JP5260874B2 - 音響サンプリング分解能、ボリュームライン密度及びボリューム撮像レートの組み合わせによる改善された超音波ボリューム撮像装置及び方法 - Google Patents

音響サンプリング分解能、ボリュームライン密度及びボリューム撮像レートの組み合わせによる改善された超音波ボリューム撮像装置及び方法 Download PDF

Info

Publication number
JP5260874B2
JP5260874B2 JP2006530910A JP2006530910A JP5260874B2 JP 5260874 B2 JP5260874 B2 JP 5260874B2 JP 2006530910 A JP2006530910 A JP 2006530910A JP 2006530910 A JP2006530910 A JP 2006530910A JP 5260874 B2 JP5260874 B2 JP 5260874B2
Authority
JP
Japan
Prior art keywords
point spread
volume
spread function
function
imaging system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006530910A
Other languages
English (en)
Other versions
JP2007508043A (ja
Inventor
シュワーツ,ゲイリー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV, Koninklijke Philips Electronics NV filed Critical Koninklijke Philips NV
Publication of JP2007508043A publication Critical patent/JP2007508043A/ja
Application granted granted Critical
Publication of JP5260874B2 publication Critical patent/JP5260874B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/34Sound-focusing or directing, e.g. scanning using electrical steering of transducer arrays, e.g. beam steering
    • G10K11/341Circuits therefor
    • G10K11/346Circuits therefor using phase variation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H3/00Measuring characteristics of vibrations by using a detector in a fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52046Techniques for image enhancement involving transmitter or receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52085Details related to the ultrasound signal acquisition, e.g. scan sequences
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/34Sound-focusing or directing, e.g. scanning using electrical steering of transducer arrays, e.g. beam steering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8993Three dimensional imaging systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Multimedia (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radiology & Medical Imaging (AREA)
  • Acoustics & Sound (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、超音波診断撮像に関し、更に詳細には、音響サンプリング分解能、所望の出力ライン密度及び超音波ボリューム撮像システムにおけるボリューム撮像レートの関係の制御に関する。
超音波診断撮像システムは、今日、ボリューム領域の三次元画像の生成のために人体のボリューム領域を走査することができる。二次元画像のプレーナ領域に比較して、ボリューム領域を走査するためには非常に多くのビームを必要とするため、ボリューム領域を走査するために必要な時間は膨大であり、その結果、ボリューム画像が生成されるレートを相対的に遅いものとしている。許容可能な画像レートを維持するための一方法は、心臓撮像のような所定の手法のための名目ボリューム領域を走査するために用いられる送信ビームの一定数を予め決定することである。名目ボリュームの深さより深い深さを含む画像フィールドの深さをユーザが調節するとき、より深い深さからのエコーを受けるためには非常に長い時間を必要とするために、フレームレートは減少する。より大きいボリューム領域が走査されるように名目ボリュームの横方向の範囲をユーザが調節する場合、送信ビームは、より大きいボリュームを走査するように更に広く広げられ、ビーム密度は減少する。このようなビーム密度における減少は、ビーム密度が低減するためにボリューム領域の空間アンダーサンプリングをもたらす。しかしながら、他のアプリケーションについては、輪対画像アーティファクトが現れる。プレーナ領域又はボリューム領域の空間アンダーサンプリングは画像における揺らぎの影響をもたらし、まるで、画像を格子又はスクリーンを通して見ているようになる。肝臓の病斑の検査のような特定の診断アプリケーションにおいては、病状は、画像における肝臓のテクスチャの僅かな変化を識別することによりしばしば診断される。超音波画像のスペックルパターンは、医師が肝臓の画像のスペックルパターンにおける僅かな変化を捜しているとき、その診断において重要な役割を果たすことが可能である。そのような僅かな違いは、空間アンダーサンプリングのシンチレーティングアーティファクト又は揺らぎアーティファクトによりマスキングされる可能性がある。従って、そのような診断が妨げられないように空間サンプリングアーティファクトを回避する又は少なくとも制御することが望ましい。
本発明の原理に従って、音響撮像点広がり関数の制御により空間サンプリングが制御される超音波ボリューム撮像システムについて開示している。例示としての実施形態において、音響撮像点広がり関数は、所望のボリューム領域の空間サンプリングを得るためのボリューム領域のライン密度と組み合わされる。そのような制御により、空間サンプリングアーティファクトの許容レベルが、ボリューム領域の大きさ又は形状が変化されるときに維持されることが可能である。本発明の他の実施形態においては、音響出力の許容レベルの範囲内で点広がり関数の制御により、より深い深さの走査を実行することが可能である。
先ず、図1を参照するに、理想的な超音波ビーム強度プロファイル50が示されている。その強度プロファイル50は、一定の最大強度における強度(振幅)を有し、ビームのどちら側においてもゼロ強度に降下する矩形関数として示されており、理想的である。ビームプロットの横座標は、この実施例においては、ビームが撮像視野の焦点の領域内の方位角(クロスレンジ距離)(この実施例においては、25.5mm乃至26.0mm)において距離0.5mmの広がりを有するように示されている。
撮像視野において適切に間隔をおいてサンプリングするために、ナイキスト基準に適合するように間隔をおいた複数のビームが送信される必要がある。図2は、撮像視野において適切に間隔をおいてサンプリングするように、図1のビームに加えて送信される第2ビームを示している。第2ビームは、破線で示された超音波ビーム強度プロファイル52を有する。第2ビーム強度プロファイルは、この実施例においては、25.75mmから26.25mmまでの広がりを有するように示されている。第2ビームプロファイルは第1ビームのプロファイルと50%だけ重なり合うため、撮像視野は、この点でナイキスト基準に適合するように空間的にサンプリングされ、それは、空間情報を2回サンプリングする頻度を要求する。撮像視野の全角度幅に渡るそのような連続したビームは全体の撮像視野を適切にサンプリングする。
図3は、2つのビームのビーム強度プロファイル50及び54を示し、ここで、それらのビームは更に広く広がっている。それらのビーム強度プロファイルは、上記の実施例におけるものと同じ範囲であり、各々、方位角方向において0.5mmの広がりを有している。しかしながら、この実施例においては、ビームの中心間距離は、上記例における0.25mmではなく、1mmである。それらの広い2つのビームの間隔は、空間サンプリングについてのナイキスト基準を満足せず、そのようなビームサンプリングパターンは、空間アンダーサンプリングに特徴的なシンチレーティングアーティファクト又は揺らぎアーティファクトを引き起こす。
本発明の原理に従って、走査ビームがより広く間隔をおいているとき、ビームの空間点広がり関数は、より大きいビームの中心間の間隔(出力ライン密度の減少)に対して責任を負うように適合される。ここで用いるように、点広がり関数はパルス−エコーシーケンスの双方向空間応答、即ち、空間サンプリングに用いられる送信ビーム及びその受信ビームを参照する。点広がり関数は、用いられるトランスジューサ開口の大きさとその開口において用いられるアポダイゼーション(重み付け又は強度)関数とにより決定される。点広がり関数を一般に示す図は、開口とビーム焦点における点広がり関数との間の一方向(送信)関係を示す。ビームフォーカシングは、点広がり関数を規定するために用いられる開口制御に加えて層状に重ね合わされることが可能であり、それは、一般に、メカニカルレンズ又は電子遅延によりなされる。図4は、1mmの中心間の間隔を有する2つのビームについての2つのビーム強度プロファイル56及び58を示し、図3のビームと同様であるが、より広いビーム強度プロファイル(この実施例においては、2mm)を生成する開口関数を有している。2つのビームの強度プロファイル56及び58は図2におけるように50%だけ重なり合っていて、その結果、より広く間隔をおいたビームを有する撮像領域の空間サンプリングについてのナイキスト基準を満たすことが理解できる。
アレイトランスジューサにより送信される焦点面における超音波ビームのビーム強度プロファイルは、上で説明した図におけるように矩形ではないが、より正弦波形状であり、そして、開口の有限の大きさのために、図5のビーム強度プロファイル60により示されるようにサイドローブにより囲まれたメインローブを一般に有する。上で説明した図におけるビーム強度プロファイルの広がりは、矩形プロファイルの両側においては0への瞬時の降下により明確に規定され、中心ピークから次第に減衰するプロファイル60のような実際のビームプロファイルはシステム設計者の基準により決定される空間的広がりを有する。ビーム強度プロファイルの有効な広がりに対して用いられる1つの共通強度レベルは、強度が図5においてメインローブのどちらかの側部の点62及び64で示されている強度ピークから3dBだけ減衰した点である。この実施例において用いる3dBの点を用いる場合、空間サンプリングのための有効なビーム範囲はD1からD2までの距離に亘って広がっていることが分かる。適切なナイキスト空間サンプリングのために、隣接する類似した範囲のビーム66の3dBの点は、図6に示すように、ビーム60の3dBの点62と64との間に入る必要がある。しかしながら、それらのビームが更に広く広がっている場合、即ち、走査される領域の幅が増加する又はビーム密度が減少する場合、ビーム70及び76の3dBの点72、78、74が図7に示すような空間サンプリングのためのナイキスト基準を十分満たすように、それらのビームの点広がり関数は変化される。
より広いメインローブの送信ビームを与える点広がり関数は、ビームプロファイルの中心の周りの広い領域に高周波を当てる。こらは、各々の送信ビームに応答して非常に多数の受信マルチラインの受信を可能にする。送信ビームが広くなるにつれて、各々のマルチラインプロファイルと送信ビームプロファイルの積は各々の送信−受信の組み合わせのための点広がり関数の改善を与える。この場合の点広がり関数は、各々の受信マルチラインのより狭いビームプロファイルにより決定付けられる。マルチラインの受信及び走査線の補間によりボリュームライン密度を増加させるシステムについては、米国特許第6,494,838号明細書を参照されたい。
空間サンプリングのためのナイキスト基準を十分に満足することに代えて、特定のアプリケーションがナイキスト基準に及ばないが、所定の手順に対して満足する空間サンプリングビーム分散を維持するように決定されることは可能である。例えば、産科医は、妊娠期間の計算のために胎児の骨を測定するように胎児を撮像することが可能である。そのような検査において、組織のテクスチャは重要ではないが、より高いフレームレートは満足に測定することが可能である子宮内で動いている胎児の画像を与えることが可能である。産科医は、解剖学的特徴の組織が適切な位置にある場合、満足し、その場合、より低い周波数で十分である。図8は、隣接する3dBの点84(距離の軸における位置D)において重なり合っている2つの隣接するビームプロファイル80、82を示している。幾つかの空間サンプリングアーティファクトがこのビームの広がりから発生する一方、それらのアーティファクトは、胎児の骨を測定する能力を著しく妨げるレベルにはない。撮像されるボリュームが増加する場合、送信ビームの開口は、ビームプロファイルを、それ故、問い合わせされる空間情報の広がりを広げるように調節されることが可能である。図9は、グラフィカルに空間アンダーサンプリングするために発生するアーティファクトと空間サンプリング周波数との間の関係を示している。撮像される領域又はボリュームは、空間遮断周波数fの2倍である空間サンプリング周波数fにおいてサンプリングされることが可能である。サンプリングされる解剖学的情報は、上側周波数fまで減衰する空間周波数86の帯域を有する。従って、fより高い空間周波数は、破線88で示されている下側周波数f−fに戻るようにエイリアジングを生じる。特定のアプリケーションにおいては、そのようなエイリアジングは許容可能である。換言すれば、スペックルパターンのようなテクスチャが診断に対して望ましい場合、高空間周波数において、そのようなエイリアジングは生じず、空間サンプリングfがなされる必要がある。
効果的なデータ取得デザインにおいては、サンプリング帯域又は空間分解能は、達成可能なトランスジューサ分解能(開口径及び音響波長により特徴付けられる)及び所望の出力帯域幅又はボリューム撮像レートに適合される。異なる、トランスジューサの幾何学的構成、出力ライン密度及びボリューム撮像レートの組み合わせは可変取得分解能を用いる効果的なデザインに繋がる。プログラム可能ビームフォーマを用いる超音波システムにおいては、空間点広がり関数は、所望の出力ライン密度に空間分解能を最適に適合するように調節されることができ、そのことは、二次元又は三次元画像のフレームレートを決定する。最大ボリューム画像レートが所望される三次元走査のアプリケーションにおいては、出力ライン密度にサンプリング分解能を適合させるように送信開口、受信開口又はそれら両方の開口のアポダイゼーションを調節することにより、点広がり関数を変えることができる。この調節がどのようにしてなされるかについての簡単な実施例に関して図10を参照して説明する。医師が胎児の頭部の三次元撮像を実行することを希望することを想定する。三次元トランスジューサプローブが、図10に示すようなピラミッド型ボリューム90を走査することができるアレイトランスジューサを有することを更に想定する。そのアレイトランスジューサはそのボリューム90の頂点92に又はその直上に位置付けられる。その図に示すように、7cmの深さに広がり、仰角方向に30°及び方位角方向に30°に形付けられたボリューム内に全体的な胎児の心臓を捕捉することができるように医師が求めたことを更に想定する。音波が7cmの深さに達し、戻るために必要なラウンドトリップ時間は、この実施例においては、100μsecであると仮定されている。これは、1つの走査線に対する取得時間が100μsecであることを意味する。更に、医師は、1秒毎に30ボリュームのフレームレートを所望していると仮定する。所望のフレームレート30vol(ボリューム)/sec及びライン時間100μsec/lineから、333本のラインが、ボリュームフレームレートの要求に適合するように割り当てられた時間内にボリューム90を走査するために用いられることが理解できる。方位角方向及び仰角方向において異なるライン密度を用いることができるが、この実施例においては、両方の方向において一様なライン密度を用いるようになっている。方位角方向に18本のラインと仰角方向に18本とを有する割り当てられたラインの数は、ボリューム90のベースに沿った小さい線描写により示されているように分布している。30°毎のボリューム領域測定に対して、これは、それらのラインが略1.6°の中心間の間隔を有することを意味する。50%の重なり合いを有するナイキスト基準に適合するように且つ仰角方向及び方位角方向におけるナイキスト基準を満足するように、1.6°の点広がり関数が用いられる必要がある。対角線方向において、そのボリュームは僅かに空間的にアンダーサンプリングされ、それは、必要に応じて、ビームプロファイルを僅かに広げることにより又はライン密度を高くすることにより克服することが可能である。二次元アレイトランスジューサを用いて三次元における点広がり関数を形作る能力は、点広がり関数の有利な形の形成を更に可能にする。例えば、点広がり関数は、ボリュームにおいてより効率的にビームを充填するために六角形近似をもたらすように形作られることができる。例えば、ビーム走査及び六角形のアレイトランスジューサの製造及び使用について記載している、米国特許第6,384,516号明細書、米国特許第6,497,663号明細書及び米国特許出願公開第09/908,294号明細書を参照されたい。
それ故、ボリューム領域について走査基準をデザインするための方法は、所望の出力ボリュームサイズ(上記の実施例においては、30°x30°x3cm)及び所望のボリューム取得レート(上記の実施例においては、30volume/sec)を決定することから開始する。ライン密度は、所望のボリュームサイズ及びボリューム取得レート(上記の実施例においては、333line/vol)により支援されて計算される。ライン密度は、全ての方向において非対称又は対称であることが可能である。それ故、方位角及び方位角の両方におけるライン密度(この実施例においては、1.6°)をサンプリングするために必要である点広がり関数が計算される。次いで、送信ビームに対して、好適には、送信ビーム及び受信ビームの両方に対して、方位角及び仰角の点広がり関数の計算を与えるアポダイゼーション関数が選択される。本発明の原理に従ったこのような方法を実行するための超音波システムを図11に示す。三次元撮像を可能にする超音波プローブ10は、三次元ボリュームに対してビームを送信し、各々の送信ビームに応じて単一の又は複数の受信ビームを受信する二次元アレイトランスジューサ12を有する。適切な二次元アレイについては、米国特許出願公開第09/663,357号明細書及び米国特許第6,468,216号明細書に記載されている。そのアレイの送信ビーム特性はビーム送信器16により制御され、そのビーム送信器は、アポダイズされたアレイの開口要素が人体のボリューム領域を透過して所望の方向に所望の広がりを有するフォーカシングされたビームを出射するようにする。送信パルスは、ビーム送信器16からそのアレイの要素まで送信/受信スイッチ14により結合される。送信ビームに応じてアレイ要素により受信されるエコー信号はビームフォーマ18に結合され、ここで、アレイトランスジューサの要素により受信されたエコー信号は、送信ビームに応じて単一の又は複数の受信ビームを形成するように処理される。この目的のために適切なビームフォーマについては、米国特許出願公開第09/746,165号明細書に記載されている。システムビームフォーマ18内にビームフォーマ回路構成の全てを収容するのではなく、ビームフォーマ回路構成は、米国特許第6,468,216号明細書に記載されているように、プローブ10とシステムとの間に備えられることが可能である。
ビームフォーマ18により生成される受信ビームは、フィルタリング及び直交復調のような機能を実行する信号処理器に結合される。処理された受信ビームはドップラ処理器30及び/又はBモード処理器24に結合される。ドップラ処理器30はドップラパワー又は速度情報にエコー情報を処理する。三次元ドップラ情報は三次元データメモリ32に記憶され、その三次元データメモリから、その三次元ドップラ情報は、米国再発行特許発明第36,564号明細書に記載されている三次元パワードップラディスプレイのような種々の形式で表示される。Bモード撮像に対して、受信ビームは包絡線検波され、信号はBモード処理器34により適切なダイナミックレンジに圧縮され、次いで、三次元データメモリ32に記憶される。三次元データメモリは、3つのアドレスパラメータを有する何れのメモリ装置又はメモリ装置の群を有することが可能である。三次元データメモリ32に記憶された三次元画像データは幾つかの方法で表示のために処理されることが可能である。それらの一方法はボリュームについて複数の二次元平面を生成することである。これについては、米国特許第6,443,896号明細書に記載されている。そのようなボリューム領域の平面画像はマルチプレーナリフォーマッタ34により生成される。三次元画像データは又、ボリュームレンダ36により三次元表示を形成するようにレンダリングされることが可能である。その結果得られる画像は、米国特許第5,720,291号明細書に記載されているように、Bモード、ドップラ又はそれらの両方であることが可能であり、画像処理器38に結合され、それらの画像はその画像処理器から画像ディスプレイ40に表示される。
本発明の原理に従って、図11の超音波システムは、ビーム送信器16及び受信ビームフォーマ18の両方を制御するビームフォーマ制御器22を有する。ビームフォーマ制御器22は、医師がビームフォーマ制御器のための撮像パラメータを設定することが可能であるユーザインタフェース20に対して応答する。医師は、例えば、ボリューム走査領域の方位角方向及び仰角方向の幅、走査領域の深さ及び要求されるフレームレートのための値を入力することが可能である。Philips Ultrasound社製のシステムのような超音波システムは、医師による検査の種類、即ち、“組織に特徴的な撮像”として知られる特徴の選択に応じてそれらのシステムの初期パラメータの設定を自動的に選択することができる。それらのパラメータから、ビームフォーマ制御器は、上記のようなライン密度及びボリューム領域を走査するために用いることができるライン数と、そのライン密度のために必要な点広がり関数とを計算することができる。焦点面の点広がり関数は開口関数のフーリエ変換であるため、ビームフォーマ制御器22は、必要なアレイの開口を計算するために点広がり関数の逆フーリエ変換を実行することができる。代替として、所望の点広がり関数のためのパラメータは予め計算され、プログラムされた焦点パラメータと共に実行されるようにシステムにおいて記憶されることができる。点広がり関数は開口関数に略反比例するため、適切な開口を選択することにより点広がり関数を“その場で(on the fly)”決定することは又、十分であることが可能である。開口のトランスジューサ要素への又はその要素からの信号はシェーディング(異なる重み付け又はアポダイズ)されるため、点広がり関数は大きいライン間隔(少ないライン密度)が割り当てられるように広げられる。換言すれば、ビーム幅は開口の幅に反比例する。トランスジューサ要素数及び送信及び/又は受信のためのアクティブな開口の位置、並びにそれらの要素への又はそれらの要素からの信号の重み付けを変えることにより、音響ビームのメインローブの幅は所望の点広がり関数に合うように調整される。それらの原理が光学系の場において示されている、文献、Optics,Second Edition by Eugene Hecht(Addison−Wesley Pib.Co.)at Ch.11及びIntroduction To Fourier Optics by J.W.Goodman(McGraw−Hill Book Co.)at Ch.4を参照されたい。
図12a乃至12jは、本発明の原理に従ったボリューム撮像のための異なる開口及びアポダイゼーションの組み合わせを用いる点広がり関数における変化を示している。それらの図の各々において、ベースグリッドの数は、仰角方向及び方位角方向における大きさの指標を表している。仰角方向及び方位角方向に一様にサイズ決めされ、間隔をおかれたトランスジューサ要素のアレイに対して、それらの図におけるベースグリッドは、64個x64個の要素のトランスジューサアレイの要素に対応している。グリッド(要素)の各々の点の上方のビームパターンの高さは、その特定の点(アレイの要素)における相対的なアポダイゼーション関数に対応している。それ故、各々のビームパターンの下のグリッド領域の形状はアクティブな開口に対して用いられる要素を表し、それらの要素の上方のビームパターンの形状は焦点において点広がり関数を生成するために用いられるアポダイゼーション関数を表している。図12aにおいては、アクティブな開口は方位角方向の16個の要素及び仰角方向の16個の要素の対称的な中央の領域を有する。ハニング窓は、形100で示されているように、方位角方向及び仰角方向の両方におけるアポダイゼーションについて用いられる。このような開口関数は、中央から仰角方向及び方位角方向の両方にスムーズに且つ一様に減衰し且つ中央において最大強度(最大重み付け)を有するように、図12bに示されている焦点において、点広がり関数又はビームパターン102を生成する。ハニング窓アポナイゼーションは比較的低い側部のローブレベルを結果的に得る。
図12cは、方位角方向に16個の要素及び仰角方向に32個の非対称な1対2の開口により生成される開口関数110を示している。ハニング窓は、トランスジューサの中央の共通の中心点から各々の範囲に開口をスムーズにアポダイズするように用いられる。このような開口関数は、図12dに示すような点広がり関数又はビームパターン112を生成する。仰角方向の範囲においてより広いアパーチャ関数は、焦点における仰角方向の範囲においてより狭い点広がり関数112を生成することが理解できる。図12dに示すような点広がり関数は、より高い空間分解能又は異なるマルチラインの数が一の範囲において他の範囲に対して所望されるときに用いられることが可能である。
図12eは、図12cの開口関数の逆の様子を示している。この場合、開口関数120は、図12fに示すように、方位角方向においてより広い幅を有し、仰角方向の範囲においてより狭いビームパターン又は点広がり関数を生成する。このような点広がり関数は、方位角方向の範囲における大きい横分解能又は仰角方向の範囲における高密度のマルチラインの配列が所望されるときに用いられることが可能である。
図12gは、不変の(矩形)アポダイゼーションを有する1対2の開口の開口関数130を示している。スムーズなアポダイゼーション関数が欠けることにより、仰角方向の範囲及び方位角方向の範囲の両方においてメインローブ132及びサイドローブ134を示す焦点におけるビームパターン又は点広がり関数を生成する。スムーズに変化するはニング窓が、図12iにおいて開口関数により示されているように、仰角方向の範囲におけるアポダイゼーション関数に対して用いられる場合、その結果として得られる点広がり関数142は、図12jに示すような仰角方向の範囲ではなく、方位角方向の範囲における大きなサイドローブ144を有する。
図13a乃至13dは、所望の空間サンプリング周波数を与えるより広い又はより狭い点広がり関数を生成するようにビームフォーマ制御器により開口関数及びアポダイゼーション関数を設定することにより開口関数がどのように変化するかを示している。図13aは、仰角方向及び方位角方向の両方におけるハニング窓と8x16個の要素のアクティブな開口を有する非対称な三次元開口関数を示している。このような開口関数は、図13bに示すような焦点における点広がり関数152を生成する。点広がり関数152は、比較的低いサイドローブレベルを有し、方位角方向の範囲において広く、仰角方向の範囲において相対的に狭い。このような性質のビームを用いて走査されるボリュームが高いフレームレートで走査されるようになっている場合、図13cに示すような開口関数160を用いることが可能である。図13cに示すように、新しい開口関数は、5x8個の要素の開口のみを占め、ハニング窓を用いてアポダイズされる。この開口関数は、図13dに示すような焦点において非常に広い点広がり関数162を生成する。図13bのビームパターンのビームより少ない図13dのビームパターンのビームが、所定の大きさのボリュームを走査するために必要とされ、それ故、そのボリュームはより高いボリューム表示レートにおいて走査されることが可能であることが理解できる。
本発明の実施形態は、点広がり関数が変化するにつれて、必要に応じて、有利であることに、増加した走査深さを与える。医療用超音波トランスジューサの音響出力は、殆どの国において、ピーク音圧及び平均又は長期間熱エネルギーの最大許容可能レベルにより統制されている。米国においては、それらのパラメータは、音響伝達の機械的指数及びISPTAを制限することにより制御される。図13bは、比較的狭い点広がり関数のビームプロファイルを示し、ここで、送信ビームのエネルギーの殆どは、アレイの比較的狭い中央領域において広がり、それ故、人体において比較的集中される、比較的狭い中央ローブ152の状態で集中される。ピーク音圧限界を超えることを回避するように、中央ローブ152の比較的密に詰まった領域におけるエネルギーは比較的低いレベルに制限される必要があり、ビームプロファイル限界の狭い横方向の広がりはビームにより供給される全体のエネルギーを制限する。図13dは、他方で、医師がより高いボリュームフレームレート又はより広いボリューム領域を要求するときに用いることが可能である比較的広い点広がり関数のビームプロファイルを示している。そのような場合、ナイキスト基準又はナイキスト関連基準に適合する、減少されたビーム密度のためのより広い点広がり関数が用いられる。このビームについては、アレイトランスジューサからのエネルギーは、人体におけるより大きい領域、即ち、より広いビームパターン162の領域に対して分布する。点広がり関数はこのようにより広いローブを示すため、より大きいエネルギーはより少ないトランスジューサにより伝達される。従って、送信ビームはより大きいエネルギーを有し、人体においてより深い深さまで達することができ、音響出力限界を侵すことなくより深い深さからの有用なエコー情報を得ることができる。従って、点広がり関数における変化と呼応して全音響出力パワーを変化させることにより、点広がり関数における変化を、有利であることに、音響的侵入及び画像の臨床的に有用な深さを増大させるように用いることができる。
点広がり関数が緩和される(広がる)につれて、ビームの有効な焦点範囲はより深い深さ範囲に対して広がる。広がった焦点の深さは、増加した場の深さが撮像されることができ、焦点があったまま維持されることを意味する。増加した場の深さは、複数の焦点領域の必要性を低減し、それにより、ボリュームフレームレートを高くすることができる。複数の焦点領域の必要性の低減は、複数の伝達焦点領域によりもたらされるボリュームフレームレートの低下が大きいため、三次元撮像において非常に重要である。
他の考慮が又、アポダイゼーション関数のデザインに対して有効である。例えば、角度操作されるフェーズドアレイは、急勾配で操作されるビームがトランスジューサ許容可能角度効果をもたらすアレイの側部において異なったパフォーマンスを行う。角サンプリング密度がボリュームに亘って一定に維持されるようになっているとき、アポダイゼーション関数は、画像領域の異なる部分において可変点広がり関数に繋がるトランスジューサ許容可能角度効果を補償するようビーム角度を伴って変化することが可能である。
当業者は他の変形を容易に発想することができるであろう。例えば、点広がり関数を形付ける能力は、ビーム密度及びビーム幅が画像の場に亘って変化するようにすることが可能である。高いビーム密度は、緩和された点広がり関数とボリュームの横方向の極限において用いられる低いビーム密度とを伴って、ボリュームの中央で用いられることが可能である。
本発明の実施形態を、利用されるものより高い分解能を取得しないことにより情報移動効率及びエコー情報の情報コンテンツを改善するように、必要に応じて用いることができる。本発明の実施形態は又、三次元撮像のために空間的(方位角方向及び仰角方向)帯域幅を制限するように開口関数を用いることにより非常に最適なサンプリング関数を提供することができる。
一次元の状態で理想的なビーム強度を示す図である。 適切な空間サンプリングを与える2つのビームの理想的なビーム強度を示す図である。 ナイキスト基準を満足しない空間サンプリングを与える2つのより広い間隔をおいたビームの理想的なビーム強度を示す図である。 ナイキスト基準を満足する空間サンプリングを与える2つのより広い間隔をおいたビームの理想的なビーム強度を示す図である。 例示としての超音波ビームのローブパターンを示す図である。 ナイキスト基準を満足する空間サンプリングを与える2つの超音波ビームの例示としてのローブパターンを示す図である。 ナイキスト基準を満足する空間サンプリングを与える2つのより広い間隔をおいた超音波ビームの例示としてのローブパターンを示す図である。 制御された程度までナイキスト基準を満足しない空間サンプリングを与える2つの超音波ビームの例示としてのローブパターンを示す図である。 例示としての空間サンプリングスペクトルを示す図である。 本発明の原理に従って効率的に走査されるようになっているピラミッド型のボリューム領域の方位角方向の範囲及び仰角方向の範囲を示す図である。 本発明の原理に従って構成されたボリューム超音波診断撮像システムを示す図である。 開口関数とアポダイゼーション関数との異なる組み合わせを用いて種々のビームの焦点における点広がり関数における変化を示す図である。 開口関数とアポダイゼーション関数との異なる組み合わせを用いて種々のビームの焦点における点広がり関数における変化を示す図である。 開口関数とアポダイゼーション関数との異なる組み合わせを用いて種々のビームの焦点における点広がり関数における変化を示す図である。 開口関数とアポダイゼーション関数との異なる組み合わせを用いて種々のビームの焦点における点広がり関数における変化を示す図である。 開口関数とアポダイゼーション関数との異なる組み合わせを用いて種々のビームの焦点における点広がり関数における変化を示す図である。 開口関数とアポダイゼーション関数との異なる組み合わせを用いて種々のビームの焦点における点広がり関数における変化を示す図である。 開口関数とアポダイゼーション関数との異なる組み合わせを用いて種々のビームの焦点における点広がり関数における変化を示す図である。 開口関数とアポダイゼーション関数との異なる組み合わせを用いて種々のビームの焦点における点広がり関数における変化を示す図である。 開口関数とアポダイゼーション関数との異なる組み合わせを用いて種々のビームの焦点における点広がり関数における変化を示す図である。 開口関数とアポダイゼーション関数との異なる組み合わせを用いて種々のビームの焦点における点広がり関数における変化を示す図である。 本発明の原理に従って制御される点広がり関数を用いて二次元における比較的狭い超音波開口の例示としてのローブパターンを示す図である。 本発明の原理に従って制御される点広がり関数を用いて二次元における比較的狭い超音波開口の例示としてのローブパターンを示す図である。 本発明の原理に従って制御される点広がり関数を用いて二次元における比較的広い超音波開口の例示としてのローブパターンを示す図である。 本発明の原理に従って制御される点広がり関数を用いて二次元における比較的広い超音波開口の例示としてのローブパターンを示す図である。

Claims (12)

  1. 三次元走査のための超音波診断撮像システムであって:
    複数のトランスジューサ要素を有するアレイトランスジューサ;
    前記アレイトランスジューサが複数の送信ビームを用いてボリューム領域を走査するようにし、送信ビームに応じてエコー情報を受信するようにする、前記アレイトランスジューサに結合されたビームフォーマであって、該ビームフォーマは該ビームフォーマにより送信及び受信されるビームの点広がり関数を制御する、ビームフォーマ;
    前記エコー情報に応じて画像信号を生成する前記ビームフォーマに結合された画像処理器;及び
    前記画像処理器に結合されたディスプレイ;
    を有する超音波診断撮像システムであり、
    前記ビームフォーマにより生成された送信ビームは、前記ボリューム領域が第1ライン密度を用いて走査されるときに第1点広がり関数を、そして前記ボリューム領域が第2ライン密度を用いて走査されるときに第2点広がり関数を示し;
    前記点広がり関数は、前記ボリューム領域のパルス−エコー空間サンプリングの焦点領域において双方向空間応答を有し;
    前記点広がり関数は方位角及び仰角の両方において適切な空間サンプリングを提供するように設定され
    前記第1ライン密度及び前記第2ライン密度を用いて前記ボリューム領域を走査するとき、隣接するビームが実質的に同じ強度レベルで重なり合う;
    超音波診断撮像システム。
  2. 請求項1に記載の超音波診断撮像システムであって、前記送信ビームは、第1ライン密度を用いて前記ボリューム領域を走査するときに前記焦点において比較的狭いビームプロファイルを示し、前記送信ビームは、前記第1ライン密度より疎な第2ライン密度を用いて前記ボリューム領域を走査するときに前記焦点において比較的広いビームプロファイルを示す、超音波診断撮像システム。
  3. 請求項2に記載の超音波診断撮像システムであって、前記送信ビームは、実質的に同じ程度に前記ボリューム領域について空間サンプリングするためのナイキスト基準を満足する、超音波診断撮像システム。
  4. 請求項1に記載の超音波診断撮像システムであって、前記点広がり関数は、実質的に同じ程度に前記ボリューム領域について空間サンプリングするためのナイキスト基準を満足する、超音波診断撮像システム。
  5. 請求項1に記載の超音波診断撮像システムであって、前記ビーム点広がり関数は、方位角範囲及び仰角範囲の両方を示し、点広がり関数は方位角範囲及び仰角範囲の両方において対称的である、超音波診断撮像システム。
  6. 請求項1に記載の超音波診断撮像システムであって、ビーム点広がり関数は、方位角範囲及び仰角範囲の両方を示し、点広がり関数は方位角範囲及び仰角範囲において非対称である、超音波診断撮像システム。
  7. ボリューム走査のための及びユーザインタフェースを有する超音波診断撮像システムにおいて、ボリューム領域を空間的にサンプリングするように用いられる点広がり関数を決定する方法であって:
    走査される前記ボリューム領域の所望の大きさを決定する段階;
    所望のボリューム取得レートを決定する段階;
    前記所望のボリューム取得レートにおいて前記所望の大きさの前記ボリューム領域を走査するためのライン密度を計算する段階;及び
    前記ライン密度で方位角及び仰角の両方において前記ボリューム領域を適切に空間的にサンプリングする前記ボリューム領域のパルス−エコー空間サンプリングの焦点領域において双方向空間応答を有し、隣接するビームが実質的に同じ強度レベルで重なり合うように前記点広がり関数を計算する段階;
    を有する方法
  8. 請求項7に記載の方法であって、前記点広がり関数を計算する段階は、所望の程度に前記ボリューム領域の空間サンプリングのためのナイキスト基準を満足する前記点広がり関数を計算する手順を更に有する、方法。
  9. 請求項7に記載の方法であって:
    前記計算された点広がり関数を与える開口関数を決定する段階;
    を更に有する、方法。
  10. 請求項9に記載の方法であって、開口関数を決定する段階は、前記計算された点広がり関数を与えるアクティブな開口についてのアポダイゼーション関数を決定する手順を更に有する、方法。
  11. 請求項7に記載の方法であって、前記所望のボリューム取得レートを決定する段階は、ディスプレイの前記ボリュームフレームレートを決定する手順を有する、方法。
  12. 請求項7に記載の方法であって、前記点広がり関数を計算する段階は、所望の点広がり関数に略反比例する開口関数を決定する手順を有する、方法。
JP2006530910A 2003-10-08 2004-09-21 音響サンプリング分解能、ボリュームライン密度及びボリューム撮像レートの組み合わせによる改善された超音波ボリューム撮像装置及び方法 Active JP5260874B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US50962903P 2003-10-08 2003-10-08
US60/509,629 2003-10-08
PCT/IB2004/051817 WO2005034760A1 (en) 2003-10-08 2004-09-21 Improved ultrasonic volumetric imaging by coordination of acoustic sampling resolution, volumetric line density and volume imaging rate

Publications (2)

Publication Number Publication Date
JP2007508043A JP2007508043A (ja) 2007-04-05
JP5260874B2 true JP5260874B2 (ja) 2013-08-14

Family

ID=34434999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006530910A Active JP5260874B2 (ja) 2003-10-08 2004-09-21 音響サンプリング分解能、ボリュームライン密度及びボリューム撮像レートの組み合わせによる改善された超音波ボリューム撮像装置及び方法

Country Status (5)

Country Link
US (1) US20070123110A1 (ja)
EP (1) EP1673014A1 (ja)
JP (1) JP5260874B2 (ja)
CN (1) CN100457048C (ja)
WO (1) WO2005034760A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5028041B2 (ja) * 2006-07-14 2012-09-19 親良 炭 ビームフォーミング装置及び方法
CN101500491B (zh) * 2006-08-09 2011-07-06 皇家飞利浦电子股份有限公司 超声成像***
JP4782639B2 (ja) * 2006-08-16 2011-09-28 日立アロカメディカル株式会社 超音波診断装置
US8715188B2 (en) * 2007-07-12 2014-05-06 Siemens Medical Solutions Usa, Inc. Medical diagnostic ultrasound scanning and video synchronization
JP4976231B2 (ja) * 2007-08-16 2012-07-18 日立アロカメディカル株式会社 超音波診断装置
WO2009028366A1 (ja) * 2007-08-27 2009-03-05 Hitachi Medical Corporation 超音波画像装置
WO2011148275A1 (en) 2010-05-26 2011-12-01 Koninklijke Philips Electronics N.V. High volume rate 3d ultrasonic diagnostic imaging of the heart
CN102917648B (zh) 2010-05-26 2015-05-20 皇家飞利浦电子股份有限公司 高体积速率3d 超声诊断成像
US9973848B2 (en) * 2011-06-21 2018-05-15 Amazon Technologies, Inc. Signal-enhancing beamforming in an augmented reality environment
CN103946717B (zh) * 2011-11-10 2016-12-21 皇家飞利浦有限公司 稳定帧速率体积超声成像
WO2013068883A1 (en) * 2011-11-10 2013-05-16 Koninklijke Philips Electronics N.V. Improving large volume three-dimensional ultrasound imaging
US9188433B2 (en) 2012-05-24 2015-11-17 Qualcomm Incorporated Code in affine-invariant spatial mask
CN103829974B (zh) * 2012-11-27 2016-06-29 飞依诺科技(苏州)有限公司 能量多普勒血流复合成像方法及***
CA2910561C (en) * 2013-05-03 2021-07-27 Sunnybrook Health Sciences Centre Systems and methods for super-resolution ultrasound imaging
JP6373089B2 (ja) 2014-06-26 2018-08-15 キヤノン株式会社 被検体情報取得装置
AU2015328134B2 (en) * 2014-10-07 2018-08-02 Butterfly Network, Inc. Ultrasound signal processing circuitry and related apparatus and methods
CN106419955B (zh) * 2016-09-07 2019-08-13 苏州国科昂卓医疗科技有限公司 超声波束合成方法的应用及剪切波超声弹性成像方法
JP2021536282A (ja) * 2018-08-29 2021-12-27 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 管腔内超音波検査のための撮像面の制御及び表示、並びに関連するデバイス、システム及び方法
CN112816563A (zh) * 2019-11-15 2021-05-18 声澈科技(上海)有限公司 超声波检测及成像的方法及装置、超声波成像***
JP7077384B2 (ja) 2020-11-11 2022-05-30 キヤノン株式会社 被検体情報取得装置
CN117045279B (zh) * 2023-09-22 2024-03-29 哈尔滨工业大学 一种基于点扩散函数参数优化的掌上超声成像方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4644795A (en) * 1985-07-29 1987-02-24 Advanced Technology Laboratories, Inc. High resolution multiline ultrasonic beamformer
US5159931A (en) * 1988-11-25 1992-11-03 Riccardo Pini Apparatus for obtaining a three-dimensional reconstruction of anatomic structures through the acquisition of echographic images
US5165414A (en) * 1991-01-14 1992-11-24 Hewlett-Packard Company Pointing error compensation in large aperture annular arrays
US5278757A (en) * 1991-11-15 1994-01-11 The Trustees Of The University Of Pennsylvania Synthetic aperture ultrasonic imaging system using a minimum or reduced redundancy phased array
JPH05269129A (ja) * 1992-03-25 1993-10-19 Yokogawa Medical Syst Ltd 超音波診断装置
JPH0773576B2 (ja) * 1992-05-27 1995-08-09 アロカ株式会社 三次元データ取込み用超音波探触子
US5623938A (en) * 1995-09-29 1997-04-29 Siemens Medical Systems, Inc. Method and apparatus for respiration monitoring
US5671746A (en) * 1996-07-29 1997-09-30 Acuson Corporation Elevation steerable ultrasound transducer array
US5797846A (en) * 1996-12-30 1998-08-25 General Electric Company Method to control frame rate in ultrasound imaging
JP4116143B2 (ja) * 1998-04-10 2008-07-09 株式会社東芝 超音波診断装置
JP3847976B2 (ja) * 1998-10-14 2006-11-22 株式会社東芝 超音波診断装置
JP4253083B2 (ja) * 1999-09-16 2009-04-08 株式会社 ケミックス 燃料電池用ガス不透過カーボンプレート
US6282963B1 (en) * 1999-10-12 2001-09-04 General Electric Company Numerical optimization of ultrasound beam path
US6551246B1 (en) * 2000-03-06 2003-04-22 Acuson Corporation Method and apparatus for forming medical ultrasound images
US6669641B2 (en) * 2000-08-17 2003-12-30 Koninklijke Philips Electronics N.V. Method of and system for ultrasound imaging
ATE356403T1 (de) * 2000-08-24 2007-03-15 Koninkl Philips Electronics Nv Ultraschalldiagnose-abbildungssystem mit dynamischer mikrostrahlformung
US6468216B1 (en) * 2000-08-24 2002-10-22 Kininklijke Philips Electronics N.V. Ultrasonic diagnostic imaging of the coronary arteries
US6527723B2 (en) * 2001-06-26 2003-03-04 Koninklijke Philips Electronics N.V. Variable multi-dimensional apodization control for ultrasonic transducers
US6629929B1 (en) * 2002-11-08 2003-10-07 Koninklijke Philips Electronics N.V. Method and apparatus for automatically setting the transmit aperture and apodization of an ultrasound transducer array

Also Published As

Publication number Publication date
WO2005034760A1 (en) 2005-04-21
EP1673014A1 (en) 2006-06-28
US20070123110A1 (en) 2007-05-31
CN1863486A (zh) 2006-11-15
JP2007508043A (ja) 2007-04-05
CN100457048C (zh) 2009-02-04

Similar Documents

Publication Publication Date Title
JP5260874B2 (ja) 音響サンプリング分解能、ボリュームライン密度及びボリューム撮像レートの組み合わせによる改善された超音波ボリューム撮像装置及び方法
Frazier et al. Synthetic aperture techniques with a virtual source element
US5840032A (en) Method and apparatus for three-dimensional ultrasound imaging using transducer array having uniform elevation beamwidth
Von Ramm et al. Beam steering with linear arrays
JP5281727B2 (ja) 高調波イメージングを用いて疎なアレイのサイドローブ性能を向上させる方法及び装置
US6689063B1 (en) Method and apparatus for acquiring images by recursive ultrasound images
US6685641B2 (en) Plane wave scanning reception and receiver
Gammelmark et al. Multielement synthetic transmit aperture imaging using temporal encoding
US7914454B2 (en) Real-time 3D ultrasonic imaging apparatus and method
KR101820422B1 (ko) 포커싱되지 않은 송신 빔들을 이용한 높은 프레임 레이트의 정량적 도플러 흐름 촬영
US5865750A (en) Method and apparatus for enhancing segmentation in three-dimensional ultrasound imaging
Trahey et al. Experimental results with a real-time adaptive ultrasonic imaging system for viewing through distorting media
Jensen Ultrasound imaging and its modeling
JP4717995B2 (ja) 超音波ビーム経路の数値的最適化方式
US20050148874A1 (en) Ultrasonic imaging aberration correction with microbeamforming
US5817023A (en) Ultrasound imaging system with dynamic window function generator
EP1657563A2 (en) Aberration correction beam patterns in ultrasonic imaging systems
JP2007513672A (ja) 2次元アレイトランスデューサを用いる立体的超音波画像化システム
EP1815795B1 (en) Ultrasonographic device
JP4334032B2 (ja) 超音波診断装置
Goldstein et al. Medical ultrasonic diagnostics
JP2004261572A (ja) ハーモニックな信号及びハーモニックでない信号を用いた超音波画像収差補正
Maginness Methods and terminology for diagnostic ultrasound imaging systems
Von Ramm et al. Gray scale imaging with complex TGC and transducer arrays
Yao Synthetic aperture methods for medical ultrasonic imaging

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111019

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111024

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20111118

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120302

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5260874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250