JP2003305485A - Method for removing manganese and equipment therefor - Google Patents

Method for removing manganese and equipment therefor

Info

Publication number
JP2003305485A
JP2003305485A JP2002111808A JP2002111808A JP2003305485A JP 2003305485 A JP2003305485 A JP 2003305485A JP 2002111808 A JP2002111808 A JP 2002111808A JP 2002111808 A JP2002111808 A JP 2002111808A JP 2003305485 A JP2003305485 A JP 2003305485A
Authority
JP
Japan
Prior art keywords
water
manganese
treated
oxidizing agent
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002111808A
Other languages
Japanese (ja)
Inventor
Tomoaki Miyanoshita
友明 宮ノ下
Kazuyuki Wakabayashi
和幸 若林
Toyoaki Ota
豊明 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2002111808A priority Critical patent/JP2003305485A/en
Publication of JP2003305485A publication Critical patent/JP2003305485A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reliably remove manganese bonding to organic matter. <P>SOLUTION: Raw water is mixed in a mixing tank 14 with an oxidizing agent such as sodium hypochlorite from an oxidizing agent storage tank 22. This oxidation-treated water is filtered in a two-layer filter 32 to obtain treated water. The turbidity of the water flowing in the filter 32 is measured with a turbidimeter 46. When the oxidizing agent is added enough, manganese is oxidized and insolubilized to color the oxidation-treated water and this coloration can be detected with the turbidimeter 46. Manganese is reliably removed by controlling the amount of the oxidizing agent added according to the detected value of the turbidimeter 46. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、有機物と結合した
マンガンを含む被処理水からマンガンを除去するマンガ
ン除去方法およびその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a manganese removing method and apparatus for removing manganese from water to be treated containing manganese bound to an organic substance.

【0002】[0002]

【従来の技術】河川水、湖沼水等の表流水を原水として
水道水等を生成する浄水処理において、マンガン除去
は、重要な処理技術の一つである。一般的にマンガン
は、pHを9以上とし、次亜塩素酸ナトリウム等を加え
ることにより、そのほとんどが不溶化状態となり、凝集
沈殿や砂ろ過などにより除去できる。また、pHを9以
上としない場合でも、二酸化マンガン等のマンガン化合
物の被膜が形成されたろ材(マンガン砂)に通水すれ
ば、次亜塩素酸ナトリウムをろ過処理水出口で残留塩素
として0.5mg/L以上となるように加えることで除
去できる。
2. Description of the Related Art Removal of manganese is one of important treatment techniques in water purification treatment for producing tap water from surface water such as river water and lake water as raw water. Generally, manganese has a pH of 9 or more, and most of it is insolubilized by adding sodium hypochlorite or the like, and can be removed by coagulation sedimentation or sand filtration. Further, even if the pH is not set to 9 or more, if water is passed through a filter medium (manganese sand) on which a coating film of a manganese compound such as manganese dioxide is passed, sodium hypochlorite is discharged as residual chlorine at the outlet of the filtration-treated water to a level of 0. It can be removed by adding 5 mg / L or more.

【0003】特に、地下水中に含まれるマンガンを除去
する場合は、過マンガン酸カリウムにより二酸化マンガ
ンや水酸化マンガンの被膜を形成したろ材に遊離残留塩
素濃度を保持しながら通水する方法、いわゆるマンガン
砂法が用いられている。この方法によれば、二酸化マン
ガンや水酸化マンガンが触媒として働くため、非常に短
時間で溶解性のマンガンが酸化され不溶化状態となるた
め、処理が容易になる。
In particular, when removing manganese contained in groundwater, a method of passing water while maintaining the concentration of free residual chlorine in a filter medium formed with a film of manganese dioxide or manganese hydroxide with potassium permanganate, so-called manganese. The sand method is used. According to this method, since manganese dioxide or manganese hydroxide acts as a catalyst, soluble manganese is oxidized in an insolubilized state in a very short time, which facilitates the treatment.

【0004】[0004]

【発明が解決しようとする課題】ここで、水中でのマン
ガンの形態は非常に複雑で、特に有機物と結合している
場合には、上述のような反応がそのまま起こらない場合
も多い。そして、実際に有機物濃度の高い原水につい
て、マンガンの酸化処理を行ってみたところ、上述のよ
うな従来のマンガン処理では十分な処理が行えないこと
が分かった。
Here, the form of manganese in water is very complicated, and in many cases, especially when it is combined with an organic substance, the above reaction does not occur as it is. Then, when manganese oxidation treatment was actually performed on raw water having a high organic matter concentration, it was found that sufficient treatment cannot be performed by the conventional manganese treatment as described above.

【0005】特に、有機物濃度とともにマンガン濃度も
高い場合において、酸化処理を十分行わなければマンガ
ンを除去できず、水道水として利用ができない。
In particular, when the concentration of manganese is high as well as the concentration of organic matter, manganese cannot be removed without sufficient oxidation treatment and cannot be used as tap water.

【0006】本発明は、上記課題に鑑みなされたもので
あり、有機物と結合したマンガンを含む被処理水からマ
ンガンを効率的に除去することができるマンガン除去装
置を提供することを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a manganese removing device capable of efficiently removing manganese from water to be treated containing manganese bound to an organic substance.

【0007】[0007]

【課題を解決するための手段】本発明は、有機物と結合
したマンガンを含む被処理水からマンガンを除去するマ
ンガン除去方法であって、被処理水がマンガンの酸化に
よって着色するのに十分な量の酸化剤を被処理水に添加
し、着色した酸化処理水を充填材層によりろ過処理し、
被処理水中のマンガンを除去することを特徴とする。
The present invention is a method for removing manganese from water to be treated containing manganese bound to an organic matter, the amount of which is sufficient for coloring the water to be treated by oxidation of manganese. The oxidizing agent is added to the water to be treated, and the colored oxidation treated water is filtered through the filler layer,
It is characterized by removing manganese in the water to be treated.

【0008】本発明は、有機物と結合したマンガンを含
む被処理水からマンガンを除去するマンガン除去装置で
あって、被処理水がマンガンの酸化によって着色するの
に十分な量の酸化剤を被処理水に添加する酸化剤添加手
段と、この酸化剤添加手段によって得られた酸化処理水
を充填材層によりろ過処理するろ過手段と、このろ過手
段に流入する酸化処理水の着色を確認する着色検出手段
と、を有し、この着色検出手段の検出値に応じて前記酸
化剤添加手段で添加する酸化剤の注入率を制御すること
を特徴とする。
The present invention is a manganese removing apparatus for removing manganese from water to be treated containing manganese bound to an organic matter, wherein the water to be treated is treated with an oxidizing agent in an amount sufficient for coloring the water by oxidation of manganese. Oxidizing agent adding means to be added to water, filtering means for filtering the oxidized treated water obtained by this oxidizing agent adding means with a packing material layer, and color detection for confirming coloring of the oxidizing treated water flowing into this filtering means Means for controlling the injection rate of the oxidizing agent added by the oxidizing agent adding means according to the detection value of the coloring detecting means.

【0009】このように、本発明によれば、酸化剤の添
加量を酸化剤添加後の水の着色によって判定する。これ
によって、マンガンの酸化を確実に行う酸化剤添加量制
御を行うことができる。
As described above, according to the present invention, the amount of the oxidizing agent added is determined by the coloring of the water after the addition of the oxidizing agent. As a result, it is possible to control the addition amount of the oxidant that reliably oxidizes manganese.

【0010】また、前記ろ過手段によって得られるろ過
処理水に還元剤を添加し、またはろ過処理水を活性炭に
接触させることによりろ過処理水中に残留する酸化剤を
除去することが好適である。これによって、大量の残留
塩素が処理水中に含まれることを防止することができ
る。
It is also preferable that the oxidizing agent remaining in the filtered water is removed by adding a reducing agent to the filtered water obtained by the filtration means or by bringing the filtered water into contact with activated carbon. This makes it possible to prevent a large amount of residual chlorine from being included in the treated water.

【0011】[0011]

【発明の実施の形態】図1は、実施形態に係るマンガン
処理装置を含む水処理施設の構成を示す図である。地下
水や、河川表流水などを取水するための取水井10に
は、原水ポンプ12が設けられ、ここから被処理水であ
る原水が取水される。原水ポンプ12からの原水は、混
和槽14に供給される。
1 is a diagram showing the configuration of a water treatment facility including a manganese treatment device according to an embodiment. The raw water pump 12 is provided in the intake well 10 for taking in groundwater, river surface water, etc., and the raw water which is to-be-processed water is taken from here. Raw water from the raw water pump 12 is supplied to the mixing tank 14.

【0012】混和槽14には、凝集剤貯槽18からの凝
集剤が凝集剤ポンプ20によって供給される。ここで、
凝集剤としては、ポリ塩化アルミニウム(PAC)が好
適であるが、他のアルミ系や鉄系凝集剤を利用すること
もでき、必要に応じてpH調整剤を添加するとよい。さ
らに、凝集助剤として高分子凝集剤を添加してもよい。
The coagulant pump 20 supplies the coagulant from the coagulant storage tank 18 to the mixing tank 14. here,
Polyaluminum chloride (PAC) is suitable as the aggregating agent, but other aluminum-based or iron-based aggregating agents can be used, and a pH adjusting agent may be added if necessary. Further, a polymer flocculant may be added as a flocculation aid.

【0013】また、酸化剤貯槽22からの酸化剤が酸化
剤ポンプ24によって供給される。酸化剤としては、一
般的に次亜塩素酸ナトリウムが利用されるが、塩素ガス
でもよい。これによって、前塩素処理が行われる。な
お、塩素系の酸化剤でなく、オゾンなど他の酸化剤でも
よい。混和槽14には、撹拌機26が配置されており、
ここで原水と凝集剤が撹拌混合され、原水中の固形物が
凝集される。
The oxidant from the oxidant storage tank 22 is supplied by the oxidant pump 24. Although sodium hypochlorite is generally used as the oxidant, chlorine gas may be used. Thereby, the pre-chlorination process is performed. Note that other oxidizing agents such as ozone may be used instead of the chlorine-based oxidizing agent. A stirrer 26 is arranged in the mixing tank 14,
Here, the raw water and the coagulant are mixed by stirring, and the solid matter in the raw water is coagulated.

【0014】混和槽14からの凝集処理水は、二層ろ過
器32に供給する。この二層ろ過器32は、アンスラサ
イトと、ケイ砂などの二層のろ過層によってろ過処理を
行う。そして、この二層ろ過器32の処理水として、水
道水として利用できる十分に濁度の低いろ過処理水が得
られる。
The coagulated water from the mixing tank 14 is supplied to the two-layer filter 32. The two-layer filter 32 performs a filtering process using anthracite and a two-layer filter layer such as silica sand. Then, as the treated water of the two-layer filter 32, filtered treated water having sufficiently low turbidity that can be used as tap water is obtained.

【0015】二層ろ過器32のろ過処理水は、ろ過水貯
槽34に一旦貯留され、その後還元剤ポンプ38により
還元剤貯槽36からの還元剤が供給され、ろ過処理水中
の残留塩素が除去される。そして、一旦残留塩素が除去
されたろ過水に対し、消毒剤ポンプ40により消毒剤貯
槽42から次亜塩素酸ナトリウム等の消毒剤が添加され
て、処理水として排出される。この処理水は、例えば配
水タンクなどを介し水道水として配水されるものであ
り、所定の残留塩素が必要である。そこで、処理水の残
留塩素を残留塩素計44で測定し、これが所定濃度以上
になるように消毒剤ポンプ40が制御される。
The filtered water of the two-layer filter 32 is once stored in the filtered water storage tank 34, and then the reducing agent is supplied from the reducing agent storage tank 36 by the reducing agent pump 38 to remove residual chlorine in the filtered water. It Then, disinfectant such as sodium hypochlorite is added from the disinfectant storage tank 42 by the disinfectant pump 40 to the filtered water from which residual chlorine is once removed, and the filtered water is discharged as treated water. This treated water is distributed as tap water, for example, via a water distribution tank or the like, and requires a predetermined residual chlorine. Therefore, the residual chlorine in the treated water is measured by the residual chlorine meter 44, and the disinfectant pump 40 is controlled so that the residual chlorine becomes a predetermined concentration or higher.

【0016】なお、還元剤としては、亜硫酸ナトリウム
が好適である。また、消毒剤としては、次亜塩素酸ナト
リウムが好適であるが、塩素ガスでもよい。
As the reducing agent, sodium sulfite is suitable. As the disinfectant, sodium hypochlorite is suitable, but chlorine gas may be used.

【0017】そして、本実施形態においては、二層ろ過
器32に流入する凝集処理水の着色を確認する着色検出
手段として、二層ろ過器32の流入水の濁度を計測する
濁度計46を有しており、この濁度計46の計測値に応
じて、酸化剤ポンプ24による酸化剤添加量が制御され
る。
In the present embodiment, the turbidity meter 46 for measuring the turbidity of the inflow water of the two-layer filter 32 is used as a color detecting means for confirming the coloration of the coagulated treated water flowing into the two-layer filter 32. The amount of oxidant added by the oxidant pump 24 is controlled according to the measurement value of the turbidity meter 46.

【0018】ここで、本実施形態の装置において、処理
対象とする原水には、有機物とマンガンが比較的高濃度
に含まれている。例えば、有機物がTOCとして2〜1
5mg/L、マンガン濃度0.1〜1mg/L程度含ま
れている。このような原水中では、マンガンの多くは有
機物と結合した形態を取っている。そこで、このような
原水中に酸化剤を注入してもなかなかマンガンを酸化す
ることができない。
Here, in the apparatus of the present embodiment, the raw water to be treated contains organic substances and manganese in relatively high concentrations. For example, organic matter has a TOC of 2-1.
It contains 5 mg / L and a manganese concentration of about 0.1 to 1 mg / L. In such raw water, most of manganese is in the form of being combined with organic matter. Therefore, even if an oxidizing agent is injected into such raw water, it is difficult to oxidize manganese.

【0019】一方、酸化剤(特に、塩素系酸化剤)を大
量に添加すると、マンガンの酸化によって茶色に着色す
る。すなわち、酸化剤によりマンガンが酸化されたこと
は処理水の色によって判定できる。
On the other hand, when a large amount of an oxidizing agent (particularly a chlorine-based oxidizing agent) is added, it is colored brown due to the oxidation of manganese. That is, the fact that manganese was oxidized by the oxidizing agent can be determined by the color of the treated water.

【0020】本実施形態では、濁度計46の計測濁度に
よって、この着色を検出する。すなわち、濁度計46
は、通常、波長400〜600nmの光の吸光度に基づ
いて測定するものであり、処理水の着色を検出すること
ができる。また、色度計は通常、波長390nm付近の
光の吸光度に基づいて測定するものであり、このような
色度計によっても、処理水の着色を計測することができ
るため、着色検出手段として濁度計46に代えて色度計
を採用することもできる。
In this embodiment, this coloring is detected by the turbidity measured by the turbidimeter 46. That is, the turbidity meter 46
Is usually measured based on the absorbance of light having a wavelength of 400 to 600 nm, and the coloring of the treated water can be detected. In addition, a chromaticity meter usually measures based on the absorbance of light near a wavelength of 390 nm, and since such a chromaticity meter can also measure the coloring of the treated water, turbidity as a coloring detection means. A chromaticity meter may be used instead of the chromaticity meter 46.

【0021】そして、この着色を目安にして酸化剤の添
加量を制御することで、マンガンの酸化を確実に行え、
マンガン除去が行える。すなわち、処理水がマンガンの
酸化によって着色するのに充分な量の酸化剤を添加した
後、ろ過器によってろ過処理を行うことで、マンガンを
安定して十分除去することができる。なお、マンガンの
酸化は、pHが高いほど起こりやすいが、処理水を水道
水として利用する場合は、飲料に適したpHを考慮し
て、混合槽14におけるpHを7.0〜7.5とするこ
とが望ましい。このために、混合槽14におけるpHを
計測し、pH調整剤(例えば、水酸化ナトリウム)を添
加することが好適である。
By controlling the addition amount of the oxidizer based on this coloring, the oxidation of manganese can be surely performed,
Manganese can be removed. That is, manganese can be stably and sufficiently removed by adding an oxidizing agent in an amount sufficient for coloring treated water by oxidation of manganese and then performing a filtering treatment with a filter. Note that the oxidation of manganese is more likely to occur as the pH is higher, but when the treated water is used as tap water, the pH in the mixing tank 14 is set to 7.0 to 7.5 in consideration of the pH suitable for the beverage. It is desirable to do. For this reason, it is preferable to measure the pH in the mixing tank 14 and add a pH adjuster (for example, sodium hydroxide).

【0022】また、二層ろ過器32は、通常は砂やアン
スラサイトやマンガン砂等を単独または複数組み合わせ
たものが採用される。これによって、酸化によって不溶
化されたマンガンが効果的にろ別される。
The two-layer filter 32 is usually made of sand, anthracite, manganese sand, or a combination thereof. This effectively filters out manganese insolubilized by oxidation.

【0023】さらに、本実施形態における酸化剤(塩
素)注入量はかなり多くなっているため、二層ろ過後の
ろ過処理水の残留塩素も高くなる。そこで、還元剤を添
加して、残留塩素を一旦除去し、その後消毒剤として適
量の後塩素注入を行っている。これによって、配水する
水道水中の残留塩素濃度を適切なものに維持することが
できる。ここで、この還元剤の注入量は、残留塩素に見
合ったものに制御することが好適である。従って、二層
ろ過後のろ過処理水についての残留塩素(または酸化還
元電位ORP)を計測し、残留塩素に対応した量の還元
剤を添加するように制御するとよい。
Further, since the injection amount of the oxidizing agent (chlorine) in this embodiment is considerably large, the residual chlorine in the filtered water after the two-layer filtration is also high. Therefore, a reducing agent is added to once remove residual chlorine, and then an appropriate amount of post-chlorine is injected as a disinfectant. This makes it possible to maintain an appropriate residual chlorine concentration in the tap water to be distributed. Here, it is preferable to control the injection amount of the reducing agent to be appropriate for the residual chlorine. Therefore, the residual chlorine (or redox potential ORP) in the filtered water after the two-layer filtration may be measured, and the reducing agent may be added in an amount corresponding to the residual chlorine.

【0024】また、還元剤を添加する代わりに、活性炭
処理を行うことも好適である。これによって、残留塩素
を除去することができ、また残留する微量の有機物を吸
着除去できるという効果も得られる。
It is also preferable to perform activated carbon treatment instead of adding the reducing agent. As a result, residual chlorine can be removed and a small amount of residual organic matter can be adsorbed and removed.

【0025】なお、上述の例では、二層ろ過器32の流
入水の着色を濁度計46により計測し、前塩素注入量
(混和槽14への塩素注入量)を制御したが、上述のよ
うに、濁度計に代え、色度計を採用することもできる。
In the above example, the coloring of the inflow water of the two-layer filter 32 was measured by the turbidity meter 46 to control the amount of pre-chlorine injection (the amount of chlorine injection into the mixing tank 14). As described above, instead of the turbidity meter, a colorimeter can be adopted.

【0026】[0026]

【実施例】本発明の実施例について以下に示す。EXAMPLES Examples of the present invention will be shown below.

【0027】<条件> (i)原水;地下水 有機物濃度TOC3.0mg/L(平均値)、マンガン
濃度0.3〜0.7mg/L、原水濁度0.5度前後。 (ii)処理水量;360m/d (iii)処理フロー 図1に示す通りであり、原水→混和槽14(前塩素添加
と凝集剤を添加)→二層ろ過器32(ろ過速度150m
/d)→還元剤を添加→後塩素添加→浄水。
<Conditions> (i) Raw water; organic matter concentration in groundwater TOC 3.0 mg / L (average value), manganese concentration 0.3 to 0.7 mg / L, turbidity of raw water around 0.5 degrees. (Ii) Treated water amount: 360 m 3 / d (iii) Treatment flow As shown in FIG. 1, raw water → mixing tank 14 (pre-chlorination and coagulant added) → two-layer filter 32 (filtration speed 150 m
/ D) → Add reducing agent → Add post-chlorine → Purified water.

【0028】ここで、混和槽14に添加する凝集剤とし
ては、PAC(ポリ塩化アルミニウム)を用い、3.0
mg/L一定注入とした。また、前塩素処理は、二層ろ
過器32の入り口での濁度を測定し、濁度が2.0度以
上となるように次亜塩素酸ナトリウムを添加した。実際
の添加率は、年間で3.0〜7.0mg/Lで変化し
た。また、前塩素処理後の酸化処理水の残留塩素は2〜
3mg/Lで変化した。
Here, PAC (polyaluminum chloride) is used as the coagulant added to the mixing tank 14, and the coagulant is 3.0
A constant mg / L injection was made. In the pre-chlorination, the turbidity at the entrance of the two-layer filter 32 was measured, and sodium hypochlorite was added so that the turbidity was 2.0 degrees or more. The actual addition rate varied from 3.0 to 7.0 mg / L per year. Also, the residual chlorine content of the oxidized water after the pre-chlorination is 2 to
It was changed at 3 mg / L.

【0029】また、還元には亜硫酸ソーダを用いた。ろ
過処理水中の残留塩素濃度を測定し、その全量が還元さ
れるだけの亜硫酸ソーダを自動運転にて注入した。
Further, sodium sulfite was used for the reduction. The residual chlorine concentration in the filtered water was measured, and sodium sulfite, which would reduce the total amount, was injected by automatic operation.

【0030】さらに、後塩素処理は、1時間後の残留塩
素濃度が0.8mg/Lとなるように注入した。
Further, in the post-chlorination treatment, injection was performed so that the residual chlorine concentration after 1 hour was 0.8 mg / L.

【0031】その結果、二層ろ過器32出口のろ過水の
水質は、平均でTOC1.5mg/L、マンガン濃度
0.01mg/L未満、濁度0.1未満であった。
As a result, the quality of the filtered water at the outlet of the two-layer filter 32 was TOC 1.5 mg / L, manganese concentration less than 0.01 mg / L and turbidity less than 0.1 on average.

【0032】[0032]

【比較例】比較例として、混和槽14における次亜塩素
酸ソーダの添加量を、添加後の酸化処理水中の残留塩素
濃度が0.5mg/Lとなるように制御した以外は実施
例と同様にして処理したところ、二層ろ過器32出口の
ろ過水中のマンガン濃度は、平均で0.1mg/Lであ
った。
[Comparative Example] As a comparative example, the same as the example except that the amount of sodium hypochlorite added in the mixing tank 14 was controlled so that the residual chlorine concentration in the oxidized water after the addition was 0.5 mg / L. The concentration of manganese in the filtered water at the outlet of the two-layer filter 32 was 0.1 mg / L on average.

【0033】[0033]

【発明の効果】このように、本発明によれば、酸化剤の
添加量を酸化剤添加後の被処理水の着色によって判定す
る。これによって、有機物と結合したマンガンの酸化除
去を確実に行うことができる。
As described above, according to the present invention, the amount of the oxidizing agent added is determined by coloring the water to be treated after the addition of the oxidizing agent. As a result, the manganese bound to the organic matter can be reliably removed by oxidation.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施形態に係るマンガン除去装置を含む処理
システムの構成を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of a processing system including a manganese removing device according to an embodiment.

【符号の説明】[Explanation of symbols]

10 取水井、12 原水ポンプ、14 混和槽、18
凝集剤貯槽、22酸化剤貯槽、 32 二層ろ過器、
34 ろ過水貯槽、36 還元剤貯槽、42消毒剤貯
槽、44 残留塩素計、46 濁度計。
10 Intake well, 12 Raw water pump, 14 Mixing tank, 18
Flocculant storage tank, 22 oxidizer storage tank, 32 two-layer filter,
34 filtered water storage tank, 36 reducing agent storage tank, 42 disinfectant storage tank, 44 residual chlorine meter, 46 turbidity meter.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 9/00 C02F 9/00 502R 503 503A 504 504B 504E (72)発明者 大田 豊明 東京都江東区新砂1丁目2番8号 オルガ ノ株式会社内 Fターム(参考) 4D024 AA01 AB11 BA02 DB03 DB23 4D050 AA02 AB32 AB46 AB55 BA06 BB02 BB05 BB06 BD03 BD06 BD08 CA06 CA15 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C02F 9/00 C02F 9/00 502R 503 503A 504 504B 504E (72) Inventor Toyoaki Ota 1 Nisuna, Koto-ku, Tokyo 2-8, Organo F-term (reference) 4D024 AA01 AB11 BA02 DB03 DB23 4D050 AA02 AB32 AB46 AB55 BA06 BB02 BB05 BB06 BD03 BD06 BD08 CA06 CA15

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 有機物と結合したマンガンを含む被処理
水からマンガンを除去するマンガン除去方法であって、 被処理水がマンガンの酸化によって着色するのに十分な
量の酸化剤を被処理水に添加し、 着色した酸化処理水を充填材層によりろ過処理し、 被処理水中のマンガンを除去することを特徴とするマン
ガン除去方法。
1. A method for removing manganese from water to be treated containing manganese bound to an organic matter, which comprises adding an oxidizing agent to the water to be treated in an amount sufficient for coloring the water to be treated by oxidation of manganese. A method for removing manganese, characterized in that the added and colored oxidized water is filtered through a filler layer to remove manganese in the water to be treated.
【請求項2】 有機物と結合したマンガンを含む被処理
水からマンガンを除去するマンガン除去装置であって、 被処理水がマンガンの酸化によって着色するのに十分な
量の酸化剤を被処理水に添加する酸化剤添加手段と、 この酸化剤添加手段によって得られた酸化処理水を充填
材層によりろ過処理するろ過手段と、 このろ過手段に流入する酸化処理水の着色を確認する着
色検出手段と、 を有し、 この着色検出手段の検出値に応じて前記酸化剤添加手段
で添加する酸化剤の注入率を制御することを特徴とする
マンガン除去装置。
2. A manganese removing device for removing manganese from water to be treated containing manganese bound to an organic matter, wherein the water to be treated is provided with an oxidizing agent in an amount sufficient for coloring the water to be treated by oxidation of manganese. An oxidizing agent adding means to be added, a filtering means for filtering the oxidized water obtained by the oxidizing agent adding means with a filler layer, and a color detecting means for confirming the coloring of the oxidized water flowing into the filtering means. The manganese removing device is characterized in that the injection rate of the oxidizing agent added by the oxidizing agent adding means is controlled according to the detection value of the color detecting means.
【請求項3】 請求項1または2に記載の方法または装
置において、 前記ろ過手段によって得られるろ過処理水に還元剤を添
加しまたはろ過処理水を活性炭に接触させることにより
ろ過処理水中に残留する酸化剤を除去することを特徴と
するマンガン除去方法またはマンガン除去装置。
3. The method or apparatus according to claim 1 or 2, wherein a reducing agent is added to the filter-treated water obtained by the filtering means or the filter-treated water is brought into contact with activated carbon to remain in the filter-treated water. A method for removing manganese or a device for removing manganese, which comprises removing an oxidizing agent.
JP2002111808A 2002-04-15 2002-04-15 Method for removing manganese and equipment therefor Pending JP2003305485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002111808A JP2003305485A (en) 2002-04-15 2002-04-15 Method for removing manganese and equipment therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002111808A JP2003305485A (en) 2002-04-15 2002-04-15 Method for removing manganese and equipment therefor

Publications (1)

Publication Number Publication Date
JP2003305485A true JP2003305485A (en) 2003-10-28

Family

ID=29394501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002111808A Pending JP2003305485A (en) 2002-04-15 2002-04-15 Method for removing manganese and equipment therefor

Country Status (1)

Country Link
JP (1) JP2003305485A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014034010A (en) * 2012-08-09 2014-02-24 Uerushii:Kk Cleaning apparatus and cleaning method of subterranean water
JP2014034011A (en) * 2012-08-09 2014-02-24 Uerushii:Kk Cleaning apparatus and cleaning method of subterranean water
JP2014087787A (en) * 2012-10-06 2014-05-15 Swing Corp Processing method and processing device for manganese-containing water
JP2016003958A (en) * 2014-06-17 2016-01-12 株式会社理工化学研究所 Method for measuring soluble manganese concentration and soluble manganese concentration measuring apparatus
CN105236636A (en) * 2015-10-10 2016-01-13 贵州万山兴隆锰业有限公司 Gold ore manganese-containing wastewater treatment method
JP2016120467A (en) * 2014-12-25 2016-07-07 オルガノ株式会社 Water treatment equipment and water treatment method
JP2017186771A (en) * 2016-04-04 2017-10-12 清水建設株式会社 Groundwater recharge system
JP2017186772A (en) * 2016-04-04 2017-10-12 清水建設株式会社 Groundwater recharge system
JP2018061921A (en) * 2016-10-11 2018-04-19 パナソニックIpマネジメント株式会社 Water purifying system
WO2018198714A1 (en) * 2017-04-24 2018-11-01 メタウォーター株式会社 Method for removing soluble manganese
JP2020060097A (en) * 2016-04-04 2020-04-16 清水建設株式会社 Groundwater recharge system
CN115124166A (en) * 2022-07-05 2022-09-30 海南核电有限公司 Method for removing manganese from domestic water

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014034010A (en) * 2012-08-09 2014-02-24 Uerushii:Kk Cleaning apparatus and cleaning method of subterranean water
JP2014034011A (en) * 2012-08-09 2014-02-24 Uerushii:Kk Cleaning apparatus and cleaning method of subterranean water
JP2014087787A (en) * 2012-10-06 2014-05-15 Swing Corp Processing method and processing device for manganese-containing water
JP2016003958A (en) * 2014-06-17 2016-01-12 株式会社理工化学研究所 Method for measuring soluble manganese concentration and soluble manganese concentration measuring apparatus
JP2016120467A (en) * 2014-12-25 2016-07-07 オルガノ株式会社 Water treatment equipment and water treatment method
CN105236636A (en) * 2015-10-10 2016-01-13 贵州万山兴隆锰业有限公司 Gold ore manganese-containing wastewater treatment method
JP2017186771A (en) * 2016-04-04 2017-10-12 清水建設株式会社 Groundwater recharge system
JP2017186772A (en) * 2016-04-04 2017-10-12 清水建設株式会社 Groundwater recharge system
JP2020060097A (en) * 2016-04-04 2020-04-16 清水建設株式会社 Groundwater recharge system
JP2018061921A (en) * 2016-10-11 2018-04-19 パナソニックIpマネジメント株式会社 Water purifying system
WO2018198714A1 (en) * 2017-04-24 2018-11-01 メタウォーター株式会社 Method for removing soluble manganese
JPWO2018198714A1 (en) * 2017-04-24 2020-03-05 メタウォーター株式会社 How to remove soluble manganese
US11459248B2 (en) 2017-04-24 2022-10-04 Metawater Co., Ltd. Method of removing soluble manganese
CN115124166A (en) * 2022-07-05 2022-09-30 海南核电有限公司 Method for removing manganese from domestic water

Similar Documents

Publication Publication Date Title
KR100384668B1 (en) Water Treating Method
JP2003305485A (en) Method for removing manganese and equipment therefor
WO2010109556A1 (en) Water treatment method and water treatment system
JP6359257B2 (en) Method and apparatus for treating manganese-containing water
Li et al. Different drinking water production schemes to treat authentic algae-laden source water: Removal of 2-methylisoborneol in different forms
JP2007268342A (en) Filtration system
JP5258714B2 (en) Water treatment method and water treatment apparatus
JP2007319816A (en) Water treatment apparatus and water treatment method
JP4334404B2 (en) Water treatment method and water treatment system
JP3856352B2 (en) Operation method in water purification system
JPS59139991A (en) Colored water disposal
JP4911272B2 (en) Membrane separation of manganese in water containing soluble manganese
JP4660211B2 (en) Water treatment control system and water treatment control method
JP2002059194A (en) Treatment method of raw water
JP2003220394A (en) Method and apparatus for removing manganese
JP4394504B2 (en) Biological filtration equipment
JP6650817B2 (en) Method and apparatus for treating wastewater containing organic oxygen scavenger and suspended matter
JP6402315B2 (en) Method for measuring soluble manganese concentration and apparatus for measuring soluble manganese concentration
JP4598415B2 (en) Organic arsenic compound processing method
JPH10137772A (en) Manganese containing water treatment and device therefor
JP4331048B2 (en) Ozone water treatment control system
JP3268876B2 (en) How to purify river or lake water
JP2004358421A (en) Method and apparatus for decoloring colored beverage wastewater
JP7292113B2 (en) Water treatment device and method
US20220340465A1 (en) Method And Apparatus For Removing Iron From Humus-Rich Water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041203

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060704