JP5261127B2 - Coating composition for forming a negative electrode film and an electrode film of a lithium ion capacitor - Google Patents

Coating composition for forming a negative electrode film and an electrode film of a lithium ion capacitor Download PDF

Info

Publication number
JP5261127B2
JP5261127B2 JP2008265969A JP2008265969A JP5261127B2 JP 5261127 B2 JP5261127 B2 JP 5261127B2 JP 2008265969 A JP2008265969 A JP 2008265969A JP 2008265969 A JP2008265969 A JP 2008265969A JP 5261127 B2 JP5261127 B2 JP 5261127B2
Authority
JP
Japan
Prior art keywords
negative electrode
value
coating
range
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008265969A
Other languages
Japanese (ja)
Other versions
JP2010098020A (en
Inventor
稔 白髭
栄和 山田
由人 金賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Powdered Metals Co Ltd
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2008265969A priority Critical patent/JP5261127B2/en
Publication of JP2010098020A publication Critical patent/JP2010098020A/en
Application granted granted Critical
Publication of JP5261127B2 publication Critical patent/JP5261127B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode coating film and a coating composition for forming an electrode coating film of a lithium ion capacitor suitable for the capacitor of high energy density in unit volume and high output density by reduction in internal resistance corresponding to the power use of an automobile, a crane or the like. <P>SOLUTION: For the negative electrode coating film of the lithium ion capacitor, the coating composition for forming an electrode coating film formed by containing non-graphitizable carbon, a conductive assistant and a binder in a water medium containing dispersant is applied to metal foil, heated, dried and formed into a coating film. The conductive assistant comprises at least one of Ketjenblack, acetylene black and graphite. For the particle size distribution of configuring particles in the negative electrode coating film, a D<SB>10</SB>particle diameter is &ge;0.5 &mu;m, a D<SB>50</SB>particle diameter is in a range of 1 to 4 &mu;m, and a D<SB>90</SB>particle diameter is &le;8 &mu;m. The specified surface area of the negative electrode coating film is in a range of 1.5 to 25 m<SP>2</SP>/g, and the surface roughness of the negative electrode coating film is in a range of 0.1 to 0.3 &mu;m. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、自動車用やクレーンなど、パワー用途に対応する単位体積あたりの高エネルギー密度と内部抵抗の低減による高出力密度のキャパシターに適するリチウムイオンキャパシターの負極被膜及び電極被膜形成用塗料組成物に関する。   The present invention relates to a coating composition for forming a negative electrode film and an electrode film of a lithium ion capacitor suitable for a capacitor having a high output density by reducing a high energy density and internal resistance per unit volume, such as for automobiles and cranes. .

電気二重層キャパシター(Electric Double Layer Capacitor:EDLC)は容量が大きく、高出力でメンテナンスフリーなどの特長により、自発光式道路鋲、瞬間電圧低下補償装置や太陽電池の平滑化電源、クレーンなどの回生電源、自動車のアイドリングストップ電源などで使用が開始され、今後、更なる拡大が期待されている。また、負極にリチウムイオンのインターカレーション反応を利用するリチウムイオンキャパシター(Lithium-Ion Capacitor:LIC)はEDLCよりエネルギー密度を約4倍高くできるため、高容量化が望まれる産業用や自動車用などの電源としての展開が期待されている。   Electric Double Layer Capacitor (EDLC) has a large capacity, high output and maintenance-free features. Regeneration of self-luminous road fences, instantaneous voltage drop compensation devices, smoothing power supplies for solar cells, cranes, etc. It has been used for power supplies and idling stop power supplies for automobiles, and further expansion is expected in the future. Lithium-Ion Capacitor (LIC), which uses lithium-ion intercalation reaction for the negative electrode, can increase the energy density by about 4 times compared to EDLC, so that it can be used in industrial and automotive applications where higher capacity is desired. Development as a power source is expected.

例えば、特許文献1には、エネルギー密度や出力密度に関し、室温での特性と同時に、低温での特性、特に静電容量が低下することのない改良された蓄電装置を提供することを目的に、負極の50%体積累積径(D50)が0.1〜2.0μmである負極活物質粒子から形成し、さらに負極活物質粒子の全メソ孔容積が0.005〜1.0cm/gで、比表面積が0.01〜1000m/gである炭素材料またはポリアセン系物質を負極とするリチウムイオンキャパシターが開示されている。 For example, Patent Document 1 relates to energy density and output density, with the aim of providing an improved power storage device that does not lower the characteristics at low temperature, in particular, the capacitance, at the same time as the characteristics at room temperature. A negative electrode active material particle having a 50% volume cumulative diameter (D 50 ) of 0.1 to 2.0 μm is formed, and the total mesopore volume of the negative electrode active material particle is 0.005 to 1.0 cm 3 / g. A lithium ion capacitor using a carbon material or a polyacene-based material having a specific surface area of 0.01 to 1000 m 2 / g as a negative electrode is disclosed.

また、特許文献2には、エネルギー密度および出力密度が高く、かつ耐電圧も高く、耐久性に優れたリチウムイオンキャパシターを提供することを目的に、リチウムイオンおよび/またはアニオンを可逆的に担持可能な物質からなる正極と、リチウムイオンを可逆的に担持可能な物質からなる負極を備えており、かつ電解液としてリチウム塩の非プロトン性有機溶媒電解質溶液を備えたリチウムイオンキャパシターであって、(a)負極活物質が、水素原子/炭素原子の原子数比が0以上0.05未満の難黒鉛化性炭素であり、(b)セルの充電電圧に対し1/2の電圧まで放電した際の負極電位がリチウム金属電位に対し0.15V以下になるように、予め負極および/または正極に対してリチウムイオンがドーピングされていることが開示されている。   Patent Document 2 discloses that lithium ions and / or anions can be reversibly supported for the purpose of providing a lithium ion capacitor having high energy density and high output density, high withstand voltage, and excellent durability. A lithium ion capacitor having a positive electrode made of a material and a negative electrode made of a material capable of reversibly supporting lithium ions, and having an aprotic organic solvent electrolyte solution of a lithium salt as an electrolyte, a) When the negative electrode active material is non-graphitizable carbon having a hydrogen atom / carbon atom number ratio of 0 or more and less than 0.05, and (b) when discharged to a voltage half that of the charging voltage of the cell It can be seen that the negative electrode and / or the positive electrode is previously doped with lithium ions so that the negative electrode potential of the negative electrode is 0.15 V or less with respect to the lithium metal potential. It is.

また、特許文献3には、低温特性、エネルギー密度のさらなる向上および高出力化が図られた蓄電デバイス用負極活物質を提供することを目的に、コアとなる炭素粒子と、炭素粒子の表面および/または内部に形成されたグラフェン構造を有する繊維状炭素との炭素複合体からなり、全メソ孔容積が0.005〜1.0cm/g、細孔径100〜400Åのメソ孔が全メソ孔容積の25%以上を占めるように構成し、さらに炭素複合体の比表面積が0.01〜2000m/gである負極材料、また炭素粒子が易黒鉛化性炭素、難黒鉛化性炭素、黒鉛およびポリアセン系物質のうちの少なくとも一つからなる負極活物質が開示されている。 In Patent Document 3, for the purpose of providing a negative electrode active material for an electricity storage device that is further improved in low temperature characteristics, energy density, and output, the core carbon particles, the surface of the carbon particles, // consisting of a carbon composite with a fibrous carbon having a graphene structure formed inside, and mesopores having a total mesopore volume of 0.005 to 1.0 cm 3 / g and a pore diameter of 100 to 400 mm are all mesopores A negative electrode material that occupies 25% or more of the volume, and the carbon composite has a specific surface area of 0.01 to 2000 m 2 / g, and the carbon particles are graphitizable carbon, non-graphitizable carbon, graphite And a negative electrode active material comprising at least one of polyacene-based materials.

また、特許文献4には、リチウムイオンキャパシターにおいて高いエネルギー密度、高い出力密度、高い耐久性が得られる負極材料を提供することを目的に、負極活物質にd002の平均格子面間隔が0.335〜0.337nmの黒鉛を使用し、さらに負極活物質には90%体積累積径(D90)と10%体積累積径(D10)の差(D90−D10)≦7.0μmの黒鉛、また50%体積累積径(D50)がD50≦4.0μmであるリチウムイオンキャパシターが開示されている。 Patent Document 4 discloses that a negative electrode active material has an average lattice spacing of d 002 of 0.00 for the purpose of providing a negative electrode material capable of obtaining high energy density, high output density, and high durability in a lithium ion capacitor. 335-0.337 nm of graphite is used, and the negative electrode active material has a difference (D 90 -D 10 ) ≦ 7.0 μm between 90% volume cumulative diameter (D 90 ) and 10% volume cumulative diameter (D 10 ). Graphite and a lithium ion capacitor having a 50% volume cumulative diameter (D 50 ) of D 50 ≦ 4.0 μm are disclosed.

特開2006−303330号公報JP 2006-303330 A 特開2007−115721号公報JP 2007-115721 A 特開2008−66053号公報JP 2008-66053 A 特開2008−103596号公報JP 2008-103596 A

しかしながら、自動車用やクレーンなど、パワー用途に対しては単位体積あたりの高エネルギー密度と内部抵抗の低減による高出力密度のキャパシターが要求され、リチウムイオンキャパシターの用途拡大にあたっては、さらなる内部抵抗の低減とコストの低減が重要な課題となっている。   However, for power applications such as automobiles and cranes, high energy density per unit volume and high output density capacitors by reducing internal resistance are required. Further expansion of lithium ion capacitor applications further reduces internal resistance. And cost reduction is an important issue.

難黒鉛化性炭素は、規則的な黒鉛の結晶構造が殆ど無いため、不規則なリチウムイオン吸蔵サイトを有する。またリチウムイオン吸蔵サイトは黒鉛の層間より広いため、リチウムイオンの細孔内拡散が速く、リチウムイオン吸蔵時の膨張も殆ど起こらない炭素材料である。この特徴を生かし、リチウムイオン二次電池のサイクル特性向上や出力向上用として、またハイブリッド自動車用途のリチウムイオン電池の負極材料として、難黒鉛化性炭素が使用されている。   Since non-graphitizable carbon has almost no regular graphite crystal structure, it has irregular lithium ion storage sites. Moreover, since the lithium ion storage site is wider than the graphite layer, it is a carbon material in which lithium ions diffuse rapidly in the pores and hardly expand during lithium ion storage. Taking advantage of this feature, non-graphitizable carbon is used for improving cycle characteristics and output of lithium ion secondary batteries and as a negative electrode material for lithium ion batteries for hybrid vehicles.

難黒鉛化性炭素を用いたリチウムイオン二次電池の負極形成用塗料としては、バインダーをポリフッ化ビニリデン粉末、媒体をN−メチルピロリドンなどとした有機溶剤系スラリーのタイプが一般的で、媒体を水系とした水性塗料組成物は見当たらない。このことは、リチウムイオン二次電池より検討の浅いリチウムイオンキャパシターにおいては、さらに顕著になり、本発明者らは、この検討が殆どされていないと考えている。   The paint for forming a negative electrode of a lithium ion secondary battery using non-graphitizable carbon is generally an organic solvent-based slurry type in which the binder is polyvinylidene fluoride powder and the medium is N-methylpyrrolidone. There is no water-based aqueous coating composition. This is even more remarkable in lithium ion capacitors that are less studied than lithium ion secondary batteries, and the present inventors believe that this study has hardly been made.

さらに、リチウムイオンキャパシターでは、負極にリチウムイオンをプレドープする必要があるために、負極材料の設計は、リチウムイオン電池用負極材の設計方法とは方向性が異なる。具体的には、内部抵抗の低減と容量の向上が最優先になり、不可逆容量の許容範囲は大きくなる。このため、リチウムイオンキャパシター用負極電極の設計にあたっては、高比表面積化、小粒径化、塗膜構造の最適化など、従来にはない設計が必要になる。   Furthermore, in a lithium ion capacitor, since it is necessary to pre-dope lithium ions in the negative electrode, the design of the negative electrode material is different in direction from the design method of the negative electrode material for lithium ion batteries. Specifically, reduction of internal resistance and improvement of capacity are given top priority, and the allowable range of irreversible capacity is increased. For this reason, when designing a negative electrode for a lithium ion capacitor, an unprecedented design such as a high specific surface area, a small particle size, and an optimized coating film structure is required.

リチウムイオンキャパシターを普及化させるためには、キャパシターの容量の向上と内部抵抗の低減を達成する電極被膜を得る必要がある。そこで、本発明の課題は、負極被膜中の構成粒子の粒度、特に被膜の主構成材である難黒鉛化性炭素の粒度を最適化し、電極被膜形成用塗料組成物の塗工条件を最適化し、得られる被膜の膜構造の最適化することによって、単位体積あたりの高エネルギー密度と内部抵抗の低減による高出力密度のキャパシターに適するリチウムイオンキャパシターの負極被膜及び電極被膜形成用塗料組成物を提供することにある。   In order to popularize lithium ion capacitors, it is necessary to obtain an electrode coating that achieves an increase in the capacitance of the capacitor and a reduction in internal resistance. Therefore, the object of the present invention is to optimize the particle size of the constituent particles in the negative electrode coating, particularly the particle size of the non-graphitizable carbon that is the main constituent material of the coating, and optimize the coating conditions of the coating composition for forming the electrode coating. The coating composition for forming a negative electrode film and an electrode film of a lithium ion capacitor suitable for a capacitor with a high output density by reducing the internal energy and high energy density per unit volume by optimizing the film structure of the obtained film There is to do.

前記課題を解決するために、本発明は、分散剤を含む水媒体中に、難黒鉛化炭素、導電助剤およびバインダーを含有してなる電極被膜形成用塗料組成物を金属箔上に塗工法で塗布した後、60〜180℃の加熱温度で被膜化させたリチウムイオンキャパシターの負極被膜であって、
前記難黒鉛化性炭素のラマンスペクトルのピーク面積比であるR値が1.5〜1.7の範囲であり、Dバンドの半値幅であるW値が90〜102の範囲であり、
前記導電助剤がケッチェンブラック、アセチレンブラック及び黒鉛の中の少なくとも何れか一種からなり、
前記負極被膜中の構成粒子の粒度分布は、D10粒子径が0.5μm以上、D50粒子径が1〜4μmの範囲、D90粒子径が8μm以下であり、
前記負極被膜の比表面積が1.5〜25m/gの範囲であり、
前記負極被膜の表面粗さが0.1〜0.3μmの範囲であることを特徴とするリチウムイオンキャパシターの負極被膜とする。
ここで、「前記負極被膜中の構成粒子」は、前記負極被膜を主に構成する粒状配合材である難黒鉛化炭素及び導電助剤を含む粒子を言い、負極被膜を構成する粒子を微細化することにより、リチウムイオンの拡散抵抗が低減し内部抵抗の低減、即ち、出力の向上に寄与する。また、電極被膜形成用ペースト(塗料組成物)の塗工性が被膜の平滑さと密度に影響を及ぼし、被膜の平滑さが優れた負極被膜を形成するために重要な要件となる。
In order to solve the above-mentioned problems, the present invention provides a method for coating a metal foil with a coating composition for forming an electrode film comprising non-graphitizable carbon, a conductive aid and a binder in an aqueous medium containing a dispersant. A negative electrode film of a lithium ion capacitor formed by coating at a heating temperature of 60 to 180 ° C.
The R value which is the peak area ratio of the Raman spectrum of the non-graphitizable carbon is in the range of 1.5 to 1.7, and the W value which is the half width of the D band is in the range of 90 to 102.
The conductive auxiliary agent comprises at least one of ketjen black, acetylene black and graphite,
The particle size distribution of the constituent particles in the negative electrode coating, D 10 particle size of 0.5μm or more, D 50 ranging particle size of 1 to 4 [mu] m, and a D 90 particle size of 8μm or less,
The specific surface area of the negative electrode coating is in the range of 1.5 to 25 m 2 / g,
The negative electrode film of the lithium ion capacitor is characterized in that the surface roughness of the negative electrode film is in the range of 0.1 to 0.3 μm.
Here, “the constituent particles in the negative electrode coating” refers to particles containing non-graphitizable carbon, which is a granular compounding material mainly constituting the negative electrode coating, and a conductive additive, and the particles constituting the negative electrode coating are refined. By doing so, the diffusion resistance of lithium ions is reduced, which contributes to reduction of internal resistance, that is, improvement of output. Also, the coatability of the electrode film-forming paste (coating composition) affects the smoothness and density of the film, which is an important requirement for forming a negative electrode film with excellent film smoothness.

また、前記課題を解決するために、本発明は、前記負極被膜のラマン分光スペクトルのピーク面積比であるR値が1.3〜1.7の範囲であり、Dバンドの半値幅であるW値が72〜115の範囲である前記のリチウムイオンキャパシターの負極被膜とすることが好ましい。負極被膜構成粒子の中で特に難黒鉛化性炭素は微粒子化により固有の構造が劣化していないことが重要である。 In order to solve the above problems, the present invention provides an R value, which is a peak area ratio of a Raman spectrum of the negative electrode film, in the range of 1.3 to 1.7, and a W value that is a half-value width of the D band. The negative electrode film of the lithium ion capacitor having a value in the range of 72 to 115 is preferable. Among the negative electrode film-constituting particles, it is important that non-graphitizable carbon is not deteriorated in its inherent structure due to fine particles.

また、前記課題を解決するために、本発明は、前記負極被膜の膜厚40μmのシート抵抗値が40〜400Ωの範囲である前記のリチウムイオンキャパシターの負極被膜とすることが好ましい。内部抵抗を低減するためには電気抵抗を低減することが重要である。   Moreover, in order to solve the said subject, it is preferable to set this invention as the negative electrode film of the said lithium ion capacitor whose sheet resistance value of the film thickness of 40 micrometers of the said negative electrode film is the range of 40-400 (ohm). In order to reduce internal resistance, it is important to reduce electrical resistance.

また、前記課題を解決するために、本発明は、前記負極被膜の塗膜密度が0.8〜1.05g/cmの範囲である前記のリチウムイオンキャパシターの負極被膜とすることが好ましい。リチウムイオンキャパシターの容量を向上するためには塗膜密度を高くする必要がある。前記構成とすることにより、容量と出力がともに優れたリチウムイオンキャパシターが得られる機序による。 Moreover, in order to solve the said subject, it is preferable that this invention is set as the negative electrode film of the said lithium ion capacitor whose coating film density of the said negative electrode film is the range of 0.8-1.05g / cm < 3 >. In order to improve the capacity of the lithium ion capacitor, it is necessary to increase the coating density. By adopting the above-described configuration, the lithium ion capacitor having an excellent capacity and output is obtained.

また、前記課題を解決するために、本発明は、分散剤を含む水媒体中に、難黒鉛化性炭素、導電助剤およびバインダーを含有してなる電極被膜形成用塗料組成物であって、
前記導電助剤がケッチェンブラック、アセチレンブラック及び黒鉛の中の少なくとも何れか一種からなり、
粒度分布は、D10粒子径が0.5μm以上、D50粒子径が1〜4μmの範囲、D90粒子径が8μm以下であり、且つ、ラマン分光スペクトルのピーク面積比であるR値が1.5〜1.7の範囲であり、Dバンドの半値幅であるW値が90〜102の範囲である前記難黒鉛化性炭素と、
ラマン分光スペクトルのピーク面積比であるR値が0.2〜1.6の範囲であり、Dバンドの半値幅であるW値が17〜95の範囲である前記導電助剤とを添加してなることを特徴とするリチウムイオンキャパシターの電極被膜形成用塗料組成物とする。
In order to solve the above-mentioned problems, the present invention provides a coating composition for forming an electrode film, comprising non-graphitizable carbon, a conductive assistant and a binder in an aqueous medium containing a dispersant,
The conductive auxiliary agent comprises at least one of ketjen black, acetylene black and graphite,
The particle size distribution is such that the D 10 particle diameter is 0.5 μm or more, the D 50 particle diameter is in the range of 1 to 4 μm, the D 90 particle diameter is 8 μm or less, and the R value that is the peak area ratio of the Raman spectrum is 1. The non-graphitizable carbon in the range of 0.5 to 1.7 , and the W value which is the half width of the D band is in the range of 90 to 102 ;
The conductive auxiliary agent having an R value which is a peak area ratio of a Raman spectrum spectrum in a range of 0.2 to 1.6 and a W value which is a half value width of a D band is in a range of 17 to 95 is added. A coating composition for forming an electrode film of a lithium ion capacitor is provided.

本発明のリチウムイオンキャパシターの負極被膜を前記のように構成したことにより、リチウムイオンキャパシターの容量向上、出力向上、コスト低減が可能となった。また、負極被膜を構成する活物質材は、難黒鉛化性炭素の微粒子化による粒径と構造の最適化が重要であることから、係る難黒鉛化性炭素の構造を規定することによって最適で安定した品質の負極被膜が得られる。その他の配合材である導電助剤、水溶性分散剤および水系バインダーの最適配合で高品位なリチウムイオンキャパシター用負極被膜が得られる。更に、本発明に係る負極被膜形成用ペーストは水媒体品であるため作業環境が良くなり、製造コストの低減に寄与する効果を奏する。   By configuring the negative electrode film of the lithium ion capacitor of the present invention as described above, it is possible to improve the capacity, output and cost of the lithium ion capacitor. In addition, since the optimization of the particle size and structure by making the non-graphitizable carbon fine particles is important for the active material constituting the negative electrode film, it is optimal by defining the structure of the non-graphitizable carbon. A stable quality negative electrode coating is obtained. A high-quality negative electrode film for a lithium ion capacitor can be obtained by optimal blending of conductive additives, water-soluble dispersants and aqueous binders, which are other blending materials. Furthermore, since the negative electrode film-forming paste according to the present invention is an aqueous medium product, the working environment is improved, and the effect of contributing to the reduction of the manufacturing cost is achieved.

この発明の第一の特徴は、主に難黒鉛化性炭素および導電助剤から構成されるリチウムイオンキャパシターの負極被膜において、負極被膜中の構成粒子の粒度分布は、D10粒子径が0.5μm以上、D50粒子径が1〜4μmの範囲、D90粒子径が8μm以下で、負極被膜の比表面積が1.5〜25m/gの範囲で、負極被膜の表面粗さが0.1〜0.2μmの範囲とする。負極被膜中の粒度分布は、走査型電子顕微鏡(SEM)による被膜断面を観察する方法により行う。また、事前に負極被膜形成用ペーストを試料対象にして、レーザー回折式粒度分布測定によって粒度分布を特定することが可能であり、係る測定によって特定された粒度分布も本発明の構成粒子の粒度分布として含まれる。 The first feature of the invention mainly in the negative electrode coating lithium-ion capacitor composed of non-graphitizable carbon and conductive additive, the particle size distribution of the constituent particles of the negative electrode in the coating is D 10 particle size of 0. 5 μm or more, D 50 particle diameter is in the range of 1 to 4 μm, D 90 particle diameter is in the range of 8 μm or less, and the specific surface area of the negative electrode film is in the range of 1.5 to 25 m 2 / g. The range is 1 to 0.2 μm. The particle size distribution in the negative electrode film is determined by a method of observing a film cross section with a scanning electron microscope (SEM). In addition, it is possible to specify the particle size distribution by laser diffraction particle size distribution measurement using the negative electrode film forming paste in advance as a sample object, and the particle size distribution specified by such measurement is also the particle size distribution of the constituent particles of the present invention. Included as

10%体積累積径のD10粒子径、すなわち構成粒子の粒子径下限に近い方の値は0.5μm以上、好ましくは0.7μm以上である。D10粒子径が0.5μm未満では、粉砕過程で粉砕が困難となり、また粒子間の凝集が著しくなる結果、比表面積が増加してしまい好ましくない。換言すれば、0.5μm未満の体積基準粒子量は負極被膜中に10%未満とすることとなる。 D 10 particle size of 10% cumulative volume diameter, i.e., a value closer to the particle径下limit of constituent particles is 0.5μm or more, preferably 0.7μm or more. The D 10 particle size of less than 0.5 [mu] m, it is difficult to ground by a grinding process, also becomes remarkable cohesion between particles result, the specific surface area is undesirably increased. In other words, the volume-based particle amount of less than 0.5 μm is less than 10% in the negative electrode coating.

いわゆる平均粒子径であるD50粒子径(50%体積累積径)は、1〜4μmの範囲、好ましくは1.2〜3.5μmの範囲、特に好ましくは1.5〜3.0μmの範囲である。D50粒子径が1μm未満では微粒子が多くなるため、粒子間の接触抵抗が大きくなり、負極被膜の電気抵抗値が上昇するので好ましくない。また、負極被膜の主構成材となる難黒鉛化性炭素粒子に着目すると、難黒鉛化性炭素粒子においては、D50粒子径を1μm未満にすると粒子間の凝集が発生し、固有の構造が崩壊され容量が低下する。特にD50粒子径が0.8μm以下とすると、微粒子化による凝集、比表面積の増大が発生する。さらに塗膜の硬度も上昇し、屈曲に寄る割れや剥離が生じやすくなる。一方、負極被膜構成粒子の平均粒子径が4μmを越えると粒子径が大きすぎるためにリチウムイオンの細孔内拡散抵抗が高くなり目標の内部抵抗を得る電極が作製できない。 So-called mean a particle diameter D 50 particle size (50% volume cumulative diameter) in the range of 1 to 4 [mu] m, preferably in the range of 1.2~3.5Myuemu, particularly preferably in the range of 1.5~3.0μm is there. When the D 50 particle diameter is less than 1 μm, the number of fine particles increases, so that the contact resistance between the particles increases and the electric resistance value of the negative electrode coating increases, which is not preferable. Further, focusing on the non-graphitizable carbon particles that are the main constituent material of the negative electrode coating, in the non-graphitizable carbon particles, when the D 50 particle diameter is less than 1 μm, aggregation occurs between the particles, and the inherent structure is Collapses and capacity decreases. In particular, when the D 50 particle diameter is 0.8 μm or less, aggregation due to micronization and an increase in specific surface area occur. Furthermore, the hardness of the coating film also increases, and cracks and peeling that tend to bend easily occur. On the other hand, if the average particle diameter of the negative electrode coating-constituting particles exceeds 4 μm, the particle diameter is too large, so that the diffusion resistance in the pores of lithium ions becomes high and an electrode that obtains the target internal resistance cannot be produced.

また、D90粒子径(90%体積累積径)、すなわち構成粒子の粒子径上限に近い方の値は8μm未満、好ましくは6.5μm以下、特に好ましくは5.5μm以下である。D90粒子径が8μm以上となると、膜厚60μm以下の塗工においてスジむらなどの塗膜欠陥が生じやすくなり、塗工時の歩留まりを低下させ好ましくない。 Further, the D 90 particle diameter (90% volume cumulative diameter), that is, the value closer to the upper limit of the particle diameter of the constituent particles is less than 8 μm, preferably 6.5 μm or less, particularly preferably 5.5 μm or less. When the D 90 particle size is 8 μm or more, coating defects such as streak unevenness are liable to occur in coating with a film thickness of 60 μm or less, which is not preferable because the yield during coating is reduced.

次に、負極被膜の比表面積は1.5〜25m/gの範囲、好ましくは2〜15m/gの範囲、特に好ましくは3.5〜10m/gの範囲である。被膜の比表面積は、容量と出力(内部抵抗)を最適化するのに重要で、比表面積が2〜25m/gの場合に容量、内部抵抗ともに優れた特性を示す。被膜の比表面積が25m/gを超えると、主構成材である難黒鉛化性炭素では構造が劣化し容量低下を引き起こすおそれがある。被膜の電気抵抗値や被膜の密度は、比表面積が増加するほど低下する傾向がある。この傾向から負極被膜の比表面積は1.5〜25m/gの範囲が好ましい。 Next, the specific surface area of a negative electrode film is the range of 1.5-25 m < 2 > / g, Preferably it is the range of 2-15 m < 2 > / g, Most preferably, it is the range of 3.5-10 m < 2 > / g. The specific surface area of the coating film is important for optimizing the capacity and output (internal resistance). When the specific surface area is 2 to 25 m 2 / g, both the capacity and the internal resistance are excellent. When the specific surface area of the coating exceeds 25 m 2 / g, the structure of the non-graphitizable carbon that is the main constituent material may be deteriorated and the capacity may be reduced. The electrical resistance value of the coating and the density of the coating tend to decrease as the specific surface area increases. From this tendency, the specific surface area of the negative electrode film is preferably in the range of 1.5 to 25 m 2 / g.

また、被膜の比表面積は、主構成材の難黒鉛化性炭素の比表面積と相関がある。一方、難黒鉛化性炭素粒子の粒度と難黒鉛化性炭素粒子の比表面積に相関はない。この理由は以下のとおりである。難黒鉛化性炭素をビーズを媒体とした乾式粉砕機で粉砕処理すると、粒子の粉砕と同時に粒子同士の凝集も発生し、粒子径約1μm以下の粒子を得るのは難しくなる。乾式粉砕処理を進めることで1次粒子の集合体からなる比表面積の大きな粒子となってしまうが、このような方法で調整された粒子は粒子径が大きく、比表面積の大きい難黒鉛化性炭素となる。もちろんこのような難黒鉛化性炭素も本発明に使用できる。   Further, the specific surface area of the coating has a correlation with the specific surface area of the non-graphitizable carbon as the main constituent material. On the other hand, there is no correlation between the particle size of the non-graphitizable carbon particles and the specific surface area of the non-graphitizable carbon particles. The reason for this is as follows. When the non-graphitizable carbon is pulverized by a dry pulverizer using beads as a medium, the particles are aggregated simultaneously with the pulverization of the particles, and it becomes difficult to obtain particles having a particle diameter of about 1 μm or less. By proceeding with the dry pulverization process, particles with a large specific surface area consisting of aggregates of primary particles will be produced, but the particles prepared by such a method have a large particle diameter and a large specific surface area. It becomes. Of course, such non-graphitizable carbon can also be used in the present invention.

負極被膜の表面粗さは、0.1〜0.3μmの範囲、特に好ましくは0.1〜0.2μmの範囲である。被膜の表面粗さは、塗工の均一性や得られる被膜の密度および被膜の硬さに影響する。被膜の表面粗さが0.3μm以上では、被膜の密度が小さくなり容量の低下を招く。また、表面粗さが0.1μm以下の場合は、難黒鉛化性炭素粒子の微細化が進み、固有の構造が崩壊し、容量が低下する。また、被膜中に微細な難黒鉛化性炭素粒子が充填されるために被膜の硬度が高くなりすぎ、電極加工工程のスリット時や捲回時に問題を発生するおそれがある。   The surface roughness of the negative electrode coating is in the range of 0.1 to 0.3 μm, particularly preferably in the range of 0.1 to 0.2 μm. The surface roughness of the coating affects the uniformity of coating, the density of the resulting coating, and the hardness of the coating. When the surface roughness of the coating is 0.3 μm or more, the density of the coating is reduced and the capacity is reduced. On the other hand, when the surface roughness is 0.1 μm or less, the miniaturization of the non-graphitizable carbon particles proceeds, the inherent structure collapses, and the capacity decreases. In addition, since the hard non-graphitizable carbon particles are filled in the coating, the hardness of the coating becomes too high, which may cause a problem during slitting or winding in the electrode processing step.

以上よりペースト粒度をD10粒径が0.5μm以上、D50粒径が1〜4μm、D90粒径が8μm以下に規定することは、塗工性能向上、塗膜特性向上、電極特性向上のために重要である。また、難黒鉛化性炭素を用いたリチウムイオンキャパシターの負極被膜としての容量や出力(内部抵抗)を最適化する上で、負極被膜構成粒子の粒度分布と負極被膜の比表面積および表面粗さが重要である。 The paste particle size D 10 particle size of 0.5μm or more from the above, the D 50 particle size is 1 to 4 [mu] m, D 90 particle size is defined 8μm below, coating performance improved, film properties improve, electrode characteristics improved Is important for. Also, in optimizing the capacity and output (internal resistance) of the negative electrode coating of lithium ion capacitors using non-graphitizable carbon, the particle size distribution of the negative electrode coating constituent particles, the specific surface area and surface roughness of the negative electrode coating is important.

リチウムイオンキャパシターの高容量と内部抵抗を低減するためには、難黒鉛化性炭素の微粒子化により構造が劣化していないことと、導電助剤が最適に分散されていることが必要であり、被膜としてのラマン分光スペクトルのR値が1.3〜1.7の範囲で、Dバンドの半値幅W値が72〜115の範囲とすることが好ましい。被膜は黒鉛と導電助剤および分散剤とバインダーから構成されるが、本発明者らは、被膜のラマン分光特性が被膜中の難黒鉛化性炭素と導電助剤との配合量、それら粒子の分散状態で変化することを確認し、難黒鉛化性炭素粒子の周辺にどの様に導電助剤が分散しているかを被膜のラマン分光特性で測定し、最適な被膜構成状態を数値化した。   In order to reduce the high capacity and internal resistance of the lithium ion capacitor, it is necessary that the structure is not deteriorated due to the microparticulation of the non-graphitizable carbon and that the conductive assistant is optimally dispersed. It is preferable that the R value of the Raman spectrum as the coating is in the range of 1.3 to 1.7, and the half width W value of the D band is in the range of 72 to 115. The coating is composed of graphite and a conductive aid, and a dispersant and a binder. The inventors have determined that the Raman spectral characteristics of the coating are the blending amount of the non-graphitizable carbon and the conductive aid in the coating, The change in the dispersion state was confirmed, and how the conductive additive was dispersed around the non-graphitizable carbon particles was measured by the Raman spectral characteristics of the film, and the optimum film composition state was quantified.

即ち、ラマンスペクトルのR値が1.3以下では、使用する難黒鉛化性炭素のR値が小さくなり過ぎたり、導電助剤量が多すぎるときに発生する。難黒鉛化性炭素のR値が小さ過ぎる場合、リチウムイオンがインターカラントするサイトが少なくなり、容量の低下を招く。また、導電助剤量が多すぎる場合は、難黒鉛化性炭素の配合量が減少することになり容量の低下を招く。逆にラマンスペクトルのR値が1.7以上では、難黒鉛化性炭素の微細化により構造が劣化すると共にエッジサイトが増加した被膜構成になっており、不可逆容量の増加や容量の低下が生じる。すなわち、被膜のラマンスペクトルのR値は、被膜の容量と相関があり、1.3〜1.7の範囲であることが重要であり好ましい。   That is, when the R value of the Raman spectrum is 1.3 or less, it occurs when the R value of the non-graphitizable carbon used is too small or the amount of the conductive assistant is too large. When the R value of non-graphitizable carbon is too small, the number of sites where lithium ions intercalant decreases, leading to a decrease in capacity. Moreover, when there are too many amounts of conductive support agents, the compounding quantity of non-graphitizable carbon will reduce and the fall of a capacity | capacitance will be caused. On the contrary, when the R value of the Raman spectrum is 1.7 or more, the structure is deteriorated due to the refinement of the non-graphitizable carbon and the edge site is increased, resulting in an increase in irreversible capacity and a decrease in capacity. . That is, the R value of the Raman spectrum of the film has a correlation with the capacity of the film, and it is important and preferable to be in the range of 1.3 to 1.7.

一方、Dバンドの半値幅が72以下では、難黒鉛化炭素の構造が少しずつ規則性を有する状態になるので、リチウムイオンがインターカラントするサイトが少なくなり、容量の低下を招く。また、導電助剤量を多くした場合にもDバンドの半値幅W値が72以下になる。逆に、Dバンドの半値幅W値が115以上になると、難黒鉛化炭素の微細化によりアモルファス化が進行した状態になるので、難黒鉛化性炭素の固有の構造が劣化し、容量の低下を生じる。   On the other hand, when the half band width of the D band is 72 or less, the structure of the non-graphitizable carbon gradually becomes regular, so that the number of sites where lithium ions intercalant decreases and the capacity decreases. Further, when the amount of the conductive auxiliary agent is increased, the half-width W value of the D band becomes 72 or less. On the other hand, when the half-width W value of the D band is 115 or more, since the amorphous state is advanced due to the refinement of the non-graphitizable carbon, the inherent structure of the non-graphitizable carbon deteriorates and the capacity decreases. Produce.

負極被膜の膜厚40μm時のシート抵抗値は40〜400Ωの範囲であり、好ましくは40〜300Ω、さらに好ましくは40Ω〜150Ωの範囲である。内部抵抗の低減には電気抵抗の低減が必要である。導電助剤の配合量を最適化することで、シート抵抗値が40Ωになることが分かっている。導電助剤の配合量増加でシート抵抗値は40Ω以下を達成できるが、被膜密度が低下する。また、難黒鉛化性炭素の微細化、比表面積の増加などでシート抵抗値が上昇するが、400Ω以上になると、電気抵抗が高くなり過ぎ内部抵抗低減の効果が認められない。   The sheet resistance value when the film thickness of the negative electrode film is 40 μm is in the range of 40 to 400Ω, preferably 40 to 300Ω, and more preferably 40Ω to 150Ω. To reduce the internal resistance, it is necessary to reduce the electrical resistance. It has been found that the sheet resistance value becomes 40Ω by optimizing the blending amount of the conductive assistant. The sheet resistance can be reduced to 40Ω or less by increasing the blending amount of the conductive additive, but the film density is lowered. Further, the sheet resistance value increases due to the refinement of non-graphitizable carbon and the increase in specific surface area. However, when the resistance is 400Ω or more, the electrical resistance becomes too high and the effect of reducing the internal resistance is not recognized.

さらに、容量の向上には被膜密度が高いことが必要で、本発明に基づく被膜形成用ペーストを塗布し、乾燥後の被膜の密度は0.8〜1.05cm/gの範囲であることが必要で、好ましくは0.85〜1.00cm/gの範囲である。以上、負極被膜の特性値について述べてきたが、これらを達成する個々の因子は、用いる材料に起因する。すなわち主に難黒鉛化性炭素からなる構成粒子のD10粒子径は0.5μm以上、D50粒子径が1〜4μm、D90粒子径が8μm以下の範囲である。この点は負極被膜の特性値と同じである。 Furthermore, the coating density needs to be high in order to improve the capacity, the coating film forming paste according to the present invention is applied, and the density of the coating film after drying is in the range of 0.8 to 1.05 cm 3 / g. Is preferably in the range of 0.85 to 1.00 cm 3 / g. As described above, the characteristic values of the negative electrode coating have been described, but individual factors for achieving these are attributable to the material used. That mainly D 10 particle size of constituent particles consisting of non-graphitizable carbon is 0.5μm or more in the range D 50 particle size is 1 to 4 [mu] m, D 90 particle size less 8 [mu] m. This point is the same as the characteristic value of the negative electrode film.

難黒鉛化性炭素粒子のラマンスペクトルにおけるR値は1.5〜1.7、W値は90〜102の範囲である。この要件は、活物質の構造を規定したもので、微粒子化によりR値、W値は増加することとなるが、この範囲においては容量の低下がなく問題が認められない。なお、特に好ましくは難黒鉛化性炭素のD10粒子径が0.6μm以上、D50粒子径が1.0〜3μmの範囲、D90粒子径が7μm以下で、ラマンスペクトルにおけるR値が1.5〜1.6、W値が98〜100の範囲である。 The R value in the Raman spectrum of the non-graphitizable carbon particles is 1.5 to 1.7, and the W value is in the range of 90 to 102. This requirement stipulates the structure of the active material, and the R value and W value are increased by making the particles fine. However, in this range, there is no decrease in capacity and no problem is recognized. Particularly preferably, the non-graphitizable carbon has a D 10 particle diameter of 0.6 μm or more, a D 50 particle diameter of 1.0 to 3 μm, a D 90 particle diameter of 7 μm or less, and an R value in Raman spectrum of 1 .5 to 1.6 and the W value is in the range of 98 to 100.

また、導電助剤としてラマン分光スペクトルのR値が0.2〜1.6の範囲で、Dバンドの半値幅W値が17〜95の範囲のケッチェンブラック、アセチレンブラック、黒鉛のいずれかを用いることが好ましい。ケッチェンブラックは、R値が1.5〜1.6、W値が68前後の構造を有し、黒鉛化が進んだ中空のカーボンブラックであると言える。アセチレンブラックはR値が1.0〜1.1、W値が90前後の構造を有し、難黒鉛化炭素よりも黒鉛に近い構造である。また、導電助剤で用いるD50粒子径が4μm前後の黒鉛は、R値が0.25前後、W値が18前後であり、高い導電性を示す。 In addition, any one of ketjen black, acetylene black, and graphite having an R value in the Raman spectrum of 0.2 to 1.6 and a half-width W value of the D band in the range of 17 to 95 as a conductive assistant is used. It is preferable to use it. Ketjen black can be said to be a hollow carbon black having a structure with an R value of 1.5 to 1.6 and a W value of around 68 and having advanced graphitization. Acetylene black has a structure with an R value of 1.0 to 1.1 and a W value of around 90, and is closer to graphite than non-graphitizable carbon. Further, graphite having a D 50 particle size of about 4 μm used as a conductive aid has an R value of about 0.25 and a W value of about 18, and exhibits high conductivity.

導電助剤の配合量は最少に留めて低い抵抗値にすることが重要であるが、最少の添加量にするためには嵩密度が低く、微粒子材料が効果的である。嵩密度の最も低いケッチェンブラックは最少の配合量で効果が得られる。アセチレンブラックは、ケチェンブラックよりは嵩密度が高いが、他の配合材料との相性が良く、高密度の被膜が得られる。黒鉛は、嵩密度が0.1〜0.2g/cmと高いため、単独の配合では添加量が多くなる。黒鉛の使用にあたっては、他の助剤との併用も有効である。本発明の塗膜のW値は、難黒鉛化炭素のW値よりも小さくなっており、難黒鉛化性炭素より黒鉛化が進んだ導電助剤を選定して配合することにより、塗膜のW値を低下させ、電極の電気抵抗の低減を達成した。 Although it is important to keep the blending amount of the conductive auxiliary agent to a minimum and to have a low resistance value, in order to make the addition amount the minimum, the bulk density is low and the particulate material is effective. Ketjen black with the lowest bulk density is effective with the minimum amount. Although acetylene black has a higher bulk density than Ketjen black, it has good compatibility with other compounding materials, and a high-density coating can be obtained. Since the bulk density of graphite is as high as 0.1 to 0.2 g / cm 3 , the amount of graphite increases in the case of a single compound. In using graphite, it is also effective to use it together with other auxiliaries. The W value of the coating film of the present invention is smaller than the W value of non-graphitizable carbon, and by selecting and blending a conductive additive that has been graphitized more than non-graphitizable carbon, The W value was lowered and the electrical resistance of the electrode was reduced.

さらに、分散剤が、カルボキシメチルセルロースのナトリウム塩またはアンモニウム塩であり、またバインダーが、スチレンブタジエン系エラストマーまたはアクリル系エラストマーのいずれかのエマルションであることも有効である。カルボキシメチルセルロース塩としては、カルボキシメチルセルロースナトリウム塩やカルボキシメチルセルロースアンモニウム塩、カルボキシメチルセルロースカルシウム塩が代表的である。本発明においては、カルボキシメチルセルロースのナトリウム塩またはアンモニウム塩を用いる。特に、カルボキシメチルセルロースのナトリウム塩を用いた場合は、難黒鉛化性炭素や導電助剤の分散安定性がよく、電極被膜形成用ペースト(塗料組成物)が一部乾燥しても、水への再溶解性が良く、塗工前の攪拌により未溶解物の無い塗料が作製できる。   Further, it is also effective that the dispersant is a sodium salt or ammonium salt of carboxymethyl cellulose, and the binder is an emulsion of either a styrene butadiene elastomer or an acrylic elastomer. Representative examples of the carboxymethylcellulose salt include carboxymethylcellulose sodium salt, carboxymethylcellulose ammonium salt, and carboxymethylcellulose calcium salt. In the present invention, sodium salt or ammonium salt of carboxymethyl cellulose is used. In particular, when the sodium salt of carboxymethyl cellulose is used, the dispersion stability of the non-graphitizable carbon and the conductive additive is good, and even if the electrode film forming paste (coating composition) is partially dried, The re-solubility is good, and a paint having no undissolved material can be produced by stirring before coating.

バインダーとしては(メタ)アクリル酸エステル(共)重合体、スチレン・(メタ)アクリル酸エステル共重合体などのアクリル系エラストマー、スチレン・ブタジエン共重合体などのスチレンブタジエン系エラストマー、アクリロニトリル・ブタジエン共重合体、ポリブタジエンなどが使用できる。バインダーはそれぞれ単体で或いは2種以上を組み合わせて使用することができる。これらを調整することにより、塗布・被膜化後の被膜密度の向上、膜構造の最適化が可能となり、容量の向上、内部抵抗の低減が達成できる。さらに、難黒鉛化性炭素粒子を微細化したことにより、塗工時の塗布ムラなどの欠陥が改善でき、歩留まり向上に寄与できる。なお、水系のペーストによりペースト製造時、塗工時の作業環境および安全性に優れ、また導電助剤、分散剤、バインダーの最適化により、低抵抗で密着性の良い被膜が得られる。   Binders include (meth) acrylic acid ester (co) polymers, acrylic elastomers such as styrene / (meth) acrylic acid ester copolymers, styrene butadiene elastomers such as styrene / butadiene copolymers, and acrylonitrile / butadiene copolymers. Combined, polybutadiene, etc. can be used. Each binder can be used alone or in combination of two or more. By adjusting these, it is possible to improve the coating density after coating and coating, and to optimize the film structure, and to achieve improvement in capacity and reduction in internal resistance. Further, by making the non-graphitizable carbon particles finer, defects such as coating unevenness at the time of coating can be improved, which can contribute to an increase in yield. A water-based paste is excellent in working environment and safety during paste production and coating, and a coating with low resistance and good adhesion can be obtained by optimizing the conductive auxiliary agent, dispersant and binder.

また、電極被膜形成用ペースト(塗料組成物)の粘度構成としては、25℃におけるB型粘度計による30rpmの粘度値が600〜2400mPa・s 、60rpmでの粘度値が500〜2300mPa・sとすることが好ましい。塗工法で負極被膜を形成する場合、被膜の膜厚は20μm〜80μm程度に設定するのが一般的で、塗工機としてはダイコーター、ブレードコーター、コンマコーター、リップコーター、リバースロールコーターなどが用いられるが、最近は、リチウムイオン電池用電極の形成にダイコーターが用いられる。ダイコーターは、膜厚が均一な被膜が形成でき、また回路的な要素のパターン塗工も可能である。ダイコーターを用いてすじムラなどの塗膜欠陥が少なく、均一な塗工を行うためには、特にD90粒子径を小さくし、ダイのエッジやマニフォールド内に粗粒子や異物が付着すること、または詰まりの発生を防止する必要がある。この点では、本発明の第一点目でも規定したように、被膜のD90粒子径を7μm以下に調整することが必要である。なお、回転子30rpmでの粘度が600〜2500mPa・s 、60rpmでの粘度が500〜2300mPa・sにすることで、ダイコーターでの均一塗工が可能になる。 Moreover, as a viscosity structure of the paste for electrode film formation (coating composition), the viscosity value at 30 rpm by a B-type viscometer at 25 ° C. is 600 to 2400 mPa · s, and the viscosity value at 60 rpm is 500 to 2300 mPa · s. It is preferable. When a negative electrode film is formed by a coating method, the film thickness is generally set to about 20 μm to 80 μm. As a coating machine, there are a die coater, a blade coater, a comma coater, a lip coater, a reverse roll coater, and the like. Recently, a die coater is used to form a lithium ion battery electrode. The die coater can form a film with a uniform film thickness, and can also apply a pattern of circuit elements. In order to carry out uniform coating with few coating film defects such as streak unevenness using a die coater, in particular, the D 90 particle diameter should be reduced, and coarse particles and foreign substances should adhere to the die edge and manifold, Or it is necessary to prevent clogging. In this respect, as defined in the first point of the present invention, it is necessary to adjust the D 90 particle diameter of the coating to 7 μm or less. By setting the viscosity at the rotor 30 rpm to 600 to 2500 mPa · s and the viscosity at 60 rpm to 500 to 2300 mPa · s, uniform coating with a die coater becomes possible.

以下に、この発明の実施例について説明するが、この発明はこれらの実施例に限定されるものではない。
(塗料および試料の調整)
カルボキシメチルセルロース(CMC)を純水に溶解した水溶液中に粒子径、比表面積、構造の異なる難黒鉛化性炭素粒子と、導電助剤としてケッチェンブラック、アセチレンブラックまたは黒鉛を配合してボールミルで3時間分散させた。その後アクリル系エマルジョンまたはSBR系エマルジョンを所定量配合し30分間攪拌した。検討に用いた配合を表1および表2に示す。
Examples of the present invention will be described below, but the present invention is not limited to these examples.
(Paint and sample adjustment)
A ball mill containing a mixture of non-graphitizable carbon particles having different particle diameters, specific surface areas, and structures and ketjen black, acetylene black, or graphite as a conductive additive in an aqueous solution of carboxymethyl cellulose (CMC) dissolved in pure water. Time dispersed. Thereafter, a predetermined amount of acrylic emulsion or SBR emulsion was blended and stirred for 30 minutes. Tables 1 and 2 show the formulations used for the study.

(塗料の粘度評価)
作製した塗料の粘度をBL型粘度計を用いて、回転数30rpm、60rpm時の粘度を測定した。測定温度は25℃とした。粘度の測定に際しては、塗料をプロペラ型の攪拌翼を有する攪拌機を用い、1000rpmの攪拌条件で30分間攪拌してから行った。
(Viscosity evaluation of paint)
The viscosity of the prepared paint was measured at 30 rpm and 60 rpm using a BL type viscometer. The measurement temperature was 25 ° C. In measuring the viscosity, the paint was stirred for 30 minutes under a stirring condition of 1000 rpm using a stirrer having a propeller type stirring blade.

(塗料の粒度分布)
レーザー回折式粒度分布計を用いて測定した。屈折率は2.00−0.1iを用いた。
(Particle size distribution of paint)
It measured using the laser diffraction type particle size distribution analyzer. The refractive index was 2.00-0.1i.

(被膜の作製)
作製した塗料を、ギャップ100μmのブレードコーターを用い、厚さ19μmの銅箔上に塗工した。その後、100℃で30分間の熱風乾燥後、75℃で30分間、真空乾燥機で乾燥し、厚さ40μmの電極被膜を作製した。
(Preparation of coating)
The prepared paint was applied onto a 19 μm thick copper foil using a blade coater with a gap of 100 μm. Thereafter, it was dried with hot air at 100 ° C. for 30 minutes, and then dried with a vacuum dryer at 75 ° C. for 30 minutes to produce an electrode film having a thickness of 40 μm.

(被膜、活物質の比表面積)
作製した電極被膜およびペースト材料として用いた難黒鉛化性炭素粒子や導電助剤粒子の比表面積および細孔構造は、Micromeritics社製ASAP2010を用い、窒素吸着によりBET法で測定した。
(Specific surface area of coating and active material)
The specific surface area and pore structure of the non-graphitizable carbon particles and the conductive auxiliary particles used as the prepared electrode film and paste material were measured by BET method by nitrogen adsorption using ASAP2010 manufactured by Micromeritics.

(被膜の表面粗さ)
表面粗さ形状測定機を用いて、作製した電極被膜の中心線平均粗さを計測した。測定の際、触針径は2μmを用い、測定速度0.3mm/s、測定長さ4mm、カットオフ値0.8mmとした。
(Surface roughness of coating)
The center line average roughness of the produced electrode coating was measured using a surface roughness profile measuring machine. In the measurement, the stylus diameter was 2 μm, the measurement speed was 0.3 mm / s, the measurement length was 4 mm, and the cut-off value was 0.8 mm.

(被膜、活物質のラマン分光特性)
作製した電極被膜および炭素材料の表面構造の分析手法として、ラマン分光法(Renishow社製のNRS-2100)により、Gバンド(1580cm−1付近)とDバンド(1360cm−1付近)のピークの面積比であるR値(I1360/I1580)を求めた。測定には波長514nmのアルゴン(Ar)レーザー光を用いた。面積の測定にあたっては、Gバンド近傍とDバンド近傍の2つのピークの曲線の形がローレンツ関数に近似すると仮定し、これにフィッテイングさせて書き直し、面積比よりR値を求めた。
活物質のラマン分光特性は、使用する活物質をスライドグラス上に適量採取し、上記方法でR値を測定した。
(Raman spectral characteristics of coatings and active materials)
As analysis method of the surface structure of the manufactured electrode coating and a carbon material, the area of the peak of the Raman spectroscopy by (NRS-2100 of Renishow Ltd.), G-band (1580 cm -1 vicinity) and D-band (1360 cm around -1) The R value (I 1360 / I 1580 ), which is the ratio, was determined. An argon (Ar) laser beam having a wavelength of 514 nm was used for the measurement. In measuring the area, it was assumed that the shape of the curve of the two peaks near the G band and the D band approximated to the Lorentz function, rewritten by fitting to this, and the R value was obtained from the area ratio.
For the Raman spectral characteristics of the active material, an appropriate amount of the active material to be used was collected on a slide glass, and the R value was measured by the above method.

(被膜の密度評価)
乾燥後の電極をφ13mmの大きさに打ち抜き、電極重量を測定した。下地の銅箔の重量を差し引き、被膜の密度を算出した。
(Evaluation of coating density)
The dried electrode was punched out to a size of φ13 mm, and the electrode weight was measured. The density of the coating was calculated by subtracting the weight of the underlying copper foil.

(被膜のシート抵抗値)
作製した電極被膜を四端針法にてシート抵抗値を測定した。
(Sheet resistance value of coating)
The sheet resistance value of the produced electrode film was measured by a four-end needle method.

(容量、内部抵抗評価)
フェノール系のアルカリ賦活活性炭を活物質とする正極活物質ペーストを40μmのアルミニウム箔にブレードコーターを用いて塗布・造膜化し、被膜厚さ100μm、φ20mmの正極電極を作製した。
次に、難黒鉛化炭素を活物質とする負極活物質ペーストをブレードコーターで厚さ19μmの銅箔に塗布・造膜化し、被膜厚さ50μm、φ20mmの負極電極を作製した。
なお、正極・負極電極の造膜化は以下のとおりである。
ペースト塗工膜の乾燥は100℃で30分熱風乾燥後、減圧下120℃で12時間乾燥した。その後、アルゴン雰囲気のグローブボックス中に移し、難黒鉛化炭素材による負極へのリチウムイオンドープを行った。まず、φ20mm難黒鉛化炭素電極にセパレータを介してリチウム金属を重ね、単極セルを作成した。電解液は1.2M(モル)−LiPF6 (六フッ化リン酸リチウム )/PC(プロピレン−カーボネート)を使用した。負極への充電は充電容量が350mAh/gになった時に停止し、半充電の負極を作成した。その後活性炭よりなる正極を半充電の負極とセパレータを介して対向させ、試験用セルを作成した。
測定温度25℃、放電電流20mAとして、充放電電圧3.8Vから2.2Vに低下するまでの静電容量(F)を求めた。また、放電電流20mAでの初期の電圧低下より内部抵抗(Ω)を求めた。
(Capacity and internal resistance evaluation)
A positive electrode active material paste using phenol-based alkali activated carbon as an active material was applied and formed into a film on a 40 μm aluminum foil using a blade coater to prepare a positive electrode having a film thickness of 100 μm and φ20 mm.
Next, a negative electrode active material paste containing non-graphitizable carbon as an active material was applied to a 19 μm thick copper foil with a blade coater to form a negative electrode having a film thickness of 50 μm and φ20 mm.
The film formation of the positive and negative electrodes is as follows.
The paste coating film was dried at 100 ° C. for 30 minutes with hot air and then under reduced pressure at 120 ° C. for 12 hours. Then, it moved into the glove box of argon atmosphere, and lithium ion dope to the negative electrode by a non-graphitizable carbon material was performed. First, lithium metal was stacked on a φ20 mm non-graphitizable carbon electrode via a separator to prepare a monopolar cell. As the electrolytic solution, 1.2M (mol) -LiPF 6 (lithium hexafluorophosphate) / PC (propylene-carbonate) was used. Charging to the negative electrode was stopped when the charge capacity reached 350 mAh / g, and a half-charged negative electrode was created. Thereafter, a positive electrode made of activated carbon was opposed to the half-charged negative electrode via a separator to prepare a test cell.
The capacitance (F) until the charge / discharge voltage decreased from 3.8 V to 2.2 V was determined at a measurement temperature of 25 ° C. and a discharge current of 20 mA. Further, the internal resistance (Ω) was determined from the initial voltage drop at a discharge current of 20 mA.

Figure 0005261127
Figure 0005261127

実施例は分散剤を含む水媒体中に、難黒鉛化性炭素、導電助剤およびバインダーからなる電極被膜形成用ペーストである。容量の向上と内部抵抗の低減のためには黒鉛の適性構造と導電助剤の組合わせが重要である。比表面積が4〜95m/g、ラマン分光分析のR値が1.48〜1.67、W値が17〜35の難黒鉛化性炭素を用いた検討結果を以下に示す。実施例1から4および比較例1から3は被膜中の構成粒子の粒度分布であるD10粒子径、D50粒子径およびD90粒子径を変化させ、また被膜の比表面積および表面粗さの最適化を検討した結果を示す。 An example is an electrode film-forming paste comprising non-graphitizable carbon, a conductive aid and a binder in an aqueous medium containing a dispersant. In order to improve the capacity and reduce the internal resistance, it is important to combine a suitable graphite structure with a conductive additive. The results of studies using non-graphitizable carbon having a specific surface area of 4 to 95 m 2 / g, an R value of Raman spectroscopy of 1.48 to 1.67, and a W value of 17 to 35 are shown below. From Examples 1 4 and Comparative Example 1-3 of constituent particles in the coating D 10 particle size is a particle size distribution, D 50 particle size and D 90 to change the particle size, also the specific surface area and surface roughness of the film The result of examining optimization is shown.

比較例1は、D10が2.5μm、D50が8.5μm、D90が20μmで、粒度が大きい例であるが、塗布性が悪く、また塗膜の平滑性が1.25μmのため、塗布工程での塗膜欠陥、スリット工程や捲回行程での粉落ちなどが生じやすい。また、塗膜の平滑性低下は、塗膜中における活物質粒子の充填率が低下する傾向があり、塗膜密度が0.77g/cmまで低下しており容量も低下している。 Comparative Example 1 is an example in which D 10 is 2.5 μm, D 50 is 8.5 μm, D 90 is 20 μm, and the particle size is large, but the coatability is poor and the smoothness of the coating film is 1.25 μm. Coating film defects in the coating process, powder falling off in the slit process and the winding process, etc. are likely to occur. Moreover, the smoothness fall of a coating film has the tendency for the filling rate of the active material particle in a coating film to fall, the coating-film density is falling to 0.77 g / cm < 3 >, and the capacity | capacitance is also falling.

実施例1〜3は負極被膜の比表面積を3.5から22m/gまで変化させた例であるが、被膜の比表面積が大きいほど内部抵抗が低減し良好である。 Examples 1 to 3 are examples in which the specific surface area of the negative electrode film was changed from 3.5 to 22 m 2 / g. The larger the specific surface area of the film, the better the internal resistance is reduced.

被膜の比表面積を42m/gまで増加させた例を比較例2に示すが、難黒鉛化性炭素の固有の構造が破壊され、被膜のシート抵抗値が上昇する。さらにリチウムイオンの吸蔵サイトが減少し、かつ比表面積の増加により被膜の密度低下をもたらし容量の低下を招く。 An example in which the specific surface area of the film is increased to 42 m 2 / g is shown in Comparative Example 2, but the inherent structure of the non-graphitizable carbon is destroyed and the sheet resistance value of the film increases. Further, the lithium ion storage sites are reduced, and the increase in the specific surface area results in a decrease in the density of the film, resulting in a decrease in capacity.

実施例4は、D50粒子径を1μmまで微細化した例であるが、塗膜の比表面積を15m/gに抑えたので、難黒鉛化性炭素粒子の構造劣化も少なく、塗膜密度も0.85g/cmであるため、内部抵抗及び容量ともに良好な値を示している。 Example 4 is an example in which the D 50 particle diameter was refined to 1 μm, but the specific surface area of the coating film was suppressed to 15 m 2 / g, so there was little structural deterioration of the non-graphitizable carbon particles, and the coating film density Is 0.85 g / cm 3 , and both the internal resistance and the capacitance are good values.

比較例3は、D50粒子径をさらに微細化し0.8μmにした例である。比表面積が26m/gまで上昇し、また、被膜の密度低下も生じているため、容量が低下している。 Comparative Example 3 is an example in which the D 50 particle diameter is further refined to 0.8 μm. Since the specific surface area has increased to 26 m 2 / g and the density of the coating has also decreased, the capacity has decreased.

ここで、実施例4と比較例3を比較すると、難黒鉛化性炭素粒子の比表面積と粒子径には相関がみられないことが分かる。これは、難黒鉛化性炭素粒子をビーズを媒体とする乾式粉砕機で微粉砕する場合、粒子の粉砕と同時に粒子間の凝集も発生するが、粉砕処理を進めることで1次粒子の集合体からなる比表面積の大きな粒子が得られるようになる。この方法で調整された黒鉛系活物質は、粒径が大きく、比表面積の大きいことが特徴で、本実施例では、この手法で調整した難黒鉛化性炭素粒子を使用した。   Here, when Example 4 and Comparative Example 3 are compared, it can be seen that there is no correlation between the specific surface area of the non-graphitizable carbon particles and the particle diameter. This is because when non-graphitizable carbon particles are finely pulverized by a dry pulverizer using beads as a medium, aggregation of particles occurs simultaneously with the pulverization of the particles. Thus, particles having a large specific surface area can be obtained. The graphite-based active material prepared by this method is characterized by a large particle size and a large specific surface area. In this example, non-graphitizable carbon particles prepared by this method were used.

電極特性の結果を表1中に示した。比較例1は、D50粒子径が8.5μmと大きいため、リチウムイオンの拡散抵抗が大きくなり、内部抵抗は6.5Ωと大きな値を示した。また、比較例2は、難黒鉛化性炭素の比表面積が95m/gと大きく、また被膜の比表面積も42m/gと高い例である。D50が1.9μmと比較的高い値を示しているのは、1次粒子の凝集が発生していることを示す。塗膜のR値が1.75、W値が118と高い値を示し、難黒鉛化性炭素固有の結晶構造が劣化していると考えられ、被膜のシート抵抗値も981Ωと高い値を示した。また比較例1の電極評価結果は、容量が1Fと低い値であり、比表面積の増大に伴い電極構造の劣化が発生し、容量が低下したと考えられる。比較例3は、粒子径を小さくした例であるが、被膜の比表面積が26m/g、被膜のシート抵抗が460Ωと高い値を示し、比較例2と同様、容量の低下が認められた。一方、実施例1〜4は、容量が1.1F以上、内部抵抗が6Ω以下であり、良好な特性を示す。 The results of the electrode characteristics are shown in Table 1. In Comparative Example 1, since the D 50 particle diameter was as large as 8.5 μm, the diffusion resistance of lithium ions was increased, and the internal resistance was as large as 6.5Ω. In Comparative Example 2, the specific surface area of the non-graphitizable carbon as large as 95 m 2 / g, also it is the specific surface area is high and 42m 2 / g Examples of the coating. The D 50 having a relatively high value of 1.9 μm indicates that primary particles are aggregated. The R value of the coating film is 1.75 and the W value is as high as 118, the crystal structure inherent to the non-graphitizable carbon is considered to be deteriorated, and the sheet resistance value of the coating film is as high as 981Ω. It was. Moreover, the electrode evaluation result of Comparative Example 1 has a low value of 1F, and it is considered that the capacity of the electrode structure is reduced due to the deterioration of the electrode structure with the increase of the specific surface area. Comparative Example 3 is an example in which the particle diameter was reduced, but the specific surface area of the coating film was 26 m 2 / g, and the sheet resistance of the coating film was as high as 460Ω. As in Comparative Example 2, a decrease in capacity was observed. . On the other hand, Examples 1-4 have a capacity of 1.1 F or more and an internal resistance of 6Ω or less, and exhibit good characteristics.

実施例1〜4で示した通り、分散剤としてはCMC−Na、CMC−NHが使用でき、バインダーとしてはSBR系エラストマーまたはアクリル系エラストマーのエマルジョンが使用可能である。また、導電助剤である、アセチレンブラック、ケッチェンブラック、黒鉛のR値、W値、比表面積を表1に示したが、使用する導電助剤のR値、W値、比表面積は規定値のものを使用することで、抵抗値の低い塗膜を形成できる。 As shown in Examples 1 to 4, as a dispersing agent CMC-Na, may be used CMC-NH 3, as a binder emulsion SBR elastomer or an acrylic elastomer can be used. In addition, the R value, W value, and specific surface area of acetylene black, ketjen black, and graphite, which are conductive aids, are shown in Table 1. The R value, W value, and specific surface area of the conductive aid used are specified values. By using those, it is possible to form a coating film having a low resistance value.

表2は、構造の異なる難黒鉛化性炭素粒子についての比較例、及び導電助剤の検討と被膜構造の最適化について検討した例を示したものである。比較例4、実施例5は結晶性をできるだけよくした難黒鉛化性炭素粒子を用いた例である。比較例4の難黒鉛化性炭素粒子のラマン分光特性はR値が1.48、W値が89で、実施例2で使用した難黒鉛化性炭素と比較し、R値、W値が結晶性が良くなる方向にシフトしている。その結果、充放電特性として容量が1.02Fまで低下している。以上のようにリチウムイオンキャパシター用負極電極は、比表面積やラマン分光特性で塗膜構造を規定し、また使用材料の構造を規定することで容量及び内部抵抗の優れた負極被膜が得られることが確認された。   Table 2 shows comparative examples of non-graphitizable carbon particles having different structures, and examples of investigation of conductive assistants and optimization of the coating structure. Comparative Example 4 and Example 5 are examples using non-graphitizable carbon particles having improved crystallinity as much as possible. The Raman spectroscopic characteristics of the non-graphitizable carbon particles of Comparative Example 4 have an R value of 1.48 and a W value of 89. Compared with the non-graphitizable carbon used in Example 2, the R value and W value are crystalline. It is shifting in the direction that improves the nature. As a result, the capacity is reduced to 1.02F as charge / discharge characteristics. As described above, the negative electrode for a lithium ion capacitor can provide a negative electrode film with excellent capacity and internal resistance by specifying the coating film structure by specific surface area and Raman spectral characteristics, and by specifying the structure of the material used. confirmed.

Figure 0005261127
Figure 0005261127

実施例5〜8は導電助剤としてアセチレンブラック、ケッチェンブラック、黒鉛を用いた例である。ペースト物性、被膜の物性が特定の範囲内において、容量、内部抵抗ともに良好な結果を示した。比較例5は、30rpm、60rpm時の粘度が2700mPa・s、2300mPa・sと高い粘度値であるが、膜厚60μmの電極被膜を作成するにあたり、塗料の広がりが悪く、膜厚変動が発生した。また被膜の密度が低く、さらに被膜のW値も小さいため、容量が低下した。実施例9は粘度の下限を確認した例である。塗布試験の結果から塗布性は良好だが塗料のタレで粘度値の下限と判定した。
Examples 5 to 8 are examples in which acetylene black, ketjen black, and graphite were used as conductive assistants. When the physical properties of the paste and the film were within a specific range, both the capacity and the internal resistance were good. In Comparative Example 5, the viscosity at 30 rpm and 60 rpm is a high viscosity value of 2700 mPa · s and 2300 mPa · s. However, when creating an electrode film with a film thickness of 60 μm, the spread of the paint was poor and the film thickness fluctuated. . Moreover, since the density of the film was low and the W value of the film was small, the capacity was reduced. Example 9 is an example in which the lower limit of the viscosity was confirmed. Although the applicability was good from the result of the application test, the lower limit of the viscosity value was determined by the sagging of the paint.

Claims (5)

分散剤を含む水媒体中に、難黒鉛化性炭素、導電助剤およびバインダーを含有してなる電極被膜形成用塗料組成物を金属箔上に塗布し、加熱乾燥して被膜化させたリチウムイオンキャパシターの負極被膜であって、
前記難黒鉛化性炭素のラマンスペクトルのピーク面積比であるR値が1.5〜1.7の範囲であり、Dバンドの半値幅であるW値が90〜102の範囲であり、
前記導電助剤がケッチェンブラック、アセチレンブラック及び黒鉛の中の少なくとも何れか一種からなり、
前記負極被膜中の構成粒子の粒度分布は、D10粒子径が0.5μm以上、D50粒子径が1〜4μmの範囲、D90粒子径が8μm以下であり、
前記負極被膜の比表面積が1.5〜25m/gの範囲であり、
前記負極被膜の表面粗さが0.1〜0.3μmの範囲であることを特徴とするリチウムイオンキャパシターの負極被膜。
A coating composition for forming an electrode film containing non-graphitizable carbon, a conductive additive and a binder in an aqueous medium containing a dispersant is applied onto a metal foil, and dried by heating to form a film. Capacitor negative electrode coating,
The R value which is the peak area ratio of the Raman spectrum of the non-graphitizable carbon is in the range of 1.5 to 1.7, and the W value which is the half width of the D band is in the range of 90 to 102.
The conductive auxiliary agent comprises at least one of ketjen black, acetylene black and graphite,
The particle size distribution of the constituent particles in the negative electrode coating, D 10 particle size of 0.5μm or more, D 50 ranging particle size of 1 to 4 [mu] m, and a D 90 particle size of 8μm or less,
The specific surface area of the negative electrode coating is in the range of 1.5 to 25 m 2 / g,
The negative electrode coating for a lithium ion capacitor, wherein the negative electrode coating has a surface roughness in the range of 0.1 to 0.3 μm.
前記負極被膜のラマン分光スペクトルのピーク面積比であるR値が1.3〜1.7の範囲であり、Dバンドの半値幅であるW値が72〜115の範囲である請求項1記載のリチウムイオンキャパシターの負極被膜。 The R value, which is the peak area ratio of the Raman spectrum of the negative electrode film , is in the range of 1.3 to 1.7, and the W value, which is the half-value width of the D band , is in the range of 72 to 115. Lithium ion capacitor negative electrode coating. 前記負極被膜の膜厚40μmのシート抵抗値が40〜400Ωの範囲である請求項1または2に記載のリチウムイオンキャパシターの負極被膜。 3. The negative electrode film for a lithium ion capacitor according to claim 1, wherein the negative electrode film has a sheet resistance value of 40 μm to 40 μm. 前記負極被膜の塗膜密度が0.8〜1.05g/cmの範囲である請求項1〜3の何れかに記載のリチウムイオンキャパシターの負極被膜。 The negative electrode coating film for a lithium ion capacitor according to any one of claims 1 to 3, wherein a coating film density of the negative electrode coating film is in a range of 0.8 to 1.05 g / cm 3 . 分散剤を含む水媒体中に、難黒鉛化性炭素、導電助剤およびバインダーを含有してなる電極被膜形成用塗料組成物であって、
前記導電助剤がケッチェンブラック、アセチレンブラック及び黒鉛の中の少なくとも何れか一種からなり、
粒度分布は、D10粒子径が0.5μm以上、D50粒子径が1〜4μmの範囲、D90粒子径が8μm以下であり、且つ、ラマン分光スペクトルのピーク面積比であるR値が1.5〜1.7の範囲であり、Dバンドの半値幅であるW値が90〜102の範囲である前記難黒鉛化性炭素と、
ラマン分光スペクトルのピーク面積比であるR値が0.2〜1.6の範囲であり、Dバンドの半値幅であるW値が17〜95の範囲である前記導電助剤とを添加してなることを特徴とするリチウムイオンキャパシターの電極被膜形成用塗料組成物。
A coating composition for forming an electrode film comprising a non-graphitizable carbon, a conductive additive and a binder in an aqueous medium containing a dispersant,
The conductive auxiliary agent comprises at least one of ketjen black, acetylene black and graphite,
The particle size distribution is such that the D 10 particle diameter is 0.5 μm or more, the D 50 particle diameter is in the range of 1 to 4 μm, the D 90 particle diameter is 8 μm or less, and the R value that is the peak area ratio of the Raman spectrum is 1. The non-graphitizable carbon in the range of 0.5 to 1.7 , and the W value which is the half width of the D band is in the range of 90 to 102 ;
The conductive auxiliary agent having an R value which is a peak area ratio of a Raman spectrum spectrum in a range of 0.2 to 1.6 and a W value which is a half value width of a D band is in a range of 17 to 95 is added. A coating composition for forming an electrode film of a lithium ion capacitor.
JP2008265969A 2008-10-15 2008-10-15 Coating composition for forming a negative electrode film and an electrode film of a lithium ion capacitor Expired - Fee Related JP5261127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008265969A JP5261127B2 (en) 2008-10-15 2008-10-15 Coating composition for forming a negative electrode film and an electrode film of a lithium ion capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008265969A JP5261127B2 (en) 2008-10-15 2008-10-15 Coating composition for forming a negative electrode film and an electrode film of a lithium ion capacitor

Publications (2)

Publication Number Publication Date
JP2010098020A JP2010098020A (en) 2010-04-30
JP5261127B2 true JP5261127B2 (en) 2013-08-14

Family

ID=42259518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008265969A Expired - Fee Related JP5261127B2 (en) 2008-10-15 2008-10-15 Coating composition for forming a negative electrode film and an electrode film of a lithium ion capacitor

Country Status (1)

Country Link
JP (1) JP5261127B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012086340A1 (en) * 2010-12-20 2014-05-22 Jsr株式会社 Electric storage device, lithium ion capacitor, and negative electrode for lithium ion capacitor
JP5500395B2 (en) 2011-09-27 2014-05-21 トヨタ自動車株式会社 Method for manufacturing electrode for power storage device
US8956688B2 (en) 2011-10-12 2015-02-17 Ut-Battelle, Llc Aqueous processing of composite lithium ion electrode material
JP5570577B2 (en) * 2012-01-27 2014-08-13 Jfeケミカル株式会社 Method for producing non-graphitizable carbon material
JP5924645B2 (en) * 2012-02-14 2016-05-25 住友化学株式会社 Negative electrode material for sodium secondary battery, electrode for sodium secondary battery, and sodium secondary battery
CN103715383B (en) * 2012-09-28 2017-11-03 株式会社杰士汤浅国际 Charge storage element
JP6393976B2 (en) 2012-12-04 2018-09-26 株式会社Gsユアサ Power storage element and power storage device
CN104956521B (en) 2012-12-19 2018-06-29 亿目朗美国股份有限公司 For the negative electrode active material of energy stores
EP2960913A4 (en) * 2013-02-20 2016-10-05 Nippon Chemicon Electrode, electric double-layer capacitor using same, and electrode manufacturing method
JP6357981B2 (en) * 2013-09-30 2018-07-18 株式会社Gsユアサ Lithium ion secondary battery
JP2015216089A (en) * 2014-04-23 2015-12-03 日立化成株式会社 Composition for forming lithium ion secondary battery negative electrode, composition for forming lithium ion secondary battery positive electrode, negative electrode for lithium ion secondary battery, positive electrode for lithium ion secondary, and lithium ion secondary battery
JP6413347B2 (en) 2014-05-26 2018-10-31 株式会社Gsユアサ Electricity storage element
JP6536140B2 (en) * 2014-05-28 2019-07-03 株式会社Gsユアサ Storage element
JP6573150B2 (en) * 2015-03-20 2019-09-11 株式会社Gsユアサ Electricity storage element
JP6570413B2 (en) * 2015-10-15 2019-09-04 株式会社クレハ Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery including the same
JP7119373B2 (en) * 2016-01-29 2022-08-17 株式会社Gsユアサ Nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
CN107045851B (en) 2016-02-05 2019-08-02 大陆汽车车身电子***(芜湖)有限公司 Head-up display method for controlling backlight thereof based on SPI
WO2018056280A1 (en) * 2016-09-21 2018-03-29 株式会社Gsユアサ Negative electrode for nonaqueous electrolyte electricity storage elements, and nonaqueous electrolyte electricity storage element
CN117043903A (en) * 2021-03-26 2023-11-10 松下知识产权经营株式会社 Electrochemical device
WO2024028994A1 (en) * 2022-08-02 2024-02-08 株式会社レゾナック Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary batterυ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07122262A (en) * 1993-10-27 1995-05-12 Toray Ind Inc Electrode and its manufacture and secondary battery using the electrode
JP4151210B2 (en) * 2000-08-30 2008-09-17 ソニー株式会社 Positive electrode active material and method for producing the same, non-aqueous electrolyte battery and method for producing the same
JP2003031220A (en) * 2001-07-13 2003-01-31 Asahi Glass Co Ltd Secondary power source
JP4775621B2 (en) * 2004-09-06 2011-09-21 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2008041253A (en) * 2006-08-01 2008-02-21 Nissan Motor Co Ltd Electrocatalyst and power generation system using the same
JP5301090B2 (en) * 2006-08-18 2013-09-25 株式会社Kri Electrode for lithium ion capacitor and lithium ion capacitor using the same
JP4857073B2 (en) * 2006-10-20 2012-01-18 富士重工業株式会社 Lithium ion capacitor
JP2008198536A (en) * 2007-02-14 2008-08-28 Unitika Ltd Electrode, and secondary battery or capacitor using it
JP2008244210A (en) * 2007-03-28 2008-10-09 Matsushita Electric Ind Co Ltd Electrochemical capacitor

Also Published As

Publication number Publication date
JP2010098020A (en) 2010-04-30

Similar Documents

Publication Publication Date Title
JP5261127B2 (en) Coating composition for forming a negative electrode film and an electrode film of a lithium ion capacitor
JP2010114206A (en) Negative electrode film for lithium-ion capacitor, and electrode film-forming coating material composition
JP7042589B2 (en) Negative electrode
US8178155B2 (en) Carbon-based ultracapacitor
KR102650390B1 (en) Anode electrode compositions and aqueous dispersions for battery applications
US20120099244A1 (en) Electrode of high-density super capacitor and method for manufacturing same
JP2016100225A (en) Negative electrode material for lithium ion secondary battery, negative electrode, and lithium ion secondary battery
JP2011253620A (en) Negative electrode active material, its manufacturing method, and lithium ion secondary battery using negative electrode active material
CN103268942A (en) Modified current collector with nano graphite coating
EP2811550B1 (en) Composition for forming secondary cell electrode, secondary cell electrode, and secondary cell
JP6543428B1 (en) Negative electrode active material for secondary battery and secondary battery
WO2014157010A1 (en) Collector, electrode structure, nonaqueous electrolyte battery, and electricity storage component
JP5736928B2 (en) Conductive base paint for capacitor, electrode for capacitor, electric double layer capacitor and lithium ion capacitor
KR20150032865A (en) Electrode formulations comprising graphenes
TW201729452A (en) Anode material, anode and lithium ion secondary battery
KR20150132394A (en) Graphene / carbon compositions
JP2010034300A (en) Carbon material for use of polarizable electrode of electric double-layer capacitor, its manufacturing method, and the electric double-layer capacitor
WO2022257373A1 (en) Negative electrode material, preparation method therefor and application thereof, and negative electrode plate and application
KR101591712B1 (en) Binders in anode materials of lithium secondary battery
KR101519979B1 (en) Anode materials of lithium secondary ion battery
JP6447013B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR101932463B1 (en) Lithium metal electrode and manufacturing method thereof
JP2013020772A (en) Negative electrode material for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery
JP2009266910A (en) Paste composition for forming electrode of electric double layer capacitor
JP6874283B2 (en) Conductive compositions, grounded current collectors for power storage devices, electrodes for power storage devices, and power storage devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5261127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees