JP2008244210A - Electrochemical capacitor - Google Patents

Electrochemical capacitor Download PDF

Info

Publication number
JP2008244210A
JP2008244210A JP2007083723A JP2007083723A JP2008244210A JP 2008244210 A JP2008244210 A JP 2008244210A JP 2007083723 A JP2007083723 A JP 2007083723A JP 2007083723 A JP2007083723 A JP 2007083723A JP 2008244210 A JP2008244210 A JP 2008244210A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode layer
electrochemical capacitor
electrode
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007083723A
Other languages
Japanese (ja)
Inventor
Masahiro Ishii
聖啓 石井
Hideki Shimamoto
秀樹 島本
Susumu Nomoto
進 野本
Shinichi Yuasa
真一 湯淺
Keiichi Kondo
敬一 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007083723A priority Critical patent/JP2008244210A/en
Publication of JP2008244210A publication Critical patent/JP2008244210A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To reduce resistance in an electrochemical capacitor used for automobiles, or the like. <P>SOLUTION: The electrochemical capacitor comprises: a positive electrode 2, where a polarizable electrode layer 6 mainly using an active carbon is formed on a collector 5; an element 1 around which a negative electrode, where an electrode layer 8 mainly using a carbon material is formed on a collector 7, is wound via a separator 4; a metal case 10 in which the element 1 is stored with an organic electrolyte 12 including an lithium ion; and sealing rubber 11 sealing the opening of the metal case 10. The electrode layer 8 of the negative electrode 3 contains not less than a 95% active material, and porous nickel is used as the collector 7 of the negative electrode 3. Adherence strength in the electrode layer 8 of the negative electrode 3 is increased sharply, thus suppressing a characteristic change due to a charge/discharge cycle, reducing a resistance value, reducing acetylene black mixed when the electrode layer 8 of the negative electrode 3 is formed, binder, or the like as much as possible for increasing the amount of active material, and expanding capacity and reducing the resistance value. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は各種電子機器、ハイブリッド自動車や燃料電池車のバックアップ電源用や回生用、あるいは電力貯蔵用等に使用される電気化学キャパシタに関するものである。   The present invention relates to an electrochemical capacitor used for various electronic devices, a backup power source, a regenerative power source, or a power storage for a hybrid vehicle or a fuel cell vehicle.

従来から、高耐電圧で大容量、しかも急速充放電の信頼性が高いということから電気二重層コンデンサが着目され、多くの分野で使用されている。このような電気二重層コンデンサは正極、負極共に活性炭を主体とする分極性電極を電極として用いたものであり、電気二重層コンデンサとしての耐電圧は、水系電解液を使用すると1.2V、有機系電解液を使用すると2.5〜3.3Vである。   Conventionally, electric double layer capacitors have attracted attention and are used in many fields because of their high withstand voltage, large capacity, and high reliability of rapid charge / discharge. Such an electric double layer capacitor uses a polarizable electrode mainly composed of activated carbon for both the positive electrode and the negative electrode, and the withstand voltage of the electric double layer capacitor is 1.2 V when an aqueous electrolyte is used. When a system electrolyte is used, it is 2.5 to 3.3 V.

電気二重層コンデンサのエネルギは耐電圧の2乗に比例するため、耐電圧の高い有機系電解液の方が水系電解液より高エネルギであるが、有機系電解液を使用した電気二重層コンデンサでも、そのエネルギ密度は鉛蓄電池等の二次電池の1/10以下であり、更なるエネルギ密度の向上が必要とされている。   Since the energy of the electric double layer capacitor is proportional to the square of the withstand voltage, the organic electrolyte with a higher withstand voltage has higher energy than the aqueous electrolyte, but even with an electric double layer capacitor using an organic electrolyte The energy density is 1/10 or less of a secondary battery such as a lead-acid battery, and further improvement of the energy density is required.

このような背景から、活性炭を主体とする電極を正極とし、X線回折法による〔002〕面の面間隔が0.338〜0.356nmである炭素材料にあらかじめリチウムイオン(Li+)を吸蔵させた電極を負極とする上限電圧3Vの二次電池が提案されている(特許文献1)。 Against this background, an electrode mainly composed of activated carbon is used as a positive electrode, and lithium ions (Li + ) are previously occluded in a carbon material having an [002] plane spacing of 0.338 to 0.356 nm by X-ray diffraction. A secondary battery having an upper limit voltage of 3 V has been proposed (Patent Document 1).

また、リチウムイオン(Li+)を吸蔵、脱離しうる炭素材料にあらかじめ化学的方法または電気化学的方法でリチウムイオン(Li+)を吸蔵させた炭素材料を負極に用いる二次電池が提案されている(特許文献2)。 Further, lithium ions (Li +) occluded, been proposed a secondary battery using a pre-chemical or carbon material in electrochemical methods to absorb lithium ions (Li +) in the carbon material capable desorbed anode (Patent Document 2).

さらに、リチウムイオン(Li+)を吸蔵、脱離しうる炭素材料をリチウムと合金を形成しない多孔質集電体に担持させる負極を有する上限電圧4Vの電気二重層キャパシタが提案されている(特許文献3)。 Furthermore, an electric double layer capacitor having an upper limit voltage of 4 V has been proposed having a negative electrode in which a carbon material capable of inserting and extracting lithium ions (Li + ) is supported on a porous current collector that does not form an alloy with lithium (Patent Literature). 3).

また、電気二重層コンデンサ以外に大電流充放電可能な電源としてリチウムイオン電池があり、リチウムイオン電池は電気二重層コンデンサに比べて高電圧かつ高容量という特徴を有するが、抵抗が高く、急速充放電サイクルによる寿命が電気二重層コンデンサに比べて著しく短いという問題があった。   In addition to the electric double layer capacitor, there is a lithium ion battery as a power source capable of charging and discharging a large current. The lithium ion battery has a feature of a higher voltage and a higher capacity than the electric double layer capacitor, but has a high resistance and a quick charge. There is a problem that the life due to the discharge cycle is remarkably shorter than that of the electric double layer capacitor.

なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1〜3が知られている。
特開昭64−14882号公報 特開平8−107048号公報 特開平9−55342号公報
As prior art document information related to the invention of this application, for example, Patent Documents 1 to 3 are known.
JP-A 64-14882 Japanese Patent Laid-Open No. 8-1007048 JP-A-9-55342

しかしながら上記従来の電気二重層コンデンサの短所を改良する目的で提案された二次電池や電気二重層キャパシタでは、高耐電圧で大容量、しかも急速充放電が可能という長所は有するものの、抵抗値が高いため、例えば、ハイブリッド自動車や燃料電池車のバックアップ電源や回生用等に使用する場合には、多数個を直列接続して使用するために総抵抗値が大きくなりすぎて使用できないという課題があった。   However, secondary batteries and electric double layer capacitors proposed for the purpose of improving the disadvantages of the conventional electric double layer capacitor have the advantages of high withstand voltage, large capacity, and rapid charge / discharge, but the resistance value is high. For example, when used for backup power sources or regeneration of hybrid vehicles or fuel cell vehicles, the total resistance value becomes too large for use in series connection. It was.

また、負極に形成する電極層は集電体との密着強度の確保が難しいために剥離強度が低く、抵抗値が大きくなり易いという課題があり、このような負極をセパレータを介して正極と共に巻回して巻回型の素子を形成することは極めて困難であるという課題もあった。   In addition, the electrode layer formed on the negative electrode has a problem in that it is difficult to ensure the adhesion strength with the current collector, so that the peel strength is low and the resistance value is likely to increase, and such a negative electrode is wound together with the positive electrode via a separator. There is also a problem that it is extremely difficult to form a wound type element by turning.

また、低抵抗化を図る目的で、負極の電極層を形成する電極材料としての活物質に黒鉛を用いることが考えられるが、この黒鉛はそれ自体が有する抵抗値は低いものの、充放電サイクルによる寿命が短い、低温特性が悪いという短所があるために低抵抗化には適しておらず、そのために、炭素を構成する炭素六角網面間の層間を広げることによりリチウムイオン(Li+)の拡散抵抗を低減する方法が知られているが、このような炭素材料は結晶構造が成長途上にあるためにそれ自体の抵抗値が高く、抵抗値を低減させるために導電性付与剤であるアセチレンブラック等を混合して使用しなければならないという問題があった。 In addition, for the purpose of reducing resistance, it is conceivable to use graphite as an active material as an electrode material for forming a negative electrode layer. Although this graphite itself has a low resistance value, it depends on the charge / discharge cycle. Because of its short life and poor low-temperature properties, it is not suitable for low resistance. For this reason, the diffusion of lithium ions (Li + ) by expanding the layers between the carbon hexagonal networks that make up carbon Although a method for reducing the resistance is known, such a carbon material has a high resistance value because the crystal structure is still growing, and acetylene black, which is a conductivity-imparting agent, is used to reduce the resistance value. There was a problem that it was necessary to mix them.

さらに、上記アセチレンブラックは、初回充電時にリチウムイオン(Li+)を取り込んでしまい、放電時にリチウムイオン(Li+)を脱離しないという性質(不可逆容量)を有するために、このようなリチウムイオン(Li+)を用いる電気二重層キャパシタの電極材料としてアセチレンブラックを使用することは好ましくないという問題もあった。 Moreover, the acetylene black in order to have the property of initial charging time will incorporate lithium ions (Li +), the not eliminated lithium ions (Li +) during the discharge (irreversible capacity), the lithium-ion ( There is also a problem that it is not preferable to use acetylene black as an electrode material of an electric double layer capacitor using Li + ).

本発明はこのような従来の課題を解決し、高耐電圧で大容量、かつ、急速充放電サイクルの信頼性に優れ、しかも低抵抗化を実現することが可能な電気化学キャパシタを提供することを目的とするものである。   The present invention solves such a conventional problem, and provides an electrochemical capacitor having a high withstand voltage, a large capacity, excellent reliability in a rapid charge / discharge cycle, and capable of realizing a low resistance. It is intended.

上記課題を解決するために本発明は、集電体上に活性炭を主体とした分極性電極層を形成した正極と、集電体に炭素材料を主体とした電極層を形成した負極とを、その間にセパレータを介在させて巻回することにより構成された素子と、この素子をリチウムイオン(Li+)を含む有機系電解液と共に収容した金属ケースと、この金属ケースの開口部を封止した封口部材からなり、上記負極の集電体としてリチウムと合金を形成しない発泡金属箔を用いると共に、この発泡金属箔の内部に電極層を形成した構成にしたものである。 In order to solve the above problems, the present invention provides a positive electrode in which a polarizable electrode layer mainly composed of activated carbon is formed on a current collector, and a negative electrode in which an electrode layer mainly composed of a carbon material is formed on the current collector. An element configured by winding with a separator interposed therebetween, a metal case containing the element together with an organic electrolyte containing lithium ions (Li + ), and an opening of the metal case were sealed The foamed metal foil is made of a sealing member and does not form an alloy with lithium as the negative electrode current collector, and an electrode layer is formed inside the foamed metal foil.

以上のように本発明による電気化学キャパシタは、リチウムと合金を形成しない発泡金属箔を負極の集電体として用いることによって電極層の密着強度や保持性を大幅に向上させることが可能になるために抵抗値を低減することができるようになり、これにより負極の電極層を形成するために混合するアセチレンブラックやバインダ等を可能な限りゼロに近い量まで削減することによって活物質量を多くし、更なる容量値の向上と抵抗値の低減を図り、充放電サイクル時の容量/抵抗特性を安定化させることが可能になるという効果が得られるものである。   As described above, the electrochemical capacitor according to the present invention can significantly improve the adhesion strength and retention of the electrode layer by using the foamed metal foil that does not form an alloy with lithium as the current collector of the negative electrode. In this way, the amount of active material can be increased by reducing the amount of acetylene black, binder, etc. to be mixed to form a negative electrode layer as close to zero as possible. Further, the effect of further improving the capacitance value and reducing the resistance value and stabilizing the capacitance / resistance characteristics during the charge / discharge cycle can be obtained.

更に、負極の電極層の密着強度や保持性が向上することにより、負極の厚みを薄くして更なる低抵抗化を図ることができるようになるばかりでなく、巻回形の素子を作製することも容易になるという効果も得られるものである。   Furthermore, by improving the adhesion strength and retention of the electrode layer of the negative electrode, not only can the thickness of the negative electrode be reduced to further reduce the resistance, but also a wound element is produced. It is also possible to obtain an effect that it becomes easy.

(実施の形態)
以下、実施の形態を用いて、本発明の特に全請求項に記載の発明について説明する。
(Embodiment)
Hereinafter, the invention described in the entire claims of the present invention will be described by using embodiments.

図1は本発明の一実施の形態による電気化学キャパシタの構成を示した一部切り欠き斜視図、図2(a)、(b)は同電気化学キャパシタを構成する負極の厚み方向から見た断面図と上面から見た断面図、図3(a)、(b)は同電気化学キャパシタの原理を説明するために示した放電状態と充電状態の概念図である。   FIG. 1 is a partially cutaway perspective view showing a configuration of an electrochemical capacitor according to an embodiment of the present invention, and FIGS. 2A and 2B are viewed from a thickness direction of a negative electrode constituting the electrochemical capacitor. Cross-sectional views and cross-sectional views as viewed from above, FIGS. 3A and 3B are conceptual diagrams of a discharged state and a charged state shown to explain the principle of the electrochemical capacitor.

図1において、1は素子であり、この素子1はアルミニウム箔からなる集電体5の表裏面に活性炭を主体とした分極性電極層6を形成した正極2と、リチウムと合金を形成しない発泡金属箔の一つである発泡ニッケル箔からなる多孔質の集電体7の内部に炭素材料の電極層8を形成した負極3とを2枚1組とし、その間に絶縁性のセパレータ4を介在させた状態で巻回することにより構成されているものである。   In FIG. 1, reference numeral 1 denotes an element. The element 1 is a positive electrode 2 in which a polarizable electrode layer 6 mainly composed of activated carbon is formed on the front and back surfaces of a current collector 5 made of an aluminum foil, and a foam that does not form an alloy with lithium. A pair of a negative electrode 3 having a carbon material electrode layer 8 formed inside a porous current collector 7 made of foamed nickel foil, which is one of metal foils, and an insulating separator 4 interposed therebetween. It is comprised by winding in the made state.

9a、9bは上記正極2、負極3に夫々接続されて引き出された正負一対の引き出し用のリード線、10は上記素子1を駆動用電解液(以下、電解液と呼ぶ)12と共に収容した有底円筒状の金属ケース、11は上記素子1から引き出された正負一対のリード線9a、9bが挿通する孔を有して上記金属ケース10の開口部に嵌め込まれ、金属ケース10の開口部近傍の外周を内側に円環状に絞り加工すると共に、金属ケース10の開口端をカーリング加工することにより封止を行う封口ゴムである。   Reference numerals 9a and 9b denote a pair of lead wires for leading and discharging, which are connected to the positive electrode 2 and the negative electrode 3, respectively, and 10 is an element containing the element 1 together with a driving electrolyte (hereinafter referred to as electrolyte) 12. A bottom cylindrical metal case 11 has a hole through which a pair of positive and negative lead wires 9a, 9b drawn from the element 1 is inserted, and is fitted into the opening of the metal case 10, and in the vicinity of the opening of the metal case 10. This is a sealing rubber that seals the metal case 10 by curling the opening end of the metal case 10 while drawing the outer periphery of the metal case 10 into an annular shape.

図2は発泡ニッケル箔からなる多孔質の集電体7の内部に炭素材料の電極層8を形成した負極3の断面図である。従来の負極は、炭素材料と導電性付与剤とバインダを混合したスラリー等を非多孔質の銅箔等の集電体に塗布して電極層が形成されるが、長期的な使用や充放電を繰り返すことによる炭素材料の膨張収縮によってバインダの結着力が低下し、これにより、炭素粒子間の密着性の低下、電極層と集電体の密着性の低下、集電体からの電極層の剥離などを招き、電気化学キャパシタとしての容量の低下と抵抗の増加を招いてしまう。そのため、発泡ニッケル箔からなる多孔質の集電体7の外部に多くの電極層を形成してしまうと、上記と同様に、発泡ニッケル箔からなる多孔質の集電体7の外部の電極層が剥離し、容量の低下と抵抗の増加を招くため、本実施の形態では電極層8を極力、発泡ニッケル箔からなる多孔質の集電体7の内部に形成し、電極層8をバインダだけでなく、発泡ニッケル箔からなる多孔質の集電体7で機械的に保持することが望ましい。   FIG. 2 is a cross-sectional view of the negative electrode 3 in which a carbon material electrode layer 8 is formed inside a porous current collector 7 made of foamed nickel foil. A conventional negative electrode is formed by applying a slurry such as a mixture of a carbon material, a conductivity-imparting agent, and a binder to a current collector such as a non-porous copper foil. The binder binding force is reduced due to the expansion and contraction of the carbon material by repeating the above, thereby reducing the adhesion between the carbon particles, the adhesion between the electrode layer and the current collector, and the electrode layer from the current collector. This causes peeling and the like, leading to a decrease in capacity and an increase in resistance as an electrochemical capacitor. Therefore, if many electrode layers are formed outside the porous current collector 7 made of foamed nickel foil, the electrode layer outside the porous current collector 7 made of foamed nickel foil is the same as described above. In this embodiment, the electrode layer 8 is formed as much as possible inside the porous current collector 7 made of foamed nickel foil, and the electrode layer 8 is made of only the binder. In addition, it is desirable to mechanically hold the porous current collector 7 made of a foamed nickel foil.

そのため、発泡ニッケル箔からなる多孔質の集電体7の内部に電極層8を形成した時の負極3において、負極3の長さをLn、幅をWn、厚さをdn、発泡ニッケル箔からなる多孔質の集電体7の長さをLb、幅をWb、厚さをdb、炭素材料の平均粒径をDとしたとき、少なくとも
Ln<Lb+4D
Wn<Wb+4D
dn<db+4D
を満たし、好ましくは
Ln=Lb
Wn=Wb
dn=db
を満たすことが望ましい。
Therefore, in the negative electrode 3 when the electrode layer 8 is formed inside the porous current collector 7 made of foamed nickel foil, the length of the negative electrode 3 is Ln, the width is Wn, the thickness is dn, and the foamed nickel foil is used. When the length of the porous current collector 7 is Lb, the width is Wb, the thickness is db, and the average particle diameter of the carbon material is D, at least Ln <Lb + 4D
Wn <Wb + 4D
dn <db + 4D
Preferably, Ln = Lb
Wn = Wb
dn = db
It is desirable to satisfy.

また、負極3を厚くしてしまうと、巻回時に負極が割れてしまい、これにより発泡ニッケル箔からなる多孔質の集電体7の一部が突出してセパレータを突き破り、正極と短絡してしまうため、プレス後の負極3の厚さは0.1mm未満が好ましく、そのためにはプレス後の発泡ニッケル箔からなる多孔質の集電体7の厚さが0.1mm未満となる発泡ニッケル箔からなる多孔質の集電体7を用いるのが好ましい。   Moreover, if the negative electrode 3 is made thick, the negative electrode is cracked during winding, whereby a part of the porous current collector 7 made of foamed nickel foil protrudes, breaks through the separator, and is short-circuited with the positive electrode. Therefore, the thickness of the negative electrode 3 after pressing is preferably less than 0.1 mm. For that purpose, the porous current collector 7 made of foamed nickel foil after pressing has a thickness of less than 0.1 mm. The porous current collector 7 is preferably used.

また、このように構成された電気化学キャパシタは、図2に示すように、電解液12に含まれる電解質カチオンとしてのリチウムイオン(Li+)と、同じく電解質アニオンとしてのテトラフルオロホウ酸(BF4 -)が移動することによって充放電を行うものであるが、大きな容量を得るためには上記電解液12中のリチウムイオン(Li+)のみでは絶対量が足りず、従って、図3(a)の放電状態に示すように、あらかじめ負極の電極層にリチウムイオン(Li+)を吸蔵させておく(以下、プレドープと呼ぶ)ことが必要となるものである。 In addition, as shown in FIG. 2, the electrochemical capacitor configured as described above includes lithium ions (Li + ) as electrolyte cations contained in the electrolyte solution 12 and tetrafluoroboric acid (BF 4 ) as electrolyte anions. - ) Is charged and discharged by moving, but in order to obtain a large capacity, the lithium ion (Li + ) in the electrolytic solution 12 is not sufficient in absolute quantity. Therefore, FIG. 3 (a) As shown in the discharge state, it is necessary to previously store lithium ions (Li + ) in the negative electrode layer (hereinafter referred to as pre-doping).

なお、上記負極3の電極層8を構成する活物質である炭素材料には、鉱物として得られる天然黒鉛や、コークス等を不活性雰囲気下中で2800℃以上の高温で黒鉛化して得られる人造黒鉛等の黒鉛系炭素材料が挙げられる。   The carbon material which is an active material constituting the electrode layer 8 of the negative electrode 3 is an artificial material obtained by graphitizing natural graphite obtained as a mineral or coke at a high temperature of 2800 ° C. or higher in an inert atmosphere. Examples thereof include graphite-based carbon materials such as graphite.

また、ピッチコークスやメソフェーズピッチ炭素を1000℃以上の温度で焼成することにより黒鉛化が進行しやすい易黒鉛化性炭素材料を用いることができ、このうち、焼成温度が低すぎると不可逆容量が増加するため、少なくとも600℃以上、好ましくは800℃以上の温度領域で焼成した易黒鉛化性炭素材料が望ましい。   In addition, it is possible to use an easily graphitizable carbon material that is easily graphitized by firing pitch coke or mesophase pitch carbon at a temperature of 1000 ° C. or higher. Among these, if the firing temperature is too low, the irreversible capacity increases. Therefore, an easily graphitizable carbon material fired in a temperature range of at least 600 ° C., preferably 800 ° C. or higher is desirable.

また、2800℃以上の温度で焼成することによっても黒鉛化が進行し難いフルフリルアルコール樹脂やフェノール樹脂等を焼成することによって得られる難黒鉛化性炭素材料を用いることができ、そのうち、焼成温度が低すぎると不可逆容量が増加するため、少なくとも600℃以上、好ましくは800℃以上の温度領域で焼成した難黒鉛化性炭素材料が望ましい。   Further, it is possible to use a non-graphitizable carbon material obtained by firing a furfuryl alcohol resin, a phenol resin, or the like that hardly undergoes graphitization even by firing at a temperature of 2800 ° C. or higher. If it is too low, the irreversible capacity increases. Therefore, a non-graphitizable carbon material fired in a temperature range of at least 600 ° C. or more, preferably 800 ° C. or more is desirable.

なお、低抵抗化のためには結晶化度が低い炭素材料、具体的には結晶子サイズLcが2nm以下、または層間距離が0.38nm以上であることが好ましい。   In order to reduce the resistance, it is preferable that the carbon material has a low crystallinity, specifically, the crystallite size Lc is 2 nm or less, or the interlayer distance is 0.38 nm or more.

以下に具体的な実施の形態について説明するが、本発明はこれに限定されるものではない。   Specific embodiments will be described below, but the present invention is not limited thereto.

まず、正極2として、厚さが22μmの高純度アルミニウム箔(Al:99.99%以上)を集電体5として用い、塩酸系のエッチング液中で電解エッチングして表面を粗面化した。   First, as the positive electrode 2, a high-purity aluminum foil (Al: 99.99% or more) having a thickness of 22 μm was used as the current collector 5, and the surface was roughened by electrolytic etching in a hydrochloric acid-based etching solution.

続いて、平均粒径5μmのフェノール樹脂系活性炭粉末と、導電性付与剤として平均粒径0.05μmのアセチレンブラック、カルボキシメチルセルロース(以下、CMCと呼ぶ)とポリテトラフルオロエチレン(以下、PTFEと呼ぶ)を溶解した水溶性バインダ溶液を10:2:1の重量比に混合して混練機で十分に混練した後、メタノールと水の分散溶媒を少しずつ加え、更に混練して所定の粘度のペーストを作製し、このペーストを上記集電体5の表裏面に塗布し、85℃の大気中で5分間乾燥することにより分極性電極層6を形成した後、所定の寸法に切断して正極2を得た。   Subsequently, phenol resin-based activated carbon powder having an average particle size of 5 μm, acetylene black having an average particle size of 0.05 μm, carboxymethylcellulose (hereinafter referred to as CMC) and polytetrafluoroethylene (hereinafter referred to as PTFE) as a conductivity imparting agent. ) Is dissolved in a weight ratio of 10: 2: 1 and sufficiently kneaded in a kneader, and then a methanol and water dispersion solvent is added little by little, followed by further kneading to obtain a paste having a predetermined viscosity. After the paste is applied to the front and back surfaces of the current collector 5 and dried in the atmosphere at 85 ° C. for 5 minutes to form the polarizable electrode layer 6, it is cut into a predetermined size and the positive electrode 2 is cut. Got.

次に、負極3として、気孔率60%、厚さが0.1mmの発泡ニッケル箔を集電体7として用い、この集電体7の内部に、難黒鉛化性炭素材料の一つとして、600〜1000℃の温度領域で焼成されたポリアセンと呼ばれる炭素材料を用いて電極層8を形成した。このポリアセンの電極層8は、ポリアセン:アセチレンブラック:バインダ=95:3:2とし、かつ、バインダとしては、PTFE(8):CMC(2)の割合で構成した。   Next, as the negative electrode 3, a foamed nickel foil having a porosity of 60% and a thickness of 0.1 mm was used as the current collector 7. As one of the non-graphitizable carbon materials inside the current collector 7, The electrode layer 8 was formed using a carbon material called polyacene that was baked in a temperature range of 600 to 1000 ° C. The polyacene electrode layer 8 was polyacene: acetylene black: binder = 95: 3: 2, and the binder was composed of PTFE (8): CMC (2).

また、製造方法としては、水にCMC→アセチレンブラック→ポリアセン→PTFEの順に添加し、撹拌して混練することによりペースト状にしたものを、コンマコータやダイコータ等を用いて上記集電体7内に充填し、これを85℃の温度で乾燥した後、線圧が2.5〜100kgf/cmでプレス加工することにより、電極密度が0.3〜1.0g/cm3、かつ、ポリアセンの含有率が95%の電極層8を作製すると共に、負極3としての厚さを0.06mmとしたものを所定の寸法に切断した。 In addition, as a manufacturing method, CMC → acetylene black → polyacene → PTFE is added to water in this order, and the mixture obtained by stirring and kneading is put into the current collector 7 using a comma coater or a die coater. After filling and drying at a temperature of 85 ° C., the electrode pressure is 0.3 to 1.0 g / cm 3 and the polyacene is contained by pressing at a linear pressure of 2.5 to 100 kgf / cm. The electrode layer 8 having a rate of 95% was prepared, and the negative electrode 3 having a thickness of 0.06 mm was cut into a predetermined dimension.

次に、このようにして得られた正極2と負極3を2枚1組とし、その間にセパレータ4を介在させた状態で巻回することにより素子1を得た。そして、この素子1を、ステンレス製の金属ケース10内に電解液12と共に挿入することにより、素子1に電解液12を含浸させた。この電解液12としては、電解質カチオンとしてリチウムイオン(Li+)電解質アニオンとしてヘキサフルオロリン酸(PF6 -)を、溶媒として高誘電率のエチレンカーボネートとプロピレンカーボネートと低粘度のジエチルカーボネートを重量比で3:1:4に混合した混合溶媒を用いた。 Next, the positive electrode 2 and the negative electrode 3 obtained in this way were made into a set of two sheets, and the element 1 was obtained by winding with the separator 4 interposed therebetween. And this element 1 was impregnated with the electrolyte solution 12 by inserting the element 1 into the stainless steel metal case 10 together with the electrolyte solution 12. The electrolyte solution 12 includes lithium ion (Li + ) as an electrolyte cation, hexafluorophosphoric acid (PF 6 ) as an electrolyte anion, and high dielectric constant ethylene carbonate, propylene carbonate, and low viscosity diethyl carbonate as a solvent in a weight ratio. And a mixed solvent mixed at 3: 1: 4 was used.

次に、このようにして電解液12と共に金属ケース10内に挿入された素子1から引き出された正負一対のリード線9a、9bを封口ゴム11に設けられた孔を貫通させ、この封口ゴム11を金属ケース10の開口部に嵌め込んだ後、金属ケース10の開口部近傍の外周を内側に円環状に絞り加工すると共に、金属ケース10の開口端をカーリング加工することにより封止を行い、本実施の形態による電気化学キャパシタを組み立てた。   Next, a pair of positive and negative lead wires 9a, 9b drawn out from the element 1 inserted into the metal case 10 together with the electrolyte 12 in this way is passed through the hole provided in the sealing rubber 11, and this sealing rubber 11 Is inserted into the opening of the metal case 10 and then the outer periphery in the vicinity of the opening of the metal case 10 is drawn into an annular shape inside, and the opening end of the metal case 10 is sealed by curling, An electrochemical capacitor according to this embodiment was assembled.

次に、このようにして組み立てを終えた電気化学キャパシタを用い、公知の方法でプレドープ作業を行う(プレドープ作業は本発明の要旨には関係がないものであり、どのような方法を用いても、本発明による効果に影響を及ぼすものではないため、ここでの説明は省略する)ことにより、上記素子1を構成する負極3の電極層8にリチウムイオンを吸蔵させた。   Next, using the electrochemical capacitor thus assembled, a pre-doping operation is performed by a known method (the pre-doping operation is not related to the gist of the present invention, and any method can be used. Since the effect of the present invention is not affected, the description thereof is omitted), whereby lithium ions were occluded in the electrode layer 8 of the negative electrode 3 constituting the element 1.

このようにして得られた本実施の形態による電気化学キャパシタの容量/抵抗特性の初期値を測定した結果を比較例としての従来品と比較して(表1)ならびに図4に示す。   The results obtained by measuring the initial values of the capacitance / resistance characteristics of the electrochemical capacitor according to the present embodiment thus obtained are shown in Table 1 and FIG. 4 in comparison with a conventional product as a comparative example.

なお、従来例としての電気化学キャパシタは負極のみが本実施の形態の電気化学キャパシタと異なり、負極以外の構成は本実施の形態と同様に構成したものである。   The electrochemical capacitor as a conventional example is different from the electrochemical capacitor of the present embodiment only in the negative electrode, and the configuration other than the negative electrode is configured in the same manner as in the present embodiment.

従来例としての負極は、炭素材料と導電性付与剤とバインダをペースト状にしたものを銅箔上に塗布するため、ポリアセン粒子間の電子抵抗の低減と電極層の安定性を考慮し、炭素材料であるポリアセンと導電性付与剤であるアセチレンブラックとバインダ(PTFE(2):CMC(8))の混合割合を重量比でポリアセン:アセチレンブラック:バインダ=80:10:10とした。   The negative electrode as a conventional example is a carbon material, a conductivity-imparting agent, and a binder that is applied in a paste form on a copper foil. Therefore, considering the reduction of the electronic resistance between polyacene particles and the stability of the electrode layer, The mixing ratio of the material polyacene and the conductivity-imparting agent acetylene black and the binder (PTFE (2): CMC (8)) was polyacene: acetylene black: binder = 80: 10: 10.

製造方法としては水にCMC→アセチレンブラック→ポリアセン→PTFEの順に添加し、撹拌して混練することによりペースト状にしたものを、コンマコータやダイコータ等を用いて15μmの銅箔上に塗布し、85℃の大気中で5分間乾燥することにより電極層を形成した後、所定の寸法に切断して負極を得た。   As a manufacturing method, CMC → acetylene black → polyacene → PTFE was added to water in this order, and the mixture was stirred and kneaded to form a paste, which was applied onto a 15 μm copper foil using a comma coater, die coater, etc. An electrode layer was formed by drying in the air at 5 ° C. for 5 minutes, and then cut into a predetermined size to obtain a negative electrode.

Figure 2008244210
Figure 2008244210

ここで、容量、抵抗特性は25℃の恒温槽中において、一定電流Iにて第1の所定電圧V1まで充電した後、30分間第1の所定電圧V1で定電圧充電を行い、その後、第2の所定電圧V2まで一定電流Iで放電し、測定した。ここでV1>V2>0の関係にある。
重量比容量SCは放電時の電荷量Q、放電開始直後に降下した電圧ΔV、また、第1の所
定電圧V1と第2の所定電圧V2より、
C=Q/(V1−V2−ΔV)
より容量Cを求め、正極の活性炭の重量Wacと負極のポリアセンの重量Wpasより
SC=C/(Wac+Wpas)
より算出した。
また、抵抗率ρは放電開始直後に降下した電圧ΔVと放電電流Iより、
R=ΔV/I
より抵抗Rを求め、電極面積Sと正極の電極厚さdpと負極の電極厚さdnおよびセパレータ厚さdsより、
ρ=R×S/(dp+dn+ds)
より算出した。
Here, the capacity and resistance characteristics are as follows: in a thermostatic chamber of 25 ° C., the battery is charged to the first predetermined voltage V1 with a constant current I, and then charged at the first predetermined voltage V1 for 30 minutes. It was discharged with a constant current I up to a predetermined voltage V2 of 2, and measured. Here, the relationship is V1>V2> 0.
The weight specific capacity SC is obtained from the charge amount Q at the time of discharge, the voltage ΔV dropped immediately after the start of discharge, and the first predetermined voltage V1 and the second predetermined voltage V2.
C = Q / (V1-V2-ΔV)
From the weight Wac of the activated carbon of the positive electrode and the weight Wpas of the polyacene of the negative electrode, SC = C / (Wac + Wpas)
Calculated from
Further, the resistivity ρ is calculated from the voltage ΔV and the discharge current I that have dropped immediately after the start of discharge.
R = ΔV / I
From the electrode area S, the positive electrode thickness dp, the negative electrode thickness dn, and the separator thickness ds,
ρ = R × S / (dp + dn + ds)
Calculated from

(表1)から明らかなように、本実施の形態による電気化学キャパシタは、従来品と比較して、初期の重量比容量は1.47倍に向上し、また、抵抗率は0.74倍に低減されていることが分かり、この大きな要因としては、以下のことが考えられる。   As is clear from Table 1, the electrochemical capacitor according to the present embodiment has an initial weight specific capacity improved by 1.47 times and a resistivity of 0.74 times compared to the conventional product. As a major factor, the following can be considered.

第1に、負極3の集電体7として多孔質の発泡ニッケル箔を用いたことにより、この集電体7上に形成される電極層8の密着強度や保持性が向上し、これにより抵抗値が大きく低減した。   First, the use of a porous foamed nickel foil as the current collector 7 of the negative electrode 3 improves the adhesion strength and retention of the electrode layer 8 formed on the current collector 7, thereby improving resistance. The value was greatly reduced.

第2に、上記負極3の電極層8の密着強度や保持性の向上により、負極3の厚みを従来品と比較して薄くできるようになり、これにより抵抗値が大きく低減した。   Secondly, by improving the adhesion strength and retention of the electrode layer 8 of the negative electrode 3, the thickness of the negative electrode 3 can be made thinner than that of the conventional product, thereby greatly reducing the resistance value.

第3に、上記負極3の電極層8の密着強度や保持性の向上により、電極層8を形成するために混合するアセチレンブラックやバインダを可能な限り削減して活物質としてのポリアセンの量を多くすることができるようになり、これにより、容量が向上し、抵抗値が大きく低減した。   Third, by improving the adhesion strength and retention of the electrode layer 8 of the negative electrode 3, the amount of polyacene as an active material can be reduced by reducing the amount of acetylene black and binder to be mixed to form the electrode layer 8 as much as possible. As a result, the capacitance can be improved and the resistance value can be greatly reduced.

次に、充放電サイクルを行い、100サイクル、500サイクル、1000サイクル終了時に上記同様に測定した容量/抵抗特性の結果を初期特性と合わせて図5〜図7に示す。   Next, charge / discharge cycles are performed, and the results of the capacity / resistance characteristics measured in the same manner as described above at the end of 100 cycles, 500 cycles, and 1000 cycles are shown in FIGS.

ここで、重量比容量の変化率ΔSCは初期の重量比容量SCと、100サイクル後、500サイクル後、1000サイクル後の重量比容量をそれぞれSC100、SC500、SC1000とすると、
ΔSC=(SC―SC)/SC×100
ΔSC100=(SC100−SC)/SC×100
ΔSC500=(SC500−SC)/SC×100
ΔSC1000=(SC1000−SC)/SC×100
より算出した。ここで上記式ΔSCの添え字はサイクル数を表す。
Here, the change rate ΔSC of the weight specific capacity is the initial weight specific capacity SC 0 and the weight specific capacities after 100 cycles, 500 cycles, and 1000 cycles are SC 100 , SC 500 , and SC 1000 , respectively.
ΔSC 0 = (SC 0 −SC 0 ) / SC 0 × 100
ΔSC 100 = (SC 100 −SC 0 ) / SC 0 × 100
ΔSC 500 = (SC 500 −SC 0 ) / SC 0 × 100
ΔSC 1000 = (SC 1000 −SC 0 ) / SC 0 × 100
Calculated from Here, the subscript of the above equation ΔSC represents the number of cycles.

また、抵抗率の変化率Δρは初期の抵抗率ρと、100サイクル後、500サイクル後、1000サイクル後の抵抗率をそれぞれρ100、ρ500、ρ1000とすると、

Δρ=(ρ―ρ)/ρ×100
Δρ100=(ρ100−ρ)/ρ×100
Δρ500=(ρ500−ρ)/ρ×100
Δρ1000=(ρ1000−ρ)/ρ×100
より算出した。ここで上記式Δρの添え字はサイクル数を表す。
Further, the resistivity change rate Δρ is the initial resistivity ρ 0, and the resistivity after 100 cycles, 500 cycles, and 1000 cycles are ρ 100 , ρ 500 , and ρ 1000 , respectively.

Δρ 0 = (ρ 0 −ρ 0 ) / ρ 0 × 100
Δρ 100 = (ρ 100 −ρ 0 ) / ρ 0 × 100
Δρ 500 = (ρ 500 −ρ 0 ) / ρ 0 × 100
Δρ 1000 = (ρ 1000 −ρ 0 ) / ρ 0 × 100
Calculated from Here, the subscript of the above formula Δρ represents the number of cycles.

図5から、充放電サイクル数の増加に伴う重量比容量の変化率ΔSCが従来品より
も大きく改善されていることが分かる。
From FIG. 5, it can be seen that the rate of change ΔSC of the weight specific capacity accompanying the increase in the number of charge / discharge cycles is greatly improved over the conventional product.

また、図6、図7から、従来品の抵抗率は急激な減少をし、その後増加の傾向にあることが分かり、この抵抗率の減少はリチウムイオンの充放電によって、炭素粒子の結晶子の層間が拡大することによってイオン拡散の抵抗が低下することによるものと考えられる。   In addition, it can be seen from FIGS. 6 and 7 that the resistivity of the conventional product sharply decreases and then tends to increase. This decrease in resistivity is caused by the charging and discharging of lithium ions and the crystallites of the carbon particles. This is considered to be due to a decrease in the resistance of ion diffusion due to the expansion of the interlayer.

また、抵抗の増加はリチウムイオンの充放電時の炭素粒子の膨張収縮によって発生する応力が電極層全体に広がることにより、電極層が集電体から剥離することが原因と考えられる。   In addition, the increase in resistance is considered to be caused by peeling of the electrode layer from the current collector due to the stress generated by the expansion and contraction of the carbon particles during charging and discharging of lithium ions spreading throughout the electrode layer.

このように、従来品では充放電サイクルによる容量/抵抗特性の挙動が不安定であるのに対し、本発明では負極3の電極層8の密着強度や保持性の向上により、充放電サイクルによる電極層8の安定性が向上し、充放電サイクルによる容量/抵抗特性の変化の大幅な抑制を実現することができる。   As described above, in the conventional product, the behavior of the capacity / resistance characteristics due to the charge / discharge cycle is unstable, whereas in the present invention, the adhesion strength and retention of the electrode layer 8 of the negative electrode 3 are improved, so The stability of the layer 8 is improved, and a significant suppression of changes in capacity / resistance characteristics due to charge / discharge cycles can be realized.

このように、本発明による電気化学キャパシタは、負極3の集電体7に多孔質の発泡ニッケル箔を用いた構成により、電極層8の密着強度や保持性を向上させることができるようになるため、電極層8に含有されるポリアセンの含有量を高めたり、負極3の厚みを薄くしたりすることが容易になり、これにより初期の容量/抵抗特性を改善でき、充放電サイクルによる容量/抵抗特性の変化を抑制できるばかりでなく、巻回形の素子の作製も容易に行えるようになるという格別の効果を奏するものである。   As described above, the electrochemical capacitor according to the present invention can improve the adhesion strength and retention of the electrode layer 8 by using the porous foamed nickel foil for the current collector 7 of the negative electrode 3. Therefore, it becomes easy to increase the content of polyacene contained in the electrode layer 8 and to reduce the thickness of the negative electrode 3, thereby improving the initial capacity / resistance characteristics, and the capacity / Not only can the change in resistance characteristics be suppressed, but also a special effect is achieved in that a wound element can be easily manufactured.

なお、本実施の形態においては、負極3の集電体7に多孔質の発泡ニッケル箔を用いた例で説明したが、本発明はこれに限定されるものではなく、リチウムと合金を形成しない金属であれば何でも良いことから、安価な発泡銅箔を用いても同様の効果を得ることができるものである。   In the present embodiment, the example in which the porous foamed nickel foil is used for the current collector 7 of the negative electrode 3 has been described. However, the present invention is not limited to this and does not form an alloy with lithium. Since any metal can be used, the same effect can be obtained even if an inexpensive foamed copper foil is used.

また、負極3の電極層8に含有される活物質の含有量は、特性面から判断すると100%が理想であるが、製造面や保持性等を含めて判断すると、従来品の活物質の含有量80%と比較して特性面にその効果が現れる95%以上とするのが良い。   Further, the content of the active material contained in the electrode layer 8 of the negative electrode 3 is ideally 100% when judged from the characteristics side, but when the judgment is made including the manufacturing side and the retaining property, the active material content of the conventional product is It is preferable to set it to 95% or more where the effect appears on the characteristic side as compared with the content of 80%.

また、負極3の厚さは、巻回形の素子1を用いて低抵抗化を図ることを前提に判断すると0.1mm未満が適しており、更に好ましくは0.75mm未満が望ましい。   The thickness of the negative electrode 3 is preferably less than 0.1 mm, more preferably less than 0.75 mm, based on the premise that the resistance is reduced using the wound element 1.

また、負極3の電極層8に含有される活物質は、リチウムを吸蔵、脱離することが可能な材料であれば良く、本実施の形態で用いた炭素材料以外でも、例えば、シリコン材料を用いることができ、同様の効果が得られるものである。   The active material contained in the electrode layer 8 of the negative electrode 3 may be any material that can occlude and desorb lithium. For example, a silicon material other than the carbon material used in this embodiment may be used. It can be used, and the same effect can be obtained.

本発明による電気化学キャパシタは、抵抗値を大きく低減することができるという効果を有し、特にハイブリッド自動車や燃料電池車のバックアップ電源や回生用等として有用である。   The electrochemical capacitor according to the present invention has an effect that the resistance value can be greatly reduced, and is particularly useful as a backup power source or a regeneration for a hybrid vehicle or a fuel cell vehicle.

本発明の一実施の形態による電気化学キャパシタの構成を示した一部切り欠き斜視図1 is a partially cutaway perspective view showing a configuration of an electrochemical capacitor according to an embodiment of the present invention. (a)同電気化学キャパシタを構成する負極の厚み方向から見た断面図、(b)同上面から見た断面図(A) A cross-sectional view as viewed from the thickness direction of the negative electrode constituting the electrochemical capacitor, (b) a cross-sectional view as viewed from the same top surface (a)同電気化学キャパシタの原理を説明するために示した放電状態の概念図、(b)同充電状態の概念図(A) The conceptual diagram of the discharge state shown in order to demonstrate the principle of the electrochemical capacitor, (b) The conceptual diagram of the charge state 同電気化学キャパシタの容量/抵抗特性を示した特性図Characteristic diagram showing capacitance / resistance characteristics of the same electrochemical capacitor 同電気化学キャパシタの充放電サイクル時の重量比容量の変化率を示した特性図Characteristic chart showing the rate of change in specific capacity during charge / discharge cycles of the same electrochemical capacitor 同電気化学キャパシタの充放電サイクル時の抵抗率の変化を示した特性図Characteristic diagram showing changes in resistivity during charge / discharge cycles of the same electrochemical capacitor 同電気化学キャパシタの充放電サイクル時の抵抗率の変化率を示した特性図Characteristic diagram showing the rate of change in resistivity during the charge / discharge cycle of the same electrochemical capacitor

符号の説明Explanation of symbols

1 素子
2 正極
3 負極
4 セパレータ
5、7 集電体
6 分極性電極層
8 電極層
9a、9b リード線
10 金属ケース
11 封口ゴム
12 電解液
DESCRIPTION OF SYMBOLS 1 Element 2 Positive electrode 3 Negative electrode 4 Separator 5, 7 Current collector 6 Polarization electrode layer 8 Electrode layer 9a, 9b Lead wire 10 Metal case 11 Sealing rubber 12 Electrolyte

Claims (5)

金属箔からなる集電体上に活性炭を主体とした分極性電極層を形成した正極と、金属箔からなる集電体に炭素材料またはシリコンを主体とした電極層を形成した負極とを、その間にセパレータを介在させて夫々の電極層が対向した状態で構成された素子と、この素子をリチウムイオン(Li+)を含む有機系電解液と共に収容した金属ケースと、この金属ケースの開口部を封止した封口部材からなる電気化学キャパシタにおいて、上記負極の集電体としてリチウムと合金を形成しない発泡金属箔を用いると共に、この発泡金属箔の内部に電極層を形成した電気化学キャパシタ。 A positive electrode in which a polarizable electrode layer mainly composed of activated carbon is formed on a current collector made of metal foil, and a negative electrode in which an electrode layer mainly composed of a carbon material or silicon is formed on the current collector made of metal foil. An element configured with each electrode layer facing each other with a separator interposed therebetween, a metal case containing the element together with an organic electrolyte containing lithium ions (Li + ), and an opening of the metal case An electrochemical capacitor comprising a sealed sealing member, wherein a foamed metal foil that does not form an alloy with lithium is used as the negative electrode current collector, and an electrode layer is formed inside the foamed metal foil. 発泡金属箔からなる負極の集電体の内部に形成した電極層が、活物質を95%以上含有したものである請求項1に記載の電気化学キャパシタ。 2. The electrochemical capacitor according to claim 1, wherein the electrode layer formed inside the negative electrode current collector made of foamed metal foil contains 95% or more of the active material. 負極の電極層を形成する活物質として、黒鉛系炭素材料、600℃以上で焼成された易黒鉛化性炭素材料、600℃以上で焼成された難黒鉛化性炭素材料のいずれかを用いた請求項2に記載の電気化学キャパシタ。 Claims using any of a graphite-based carbon material, a graphitizable carbon material fired at 600 ° C. or higher, and a non-graphitizable carbon material fired at 600 ° C. or higher as an active material for forming the electrode layer of the negative electrode Item 3. The electrochemical capacitor according to Item 2. 素子として、巻回形の素子を用いた請求項1に記載の電気化学キャパシタ。 The electrochemical capacitor according to claim 1, wherein a wound element is used as the element. 負極の厚さを0.1mm未満とした請求項1に記載の電気化学キャパシタ。 The electrochemical capacitor according to claim 1, wherein the thickness of the negative electrode is less than 0.1 mm.
JP2007083723A 2007-03-28 2007-03-28 Electrochemical capacitor Pending JP2008244210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007083723A JP2008244210A (en) 2007-03-28 2007-03-28 Electrochemical capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007083723A JP2008244210A (en) 2007-03-28 2007-03-28 Electrochemical capacitor

Publications (1)

Publication Number Publication Date
JP2008244210A true JP2008244210A (en) 2008-10-09

Family

ID=39915170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007083723A Pending JP2008244210A (en) 2007-03-28 2007-03-28 Electrochemical capacitor

Country Status (1)

Country Link
JP (1) JP2008244210A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010098020A (en) * 2008-10-15 2010-04-30 Hitachi Powdered Metals Co Ltd Negative electrode coating film and coating composition for forming electrode coating film of lithium ion capacitor
JP2013114795A (en) * 2011-11-25 2013-06-10 Sumitomo Electric Ind Ltd Electrode using aluminum porous body for collector, and method of manufacturing the same
US8927156B2 (en) 2009-02-19 2015-01-06 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US8986870B2 (en) 2009-03-09 2015-03-24 Semiconductor Energy Laboratory Co., Ltd. Power storage device
CN112236893A (en) * 2018-04-23 2021-01-15 通用汽车环球科技运作有限责任公司 Hybrid electrode and electrochemical cell and module using the same
CN112614704A (en) * 2020-11-26 2021-04-06 中国电子科技集团公司第十八研究所 Electrochemical preparation method of ultrathin metal sodium foil

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010098020A (en) * 2008-10-15 2010-04-30 Hitachi Powdered Metals Co Ltd Negative electrode coating film and coating composition for forming electrode coating film of lithium ion capacitor
US8927156B2 (en) 2009-02-19 2015-01-06 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US8986870B2 (en) 2009-03-09 2015-03-24 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US9406978B2 (en) 2009-03-09 2016-08-02 Semiconductor Energy Laboratory Co., Ltd. Power storage device
JP2013114795A (en) * 2011-11-25 2013-06-10 Sumitomo Electric Ind Ltd Electrode using aluminum porous body for collector, and method of manufacturing the same
CN112236893A (en) * 2018-04-23 2021-01-15 通用汽车环球科技运作有限责任公司 Hybrid electrode and electrochemical cell and module using the same
CN112614704A (en) * 2020-11-26 2021-04-06 中国电子科技集团公司第十八研究所 Electrochemical preparation method of ultrathin metal sodium foil

Similar Documents

Publication Publication Date Title
JP5372318B2 (en) Method for manufacturing electrochemical capacitor
JP4857073B2 (en) Lithium ion capacitor
JP4924966B2 (en) Lithium ion capacitor
WO2013073526A1 (en) Electrode for electricity storage devices, electricity storage device, and method for producing electrode for electricity storage devices
JP2006286924A (en) Lithium ion capacitor
JP2008294314A (en) Capacitor
JPH0955342A (en) Electric double layer capacitor
KR20080081297A (en) Lithium ion capacitor
JP2008244210A (en) Electrochemical capacitor
JP2006286926A (en) Lithium ion capacitor
KR101038869B1 (en) Electrode for capacitor and electric double layer capacitor comprising the same
JP2007019108A (en) Lithium ion capacitor
JP2006286923A (en) Lithium ion capacitor
JP2007067088A (en) Lithium ion capacitor
KR20130024123A (en) Electrodes, and electrochemical capacitors comprising the same
KR101098240B1 (en) Manufacturing method of supercapacitor cell
JP4731974B2 (en) Lithium ion capacitor
JP4802868B2 (en) Electrochemical capacitor and manufacturing method thereof
WO2013146464A1 (en) Electrode material, and capacitor and secondary battery using said electrode material
JP5158839B2 (en) Non-aqueous electrolyte electrochemical device
JPH1154384A (en) Electric double layer capacitor
JP2007180429A (en) Lithium ion capacitor
JP4705404B2 (en) Lithium ion capacitor
KR102379507B1 (en) High-density hybrid supercapacitor with phosphorine-based negative electrode and method of manufacturing thereof
KR102188237B1 (en) Composite for supercapacitor electrode, manufacturing method of supercapacitor electrode using the composite, and supercapacitor manufactured by the method