等が考えられることから発光層の層内であることが好ましい。
<Light emitting layer>
The light-emitting layer is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer, and is called an organic light-emitting layer when the light-emitting substance is an organic compound. The part that emits light may be in the layer of the light emitting layer or the interface between the light emitting layer and the adjacent layer, but it may be in the layer of the light emitting layer because of deactivation of excitons between layers. Is preferred.

発光層の膜厚は特に制限はないが、形成する膜の均質性や、発光時に不必要な高電圧を印加するのを防止し、且つ駆動電流に対する発光色の安定性向上の観点から、2〜200nmの範囲に調整することが好ましく、更に好ましくは5〜100nmの範囲に調整される。   The film thickness of the light emitting layer is not particularly limited, but it is 2 from the viewpoint of the uniformity of the film to be formed, the application of unnecessary high voltage during light emission, and the improvement of the stability of the emission color with respect to the drive current. It is preferable to adjust to the range of -200 nm, More preferably, it adjusts to the range of 5-100 nm.

以下に発光層に含まれるホスト化合物(発光ホストとも言う)と発光ドーパントについて説明する。   A host compound (also referred to as a light emitting host) and a light emitting dopant contained in the light emitting layer will be described below.

《ホスト化合物》
ホスト化合物とは、発光層に含有される化合物の内でその層中での質量比が20%以上であり、かつ室温(25℃)においてリン光発光のリン光量子収率が0.1未満の化合物と定義される。好ましくはリン光量子収率が0.01未満である。また、発光層に含有される化合物の中で、その層中での質量比が20%以上であることが好ましい。
《Host compound》
The host compound is a compound contained in the light emitting layer, the mass ratio of which is 20% or more, and the phosphorescence quantum yield of phosphorescence emission is less than 0.1 at room temperature (25 ° C.). Defined as a compound. The phosphorescence quantum yield is preferably less than 0.01. Moreover, it is preferable that the mass ratio in the layer is 20% or more among the compounds contained in a light emitting layer.

ホスト化合物としては、公知のホスト化合物を単独で用いてもよく、または複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。また、後述する発光ドーパントを複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。   As the host compound, known host compounds may be used alone or in combination of two or more. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient. Moreover, it becomes possible to mix different light emission by using multiple types of light emission dopants mentioned later, and, thereby, arbitrary luminescent colors can be obtained.

また、前記ホスト化合物としては、従来公知の低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(重合性発光ホスト)でもよい。   The host compound may be a conventionally known low molecular compound, a high molecular compound having a repeating unit, or a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (polymerizable light emitting host). .

併用してもよい公知のホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、かつ発光の長波長化を防ぎ、なおかつ高Tg(ガラス転移温度)である化合物が好ましい。公知のホスト化合物の具体例としては、以下の文献に記載されている化合物が挙げられる。   As the known host compound that may be used in combination, a compound that has a hole transporting ability and an electron transporting ability, prevents the emission of light from becoming longer, and has a high Tg (glass transition temperature) is preferable. Specific examples of known host compounds include compounds described in the following documents.

特開2001−257076号公報、同2002−308855号公報、同2001−313179号公報、同2002−319491号公報、同2001−357977号公報、同2002−334786号公報、同2002−8860号公報、同2002−334787号公報、同2002−15871号公報、同2002−334788号公報、同2002−43056号公報、同2002−334789号公報、同2002−75645号公報、同2002−338579号公報、同2002−105445号公報、同2002−343568号公報、同2002−141173号公報、同2002−352957号公報、同2002−203683号公報、同2002−363227号公報、同2002−231453号公報、同2003−3165号公報、同2002−234888号公報、同2003−27048号公報、同2002−255934号公報、同2002−260861号公報、同2002−280183号公報、同2002−299060号公報、同2002−302516号公報、同2002−305083号公報、同2002−305084号公報、同2002−308837号公報等。   JP-A-2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579, 2002-105445 gazette, 2002-343568 gazette, 2002-141173 gazette, 2002-352957 gazette, 2002-203683 gazette, 2002-363227 gazette, 2002-231453 gazette, No. 003-3165, No. 2002-234888, No. 2003-27048, No. 2002-255934, No. 2002-286061, No. 2002-280183, No. 2002-299060, No. 2002. -302516, 2002-305083, 2002-305084, 2002-308837, and the like.

《発光ドーパント》
前記発光ドーパントについて説明する。
《Light emitting dopant》
The luminescent dopant will be described.

前記発光ドーパントとしては、蛍光ドーパント、リン光ドーパントを用いることができるが、より発光効率の高い有機EL素子を得る観点からは、有機EL素子の発光層や発光ユニットに使用される発光ドーパントとしては、上記のホスト化合物を含有すると同時にリン光ドーパントを含有することが好ましい。   As the light-emitting dopant, a fluorescent dopant or a phosphorescent dopant can be used. From the viewpoint of obtaining an organic EL element with higher luminous efficiency, the light-emitting dopant used in the light-emitting layer or light-emitting unit of the organic EL element It is preferable to contain a phosphorescent dopant simultaneously with the host compound.

前記リン光ドーパントは、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができる。   The phosphorescent dopant can be appropriately selected from known materials used for the light emitting layer of the organic EL device.

前記リン光ドーパントとしては、好ましくは元素の周期表で8〜10族の金属を含有する錯体系化合物であり、更に好ましくはイリジウム化合物、オスミウム化合物、または白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。   The phosphorescent dopant is preferably a complex compound containing a group 8-10 metal in the periodic table of elements, more preferably an iridium compound, an osmium compound, a platinum compound (platinum complex compound), or a rare earth complex. Of these, iridium compounds are most preferred.

以下に、前記リン光ドーパントとして用いられる化合物の具体例を示すが、本発明はこれらに限定されない。これらの化合物は、例えば、Inorg.Chem.40巻、1704〜1711に記載の方法等により合成できる。   Although the specific example of the compound used as the said phosphorescence dopant is shown below, this invention is not limited to these. These compounds are described, for example, in Inorg. Chem. 40, 1704-1711, and the like.

Figure 0005266533
Figure 0005266533

Figure 0005266533
Figure 0005266533

Figure 0005266533
Figure 0005266533

Figure 0005266533
Figure 0005266533

Figure 0005266533
Figure 0005266533

Figure 0005266533
Figure 0005266533

《注入層:電子注入層、正孔注入層》
注入層は必要に応じて設け、電子注入層と正孔注入層があり、正孔注入層は陽極と発光層または正孔輸送層の間、電子注入層は陰極と発光層または電子輸送層との間に存在させてもよい。
<< Injection layer: electron injection layer, hole injection layer >>
The injection layer is provided as necessary, and there are an electron injection layer and a hole injection layer, the hole injection layer is between the anode and the light emitting layer or the hole transport layer, and the electron injection layer is a cathode and the light emitting layer or the electron transport layer. It may be present between.

注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。   An injection layer is a layer provided between an electrode and an organic layer in order to reduce drive voltage and improve light emission luminance. “Organic EL element and its forefront of industrialization (issued by NTT Corporation on November 30, 1998) 2), Chapter 2, “Electrode Materials” (pages 123 to 166) in detail, and includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).

陽極バッファー層(正孔注入層)は、特開平9−45479号公報、同9−260062号公報、同8−288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。   The details of the anode buffer layer (hole injection layer) are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069 and the like. As a specific example, copper phthalocyanine is used. Examples thereof include a phthalocyanine buffer layer represented by an oxide, an oxide buffer layer represented by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.

陰極バッファー層(電子注入層)は、特開平6−325871号公報、同9−17574号公報、同10−74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1nm〜5μmの範囲が好ましい。   The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium, aluminum, etc. Metal buffer layer typified by lithium, alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, oxide buffer layer typified by aluminum oxide, etc. . The buffer layer (injection layer) is preferably a very thin film, and the film thickness is preferably in the range of 0.1 nm to 5 μm although it depends on the material.

《阻止層:正孔阻止層、電子阻止層》
阻止層は、上記の如く有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11−204258号公報、同11−204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
<Blocking layer: hole blocking layer, electron blocking layer>
The blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, it is described in JP-A Nos. 11-204258, 11-204359, and “Organic EL elements and their forefront of industrialization” (issued by NTT, Inc. on November 30, 1998). There is a hole blocking (hole blocking) layer.

正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する電子輸送層の構成を必要に応じて、本発明に係わる正孔阻止層として用いることができる。   The hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. The probability of recombination of electrons and holes can be improved by blocking. Moreover, the structure of the electron carrying layer mentioned later can be used as a hole-blocking layer concerning this invention as needed.

本発明の有機EL素子の正孔阻止層は、発光層に隣接して設けられていることが好ましい。   The hole blocking layer of the organic EL device of the present invention is preferably provided adjacent to the light emitting layer.

正孔阻止層には、前述のホスト化合物として挙げたアザカルバゾール誘導体を含有することが好ましい。   The hole blocking layer preferably contains the azacarbazole derivative mentioned as the host compound.

また、本発明においては、複数の発光色の異なる複数の発光層を有する場合、その発光極大波長が最も短波にある発光層が、全発光層中、最も陽極に近いことが好ましいが、このような場合、該最短波層と該層の次に陽極に近い発光層との間に正孔阻止層を追加して設けることが好ましい。更には、該位置に設けられる正孔阻止層に含有される化合物の50質量%以上が、前記最短波発光層のホスト化合物に対しそのイオン化ポテンシャルが0.3eV以上大きいことが好ましい。   In the present invention, when a plurality of light emitting layers having different light emission colors are provided, the light emitting layer having the shortest wavelength of light emission is preferably closest to the anode among all the light emitting layers. In this case, it is preferable to additionally provide a hole blocking layer between the shortest wave layer and the light emitting layer next to the anode next to the anode. Furthermore, it is preferable that 50% by mass or more of the compound contained in the hole blocking layer provided at the position has an ionization potential of 0.3 eV or more larger than the host compound of the shortest wave emitting layer.

イオン化ポテンシャルは化合物のHOMO(最高被占分子軌道)レベルにある電子を真空準位に放出するのに必要なエネルギーで定義され、例えば、下記に示すような方法により求めることができる。   The ionization potential is defined by the energy required to emit electrons at the HOMO (highest occupied molecular orbital) level of the compound to the vacuum level, and can be determined by, for example, the following method.

(1)米国Gaussian製の分子軌道計算用ソフトウェアであるGaussian98(Gaussian98、Revision A.11.4,M.J.Frisch,et al,Gaussian,Inc.,Pittsburgh PA,2002.)を用い、キーワードとしてB3LYP/6−31G*を用いて構造最適化を行うことにより算出した値(eV単位換算値)の小数点第2位を四捨五入した値としてイオン化ポテンシャルを求めることができる。この計算値が有効な背景には、この手法で求めた計算値と実験値の相関が高いためである。   (1) Gaussian 98 (Gaussian 98, Revision A.11.4, MJ Frisch, et al, Gaussian, Inc., Pittsburgh PA, 2002.), a molecular orbital calculation software manufactured by Gaussian, USA, is used as a keyword. The ionization potential can be obtained as a value obtained by rounding off the second decimal place of a value (eV unit converted value) calculated by performing structural optimization using B3LYP / 6-31G *. This calculation value is effective because the correlation between the calculation value obtained by this method and the experimental value is high.

(2)イオン化ポテンシャルは光電子分光法で直接測定する方法により求めることもできる。例えば、理研計器製の低エネルギー電子分光装置「Model AC−1」を用いて、あるいは紫外光電子分光として知られている方法を好適に用いることができる。   (2) The ionization potential can also be obtained by a method of directly measuring by photoelectron spectroscopy. For example, a method known as ultraviolet photoelectron spectroscopy can be suitably used using a low energy electron spectrometer “Model AC-1” manufactured by Riken Keiki.

一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明に係る正孔阻止層、電子輸送層の膜厚としては、好ましくは3〜100nmであり、更に好ましくは5〜30nmである。   On the other hand, the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material that has a function of transporting holes and has an extremely small ability to transport electrons, and transports electrons while transporting holes. By blocking, the recombination probability of electrons and holes can be improved. Moreover, the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed. The film thickness of the hole blocking layer and the electron transporting layer according to the present invention is preferably 3 to 100 nm, and more preferably 5 to 30 nm.

《正孔輸送層》
正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数層設けることができる。
《Hole transport layer》
The hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. The hole transport layer can be provided as a single layer or a plurality of layers.

正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。   The hole transport material has any one of hole injection or transport and electron barrier properties, and may be either organic or inorganic. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.

正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。   The above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.

芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′−テトラフェニル−4,4′−ジアミノフェニル;N,N′−ジフェニル−N,N′−ビス(3−メチルフェニル)−〔1,1′−ビフェニル〕−4,4′−ジアミン(TPD);2,2−ビス(4−ジ−p−トリルアミノフェニル)プロパン;1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン;N,N,N′,N′−テトラ−p−トリル−4,4′−ジアミノビフェニル;1,1−ビス(4−ジ−p−トリルアミノフェニル)−4−フェニルシクロヘキサン;ビス(4−ジメチルアミノ−2−メチルフェニル)フェニルメタン;ビス(4−ジ−p−トリルアミノフェニル)フェニルメタン;N,N′−ジフェニル−N,N′−ジ(4−メトキシフェニル)−4,4′−ジアミノビフェニル;N,N,N′,N′−テトラフェニル−4,4′−ジアミノジフェニルエーテル;4,4′−ビス(ジフェニルアミノ)クオードリフェニル;N,N,N−トリ(p−トリル)アミン;4−(ジ−p−トリルアミノ)−4′−〔4−(ジ−p−トリルアミノ)スチリル〕スチルベン;4−N,N−ジフェニルアミノ−(2−ジフェニルビニル)ベンゼン;3−メトキシ−4′−N,N−ジフェニルアミノスチルベンゼン;N−フェニルカルバゾール、更には米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル(NPD)、特開平4−308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″−トリス〔N−(3−メチルフェニル)−N−フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。   Representative examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ', N'-tetraphenyl-4,4'-diaminophenyl; N, N'-diphenyl-N, N'- Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminophenyl) phenylmethane; N, N'-diphenyl-N, N ' − (4-methoxyphenyl) -4,4'-diaminobiphenyl; N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether; 4,4'-bis (diphenylamino) quadriphenyl; N, N, N-tri (p-tolyl) amine; 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene; 4-N, N-diphenylamino- (2-diphenylvinyl) benzene; 3-methoxy-4′-N, N-diphenylaminostilbenzene; N-phenylcarbazole, and also two of those described in US Pat. No. 5,061,569. Having a condensed aromatic ring in the molecule, for example, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), JP-A-4-3086 4,4 ', 4 "-tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 8 are linked in a starburst type ( MTDATA) and the like.

更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型−Si、p型−SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。   Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used. In addition, inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.

また、特開平11−251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、所謂p型正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子が得られることからこれらの材料を用いることが好ましい。   JP-A-11-251067, J. Org. Huang et. al. A so-called p-type hole transport material as described in a book (Applied Physics Letters 80 (2002), p. 139) can also be used. In the present invention, these materials are preferably used because a light-emitting element with higher efficiency can be obtained.

正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5〜200nmである。この正孔輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。   The hole transport layer can be formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. it can. Although there is no restriction | limiting in particular about the film thickness of a positive hole transport layer, Usually, 5 nm-about 5 micrometers, Preferably it is 5-200 nm. The hole transport layer may have a single layer structure composed of one or more of the above materials.

また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4−297076号公報、特開2000−196140号公報、同2001−102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。   Alternatively, a hole transport layer having a high p property doped with impurities can be used. Examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.

本発明においては、このようなp性の高い正孔輸送層を用いることが、より低消費電力の素子を作製することができるため好ましい。   In the present invention, it is preferable to use a hole transport layer having such a high p property because a device with lower power consumption can be produced.

《電子輸送層》
電子輸送層とは電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層または複数層設けることができる。
《Electron transport layer》
The electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. The electron transport layer can be provided as a single layer or a plurality of layers.

従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣接する電子輸送層に用いられる電子輸送材料(正孔阻止材料を兼ねる)としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。更に上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。   Conventionally, in the case of a single electron transport layer and a plurality of layers, an electron transport material (also serving as a hole blocking material) used for an electron transport layer adjacent to the light emitting layer on the cathode side is injected from the cathode. As long as it has a function of transferring electrons to the light-emitting layer, any material can be selected and used from among conventionally known compounds. For example, nitro-substituted fluorene derivatives, diphenylquinone derivatives Thiopyrandioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives and the like. Furthermore, in the above oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.

また、8−キノリノール誘導体の金属錯体、例えば、トリス(8−キノリノール)アルミニウム(Alq)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も、電子輸送材料として用いることができる。その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。   In addition, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), and the like, and the central metals of these metal complexes are In, Mg, Metal complexes replaced with Cu, Ca, Sn, Ga or Pb can also be used as the electron transport material. In addition, metal-free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.

また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型−Si、n型−SiC等の無機半導体も電子輸送材料として用いることができる。   In addition, the distyrylpyrazine derivative exemplified as the material of the light emitting layer can also be used as an electron transport material, and an inorganic semiconductor such as n-type-Si, n-type-SiC, etc. as in the case of the hole injection layer and hole transport layer Can also be used as an electron transporting material.

電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。電子輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5〜200nmである。電子輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。   The electron transport layer can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. Although there is no restriction | limiting in particular about the film thickness of an electron carrying layer, Usually, 5 nm-about 5 micrometers, Preferably it is 5-200 nm. The electron transport layer may have a single layer structure composed of one or more of the above materials.

また、不純物をゲスト材料としてドープしたn性の高い電子輸送層を用いることもできる。その例としては、特開平4−297076号公報、同10−270172号公報、特開2000−196140号公報、同2001−102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。   Alternatively, an electron transport layer with high n property doped with impurities as a guest material can be used. Examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.

本発明においては、このようなn性の高い電子輸送層を用いることがより低消費電力の素子を作製することができるため好ましい。   In the present invention, it is preferable to use an electron transport layer having such a high n property because an element with lower power consumption can be manufactured.

《電極》
本発明の有機EL素子は、有機発光層を挟んで一対の電極を有する。該電極一方は、陽極であり、もう一方は陰極である。また、該電極の少なくとも一方は金属ナノワイヤを含む透明導電膜である。
"electrode"
The organic EL device of the present invention has a pair of electrodes with an organic light emitting layer interposed therebetween. One of the electrodes is an anode and the other is a cathode. At least one of the electrodes is a transparent conductive film containing metal nanowires.

《陽極》
本発明では、ウェットプロセスにて高密度な膜を得るための生産性の観点より陽極として金属ナノワイヤを含む透明導電膜を用いることが好ましい。
"anode"
In the present invention, it is preferable to use a transparent conductive film containing metal nanowires as an anode from the viewpoint of productivity for obtaining a high-density film by a wet process.

本発明の透明導電性フィルムの全光線透過率は、60%以上、好ましくは70%以上、特に好ましくは80%以上であることが望ましい。全光透過率は、分光光度計等を用いた公知の方法に従って測定することができる。   The total light transmittance of the transparent conductive film of the present invention is 60% or more, preferably 70% or more, and particularly preferably 80% or more. The total light transmittance can be measured according to a known method using a spectrophotometer or the like.

本発明の透明導電性フィルムにおける電気抵抗値としては、表面比抵抗として表面抵抗率として1000Ω/□以下であることが好ましく、100Ω/□以下であることがより好ましく、10Ω/□以下であることが特に好ましい。   The electrical resistance value in the transparent conductive film of the present invention is preferably 1000Ω / □ or less, more preferably 100Ω / □ or less, and more preferably 10Ω / □ or less as surface resistivity as surface resistivity. Is particularly preferred.

前記表面比抵抗は、例えば、JIS K6911、ASTM D257、などに準拠して測定することができ、また市販の表面抵抗率計を用いて簡便に測定することができる。   The surface specific resistance can be measured based on, for example, JIS K6911, ASTM D257, etc., and can be easily measured using a commercially available surface resistivity meter.

《金属ナノワイヤを含む透明導電膜》
本発明における金属ナノワイヤを含む透明導電膜とは、金属ナノワイヤを含有する液を塗布乾燥することにより、自発的に金属ナノワイヤの無秩序な網目構造を形成して導電性を発現するような透明導電膜である。
<< Transparent conductive film containing metal nanowires >>
The transparent conductive film containing metal nanowires in the present invention is a transparent conductive film that spontaneously forms a disordered network structure of metal nanowires and develops conductivity by coating and drying a liquid containing metal nanowires. It is.

金属ナノワイヤとは、金属元素を主要な構成要素とする繊維状構造体のことをいう。特に、本発明において金属ナノワイヤとは、原子スケールからnmサイズの短径を有する多数の繊維状構造体を意味する。   The metal nanowire refers to a fibrous structure having a metal element as a main component. In particular, in the present invention, the metal nanowire means a number of fibrous structures having a minor axis from the atomic scale to the nm size.

金属ナノワイヤとしては、1つの金属ナノワイヤで長い導電パスを形成するために、平均長さが3μm以上であることが好ましく、さらには3〜500μmが好ましく、特に3〜300μmであることが好ましい。併せて、長さの相対標準偏差は40%以下であることが好ましい。また、平均短径には特に制限はないが、透明性の観点からは小さいことが好ましく、一方で、導電性の観点からは大きい方が好ましい。金属ナノワイヤの平均短径として10〜300nmが好ましく、30〜200nmであることがより好ましい。併せて、短径の相対標準偏差は20%以下であることが好ましい。金属ナノワイヤの目付け量は0.005g/m〜0.5g/mであるのが好ましく、0.01g/m〜0.2g/mであるのがより好ましい。 As the metal nanowire, in order to form a long conductive path with one metal nanowire, the average length is preferably 3 μm or more, more preferably 3 to 500 μm, and particularly preferably 3 to 300 μm. In addition, the relative standard deviation of the length is preferably 40% or less. Moreover, although there is no restriction | limiting in particular in an average breadth, it is preferable that it is small from a transparency viewpoint, and the larger one is preferable from a conductive viewpoint. The average minor axis of the metal nanowire is preferably 10 to 300 nm, and more preferably 30 to 200 nm. In addition, the relative standard deviation of the minor axis is preferably 20% or less. Basis weight of the metal nanowires is preferably from 0.005g / m 2 ~0.5g / m 2 , more preferably from 0.01g / m 2 ~0.2g / m 2 .

金属ナノワイヤに用いられる金属としては、例えば、Ag,Cu,Au,Al,Rh,Ir,Co,Zn,Ni,In,Fe,Pd,Pt,Sn,Ti等を挙げることができるが、銅、鉄、コバルト、金、銀等を用いることが好ましく、導電性および透明性の観点から銀が最も好ましい。また、金属は単一で用いてもよいが、導電性と安定性(金属ナノワイヤの硫化や酸化耐性、及びマイグレーション耐性)を両立するために、主成分となる金属と1種類以上の他の金属を任意の割合で含んでもよい。   Examples of the metal used for the metal nanowire include Ag, Cu, Au, Al, Rh, Ir, Co, Zn, Ni, In, Fe, Pd, Pt, Sn, and Ti. It is preferable to use iron, cobalt, gold, silver or the like, and silver is most preferable from the viewpoint of conductivity and transparency. In addition, although a single metal may be used, in order to achieve both conductivity and stability (sulfurization, oxidation resistance, and migration resistance of metal nanowires), the main metal and one or more other metals May be included in any proportion.

金属ナノワイヤの製造手段には特に制限はなく、例えば、液相法や気相法等の公知の手段を用いることができる。また、具体的な製造方法にも特に制限はなく、公知の製造方法を用いることができる。例えば、銀ナノワイヤの製造方法としては、Adv.Mater.,2002,14,833〜837;Chem.Mater.,2002,14,4736〜4745、金ナノワイヤの製造方法としては特開2006−233252号公報等、銅ナノワイヤの製造方法としては特開2002−266007号公報等、コバルトナノワイヤの製造方法としては特開2004−149871号公報等を参考にすることができる。特に、上述した銀ナノワイヤの製造方法は、水溶液中で簡便に銀ナノワイヤを製造することができ、また銀の導電率は金属中で最大であることから、好ましく適用することができる。   There is no restriction | limiting in particular in the manufacturing method of metal nanowire, For example, well-known means, such as a liquid phase method and a gaseous-phase method, can be used. Moreover, there is no restriction | limiting in particular in a specific manufacturing method, A well-known manufacturing method can be used. For example, as a method for producing silver nanowires, Adv. Mater. , 2002, 14, 833-837; Chem. Mater. 2002, 14, 4736-4745, a method for producing gold nanowires is disclosed in Japanese Patent Application Laid-Open No. 2006-233252, a method for producing copper nanowires is disclosed in Japanese Patent Application Laid-Open No. 2002-266007, and the like. Reference can be made to 2004-149871. In particular, the above-described method for producing silver nanowires can be preferably applied because silver nanowires can be easily produced in an aqueous solution, and the conductivity of silver is maximum in metals.

また、透明導電膜の構成としては、例えば、導電体の大部分が導電体支持層より露出したものであっても、逆に導電体の大部分が導電体支持層に埋没したものであっても、いかなる構造のものでもよい。   Moreover, as a structure of the transparent conductive film, for example, even if most of the conductor is exposed from the conductor support layer, conversely, most of the conductor is buried in the conductor support layer. Can be of any structure.

《陰極》
陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。
"cathode"
As the cathode, a material having a work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.

これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。 Among these, from the point of durability against electron injection and oxidation, etc., a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this, for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred. The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.

また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm〜5μm、好ましくは50〜200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機EL素子の陽極または陰極のいずれか一方が透明または半透明であれば発光輝度が向上し好都合である。   The sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 to 200 nm. In order to transmit the emitted light, if either one of the anode or the cathode of the organic EL element is transparent or translucent, the light emission luminance is improved, which is convenient.

また、陰極として、陽極の説明で挙げた透明導電膜をその上に作製することで、陽極と陰極の両方が透過性を有する素子を作製することもできる。   In addition, an element in which both the anode and the cathode are transmissive can be manufactured by forming the transparent conductive film described in the description of the anode on the cathode as the cathode.

《基板》
前記基板(以下、支持基板とも言う)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。基板側から光を取り出す場合には、基板は透明であることが好ましい。好ましく用いられる透明な基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
"substrate"
The substrate (hereinafter also referred to as a support substrate) is not particularly limited in the type of glass, plastic, and the like, and may be transparent or opaque. When extracting light from the substrate side, the substrate is preferably transparent. Examples of the transparent substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable substrate is a resin film capable of giving flexibility to the organic EL element.

樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(JSR製)あるいはアペル(三井化学製)といったシクロオレフィン系樹脂等を挙げられる。   Examples of the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), Cellulose esters such as cellulose acetate phthalate (TAC) and cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Polyetherimide, polyether ketone imide, polyamide, fluorine resin, nylon, polymethyl methacrylate, acrylic or polyarylates, and cycloolefin resins such as ARTON (manufactured by JSR) or APEL (manufactured by Mitsui Chemicals).

樹脂フィルムの表面には、無機物、有機物の被膜またはその両者のハイブリッド被膜が形成されていてもよく、水蒸気透過度が0.01g/m/日・atm以下のバリア性フィルムであることが好ましく、更には酸素透過度10−3g/m/日以下、水蒸気透過度10−5g/m/日以下の高バリア性フィルムであることが好ましい。 An inorganic or organic film or a hybrid film of both may be formed on the surface of the resin film, and a barrier film having a water vapor permeability of 0.01 g / m 2 / day · atm or less is preferable. Furthermore, a high barrier film having an oxygen permeability of 10 −3 g / m 2 / day or less and a water vapor permeability of 10 −5 g / m 2 / day or less is preferable.

バリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。   As a material for forming the barrier film, any material may be used as long as it has a function of suppressing entry of elements that cause deterioration of elements such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like can be used. Further, in order to improve the brittleness of the film, it is more preferable to have a laminated structure of these inorganic layers and organic material layers. Although there is no restriction | limiting in particular about the lamination | stacking order of an inorganic layer and an organic layer, It is preferable to laminate | stack both alternately several times.

バリア膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004−68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。   The method for forming the barrier film is not particularly limited. For example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma polymerization A plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.

不透明な基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。   Examples of the opaque substrate include a metal plate such as aluminum and stainless steel, a film, an opaque resin substrate, a ceramic substrate, and the like.

本発明の有機EL素子の発光の室温における外部取り出し量子効率は、1%以上であることが好ましく、より好ましくは5%以上である。ここに、外部取り出し量子効率(%)=(有機EL素子外部に発光した光子数)/(有機EL素子に流した電子数)×100である。   The external extraction quantum efficiency at room temperature of light emission of the organic EL device of the present invention is preferably 1% or more, more preferably 5% or more. Here, external extraction quantum efficiency (%) = (number of photons emitted to the outside of the organic EL element) / (number of electrons sent to the organic EL element) × 100.

また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。色変換フィルターを用いる場合においては、有機EL素子の発光のλmaxは480nm以下が好ましい。   In addition, a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor. In the case of using a color conversion filter, the λmax of light emission of the organic EL element is preferably 480 nm or less.

《封止》
本発明の有機EL素子の封止手段としては、例えば、封止部材と電極、支持基板とを接着剤で接着する方法を挙げることができる。
<Sealing>
As a sealing means of the organic EL element of this invention, the method of adhere | attaching a sealing member, an electrode, and a support substrate with an adhesive agent can be mentioned, for example.

封止部材としては、有機EL素子の表示領域を覆うように配置されておればよく、凹板状でも平板状でもよい。また透明性、電気絶縁性は特に問わない。   As a sealing member, it should just be arrange | positioned so that the display area | region of an organic EL element may be covered, and concave plate shape or flat plate shape may be sufficient. Further, transparency and electrical insulation are not particularly limited.

具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属または合金からなるものが挙げられる。   Specific examples include a glass plate, a polymer plate / film, and a metal plate / film. Examples of the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone. Examples of the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.

本発明においては、有機EL素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。更には、ポリマーフィルムは、JIS K 7126−1987に準拠した方法で測定された酸素透過度が1×10−3ml/m/24h以下、JIS K 7129−1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10−3g/(m/24h)以下のものであることが好ましい。 In the present invention, a polymer film and a metal film can be preferably used because the organic EL element can be thinned. Furthermore, the polymer film, measured oxygen permeability by the method based on JIS K 7126-1987 is 1 × 10 -3 ml / m 2 / 24h or less, as measured by the method based on JIS K 7129-1992 water vapor transmission rate (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) is preferably that of 1 × 10 -3 g / (m 2 / 24h) or less.

封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。   For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.

接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2−シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。   Specific examples of the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups such as acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. be able to. Moreover, heat | fever and chemical curing types (two-component mixing), such as an epoxy type, can be mentioned. Moreover, hot-melt type polyamide, polyester, and polyolefin can be mentioned. Moreover, a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.

なお、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。   In addition, since an organic EL element may deteriorate by heat processing, what can be adhesive-hardened from room temperature to 80 degreeC is preferable. A desiccant may be dispersed in the adhesive. Application | coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.

また、有機層を挟み基板と対向する側の電極の外側に該電極と有機層を被覆し、基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。   In addition, it is also possible to suitably form an inorganic or organic layer as a sealing film by covering the electrode and the organic layer on the outer side of the electrode facing the substrate with the organic layer interposed therebetween, and in contact with the substrate. In this case, the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can. Further, in order to improve the brittleness of the film, it is preferable to have a laminated structure of these inorganic layers and layers made of organic materials.

これらの膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。   There are no particular limitations on the method of forming these films. For example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.

封止部材と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また、真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。   In the gap between the sealing member and the display area of the organic EL element, an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil can be injected in the gas phase and liquid phase. preferable. A vacuum can also be used. Moreover, a hygroscopic compound can also be enclosed inside.

吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。   Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate). Etc.), metal halides (eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.), perchloric acids (eg perchloric acid) Barium, magnesium perchlorate, and the like), and anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.

《有機EL素子の作製方法》
本発明の有機EL素子の作製方法は、陽極と陰極に挟まれた有機積層体の内、有機発光層はウェットプロセスで成膜し、さらに好ましくは発光層を含め4層以上をウェットプロセスで成膜することである。有機積層体全てをウェットプロセスで形成することは、生産性の観点から特に好ましい。本発明で言うウェットプロセスとは、層を形成する際に層形成材料を溶液の形態で供給し、層形成を行うものである。
<< Method for producing organic EL element >>
In the organic EL device manufacturing method of the present invention, the organic light emitting layer is formed by a wet process in the organic laminate sandwiched between the anode and the cathode, and more preferably, four or more layers including the light emitting layer are formed by the wet process. Is to film. Forming all the organic laminates by a wet process is particularly preferable from the viewpoint of productivity. The wet process referred to in the present invention is to form a layer by supplying a layer forming material in the form of a solution when forming a layer.

本発明の有機EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極からなる有機EL素子の作製法を説明する。   As an example of the method for producing the organic EL device of the present invention, a method for producing an organic EL device comprising an anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode will be described.

まず、適当な基板上に金属ナノワイヤを含む透明導電膜を作製する。次に、この上に有機EL素子材料である正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、正孔阻止層等の有機化合物薄膜(有機層)を形成させる。   First, a transparent conductive film containing metal nanowires is prepared on a suitable substrate. Next, organic compound thin films (organic layers) such as a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a hole blocking layer, which are organic EL element materials, are formed thereon.

これら各層の形成方法としては、スピンコート法、ダイコート法、キャスト法、インクジェット法、スプレー法、印刷法、等のウェットプロセスが挙げられる。更には均質な膜が得られやすく、且つピンホールが生成しにくい等の点から、本発明においてはスピンコート法、ダイコート法、インクジェット法、スプレー法、印刷法等の塗布法による成膜が好ましい。   Examples of the method for forming each of these layers include wet processes such as spin coating, die coating, casting, ink jet, spraying, and printing. Further, in the present invention, it is preferable to form a film by a coating method such as a spin coating method, a die coating method, an ink jet method, a spray method, or a printing method because a homogeneous film is easily obtained and pinholes are hardly generated. .

ウェットプロセスにおいては、塗布後に溶媒を出来る限り除去することが好ましい。乾燥方法としては、減圧環境下の加熱乾燥が用いられる。   In the wet process, it is preferable to remove the solvent as much as possible after coating. As a drying method, heat drying in a reduced pressure environment is used.

《減圧環境下の加熱》
前記有機発光層は減圧環境下で加熱される。
<Heating under reduced pressure>
The organic light emitting layer is heated under a reduced pressure environment.

加熱の温度としては、80℃以上160℃以下が好ましく、フレキシブル性を有する樹脂基材を用いる場合は140℃以下が好ましい。   The heating temperature is preferably 80 ° C. or higher and 160 ° C. or lower. When a flexible resin base material is used, 140 ° C. or lower is preferable.

減圧環境としては、大気圧より低ければ塗布層の表面温度を低くできるので良いが、好ましくは0.05kPa以上0.5kPa以下である。   As the reduced pressure environment, if it is lower than atmospheric pressure, the surface temperature of the coating layer can be lowered, but it is preferably 0.05 kPa or more and 0.5 kPa or less.

前記減圧環境下で加熱されることにより、膜密度(体積密度)が向上する。一般的にウェットプロセスで作製した有機発光層の膜密度は同じ化合物を蒸着により形成した有機発光層のまく密度より低い。同じ組成の材料を蒸着して形成した有機発光層の膜密度との差が0〜0.15g/mであることが好ましく、0〜0.10g/mであることが更に好ましい。 By heating in the reduced pressure environment, the film density (volume density) is improved. Generally, the film density of the organic light emitting layer produced by the wet process is lower than the density of the organic light emitting layer formed by vapor deposition of the same compound. Preferably the difference between the film density of the organic light emitting layer formed by depositing a material of the same composition is 0~0.15g / m 3, and still more preferably from 0~0.10g / m 3.

《張力》
また、フレキシブル性を有する樹脂基材を用いる場合、乾燥時に一定の張力を与えることが好ましい。張力としては、基材や塗布膜面が破断しない限り特に制限はないが、1N/m以上30N/m以下が好ましく、10N/m以上30N/m以下が更に好ましい。
"tension"
Moreover, when using the resin base material which has flexibility, it is preferable to give a fixed tension at the time of drying. The tension is not particularly limited as long as the substrate or the coating film surface is not broken, but is preferably 1 N / m or more and 30 N / m or less, more preferably 10 N / m or more and 30 N / m or less.

張力が30N/m以下であれば、ピンホールが生じにくく、ピンホールによる短絡も少なく、歩留まりも良い。また、張力が1N/m以上であれば、膜密度が向上し、外部取り出し効率が向上し、駆動電圧が低下する。張力が10N/m以上であれば、更に膜密度が向上し、外部取り出し効率の向上および駆動電圧の低下が見られる。これら外部取り出し効率の向上および駆動電圧の低下は、張力を掛けて加熱することにより、有機発光層の配向が生じ、膜密度が向上することにより、生じたものと考えられる。   If the tension is 30 N / m or less, pinholes are unlikely to occur, short-circuiting due to pinholes is small, and yield is good. Further, if the tension is 1 N / m or more, the film density is improved, the external extraction efficiency is improved, and the driving voltage is lowered. When the tension is 10 N / m or more, the film density is further improved, the external extraction efficiency is improved, and the driving voltage is reduced. It is considered that the improvement of the external extraction efficiency and the decrease of the driving voltage are caused by the orientation of the organic light emitting layer caused by heating with tension and the film density being improved.

また、10N/m以上の張力を掛けることにより、短絡故障が低減する。これは金属ナノワイヤが張力を掛けることにより配向して対向する電極に接触しにくくなるためと考えられる。   Moreover, a short circuit failure is reduced by applying a tension of 10 N / m or more. This is presumably because the metal nanowires are oriented by applying tension and are difficult to contact the opposing electrodes.

乾燥工程において、樹脂基材のウェッブの搬送方向に張力を掛ける場合は、上流の搬送ローラーの周速度に対して、下流の搬送ローラーの周速度を早くする方法がある。また、幅方向に張力を掛ける場合は、テンターの左右把持手段によって樹脂基材の両端を把持し、張力を掛ける方法が好ましい。   In the drying step, when tension is applied in the web conveyance direction of the resin base material, there is a method of increasing the circumferential speed of the downstream conveyance roller with respect to the circumferential speed of the upstream conveyance roller. In addition, when tension is applied in the width direction, a method of applying tension by gripping both ends of the resin substrate with the right and left gripping means of the tenter is preferable.

《溶媒》
本発明の有機EL素子を作製する際に、材料を溶解または分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、2−ペンタノン等のケトン類、酢酸エチル、酢酸ブチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン、アニソール等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF、DMSO等の有機溶媒や、あるいは水を用いることができる。
"solvent"
Examples of the liquid medium in which the material is dissolved or dispersed when producing the organic EL device of the present invention include ketones such as methyl ethyl ketone, cyclohexanone, cyclopentanone, and 2-pentanone, and fatty acid esters such as ethyl acetate and butyl acetate. , Halogenated hydrocarbons such as dichlorobenzene, aromatic hydrocarbons such as toluene, xylene, mesitylene, cyclohexylbenzene and anisole, aliphatic hydrocarbons such as cyclohexane, decalin and dodecane, organic solvents such as DMF and DMSO Alternatively, water can be used.

これらの層を形成後、その上に陰極用物質からなる薄膜を1μm以下、好ましくは50〜200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法により形成させ、陰極を設けることにより所望の有機EL素子が得られる。   After these layers are formed, a thin film made of a cathode material is formed thereon by a method such as vapor deposition or sputtering so as to have a film thickness of 1 μm or less, preferably 50 to 200 nm, and a cathode is provided. Thus, a desired organic EL element can be obtained.

また、作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。このようにして得られた多色の表示装置に、直流電圧を印加する場合には陽極を+、陰極を−の極性として電圧2〜40V程度を印加すると発光が観測できる。また、交流電圧を印加してもよい。なお、印加する交流の波形は任意でよい。   In addition, it is also possible to reverse the production order and produce the cathode, the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode in this order. When a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the positive polarity of the anode and the negative polarity of the cathode. An alternating voltage may be applied. The alternating current waveform to be applied may be arbitrary.

《保護膜、保護板》
有機層を挟み基板と対向する側の前記封止膜、あるいは前記封止用フィルムの外側に、素子の機械的強度を高めるために保護膜、あるいは保護板を設けてもよい。特に封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量且つ薄膜化ということからポリマーフィルムを用いることが好ましい。
《Protective film, protective plate》
In order to increase the mechanical strength of the element, a protective film or a protective plate may be provided on the outer side of the sealing film on the side facing the substrate with the organic layer interposed therebetween or on the sealing film. In particular, when the sealing is performed by the sealing film, the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate. As a material that can be used for this, the same glass plate, polymer plate / film, metal plate / film, and the like used for the sealing can be used, but the polymer film is light and thin. Is preferably used.

《光取り出し》
有機EL素子は空気よりも屈折率の高い(屈折率が1.7〜2.1程度)層の内部で発光し、発光層で発生した光の内15%から20%程度の光しか取り出せないことが一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として光が素子側面方向に逃げるためである。
《Light extraction》
An organic EL element emits light inside a layer having a refractive index higher than that of air (refractive index is about 1.7 to 2.1), and only about 15% to 20% of light generated in the light emitting layer can be extracted. It is generally said. This is because light incident on the interface (interface between the transparent substrate and air) at an angle θ greater than the critical angle causes total reflection and cannot be taken out of the device, or between the transparent electrode or light emitting layer and the transparent substrate. This is because the light is totally reflected between the light and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the direction of the element side surface.

この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(米国特許第4,774,435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(特開昭63−314795号公報)、有機EL素子の側面等に反射面を形成する方法(特開平1−220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(特開昭62−172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(特開2001−202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11−283751号公報)等がある。   As a method for improving the light extraction efficiency, for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the interface between the transparent substrate and the air (US Pat. No. 4,774,435), A method for improving efficiency by giving light condensing property to a substrate (Japanese Patent Laid-Open No. 63-314795), a method for forming a reflective surface on the side surface of an organic EL element (Japanese Patent Laid-Open No. 1-220394), a substrate A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the substrate and the light emitter (Japanese Patent Laid-Open No. 62-172691), and lowering the refractive index than the substrate between the substrate and the light emitter. A method of introducing a flat layer having a structure (Japanese Patent Laid-Open No. 2001-202827), a method of forming a diffraction grating between any one of a substrate, a transparent electrode layer, and a light emitting layer (including between the substrate and the outside) No. 283751) .

本発明においては、これらの方法を本発明の有機EL素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、あるいは基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。   In the present invention, these methods can be used in combination with the organic EL device of the present invention. However, a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate, transparent A method of forming a diffraction grating between any layers of the electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.

本発明はこれらの手段を組み合わせることにより、更に高輝度あるいは耐久性に優れた有機EL素子を得ることができる。   In the present invention, by combining these means, it is possible to obtain an organic EL device having further high luminance or durability.

透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚みで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど外部への取り出し効率が高くなる。   When a medium having a low refractive index is formed between the transparent electrode and the transparent substrate with a thickness longer than the wavelength of light, the light extracted from the transparent electrode has a higher extraction efficiency to the outside as the refractive index of the medium is lower.

低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマー等が挙げられる。透明基板の屈折率は一般に1.5〜1.7程度であるので、低屈折率層は屈折率がおよそ1.5以下であることが好ましい。また、更に1.35以下であることが好ましい。   Examples of the low refractive index layer include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Further, it is preferably 1.35 or less.

また、低屈折率媒質の厚みは媒質中の波長の2倍以上となるのが望ましい。これは低屈折率媒質の厚みが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。   The thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave that has exuded by evanescent enters the substrate.

全反射を起こす界面もしくはいずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は回折格子が1次の回折や2次の回折といった所謂ブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光の内、層間での全反射等により外に出ることができない光をいずれかの層間、もしくは媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。   The method of introducing a diffraction grating into an interface or any medium that causes total reflection is characterized by a high effect of improving light extraction efficiency. This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction and second-order diffraction. Introduce a diffraction grating into any layer or medium (inside a transparent substrate or transparent electrode) for light that cannot be emitted outside due to total internal reflection between layers. I want to take it out.

導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な1次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がそれほど上がらない。しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。   The introduced diffraction grating desirably has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. Therefore, the light extraction efficiency does not increase so much. However, by making the refractive index distribution a two-dimensional distribution, light traveling in all directions is diffracted, and light extraction efficiency is increased.

回折格子を導入する位置としては、前述の通りいずれかの層間もしくは媒質中(透明基板内や透明電極内)でもよいが、光が発生する場所である有機発光層の近傍が望ましい。このとき、回折格子の周期は媒質中の光の波長の約1/2〜3倍程度が好ましい。   As described above, the position where the diffraction grating is introduced may be in any one of the layers or in the medium (in the transparent substrate or the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated. At this time, the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength of light in the medium.

回折格子の配列は、正方形のラチス状、三角形のラチス状、ハニカムラチス状等、2次元的に配列が繰り返されることが好ましい。   The arrangement of the diffraction grating is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, or a honeycomb lattice.

《集光シート》
本発明の有機EL素子は基板の光取り出し側に、例えば、マイクロレンズアレイ状の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせたりすることにより、特定方向、例えば、素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
<Condenser sheet>
The organic EL device of the present invention can be processed to provide, for example, a microlens array-like structure on the light extraction side of the substrate or combined with a so-called condensing sheet, for example, in a specific direction, for example, the device light emitting surface On the other hand, the brightness | luminance in a specific direction can be raised by condensing in a front direction.

マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10〜100μmが好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚みが厚くなり好ましくない。   As an example of the microlens array, quadrangular pyramids having a side of 30 μm and an apex angle of 90 degrees are two-dimensionally arranged on the light extraction side of the substrate. One side is preferably 10 to 100 μm. If it becomes smaller than this, the effect of diffraction will generate | occur | produce and color, and if too large, thickness will become thick and is not preferable.

集光シートとしては、例えば、液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして、例えば、住友スリーエム製輝度上昇フィルム(BEF)等を用いることができる。プリズムシートの形状としては、例えば、基板に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であってもよい。   As the condensing sheet, for example, a sheet that is put into practical use in an LED backlight of a liquid crystal display device can be used. As such a sheet, for example, Sumitomo 3M brightness enhancement film (BEF) can be used. As the shape of the prism sheet, for example, a triangle stripe having a vertex angle of 90 degrees and a pitch of 50 μm may be formed on the substrate, the vertex angle may be rounded, and the pitch may be changed randomly. Other shapes may be used.

また、発光素子からの光放射角を制御するために、光拡散板・フィルムを集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)等を用いることができる。   Moreover, in order to control the light emission angle from a light emitting element, you may use together a light diffusing plate and a film with a condensing sheet. For example, a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.

《用途》
本発明の有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。発光光源として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
<Application>
The organic EL element of the present invention can be used as a display device, a display, and various light emission sources. For example, lighting devices (home lighting, interior lighting), clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light Although the light source of a sensor etc. are mentioned, It is not limited to this, Especially, it can use effectively for the use as a backlight of a liquid crystal display device, and a light source for illumination.

本発明の有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。   In the organic EL element of the present invention, patterning may be performed by a metal mask, an ink jet printing method, or the like as needed during film formation. In the case of patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned. In the fabrication of the element, a conventionally known method is used. Can do.

本発明の有機EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS−1000(コニカミノルタセンシング製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。   The light emission color of the organic EL device of the present invention and the compound according to the present invention is shown in FIG. 4.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with the total CS-1000 (manufactured by Konica Minolta Sensing) is applied to the CIE chromaticity coordinates.

また、本発明の有機EL素子が白色素子の場合には、白色とは、2度視野角正面輝度を上記方法により測定した際に、1000Cd/mでのCIE1931表色系における色度がX=0.33±0.07、Y=0.33±0.1の領域内にあることを言う。本発明の有機EL素子の発光層には、発光ホスト化合物とゲスト材料としての発光ドーパントの少なくとも一種を含有することが好ましい。 Further, when the organic EL device of the present invention is a white device, white means that the chromaticity in the CIE1931 color system at 1000 Cd / m 2 is X when the 2 ° viewing angle front luminance is measured by the above method. = 0.33 ± 0.07 and Y = 0.33 ± 0.1. The light emitting layer of the organic EL device of the present invention preferably contains at least one of a light emitting host compound and a light emitting dopant as a guest material.

以下、実施例により本発明を説明するが、本発明はこれらに限定されない。   EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these.

また、以下に実施例で使用する化合物の構造を示す。   The structures of the compounds used in the examples are shown below.

Figure 0005266533
Figure 0005266533

(透明導電性フィルム1の形成)
(銀ナノワイヤ分散液、AGW−1の作製)
金属微粒子として、Adv.Mater.,2002,14,833〜837に記載の方法を参考に、還元剤としてEG(エチレングリコール;関東化学社製)を、形態制御剤兼保護コロイド剤としてPVP(ポリビニルピロリドン K30、分子量5万;ISP社製)を使用し、かつ核形成工程と粒子成長工程とを分離して粒子形成を行い、銀ナノワイヤ分散液を調製した。以下に各工程について記載する。
(Formation of transparent conductive film 1)
(Preparation of silver nanowire dispersion, AGW-1)
As metal fine particles, Adv. Mater. , 2002, 14, 833 to 837, EG (ethylene glycol; manufactured by Kanto Chemical Co., Inc.) as a reducing agent, and PVP (polyvinylpyrrolidone K30, molecular weight 50,000; ISP) as a shape control agent and protective colloid agent In addition, a nucleation step and a particle growth step were separated to form particles to prepare a silver nanowire dispersion. Each step is described below.

(核形成工程)
反応容器内で160℃に保持した100mlのEGを攪拌しながら、硝酸銀のEG溶液(硝酸銀濃度:0.1モル/L)2.0mlを一定の流量で1分間かけて添加した後、160℃で10分間保持し銀イオンを還元して銀の核粒子を形成した。反応液は、ナノサイズの銀微粒子の表面プラズモン吸収に由来する薄黄色を呈しており、銀イオンが還元されて銀の微粒子(核粒子)が形成されたことが確認できた。続いて、PVPのEG溶液(PVP濃度:3.24g/L)10.0mlを一定の流量で10分間かけて添加した。
(Nucleation process)
While stirring 100 ml of EG maintained at 160 ° C. in a reaction vessel, 2.0 ml of an EG solution of silver nitrate (silver nitrate concentration: 0.1 mol / L) was added at a constant flow rate over 1 minute, and then 160 ° C. At 10 minutes to reduce silver ions to form silver core particles. The reaction solution had a light yellow color derived from surface plasmon absorption of nano-sized silver fine particles, and it was confirmed that silver ions were reduced to form silver fine particles (nuclear particles). Subsequently, 10.0 ml of PVP EG solution (PVP concentration: 3.24 g / L) was added at a constant flow rate over 10 minutes.

(粒子成長工程)
上記核形成工程終了後の核粒子を含む反応液を攪拌しながら160℃に保持し、硝酸銀のEG溶液(硝酸銀濃度:1.0×10−1モル/L)100mlと、PVPのEG溶液(PVP濃度:3.24g/L)100mlを、ダブルジェット法を用いて一定の流量で120分間かけて添加した。粒子成長工程において、30分毎に反応液を採取して電子顕微鏡で確認したところ、核形成工程で形成された核粒子が時間経過に伴ってワイヤ状の形態に成長しており、粒子成長工程における新たな微粒子の生成は認められなかった。最終的に得られた銀ナノワイヤについて、電子顕微鏡写真を撮影し、300個の銀ナノワイヤ粒子像の長軸方向及び短軸方向の粒径を測定して算術平均を求めた。短軸方向の平均粒径は75nm、長軸方向の平均粒径は35μmであった。
(Particle growth process)
The reaction liquid containing the core particles after completion of the nucleation step is kept at 160 ° C. with stirring, 100 ml of an EG solution of silver nitrate (silver nitrate concentration: 1.0 × 10 −1 mol / L), and an EG solution of PVP ( 100 ml of PVP concentration: 3.24 g / L) was added over 120 minutes at a constant flow rate using the double jet method. In the particle growth process, the reaction solution was sampled every 30 minutes and confirmed with an electron microscope. As a result, the core particles formed in the nucleation process grew into a wire-like form over time. The formation of new fine particles was not observed. About the silver nanowire finally obtained, the electron micrograph was image | photographed, the particle size of the major axis direction and the minor axis direction of 300 silver nanowire particle images was measured, and the arithmetic average was calculated | required. The average particle size in the minor axis direction was 75 nm, and the average particle size in the major axis direction was 35 μm.

(脱塩水洗工程)
上記粒子形成工程を終了した反応液を室温まで冷却した後、0.2μmの限外濾過膜を用いて脱塩水洗処理を施した。これを更に水洗処理し、乾燥して銀ナノワイヤを得た。
(Demineralized water washing process)
After cooling the reaction liquid which completed the said particle | grain formation process to room temperature, the desalting water washing process was performed using the 0.2 micrometer ultrafiltration membrane. This was further washed with water and dried to obtain silver nanowires.

(分散液の調整)
その後、エタノール中に再分散して銀ナノワイヤ分散液AGW−1(銀ナノワイヤ含有量0.8質量%)を調製した。
(Dispersion adjustment)
Then, it redispersed in ethanol and prepared silver nanowire dispersion liquid AGW-1 (silver nanowire content 0.8 mass%).

(透明導電膜の形成)
調製した銀ナノワイヤ分散液AGW−1を、120mm×80mmの大きさで厚さ0.1mmのPEN基材支持体上に、銀ナノワイヤの目付け量が0.05g/mとなるように、銀ナノワイヤ分散液をスピンコーターを用いて塗布、乾燥させた後、銀ナノワイヤの塗布層にカレンダー処理を施して銀ナノワイヤ塗布フィルムを作製した。次いで、易接着加工を施したポリエチレンテレフタレートフィルム支持体の易接着面に、樹脂層として紫外線硬化型樹脂(オプトマーNN、JSR製)を、スピンコーターを用いて3μmの厚みに塗布し、樹脂層と、先に準備した銀ナノワイヤ塗布フィルムの塗布面側とが対面するように圧着し、易接着フィルム支持体側から紫外線を照射して紫外線硬化型樹脂を硬化させ、その後PEN基材支持体を剥離し、銀ナノワイヤ転写フィルムを得た。なお、この時の転写面の銀ナノワイヤを含む導電層の平均膜厚は250nmであった。各層の膜厚は、透過型電子顕微鏡(日立製作所社製、H9000NAR)による断層写真撮影を行い測定した。
(Formation of transparent conductive film)
The prepared silver nanowire dispersion AGW-1 was placed on a PEN substrate support having a size of 120 mm × 80 mm and a thickness of 0.1 mm so that the weight of silver nanowires was 0.05 g / m 2. The nanowire dispersion liquid was applied using a spin coater and dried, and then the silver nanowire coating layer was calendered to produce a silver nanowire-coated film. Next, an ultraviolet curable resin (Optomer NN, manufactured by JSR) is applied as a resin layer on the easy adhesion surface of the polyethylene terephthalate film support that has been subjected to easy adhesion processing to a thickness of 3 μm using a spin coater. Then, press-bond so that the coated surface side of the silver nanowire coated film prepared earlier faces, and irradiate ultraviolet rays from the easy-adhesive film support side to cure the ultraviolet curable resin, and then peel off the PEN substrate support. A silver nanowire transfer film was obtained. At this time, the average film thickness of the conductive layer containing silver nanowires on the transfer surface was 250 nm. The film thickness of each layer was measured by taking tomographic photographs with a transmission electron microscope (H9000NAR, manufactured by Hitachi, Ltd.).

得られた銀ナノワイヤ転写フィルムに、公知のフォトリソグラフィー法を用いてパターニングを行い、電極パターン幅10mmのストライプ状パターン電極を有する透明導電性フィルム1を得た。   The obtained silver nanowire transfer film was patterned using a known photolithography method to obtain a transparent conductive film 1 having a stripe pattern electrode having an electrode pattern width of 10 mm.

表面比抵抗を、ダイアインスツルメンツ製抵抗率計ロレスタGPを用いて、ストライプ状パターン部の表面比抵抗を四端子法で測定したところ、10Ω/□であった。また、透過率を、東京電色社製AUTOMATICHAZEMETER(MODEL TC−HIIIDP)を用いて、ストライプ状パターン部の全光線透過率を測定したところ、81%であった。   When the surface specific resistance was measured by a four-terminal method using a resistivity meter Loresta GP manufactured by Dia Instruments, the result was 10Ω / □. Further, the transmittance was 81% when the total light transmittance of the stripe-shaped pattern portion was measured using AUTOMATIC ZEZETER (MODEL TC-HIIIDP) manufactured by Tokyo Denshoku Co., Ltd.

実施例1
《有機EL素子101の作製》(比較例)
陽極として、ポリエチレンテレフタレートフィルム支持体の上にITO(インジウムチンオキシド)を100nm製膜した基板にパターニングを行った後、このITO透明電極を設けた透明支持基板をノルマルプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行い、ITO基板を作成した。
Example 1
<< Preparation of Organic EL Element 101 >> (Comparative Example)
As an anode, after patterning on a substrate in which ITO (indium tin oxide) was formed to 100 nm on a polyethylene terephthalate film support, the transparent support substrate provided with this ITO transparent electrode was ultrasonically cleaned with normal propyl alcohol, Drying was performed with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes to prepare an ITO substrate.

このITO基板に、ポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホネート(PEDOT/PSS、Bayer製、Baytron P Al 4083)を純水で70%に希釈した溶液を膜厚が40nmになるように、スピンコート条件を調整して製膜した。塗布後120℃にて1時間乾燥し、正孔注入層を設けた。   A solution obtained by diluting poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS, Bayer, Baytron P Al 4083) to 70% with pure water on this ITO substrate so that the film thickness becomes 40 nm. Then, the film was formed by adjusting the spin coating conditions. After coating, the film was dried at 120 ° C. for 1 hour to provide a hole injection layer.

次いで、基板を真空蒸着装置に取付け、真空槽を4×10−4Paまで減圧し、化合物HT−1を蒸着法により製膜して正孔輸送層とした。膜厚は27nmとした。次に、同じく真空蒸着装置内で、同様の真空度を保ち、ホスト化合物として前記H−1、青色発光ドーパント化合物として前記D−1とを共蒸着した。合計で43nmの厚さとなるようにし、D−1はH−1に対し、22.3体積%となるようにした。 Next, the substrate was attached to a vacuum deposition apparatus, the vacuum chamber was depressurized to 4 × 10 −4 Pa, and the compound HT-1 was formed by a deposition method to form a hole transport layer. The film thickness was 27 nm. Next, in the same vacuum deposition apparatus, the same degree of vacuum was maintained, and H-1 as a host compound and D-1 as a blue light-emitting dopant compound were co-deposited. The total thickness was 43 nm, and D-1 was 22.3% by volume with respect to H-1.

次いで、電子注入層としてLiFを蒸着法により1nmで成膜し、アルミニウム110nmを蒸着して陰極を形成し、最後に凹状に加工したポリエチレンテレフタレートフィルムの封止部材を、シアノアクリレート系接着剤により有機EL素子を作成した基板に貼り付け封止することで有機EL素子101を作製した。   Next, LiF is deposited as an electron injection layer at a thickness of 1 nm by vapor deposition, aluminum 110 nm is vapor deposited to form a cathode, and finally a concavely processed polyethylene terephthalate film sealing member is organically treated with a cyanoacrylate adhesive. The organic EL element 101 was produced by pasting and sealing on the substrate on which the EL element was produced.

《有機EL素子102の作製》(比較例)
前記のようにして作製、洗浄したITO基板上に、有機EL素子101の作製と同様にしてPEDOT/PSSを塗布、乾燥した。
<< Preparation of Organic EL Element 102 >> (Comparative Example)
PEDOT / PSS was applied and dried on the ITO substrate prepared and washed as described above in the same manner as the production of the organic EL element 101.

次いで、基板を窒素雰囲気下のグローブボックスへと移動し、化合物HT−1(50mg)をモノクロロベンゼン10mlに溶解させた溶液を用い、スピンコート法にて膜厚が27nmとなる条件で製膜し、室温にて窒素下で溶媒を揮発させ、正孔輸送層とした。   Next, the substrate was moved to a glove box under a nitrogen atmosphere, and a film obtained by dissolving the compound HT-1 (50 mg) in 10 ml of monochlorobenzene was formed by a spin coating method under a condition that the film thickness was 27 nm. The solvent was volatilized under nitrogen at room temperature to form a hole transport layer.

次いで、グローブボックス中で発光ホスト化合物であるH−1(100mg)と青色発光ドーパント化合物であるD−1(19mg)とをエチルベンゼン10mlに溶解させた溶液を用いて、スピンコート法にて乾燥後の膜厚が43nmとなる条件で製膜し、室温にて窒素下で溶媒を揮発させ、青色発光層とした。   Next, after drying by spin coating using a solution prepared by dissolving H-1 (100 mg) as a luminescent host compound and D-1 (19 mg) as a blue luminescent dopant compound in 10 ml of ethylbenzene in a glove box. Was formed under the condition that the film thickness was 43 nm, and the solvent was volatilized at room temperature under nitrogen to obtain a blue light emitting layer.

その後に電子注入層としてLiFを蒸着法により1nmで成膜し、アルミニウム110nmを蒸着して陰極を形成し封止することにより、有機EL素子102を作製した。   Thereafter, LiF was deposited as an electron injection layer at a thickness of 1 nm by a vapor deposition method, and aluminum 110 nm was vapor deposited to form a cathode and sealed, whereby the organic EL element 102 was fabricated.

《有機EL素子103の作製》(比較例)
有機EL素子102の作製において、前記ITO基板に替えて、前記透明導電性フィルム1を用いた以外は素子102と同様にして、有機EL素子103を作製した。
<< Preparation of Organic EL Element 103 >> (Comparative Example)
In the production of the organic EL element 102, an organic EL element 103 was produced in the same manner as the element 102 except that the transparent conductive film 1 was used instead of the ITO substrate.

《有機EL素子104の作製》(比較例)
有機EL素子102の作製において、H−1とD−1のエチルベンゼン溶液を製膜した後の乾燥条件を、表1、表2に記載の通り、圧力0.1kPa、120℃で60分間とした他は同様にして有機EL素子104を作製した。
<< Preparation of Organic EL Element 104 >> (Comparative Example)
In the production of the organic EL element 102, the drying conditions after forming the ethylbenzene solution of H-1 and D-1 were set to 60 minutes at 120 ° C. under a pressure of 0.1 kPa as shown in Tables 1 and 2. Otherwise, the organic EL element 104 was produced in the same manner.

なお、表1、表2の乾燥条件において、窒素下は大気圧の窒素雰囲気を言い、kPa単位で記載されている圧力は、乾燥工程の塗布層を囲む空気圧を表す。   In the drying conditions shown in Tables 1 and 2, under nitrogen, an atmosphere of nitrogen at atmospheric pressure is referred to, and the pressure described in kPa represents the air pressure surrounding the coating layer in the drying process.

《有機EL素子105〜114の作製》(比較例、本発明)
有機EL素子103の作製において、H−1とD−1のエチルベンゼン溶液を塗布した後の乾燥条件を表1、表2に示したものに変更した以外は有機EL素子103と同様にして、有機EL素子105〜114を作製した。
<< Preparation of Organic EL Elements 105-114 >> (Comparative Example, Present Invention)
In the production of the organic EL element 103, the organic EL element 103 was organically treated in the same manner as the organic EL element 103 except that the drying conditions after applying the ethylbenzene solution of H-1 and D-1 were changed to those shown in Tables 1 and 2. EL elements 105 to 114 were produced.

《有機EL素子115〜117の作製》(比較例、本発明)
有機EL素子103の作製において、発光ホスト化合物H−1を発光ホスト化合物H−2に替え、H−2とD−1のエチルベンゼン溶液を塗布した後の乾燥条件を表1、表2に示した通りに変更した他は有機EL素子103と同様にして、有機EL素子115〜117を作製した。
<< Preparation of Organic EL Elements 115-117 >> (Comparative Example, Present Invention)
Table 1 and Table 2 show the drying conditions after applying the ethylbenzene solution of H-2 and D-1 in the production of the organic EL element 103, replacing the luminescent host compound H-1 with the luminescent host compound H-2. Organic EL elements 115 to 117 were produced in the same manner as the organic EL element 103 except that the method was changed as described above.

《張力を加える方法》
有機EL素子110〜114、116、117は有機発光層の塗布液を塗布後、乾燥工程で張力を加えながら、表1、表2の条件で乾燥している。張力は、水平に置いた試料の周囲をクリップで把持し、クリップに繋いだ糸を滑車と錘で引っ張ることにより、試料の縦横両方向に加えた。
<Method of applying tension>
The organic EL elements 110 to 114, 116, and 117 are dried under the conditions shown in Tables 1 and 2 while applying a tension in the drying process after applying the organic light emitting layer coating solution. The tension was applied in both the vertical and horizontal directions of the sample by gripping the periphery of the sample placed horizontally with a clip and pulling the thread connected to the clip with a pulley and a weight.

《有機EL素子の評価》
作製した有機EL素子について、下記のようにして外部取り出し量子効率、駆動電圧、連続駆動時の電圧上昇、短絡故障および歩留まりの評価を行った。
<< Evaluation of organic EL elements >>
The produced organic EL device was evaluated for external extraction quantum efficiency, drive voltage, voltage rise during continuous drive, short circuit failure, and yield as follows.

(膜密度差)
膜密度は、X線反射率測定法により求めた。X線発生源は銅をターゲットとし、50kV−300mAで作動させ、多層膜ミラーとGe(111)チャンネルカットモノクロメーターにて単色化したX線を使用した。測定は、ソフトウェア−ATX−Crystal Guide Ver.6.5.3.4を用い、アライメント調整後、2θ/ω=0〜1度を0.002度/stepで0.05度/minで走査した。上記の測定条件で反射率曲線を測定した後、株式会社リガク製GXRR Ver.2.1.0解析ソフトウェアを用いて測定し、膜密度差を下記式により算出した。蒸着法で作成した膜の密度と、蒸着以外の方法で作製した膜の密度との差を求めた。尚、塗布膜部分の膜密度は、素子101は1.20、素子106は1.09であった。膜密度差を表1、表2に記した。
(Film density difference)
The film density was determined by an X-ray reflectance measurement method. The X-ray generation source was made of copper as a target, operated at 50 kV-300 mA, and X-rays monochromatic with a multilayer mirror and a Ge (111) channel cut monochromator were used. The measurement was performed using software-ATX-Crystal Guide Ver. Using 6.5.3.4, after alignment adjustment, 2θ / ω = 0 to 1 degree was scanned at 0.002 degree / step at 0.05 degree / min. After measuring the reflectance curve under the above measurement conditions, GXRR Ver. 2.1.0 Measurement was performed using analysis software, and the film density difference was calculated by the following formula. The difference between the density of the film produced by the vapor deposition method and the density of the film produced by a method other than vapor deposition was determined. The film density of the coating film portion was 1.20 for the element 101 and 1.09 for the element 106. The film density differences are shown in Tables 1 and 2.

膜密度差=(蒸着で作製した有機発光層の密度)−(ウェットプロセスで作製した有機発光層の密度)
ただし、前記ウェットプロセスと蒸着は、溶媒の他は同じ組成の材料を用いる。
Difference in film density = (density of organic light emitting layer produced by vapor deposition) − (density of organic light emitting layer produced by wet process)
However, the wet process and vapor deposition use materials having the same composition other than the solvent.

(外部取り出し量子効率)
作製した有機EL素子に対し、2.5mA/cm定電流を印加したときの外部取り出し量子効率(%)を測定した。外部取り出し量子効率は以下の式により算出される。
(External quantum efficiency)
External quantum efficiency (%) was measured when a 2.5 mA / cm 2 constant current was applied to the produced organic EL element. The external extraction quantum efficiency is calculated by the following equation.

外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100
なお、測定には分光放射輝度計CS−1000(コニカミノルタセンシング製)を用いた。有機EL素子101〜111の外部取り出し量子効率は、有機EL素子101(比較例)の測定値を100とした相対値で表した。外部取り出し量子効率の相対値を表1、表2に記した。
External extraction quantum efficiency (%) = number of photons emitted to the outside of the organic EL element / number of electrons sent to the organic EL element × 100
For the measurement, a spectral radiance meter CS-1000 (manufactured by Konica Minolta Sensing) was used. The external extraction quantum efficiencies of the organic EL elements 101 to 111 were expressed as relative values with the measured value of the organic EL element 101 (comparative example) as 100. The relative values of external extraction quantum efficiency are shown in Tables 1 and 2.

(駆動電圧)
有機EL素子を室温(約23℃〜25℃)、2.5mA/cmの定電流条件下により駆動したときの電圧を各々測定し、測定結果を下記に示すように、有機EL素子101(比較例)を100として各々相対値で示した。駆動電圧の相対値を表1、表2に記した。
(Drive voltage)
Each voltage was measured when the organic EL element was driven at room temperature (about 23 ° C. to 25 ° C.) under a constant current condition of 2.5 mA / cm 2 , and the measurement results are shown below. Comparative example) is taken as 100, and each is shown as a relative value. The relative values of the drive voltage are shown in Tables 1 and 2.

(連続駆動時の電圧上昇)
作製した有機EL素子に対し、正面輝度2000cd/mとなるような電流を与え、正面輝度が初期の半減値(1000cd/m)になるまで連続駆動し、駆動終了時から駆動前の電圧を差し引いた値を連続駆動時の電圧上昇として求めた。
(Voltage rise during continuous driving)
A current that gives a front luminance of 2000 cd / m 2 is applied to the produced organic EL element, and the device is continuously driven until the front luminance reaches an initial half value (1000 cd / m 2 ). The value obtained by subtracting was calculated as the voltage increase during continuous driving.

A:連続駆動時の電圧上昇が0.5V未満
B:連続駆動時の電圧上昇が0.5V以上1.0V未満
C:連続駆動時の電圧上昇が1.0V以上2.0V未満
D:連続駆動時の電圧上昇が2.0V以上。
A: Voltage increase during continuous driving is less than 0.5 V B: Voltage increase during continuous driving is 0.5 V or more and less than 1.0 V C: Voltage increase during continuous driving is 1.0 V or more and less than 2.0 V D: Continuous The voltage rise during driving is 2.0V or more.

連続駆動時の電圧上昇の評価結果を表1、表2に記した。   Tables 1 and 2 show the evaluation results of voltage rise during continuous driving.

(短絡故障率)
作製した有機EL素子に対し、順方向に0.5mA/cmの電流が流れるような電圧を順方向と逆方向に印加し、流れる電流の比率を整流比として求め、リーク電流の大小の指標とした。整流比が10以下の場合を短絡故障とし、各水準につき10サンプル作製し、10サンプル中短絡故障が発生するサンプル数を短絡故障率として評価した。
(Short-circuit failure rate)
A voltage that causes a current of 0.5 mA / cm 2 to flow in the forward direction is applied to the manufactured organic EL element in the reverse direction, and the ratio of the flowing current is obtained as a rectification ratio. It was. A case where the rectification ratio was 10 or less was regarded as a short circuit failure, 10 samples were prepared for each level, and the number of samples in which a short circuit failure occurred in 10 samples was evaluated as a short circuit failure rate.

短絡故障率=「(整流比が10以下のサンプル数/全作製・評価サンプル数)×100」(%)
短絡故障率を表1、表2に記した。
Short-circuit failure rate = “(number of samples with a rectification ratio of 10 or less / number of all fabricated / evaluated samples) × 100” (%)
The short-circuit failure rates are shown in Tables 1 and 2.

(歩留まり)
ロール径10cmおよび20cmのロールtoロール生産を想定して、次のような歩留まり評価を行った。ロール径10cmおよび20cmのロールに巻きつけて1時間保持した後にロールから外し、2.5mA/cmの定電流条件下により駆動したときに発光故障がないかどうかを確認した。発光故障とは、電極のひび割れによる短絡等により素子の少なくとも一部分が発光しなくなる現象のことをいう。各水準につき10サンプル作製し、10サンプル中故障が発生するサンプル数を歩留まりとして評価した。故障数が少ないほど生産時の故障が少なく、歩留まりが高いことをあらわしている。
(Yield)
The following yield evaluation was performed assuming roll-to-roll production with roll diameters of 10 cm and 20 cm. It was wound around rolls with roll diameters of 10 cm and 20 cm, held for 1 hour, then removed from the roll, and it was confirmed whether or not there was any light emission failure when driven under a constant current condition of 2.5 mA / cm 2 . A light emission failure refers to a phenomenon in which at least a part of an element does not emit light due to a short circuit caused by cracking of an electrode. Ten samples were prepared for each level, and the number of samples in which failure occurred in 10 samples was evaluated as a yield. The smaller the number of failures, the fewer failures during production and the higher the yield.

歩留まり=(故障が発生したサンプル数/全作製・評価サンプル数)×100」(%)
ロール径10cmおよび20cmにおける歩留まりを表1、表2に記した。
Yield = (number of samples in which failure occurred / total number of manufactured / evaluated samples) x 100 "(%)
Yields at roll diameters of 10 cm and 20 cm are shown in Tables 1 and 2.

Figure 0005266533
Figure 0005266533

Figure 0005266533
Figure 0005266533

表1、表2に示す通り、金属ナノワイヤを含む透明導電膜上に有機発光層を含む有機積層体を設けた素子において、ウェットプロセスで有機発光層を塗布したときの乾燥を、減圧をしながら加熱して行うことにより、蒸着で作成した有機層との膜密度の差をより少なくすることで、外部取り出し効率(発光効率)、駆動電圧、連続駆動時の電圧上昇が抑制されて各々が蒸着で作製された素子に近似した性能となり、短絡故障を防止でき、かつ歩留まりよく作製できることがわかる。   As shown in Tables 1 and 2, in an element in which an organic laminate including an organic light emitting layer is provided on a transparent conductive film including metal nanowires, drying when applying the organic light emitting layer by a wet process is performed while reducing the pressure. By heating, by reducing the difference in film density from the organic layer created by vapor deposition, the external extraction efficiency (light emission efficiency), drive voltage, and voltage increase during continuous drive are suppressed, and each is vapor deposited. It can be seen that the performance is similar to that of the device manufactured in (1), the short-circuit failure can be prevented, and the device can be manufactured with high yield.

Claims (6)

基板上に、一対の電極と、該電極間に有機発光層を含む有機積層体を有し、該電極の少なくとも1つが、金属ナノワイヤを含む透明導電膜であり、該有機発光層がウェットプロセスで作製される有機エレクトロルミネッセンス素子の製造方法において、該有機発光層の塗布液が、塗布された後、前記基板に張力をかけながら、減圧環境下で加熱される工程を有することを特徴とする有機エレクトロルミネッセンス素子の製造方法。 A substrate has an organic laminate including an organic light emitting layer between a pair of electrodes and the electrode, and at least one of the electrodes is a transparent conductive film including metal nanowires, and the organic light emitting layer is formed by a wet process. In the method for producing an organic electroluminescent element to be produced, the organic light-emitting layer coating liquid is applied and then heated in a reduced pressure environment while applying tension to the substrate. Manufacturing method of electroluminescent element. 前記基板が、フレキシブル性を有する材料を含有することを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子の製造方法。 The method for producing an organic electroluminescent element according to claim 1, wherein the substrate contains a material having flexibility. 前記有機発光層の膜密度(A)と、該有機発光層と同じ組成の材料を蒸着することにより形成された有機発光層の膜密度(B)とが下記式を満足することを特徴とする請求項1または2に記載の有機エレクトロルミネッセンス素子の製造方法。
0g/cm≦(B)−(A)≦0.15g/cm
The film density (A) of the organic light emitting layer and the film density (B) of the organic light emitting layer formed by depositing a material having the same composition as the organic light emitting layer satisfy the following formula: The manufacturing method of the organic electroluminescent element of Claim 1 or 2 .
0 g / cm 3 ≦ (B) − (A) ≦ 0.15 g / cm 3
前記有機発光層の膜密度(A)と、該有機発光層と同じ組成の材料を蒸着することにより形成された有機発光層の膜密度(B)とが下記式を満足することを特徴とする請求項1または2に記載の有機エレクトロルミネッセンス素子の製造方法。
0g/cm≦(B)−(A)≦0.10g/cm
The film density (A) of the organic light emitting layer and the film density (B) of the organic light emitting layer formed by depositing a material having the same composition as the organic light emitting layer satisfy the following formula: The manufacturing method of the organic electroluminescent element of Claim 1 or 2 .
0 g / cm 3 ≦ (B) − (A) ≦ 0.10 g / cm 3
前記減圧環境の圧力が0.05kPa以上0.5kPa以下であることを特徴とする請求項1〜のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法。 The method for producing an organic electroluminescent element according to any one of claims 1 to 4 , wherein the pressure in the reduced pressure environment is 0.05 kPa or more and 0.5 kPa or less. 請求項1〜のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法によって作成された有機エレクトロルミネッセンス素子を具備することを特徴とする照明装置。 Lighting apparatus characterized by comprising the organic electroluminescence element produced by the method of manufacturing an organic electroluminescent device according to any one of claims 1-5.
JP2010033301A 2010-02-18 2010-02-18 Method for manufacturing organic electroluminescence element and lighting device Expired - Fee Related JP5266533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010033301A JP5266533B2 (en) 2010-02-18 2010-02-18 Method for manufacturing organic electroluminescence element and lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010033301A JP5266533B2 (en) 2010-02-18 2010-02-18 Method for manufacturing organic electroluminescence element and lighting device

Publications (2)

Publication Number Publication Date
JP2011171092A JP2011171092A (en) 2011-09-01
JP5266533B2 true JP5266533B2 (en) 2013-08-21

Family

ID=44685007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010033301A Expired - Fee Related JP5266533B2 (en) 2010-02-18 2010-02-18 Method for manufacturing organic electroluminescence element and lighting device

Country Status (1)

Country Link
JP (1) JP5266533B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4075425B2 (en) * 2002-03-20 2008-04-16 セイコーエプソン株式会社 ORGANIC EL DEVICE, ORGANIC EL DEVICE MANUFACTURING METHOD, ORGANIC EL DEVICE MANUFACTURING DEVICE, AND ELECTRONIC DEVICE
WO2006117981A1 (en) * 2005-04-26 2006-11-09 Konica Minolta Opto, Inc. Optical film, polarizing plate, and in-plane switching mode liquid crystal display
JP5079231B2 (en) * 2005-11-16 2012-11-21 三井化学株式会社 Thin film, low molecular organic material, and organic electroluminescent device comprising the thin film comprising the low molecular organic material
JP2007234934A (en) * 2006-03-02 2007-09-13 Konica Minolta Holdings Inc Organic electroluminescence element, method for manufacturing organic electroluminescence element, display, and luminaire
JP5167747B2 (en) * 2006-10-04 2013-03-21 三菱化学株式会社 Charge transport material for low molecular weight coating type organic electroluminescent device, composition for organic electroluminescent device, thin film for organic electroluminescent device, and organic electroluminescent device
US8198796B2 (en) * 2008-07-25 2012-06-12 Konica Minolta Holdings, Inc. Transparent electrode and production method of same

Also Published As

Publication number Publication date
JP2011171092A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
WO2011046166A1 (en) Organic electroluminescent element and lighting device using same
WO2012029750A1 (en) Organic electroluminescent element, process for production thereof, display device, and lighting device
JP5716301B2 (en) Method for manufacturing organic electroluminescence element
JP6337883B2 (en) Electronic devices
WO2011102249A1 (en) Method of manufacturing organic electronic device, and organic electronic device
WO2011132550A1 (en) Organic electroluminescent element, display device, and illumination device
JP2010192369A (en) Method of manufacturing organic electroluminescent element and organic electroluminescent elelement manufactured by this method
JP6090343B2 (en) Method for manufacturing organic electroluminescence element
JP5589852B2 (en) Organic electroluminescence device and method for manufacturing the same
JP5181920B2 (en) Method for manufacturing organic electroluminescence element
JP6197404B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND ELECTRONIC DEVICE
WO2009116414A1 (en) Organic electroluminescence element
JP5879737B2 (en) Method for manufacturing organic electroluminescence element
JP6592915B2 (en) Transparent electrode substrate and manufacturing method thereof, electronic device and organic EL device
JP2009252944A (en) Organic electroluminescence element and its manufacturing method
WO2012063656A1 (en) Process for producing organic electroluminescent element
JP5472107B2 (en) Method for manufacturing organic electroluminescent element
JP2010177338A (en) Organic electroluminescent element, and method of manufacturing the same
JP2009289716A (en) Organic electroluminescence element and its manufacturing method
JP2008305613A (en) Manufacturing method of organic electroluminescent element
JP2009152033A (en) Method of manufacturing organic electroluminescent element, organic electroluminescent element, display device, and illumination device
JP5266533B2 (en) Method for manufacturing organic electroluminescence element and lighting device
WO2010084816A1 (en) Organic electroluminescent element, and method for producing same
JP5152331B2 (en) ORGANIC ELECTROLUMINESCENT DEVICE AND MANUFACTURING METHOD THEREOF
JP2012169199A (en) Organic electroluminescent element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130130

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R150 Certificate of patent or registration of utility model

Ref document number: 5266533

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees