JP5258594B2 - Remote control type actuator - Google Patents

Remote control type actuator Download PDF

Info

Publication number
JP5258594B2
JP5258594B2 JP2009013009A JP2009013009A JP5258594B2 JP 5258594 B2 JP5258594 B2 JP 5258594B2 JP 2009013009 A JP2009013009 A JP 2009013009A JP 2009013009 A JP2009013009 A JP 2009013009A JP 5258594 B2 JP5258594 B2 JP 5258594B2
Authority
JP
Japan
Prior art keywords
posture
tip member
tip
spindle
operation member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009013009A
Other languages
Japanese (ja)
Other versions
JP2010167537A (en
Inventor
浩 磯部
佳孝 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2009013009A priority Critical patent/JP5258594B2/en
Priority to PCT/JP2009/005106 priority patent/WO2010041397A1/en
Priority to EP09818937.6A priority patent/EP2364652B1/en
Priority to KR1020117007861A priority patent/KR101287985B1/en
Publication of JP2010167537A publication Critical patent/JP2010167537A/en
Priority to US13/080,806 priority patent/US8511195B2/en
Application granted granted Critical
Publication of JP5258594B2 publication Critical patent/JP5258594B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drilling And Boring (AREA)
  • Manipulator (AREA)
  • Surgical Instruments (AREA)

Description

この発明は、工具の姿勢を遠隔操作で変更可能で、医療用、機械加工等の用途で用いられる遠隔操作型アクチュエータに関する。   The present invention relates to a remotely operated actuator that can change the posture of a tool by remote operation and is used for medical use, machining, and the like.

医療用として骨の加工に用いられたり、機械加工用としてドリル加工や切削加工に用いられたりする遠隔操作型アクチュエータがある。遠隔操作型アクチュエータは、直線形状や湾曲形状をした細長いパイプ部の先端に設けた工具を遠隔操作で制御する。ただし、従来の遠隔操作用アクチュエータは、工具の回転のみを遠隔操作で制御するだけであったため、医療用の場合、複雑な形状の加工や外からは見えにくい箇所の加工が難しかった。また、ドリル加工では、直線だけではなく、湾曲状の加工が可能なことが求められる。さらに、切削加工では、溝内部の奥まった箇所の加工が可能なことが求められる。以下、医療用を例にとって、遠隔操作型アクチュエータの従来技術と課題について説明する。   There are remote-operated actuators that are used for bone processing for medical purposes and drilling and cutting for mechanical processing. The remote operation type actuator remotely controls a tool provided at the end of a long and narrow pipe portion having a linear shape or a curved shape. However, since the conventional remote control actuator only controls the rotation of the tool by remote control, in the case of medical use, it was difficult to process a complicated shape or a part that is difficult to see from the outside. Further, in drilling, it is required that not only a straight line but also a curved shape can be processed. Furthermore, in the cutting process, it is required that a deep part inside the groove can be processed. Hereinafter, taking the medical use as an example, the prior art and problems of the remote control type actuator will be described.

整形外科分野において、骨の老化等によって擦り減って使えなくなった関節を新しく人工のものに取り替える人工関節置換手術がある。この手術では、患者の生体骨を人工関節が挿入できるように加工する必要があるが、その加工には、術後の生体骨と人工関節との接着強度を高めるために、人工関節の形状に合わせて精度良く加工することが要求される。   In the field of orthopedics, there is an artificial joint replacement operation in which a joint that has become worn out due to bone aging or the like is replaced with a new artificial one. In this operation, it is necessary to process the patient's living bone so that the artificial joint can be inserted. In order to increase the adhesive strength between the living bone and the artificial joint after the operation, the shape of the artificial joint is required. It is required to process with high accuracy.

例えば、股関節の人工関節置換手術では、大腿骨の骨の中心にある髄腔部に人工関節挿入用の穴を形成する。人工関節と骨との接触強度を保つには両者の接触面積を大きくとる必要があり、人工関節挿入用の穴は、骨の奥まで延びた細長い形状に加工される。このような骨の切削加工に用いられる医療用アクチュエータとして、細長いパイプ部の先端に工具を回転自在に設け、パイプ部の基端側に設けたモータ等の回転駆動源の駆動により、パイプ部の内部に配した回転軸を介して工具を回転させる構成のものがある(例えば特許文献1)。この種の医療用アクチュエータは、外部に露出した回転部分は先端の工具のみであるため、工具を骨の奥まで挿入することができる。   For example, in hip joint replacement surgery, an artificial joint insertion hole is formed in the medullary cavity at the center of the femur bone. In order to maintain the contact strength between the artificial joint and the bone, it is necessary to increase the contact area between them, and the hole for inserting the artificial joint is processed into an elongated shape extending to the back of the bone. As a medical actuator used for such a bone cutting process, a tool is rotatably provided at the distal end of an elongated pipe portion, and by driving a rotational drive source such as a motor provided on the proximal end side of the pipe portion, There exists a thing of the structure which rotates a tool via the rotating shaft arrange | positioned inside (for example, patent document 1). In this type of medical actuator, the rotating part exposed to the outside is only the tool at the tip, so that the tool can be inserted deep into the bone.

人工関節置換手術では、皮膚切開や筋肉の切断を伴う。すなわち、人体に傷を付けなければならない。その傷を最小限に抑えるためには、前記パイプ部は真っ直ぐでなく、適度に湾曲している方が良い場合がある。このような状況に対応するためのものとして、次のような従来技術がある。例えば、特許文献2は、パイプ部の中間部を2重に湾曲させて、パイプ部の先端側の軸心位置と基端側の軸心位置とをずらせたものである。このようにパイプ部の軸心位置が先端側と軸心側とでずれているものは、他にも知られている。また、特許文献3は、パイプ部を180度回転させたものである。   Artificial joint replacement surgery involves skin incision and muscle cutting. That is, the human body must be damaged. In order to minimize the scratches, the pipe part may not be straight but may be appropriately curved. In order to cope with such a situation, there are the following conventional techniques. For example, in Patent Document 2, an intermediate portion of a pipe portion is bent twice, and the axial center position on the distal end side and the axial center position on the proximal end side of the pipe portion are shifted. There are other known cases where the axial position of the pipe portion is shifted between the tip end side and the axial center side. In Patent Document 3, the pipe portion is rotated 180 degrees.

特開2007−301149号公報JP 2007-301149 A 米国特許第4,466,429号明細書U.S. Pat. No. 4,466,429 米国特許第4,265,231号明細書US Pat. No. 4,265,231 特開2001−17446号公報JP 2001-17446 A

生体骨の人工関節挿入用穴に人工関節を嵌め込んだ状態で、生体骨と人工関節との間に広い隙間があると、術後の接着時間が長くなるため、前記隙間はなるべく狭いのが望ましい。また、生体骨と人工関節の接触面が平滑であることも重要であり、人工関節挿入用穴の加工には高い精度が要求される。しかし、パイプ部がどのような形状であろうとも、工具の動作範囲はパイプ部の形状の制約を受けるため、皮膚切開や筋肉の切断をできるだけ小さくしながら、生体骨と人工関節との間の隙間を狭くかつ両者の接触面が平滑になるように人工関節挿入用穴を加工するのは難しい。   If there is a wide gap between the living bone and the artificial joint with the artificial joint inserted in the artificial bone insertion hole of the living bone, the adhesion time after the operation becomes longer, so the gap is as narrow as possible. desirable. It is also important that the contact surface between the living bone and the artificial joint is smooth, and high accuracy is required for processing the hole for inserting the artificial joint. However, no matter what the shape of the pipe part, the operating range of the tool is limited by the shape of the pipe part. It is difficult to process the artificial joint insertion hole so that the gap is narrow and the contact surface of both is smooth.

一般に、人工関節置換手術が行われる患者の骨は、老化等により強度が弱くなっていることが多く、骨そのものが変形している場合もある。したがって、通常考えられる以上に、人工関節挿入用穴の加工は難しい。   Generally, bones of patients undergoing artificial joint replacement surgery are often weakened due to aging or the like, and the bones themselves may be deformed. Therefore, it is more difficult to process the artificial joint insertion hole than is normally conceivable.

そこで、本出願人は、人工関節挿入用穴の加工を比較的容易にかつ精度良く行えるようにすることを目的として、先端に設けた工具の姿勢を遠隔操作で変更可能とすることを試みた。工具の姿勢が変更可能であれば、パイプ部の形状に関係なく、工具を適正な姿勢に保持することができるからである。しかし、工具は細長いパイプ部の先端に設けられているため、工具の姿勢を変更させる機構を設ける上で制約が多く、それを克服するための工夫が必要である。さらに、医療分野で使用する医療用アクチュエータについては、人体にとって好ましくない潤滑剤やコーティングを用いずに、工具の滑らかな姿勢変更が可能であることが求められる。   Therefore, the present applicant tried to make it possible to remotely change the posture of the tool provided at the tip for the purpose of relatively easily and accurately processing the hole for inserting the artificial joint. . This is because, if the posture of the tool can be changed, the tool can be held in an appropriate posture regardless of the shape of the pipe portion. However, since the tool is provided at the tip of the elongated pipe portion, there are many restrictions in providing a mechanism for changing the posture of the tool, and a device for overcoming it is necessary. Furthermore, a medical actuator used in the medical field is required to be able to change the posture of the tool smoothly without using a lubricant or coating that is not desirable for the human body.

なお、細長いパイプ部を有しない医療用アクチュエータでは、手で握る部分に対して工具が設けられた部分が姿勢変更可能なものがある(例えば特許文献4)が、遠隔操作で工具の姿勢を変更させるものは提案されていない。   Note that some medical actuators that do not have an elongated pipe part can change the position of the part where the tool is provided relative to the hand-held part (for example, Patent Document 4), but the position of the tool can be changed remotely. Nothing has been proposed to make it happen.

この発明は、細長いパイプ部の先端に設けられた工具の姿勢を遠隔操作で変更することができ、しかも潤滑剤やコーティングを用いずに工具の滑らかな姿勢変更が可能な遠隔操作型アクチュエータを提供することである。   The present invention provides a remote-operated actuator that can change the posture of a tool provided at the tip of a long and narrow pipe portion by remote control and that can change the posture of the tool smoothly without using a lubricant or coating. It is to be.

この発明にかかる遠隔操作型アクチュエータは、細長形状のスピンドルガイド部と、このスピンドルガイド部の先端に先端部材連結部を介して姿勢変更自在に取付けられた先端部材と、前記スピンドルガイド部の基端が結合された駆動部ハウジングとを備え、前記先端部材は、工具を保持するスピンドルを回転自在に支持し、前記スピンドルガイド部は、前記駆動部ハウジング内に設けられた工具回転用駆動源の回転を前記スピンドルに伝達する回転軸と、両端に貫通したガイド孔とを内部に有し、先端が前記先端部材に接して進退動作することにより前記先端部材を姿勢変更させる姿勢操作部材を前記ガイド孔内に進退自在に挿通し、前記姿勢操作部材を進退させる姿勢変更用駆動源を前記駆動部ハウジング内に設け、前記先端部材と前記姿勢操作部材の接触点における接線に対し垂直な垂線と前記回転軸の中心線とがなす角度をαとした場合、α>0°であることを特徴とする。   A remote-control actuator according to the present invention includes an elongated spindle guide portion, a tip member attached to the tip of the spindle guide portion via a tip member connecting portion so that the posture can be freely changed, and a base end of the spindle guide portion And the tip member rotatably supports a spindle holding a tool, and the spindle guide portion rotates a tool rotation drive source provided in the drive unit housing. A rotation shaft that transmits the tip member to the spindle, and a guide hole that penetrates both ends of the shaft, and a posture operation member that changes the posture of the tip member by advancing and retracting with the tip contacting the tip member. A posture changing drive source that is inserted into the drive unit housing so as to advance and retreat, and that moves the posture operation member forward and backward. If the angle between the center line of the rotary shaft and the line perpendicular to the tangent at the contact point of the energizing operation member was alpha, and wherein the alpha> is 0 °.

記先端部材は、筒状のハウジングと、このハウジングの内周に配置された前記スピンドルと、前記ハウジングに対し前記スピンドルを回転自在に支持する軸受とを備え、前記先端部材の姿勢が中立状態にあるとき、前記スピンドルの中心線と前記回転軸の中心線の延長線上に位置し、かつ前記姿勢操作部材は、前記回転軸の中心線から偏心して位置し、その先端が前記先端部材のハウジングの端面に接した状態で前記回転軸の中心線と平行な方向に進退するものであり、前記ハウジングの端面は外径側ほど姿勢操作部材側に近い傾斜面とされた構成とする。 Before SL tip member includes a cylindrical housing, said spindle disposed on the inner periphery of the housing, and a bearing for rotatably supporting the spindle relative to the housing, the attitude of the distal end member is a neutral state The position control member is positioned eccentrically from the center line of the rotary shaft, and the tip end of the posture operation member is located on the extension line of the center line of the spindle and the center line of the rotary shaft. in a state in contact with the end surface is intended to advance and retreat in the center line parallel to the direction of the rotary shaft, the end face of the housing shall be the structure in which an inclined surface close enough to the outer diameter side attitude altering member side.

この構成によれば、先端部材に設けた工具の回転により、骨等の切削が行われる。その場合に、姿勢変更用駆動源により姿勢操作部材を進退させると、この姿勢操作部材の先端が先端部材に対し作用することにより、スピンドルガイド部の先端に先端部材連結部を介して姿勢変更自在に取付けられた先端部材が姿勢変更する。姿勢変更用駆動源は、スピンドルガイド部の基端側の駆動部ハウジング内に設けられており、上記先端部材の姿勢変更は遠隔操作で行われる。姿勢操作部材はガイド孔に挿通されているため、姿勢操作部材が長手方向と交差する方向に位置ずれすることがなく、常に先端部材に対し適正に作用することができ、先端部材の姿勢変更動作が正確に行われる。   According to this structure, cutting of a bone etc. is performed by rotation of the tool provided in the tip member. In this case, when the posture operation member is moved forward and backward by the posture change drive source, the tip of the posture operation member acts on the tip member, so that the posture can be changed to the tip of the spindle guide portion via the tip member connecting portion. The position of the tip member attached to is changed. The posture changing drive source is provided in the drive portion housing on the proximal end side of the spindle guide portion, and the posture change of the tip member is performed by remote control. Since the posture operation member is inserted into the guide hole, the posture operation member does not shift in the direction intersecting the longitudinal direction, and can always act properly on the tip member, and the posture change operation of the tip member Is done accurately.

上記先端部材の姿勢変更動作において、姿勢操作部材の先端が先端部材の姿勢操作部材との接触面を押すことによって、先端部材が首振り動作して姿勢変更される。その際、先端部材の姿勢操作部材との接触面が姿勢操作部材の進退方向と垂直、すなわち先端部材と前記姿勢操作部材の接触点における接線に対し垂直な垂線と前記回転軸の中心線とがなす角度α=0°であると、先端部材と姿勢操作部材との間に滑りが生じないため、先端部材が首振り動作できない。しかし、α>0°であれば、姿勢操作部材に対して先端部材が滑りながら首振り動作することが可能であり、先端部材を滑らかに姿勢変更できる。そのため、人体にとって好ましくない潤滑剤やコーティングを用いなくて済み、医療分野で使用する医療用アクチュエータに適する。   In the posture changing operation of the tip member, when the tip of the posture operation member presses the contact surface of the tip member with the posture operation member, the tip member swings and changes its posture. At that time, the contact surface of the tip member with the posture operation member is perpendicular to the advancing and retreating direction of the posture operation member, that is, a perpendicular perpendicular to the tangent at the contact point between the tip member and the posture operation member and the center line of the rotation shaft are If the angle α is 0 °, no slip occurs between the tip member and the posture operation member, and the tip member cannot swing. However, if α> 0 °, it is possible to swing the tip member while sliding the tip member relative to the posture operation member, and the tip member can be smoothly changed in posture. Therefore, it is not necessary to use a lubricant or coating which is not preferable for the human body, and it is suitable for a medical actuator used in the medical field.

この発明において、前記先端部材と前記姿勢操作部材の接触部の静摩擦係数をμとした場合、この静摩擦係数μと前記角度αとの間に、μ<tan(α)の関係が成り立つのが良い。
姿勢操作部材が先端部材を押す力をFとした場合、静止摩擦力の最大値はμFcos(α)、接線方向の力はFsin(α)でそれぞれ表される。先端部材と姿勢操作部材の接触点で滑りが生じるのは、μFcos(α)<Fsin(α)の関係にあるときであるから、μ<tan(α)とすれば先端部材が姿勢変更可能である。予め静摩擦係数μを測定しておけば、先端部材の姿勢変更動作可能な角度αの値が求められる。一般的に、静摩擦力は動摩擦力よりも大きいため、静摩擦力に打ち勝って動作することが可能であれば、動摩擦力に打ち勝って動作することも可能である。0<μ<1であるため、上記関係はすべての摩擦面に対応する。
In this invention, when the static friction coefficient of the contact portion between the tip member and the posture operation member is μ, a relationship of μ <tan (α) should be established between the static friction coefficient μ and the angle α. .
When the force by which the posture operation member pushes the tip member is F, the maximum value of the static friction force is expressed by μFcos (α), and the tangential force is expressed by Fsin (α). Slip occurs at the contact point between the tip member and the posture control member when μFcos (α) <Fsin (α). Therefore, if μ <tan (α), the tip member can change its posture. is there. If the static friction coefficient μ is measured in advance, the value of the angle α at which the posture of the tip member can be changed is determined. In general, since the static friction force is larger than the dynamic friction force, if the static friction force can be overcome, the dynamic friction force can be overcome. Since 0 <μ <1, the above relationship corresponds to all friction surfaces.

前記角度αが、0°<α<45°であるのが好ましい。
角度αが45°以上であると、姿勢操作部材が先端部材に与える力を軸方向力と径方向力に分割した場合に、軸方向力よりも径方向力の方が大きくなるため、先端部材に駆動力を十分に伝達できないからである。また、径方向力が大きくなると、姿勢操作部材とその案内面となる前記ガイド孔の内面間で生じる摩擦力も大きくなり、大きな駆動力が必要となる。
The angle α is preferably 0 ° <α <45 °.
When the angle α is 45 ° or more, the radial force is greater than the axial force when the force applied to the distal member by the posture operation member is divided into the axial force and the radial force. This is because the driving force cannot be sufficiently transmitted to. Further, when the radial force is increased, a frictional force generated between the posture operation member and the inner surface of the guide hole serving as a guide surface thereof is increased, and a large driving force is required.

この発明において、前記先端部材の前記姿勢操作部材との接触面の断面形状が直線状であってもよく、姿勢操作部材側に凸となる円弧状であってもよい。
先端部材の姿勢操作部材との接触面の断面形状が直線状である場合は、加工が比較的簡単であるため、製造コストを低減できる。
先端部材の姿勢操作部材との接触面の断面形状が姿勢操作部材側に凸となる円弧状である場合は、先端部材がどのような姿勢になっても、角度αがほとんど一定であるように設計することができ、先端部材の姿勢に関係なく先端部材のスムーズな動作が実現できる。
In this invention, the cross-sectional shape of the contact surface of the tip member with the posture operation member may be linear, or may be an arc shape that is convex toward the posture operation member.
When the cross-sectional shape of the contact surface of the tip member with the posture operation member is a straight line, the manufacturing cost can be reduced because the processing is relatively simple.
When the cross-sectional shape of the contact surface of the tip member with the posture control member is an arc shape that protrudes toward the posture control member, the angle α is almost constant regardless of the posture of the tip member. It is possible to design, and a smooth operation of the tip member can be realized regardless of the posture of the tip member.

この発明において、前記先端部材は、前記姿勢操作部材との対向面に1つ以上の径方向に沿う溝部を有し、この溝部の底面を、前記姿勢操作部材との接触面とするのが良い。
溝部の底面を姿勢操作部材の接触面とすれば、姿勢操作部材の先端が溝部に挿入された状態となり、先端部材が中心線回りに回転するのを防止する効果が得られる。これにより、姿勢操作部材を進退させる機構やその制御装置の故障等により工具が制御不能となった場合でも、先端部材が中心線回りに回転して加工箇所の周りを傷つけたり、工具自体が破損したりすることを防止できる。先端部材の一部に加工を施すだけで溝部を形成することができるため、コスト低減に繋がる。
In the present invention, the tip member may have one or more grooves along the radial direction on a surface facing the posture operation member, and a bottom surface of the groove may be a contact surface with the posture operation member. .
If the bottom surface of the groove portion is used as the contact surface of the posture operation member, the tip of the posture operation member is inserted into the groove portion, and an effect of preventing the tip member from rotating around the center line can be obtained. As a result, even if the tool becomes uncontrollable due to a failure of the mechanism that moves the posture operation member back and forth or its control device, the tip member rotates around the center line and damages the machining area, or the tool itself is damaged. Can be prevented. Since the groove can be formed only by processing a part of the tip member, the cost is reduced.

この発明において、前記スピンドルガイド部が、このスピンドルガイド部の外郭となる外郭パイプを有し、前記ガイド孔が、前記外郭パイプ内に設けられたガイドパイプの内径孔とすることができる。
この構成であれば、外郭パイプによりスピンドルガイド部の内部を保護しつつ、スピンドルガイド部を中空状にして軽量化を図れる。
In the present invention, the spindle guide portion may include an outer pipe serving as an outer shell of the spindle guide portion, and the guide hole may be an inner diameter hole of a guide pipe provided in the outer pipe.
With this configuration, it is possible to reduce the weight by making the spindle guide hollow while protecting the inside of the spindle guide by the outer pipe.

この発明において、前記外郭パイプは、その断面2次モーメントが同外径である中実軸の断面2次モーメントの1/2以上であり、かつ内周面に前記ガイドパイプが挿入される溝状部を有するのが良い。
外郭パイプの断面2次モーメントを同外径である中実軸の断面2次モーメントの1/2以上とすることにより、スピンドルガイド部の剛性が高くなり、先端部材の位置決め精度が向上させられるとともに、切削性を向上させられる。また、外郭パイプの内周面に設けた溝状部にガイドパイプを挿入したことにより、ガイドパイプの円周方向の位置決めを容易に行え、組立性が良好である。
In the present invention, the outer pipe has a groove-like shape in which the second moment of section is ½ or more of the second moment of section of the solid shaft having the same outer diameter, and the guide pipe is inserted into the inner peripheral surface. It is good to have a part.
By making the secondary moment of section of the outer pipe to be ½ or more of the sectional moment of inertia of the solid shaft having the same outer diameter, the rigidity of the spindle guide is increased and the positioning accuracy of the tip member is improved. , Cutting performance can be improved. Further, since the guide pipe is inserted into the groove-shaped portion provided on the inner peripheral surface of the outer pipe, the guide pipe can be easily positioned in the circumferential direction, and the assemblability is good.

この発明において、前記スピンドルガイド部内の前記回転軸を回転自在に支持する複数の転がり軸受を設ける場合、隣合う転がり軸受間に、これら転がり軸受に対して予圧を与えるばね要素を設けるのが望ましい。
加工の仕上がりを良くするには、スピンドルを高速回転させて加工するのがよい。スピンドルを高速回転させると、工具に作用する切削抵抗を低減させる効果もある。スピンドルはワイヤ等からなる細い回転軸を介して回転力が伝達されるので、スピンドルの高速回転を実現させるため、回転軸を支持する転がり軸受に予圧をかけておくことが必要となる。この予圧のためのばね要素を隣合う転がり軸受間に設ければ、スピンドルガイド部の径を大きくせずにばね要素を設けられる。
In the present invention, when a plurality of rolling bearings that rotatably support the rotating shaft in the spindle guide portion are provided, it is desirable to provide a spring element that applies a preload to the rolling bearings between adjacent rolling bearings.
In order to improve the finish of processing, it is preferable to rotate the spindle at high speed. When the spindle is rotated at a high speed, there is an effect of reducing cutting resistance acting on the tool. Since the rotational force is transmitted to the spindle through a thin rotating shaft made of a wire or the like, it is necessary to preload the rolling bearing that supports the rotating shaft in order to realize high-speed rotation of the spindle. If a spring element for this preload is provided between adjacent rolling bearings, the spring element can be provided without increasing the diameter of the spindle guide portion.

この発明において、前記スピンドルガイド部は湾曲した箇所を有していてもよい。
姿勢操作部材を可撓性とすることにより、スピンドルガイド部に湾曲した箇所があっても、姿勢操作部材をガイド孔内で進退させることができる。
In the present invention, the spindle guide portion may have a curved portion.
By making the posture operation member flexible, the posture operation member can be advanced and retracted in the guide hole even if there is a curved portion in the spindle guide portion.

この発明の遠隔操作型アクチュエータは、細長形状のスピンドルガイド部と、このスピンドルガイド部の先端に先端部材連結部を介して姿勢変更自在に取付けられた先端部材と、前記スピンドルガイド部の基端が結合された駆動部ハウジングとを備え、前記先端部材は、工具を保持するスピンドルを回転自在に支持し、前記スピンドルガイド部は、前記駆動部ハウジング内に設けられた工具回転用駆動源の回転を前記スピンドルに伝達する回転軸と、両端に貫通したガイド孔とを内部に有し、先端が前記先端部材に接して進退動作することにより前記先端部材を姿勢変更させる姿勢操作部材を前記ガイド孔内に進退自在に挿通し、前記姿勢操作部材を進退させる姿勢変更用駆動源を前記駆動部ハウジング内に設け、前記先端部材と前記姿勢操作部材の接触点における接線に対し垂直な垂線と前記回転軸の中心線とがなす角度をαとした場合、α>0°であり、前記先端部材は、筒状のハウジングと、このハウジングの内周に配置された前記スピンドルと、前記ハウジングに対し前記スピンドルを回転自在に支持する軸受とを備え、前記先端部材の姿勢が中立状態にあるとき、前記スピンドルの中心線と前記回転軸の中心線の延長線上に位置し、かつ前記姿勢操作部材は、前記回転軸の中心線から偏心して位置し、その先端が前記先端部材のハウジングの端面に接した状態で前記回転軸の中心線と平行な方向に進退するものであり、前記ハウジングの端面は外径側ほど姿勢操作部材側に近い傾斜面とされているため、細長いパイプ部の先端に設けられた工具の姿勢を遠隔操作で変更することができ、しかも潤滑剤やコーティングを用いずに工具の滑らかな姿勢変更が可能である。 The remote control type actuator according to the present invention comprises an elongated spindle guide portion, a tip member attached to the tip of the spindle guide portion via a tip member connecting portion so that the posture can be freely changed, and a base end of the spindle guide portion. A driving unit housing coupled thereto, wherein the tip member rotatably supports a spindle holding a tool, and the spindle guide unit rotates a driving source for rotating the tool provided in the driving unit housing. There is a rotation shaft that transmits to the spindle and guide holes that penetrate through both ends, and a posture operation member that changes the posture of the tip member by moving the tip member forward and backward while contacting the tip member. And a posture change drive source for moving the posture control member forward and backward in the drive unit housing. If the angle between the center line of the rotary shaft and the line perpendicular to the tangent at the contact point of the member was alpha, alpha> is 0 °, the tip member includes a cylindrical housing, of the housing A spindle that is disposed around a circumference; and a bearing that rotatably supports the spindle relative to the housing, and when the tip member is in a neutral position, the spindle center line and the rotation axis center line The posture operation member is located eccentrically with respect to the center line of the rotating shaft and is parallel to the center line of the rotating shaft in a state where the tip is in contact with the end surface of the housing of the tip member. is intended to advance and retreat in a direction, the end surface of the housing because it is an inclined surface close enough to the outer diameter side attitude altering member, changes the attitude of the tool provided at the distal end of the elongated pipe part remotely Door can be, yet it is possible to smooth changing of the posture of the tool without the use of lubricants and coatings.

この発明の実施形態にかかる遠隔操作型アクチュエータの概略構成を示す図である。It is a figure which shows schematic structure of the remote control type actuator concerning embodiment of this invention. (A)は同遠隔操作型アクチュエータの先端部材およびスピンドルガイド部の断面図、(B)はそのIIB−IIB断面図、(C)は先端部材と回転軸との連結構造を示す図である。(A) is a sectional view of a tip member and a spindle guide portion of the remote operation type actuator, (B) is a sectional view taken along the line IIB-IIB, and (C) is a diagram showing a connection structure between the tip member and a rotating shaft. (A)は同遠隔操作型アクチュエータの工具回転用駆動機構および姿勢変更用駆動機構の断面図に制御系を組み合わせて表示した図、(B)はそのIIIB−IIIB断面図である。(A) is the figure which combined and displayed the control system in sectional drawing of the drive mechanism for tool rotation of this remote control type actuator, and the drive mechanism for attitude | position change, (B) is the IIIB-IIIB sectional drawing. 先端部材と姿勢操作部材の接触点に作用する力を示す説明図である。It is explanatory drawing which shows the force which acts on the contact point of a front-end | tip member and an attitude | position operation member. 先端部材の接触面の形状が異なる遠隔操作型アクチュエータの部分断面図であり、(A),(B),(C)はそれぞれ先端部材の姿勢が異なる状態を示す。It is a fragmentary sectional view of the remote control type actuator from which the shape of the contact surface of a tip member differs, (A), (B), and (C) show the state from which the posture of a tip member differs, respectively. (A)はこの発明の異なる実施形態にかかる遠隔操作型アクチュエータの先端部材およびスピンドルガイド部の断面図、(B)はそのVIB−VIB断面図である。(A) is sectional drawing of the front end member and spindle guide part of the remote control type actuator concerning different embodiment of this invention, (B) is the VIB-VIB sectional drawing. (A)はこの発明のさらに異なる実施形態にかかる遠隔操作型アクチュエータの先端部材およびスピンドルガイド部の断面図、(B)はそのVIIB−VIIB断面図である。(A) is sectional drawing of the front-end | tip member and spindle guide part of the remote control type actuator concerning further different embodiment of this invention, (B) is the VIIB-VIIB sectional drawing. 同遠隔操作型アクチュエータの工具回転用駆動機構および姿勢変更用駆動機構の正面図に制御系を組み合わせて表示した図である。It is the figure which combined and displayed the control system in the front view of the drive mechanism for tool rotation of this remote control type actuator, and the drive mechanism for attitude | position change. (A)はこの発明のさらに異なる実施形態にかかる遠隔操作型アクチュエータの先端部材およびスピンドルガイド部の断面図、(B)はそのIXB−IXB断面図、(C)は先端部材のハウジングを基端側から見た図である。(A) is a sectional view of a tip member and a spindle guide portion of a remote control type actuator according to still another embodiment of the present invention, (B) is a sectional view of IXB-IXB , and (C) is a base end of a housing of the tip member It is the figure seen from the side . (A)はこの発明のさらに異なる実施形態にかかる遠隔操作型アクチュエータの先端部材およびスピンドルガイド部の断面図、(B)はそのXB−XB断面図である。(A) is sectional drawing of the front-end | tip member and spindle guide part of the remote control type actuator concerning further different embodiment of this invention, (B) is the XB-XB sectional drawing. スピンドルガイド部の形状が異なる遠隔操作型アクチュエータの概略構成を示す図である。It is a figure which shows schematic structure of the remote control type actuator from which the shape of a spindle guide part differs.

この発明の実施形態を図1〜図3と共に説明する。図1において、この遠隔操作型アクチュエータは、回転式の工具1を保持する先端部材2と、この先端部材2が先端に姿勢変更自在に取付けられた細長形状のスピンドルガイド部3と、このスピンドルガイド部3の基端が結合された駆動部ハウジング4aと、この駆動部ハウジング4a内の工具回転用駆動機構4bおよび姿勢変更用駆動機構4cを制御するコントローラ5とを備える。駆動部ハウジング4aは、内蔵の工具回転用駆動機構4bおよび姿勢変更用駆動機構4cと共に駆動部4を構成する。   An embodiment of the present invention will be described with reference to FIGS. In FIG. 1, the remote control type actuator includes a tip member 2 for holding a rotary tool 1, an elongated spindle guide portion 3 having the tip member 2 attached to the tip so that the posture can be freely changed, and the spindle guide. A drive unit housing 4a to which the base end of the unit 3 is coupled, and a controller 5 for controlling the tool rotation drive mechanism 4b and the attitude change drive mechanism 4c in the drive unit housing 4a are provided. The drive unit housing 4a constitutes the drive unit 4 together with the built-in tool rotation drive mechanism 4b and posture changing drive mechanism 4c.

図2に示すように、先端部材2は、略円筒状のハウジング11の内部に、一対の軸受12によりスピンドル13が回転自在に支持されている。スピンドル13は、先端側が開口した筒状で、中空部に工具1のシャンク1aが嵌合状態に挿入され、回り止めピン14によりシャンク1aが回転不能に結合される。この先端部材2は、先端部材連結部15を介してスピンドルガイド部3の先端に取付けられる。
先端部材連結部15は、先端部材2を姿勢変更自在に支持する手段であり、球面軸受からなる。具体的には、先端部材連結部15は、ハウジング11の基端の内径縮径部からなる被案内部11aと、スピンドルガイド部3の先端に固定された抜け止め部材21の鍔状部からなる案内部21aとで構成される。両者11a,21aの互いに接する各案内面F1,F2は、スピンドル13の中心線CL1上に曲率中心Oが位置し、基端側ほど径が小さい球面とされている。スピンドル13の中心線CL1は、先端部材2の中心線でもある。これにより、スピンドルガイド部3に対して先端部材2が抜け止めされるとともに、姿勢変更自在に支持される。先端部材2の姿勢が中立状態にあるとき(図2(A)の状態)、スピンドル13の中心線CL1は、回転軸22の中心線CL2の延長線上に位置する。この例は、曲率中心Oを通るX軸回りに先端部材2が姿勢変更する構成であるため、案内面F1,F2が、点Oを通るX軸を軸心とする円筒面であってもよい。
As shown in FIG. 2, the tip member 2 has a spindle 13 rotatably supported by a pair of bearings 12 inside a substantially cylindrical housing 11. The spindle 13 has a cylindrical shape with an open end, and the shank 1a of the tool 1 is inserted into the hollow portion in a fitted state, and the shank 1a is non-rotatably coupled by the rotation prevention pin 14. The tip member 2 is attached to the tip of the spindle guide portion 3 via the tip member connecting portion 15.
The tip member connecting portion 15 is a means for supporting the tip member 2 so that the posture thereof can be freely changed, and includes a spherical bearing. Specifically, the distal end member connecting portion 15 includes a guided portion 11 a that is a reduced inner diameter portion of the proximal end of the housing 11 and a hook-shaped portion of a retaining member 21 that is fixed to the distal end of the spindle guide portion 3. It is comprised with the guide part 21a. The guide surfaces F1 and F2 that are in contact with each other 11a and 21a are spherical surfaces having a center of curvature O located on the center line CL1 of the spindle 13 and having a smaller diameter toward the proximal end side. The center line CL1 of the spindle 13 is also the center line of the tip member 2. As a result, the tip member 2 is prevented from being detached from the spindle guide portion 3 and is supported so as to be freely changeable in posture. When the posture of the tip member 2 is in a neutral state (the state shown in FIG. 2A), the center line CL1 of the spindle 13 is located on an extension line of the center line CL2 of the rotating shaft 22. In this example, since the tip member 2 is configured to change the posture around the X axis passing through the center of curvature O, the guide surfaces F1 and F2 may be cylindrical surfaces having the X axis passing through the point O as an axis. .

スピンドルガイド部3は、駆動部ハウジング4a内の工具回転用駆動源41(図3)の回転力を前記スピンドル13へ伝達する回転軸22を有する。この例では、回転軸22はワイヤとされ、ある程度の弾性変形が可能である。ワイヤの材質としては、例えば金属、樹脂、グラスファイバー等が用いられる。ワイヤは単線であっても、撚り線であってもよい。図2(C)に示すように、スピンドル13と回転軸22とは、自在継手等の継手23を介して回転伝達可能に接続されている。継手23は、スピンドル13の閉塞した基端に設けられた溝13aと、回転軸22の先端に設けられ前記溝13aに係合する突起22aとで構成される。上記溝13aと突起22aとの連結箇所の中心は、前記案内面F1,F2の曲率中心Oと同位置である。   The spindle guide portion 3 has a rotating shaft 22 that transmits the rotational force of the tool rotation drive source 41 (FIG. 3) in the drive portion housing 4 a to the spindle 13. In this example, the rotating shaft 22 is a wire and can be elastically deformed to some extent. As the material of the wire, for example, metal, resin, glass fiber or the like is used. The wire may be a single wire or a stranded wire. As shown in FIG. 2C, the spindle 13 and the rotary shaft 22 are connected so as to be able to transmit rotation via a joint 23 such as a universal joint. The joint 23 includes a groove 13 a provided at the closed base end of the spindle 13 and a protrusion 22 a provided at the distal end of the rotating shaft 22 and engaged with the groove 13 a. The center of the connecting portion between the groove 13a and the protrusion 22a is at the same position as the center of curvature O of the guide surfaces F1 and F2.

スピンドルガイド部3は、このスピンドルガイド部3の外郭となる外郭パイプ25を有し、この外郭パイプ25の中心に前記回転軸22が位置する。回転軸22は、それぞれ軸方向に離れて配置された複数の転がり軸受26によって回転自在に支持されている。各転がり軸受26間には、これら転がり軸受26に予圧を発生させるためのばね要素27A,27Bが設けられている。ばね要素27A,27Bは、例えば圧縮コイルばねである。転がり軸受26の内輪に予圧を発生させる内輪用ばね要素27Aと、外輪に予圧を発生させる外輪用ばね要素27Bとがあり、これらが交互に配置されている。前記抜け止め部材21は、固定ピン28により外郭パイプ25のパイプエンド部25aに固定され、その先端内周部で転がり軸受29を介して回転軸22の先端部を回転自在に支持している。パイプエンド部25aは、外郭パイプ25と別部材とし、溶接等により結合してもよい。   The spindle guide section 3 has an outer pipe 25 that is an outer shell of the spindle guide section 3, and the rotation shaft 22 is located at the center of the outer pipe 25. The rotating shaft 22 is rotatably supported by a plurality of rolling bearings 26 that are arranged apart from each other in the axial direction. Between each rolling bearing 26, spring elements 27A and 27B for generating a preload on the rolling bearing 26 are provided. The spring elements 27A and 27B are, for example, compression coil springs. There are an inner ring spring element 27A for generating a preload on the inner ring of the rolling bearing 26 and an outer ring spring element 27B for generating a preload on the outer ring, which are arranged alternately. The retaining member 21 is fixed to the pipe end portion 25a of the outer pipe 25 by a fixing pin 28, and rotatably supports the distal end portion of the rotary shaft 22 via a rolling bearing 29 at the distal end inner peripheral portion thereof. The pipe end portion 25a may be a separate member from the outer pipe 25 and may be joined by welding or the like.

外郭パイプ25の内径面と回転軸22の間には、両端に貫通する1本のガイドパイプ30が設けられ、このガイドパイプ30の内径孔であるガイド孔30a内に、ワイヤ31aとその両端の柱状ピン31bとでなる姿勢操作部材31が進退自在に挿通されている。先端部材2側の柱状ピン31bの先端は球面状で、先端部材2の姿勢操作部材31との接触面であるハウジング11の基端面11bに当接している。ハウジング11の基端面11bは外径側ほどスピンドルガイド部3および姿勢操作部材31側に近い傾斜面であり、先端部材2と姿勢操作部材31の接触点Pにおける接線に対し垂直な垂線PLと回転軸22の中心線CL2とがなす角度をαとした場合、常にα>0°とされている。この実施形態の場合、ハウジング11の基端面11bは、断面形状が直線状である。基端面11bが姿勢操作部材31の中心線と直交しない平面であれば、常にα>0°の関係が保たれる。断面形状が直線状であれば、加工が比較的簡単であるため、製造コストを低減できる。駆動部ハウジング4a側の柱状ピン31bの先端も球面状で、後記レバー43b(図3)の側面に当接している。柱状ピン31bを省いて、1本のワイヤ31aのみで姿勢操作部材31を構成してもよい。   Between the inner diameter surface of the outer pipe 25 and the rotary shaft 22, one guide pipe 30 penetrating at both ends is provided. Inside the guide hole 30 a which is the inner diameter hole of the guide pipe 30, the wire 31 a and the both ends thereof are provided. A posture operation member 31 composed of a columnar pin 31b is inserted in such a manner as to be able to advance and retreat. The distal end of the columnar pin 31b on the distal end member 2 side is spherical, and is in contact with the proximal end surface 11b of the housing 11 which is a contact surface with the posture operation member 31 of the distal end member 2. The base end surface 11b of the housing 11 is an inclined surface closer to the spindle guide portion 3 and the posture operation member 31 side toward the outer diameter side, and rotates with a perpendicular PL perpendicular to the tangent at the contact point P between the tip member 2 and the posture operation member 31. When the angle formed by the center line CL2 of the shaft 22 is α, α> 0 ° is always established. In the case of this embodiment, the base end surface 11b of the housing 11 has a linear cross-sectional shape. If the base end surface 11b is a plane that is not orthogonal to the center line of the posture operation member 31, the relationship of α> 0 ° is always maintained. If the cross-sectional shape is a straight line, the processing is relatively easy, and thus the manufacturing cost can be reduced. The tip of the columnar pin 31b on the drive unit housing 4a side is also spherical, and is in contact with the side surface of the lever 43b (FIG. 3) described later. The columnar pin 31b may be omitted, and the posture operation member 31 may be configured with only one wire 31a.

上記姿勢操作部材31が位置する周方向位置に対し180度の位相の位置には、先端部材2のハウジング11の基端面とスピンドルガイド部3の外郭パイプ25の先端面との間に、例えば圧縮コイルばねからなる復元用弾性部材32が設けられている。この復元用弾性部材32は、先端部材2を所定姿勢側へ付勢する作用をする。   For example, compression is provided between the proximal end surface of the housing 11 of the distal end member 2 and the distal end surface of the outer pipe 25 of the spindle guide portion 3 at a position 180 degrees relative to the circumferential position where the posture operation member 31 is located. A restoring elastic member 32 made of a coil spring is provided. The restoring elastic member 32 acts to urge the tip member 2 toward a predetermined posture.

また、外郭パイプ25の内径面と回転軸22の間には、前記ガイドパイプ30とは別に、このガイドパイプ30と同一ピッチ円C上に、複数本の補強シャフト34が配置されている。これらの補強シャフト34は、スピンドルガイド部3の剛性を確保するためのものである。ガイドパイプ30と補強シャフト34の配列間隔は等間隔とされている。ガイドパイプ30および補強シャフト34は、外郭パイプ25の内径面におよび前記転がり軸受26の外径面に接している。これにより、転がり軸受26の外径面を支持している。   In addition to the guide pipe 30, a plurality of reinforcing shafts 34 are arranged on the same pitch circle C as the guide pipe 30 between the inner diameter surface of the outer pipe 25 and the rotary shaft 22. These reinforcing shafts 34 are for ensuring the rigidity of the spindle guide portion 3. The intervals between the guide pipe 30 and the reinforcing shaft 34 are equal. The guide pipe 30 and the reinforcing shaft 34 are in contact with the inner diameter surface of the outer pipe 25 and the outer diameter surface of the rolling bearing 26. Thereby, the outer diameter surface of the rolling bearing 26 is supported.

図3は、駆動部ハウジング4a内の工具回転用駆動機構4bおよび姿勢変更用駆動機構4cを示す。
工具回転用駆動機構4bは、コントローラ5により制御される工具回転用駆動源41を備える。工具回転用駆動源41は、例えば電動モータであり、その出力軸41aが前記回転軸22の基端に結合させてある。
FIG. 3 shows a tool rotation drive mechanism 4b and a posture change drive mechanism 4c in the drive unit housing 4a.
The tool rotation drive mechanism 4 b includes a tool rotation drive source 41 controlled by the controller 5. The tool rotation drive source 41 is, for example, an electric motor, and its output shaft 41 a is coupled to the proximal end of the rotation shaft 22.

姿勢変更用駆動機構4cは、コントローラ5により制御される姿勢変更用駆動源42を備える。姿勢変更用駆動源42は、例えば電動リニアアクチュエータであり、図3(A)の左右方向に移動する出力ロッド42aの動きが、レバー機構43を介して前記姿勢操作部材31に伝達される。姿勢変更用駆動源42は、回転モータであってもよい。   The posture changing drive mechanism 4 c includes a posture changing drive source 42 controlled by the controller 5. The posture changing drive source 42 is, for example, an electric linear actuator, and the movement of the output rod 42 a moving in the left-right direction in FIG. 3A is transmitted to the posture operating member 31 via the lever mechanism 43. The posture changing drive source 42 may be a rotary motor.

レバー機構43は、支軸43a回りに回動自在なレバー43bを有し、このレバー43bにおける支軸43aからの距離が長い作用点P1に出力ロッド42aの力が作用し、支軸43aからの距離が短い力点P2で姿勢操作部材31に力を与える構成であり、姿勢変更用駆動源42の出力が増力して姿勢操作部材31に伝達される。レバー機構43を設けると、小さな出力のリニアアクチュエータでも姿勢操作部材31に大きな力を与えることができるので、リニアアクチュエータの小型化が可能になる。回転軸22は、レバー43bに形成された開口44を貫通させてある。なお、姿勢変更用駆動源42等を設ける代わりに、手動により先端部材2の姿勢を遠隔操作してもよい。   The lever mechanism 43 has a lever 43b that is rotatable around a support shaft 43a. The force of the output rod 42a acts on an action point P1 that is a long distance from the support shaft 43a in the lever 43b. The force is applied to the posture operation member 31 at the force point P <b> 2 having a short distance, and the output of the posture changing drive source 42 is increased and transmitted to the posture operation member 31. When the lever mechanism 43 is provided, a large force can be applied to the posture operation member 31 even with a linear actuator with a small output, and thus the linear actuator can be downsized. The rotating shaft 22 penetrates the opening 44 formed in the lever 43b. Instead of providing the posture changing drive source 42 and the like, the posture of the tip member 2 may be remotely operated manually.

姿勢変更用駆動機構4cには、姿勢変更用駆動源42の動作量を検出する動作量検出器45が設けられている。この動作量検出器45の検出値は、姿勢検出手段46に出力される。姿勢検出手段46は、動作量検出器45の出力により、先端部材2のX軸(図2)回りの傾動姿勢を検出する。姿勢検出手段46は、上記傾動姿勢と動作量検出器45の出力信号との関係を演算式またはテーブル等により設定した関係設定手段(図示せず)を有し、入力された出力信号から前記関係設定手段を用いて傾動姿勢を検出する。この姿勢検出手段46は、コントローラ5に設けられたものであっても、あるいは外部の制御装置に設けられたものであってもよい。   The posture change drive mechanism 4c is provided with an operation amount detector 45 for detecting the operation amount of the posture change drive source 42. The detection value of the movement amount detector 45 is output to the posture detection means 46. The posture detection means 46 detects the tilt posture of the tip member 2 around the X axis (FIG. 2) based on the output of the movement amount detector 45. The posture detection means 46 has relationship setting means (not shown) in which the relationship between the tilt posture and the output signal of the motion amount detector 45 is set by an arithmetic expression or a table, and the relationship is determined from the input output signal. The tilting posture is detected using setting means. This posture detection means 46 may be provided in the controller 5 or may be provided in an external control device.

また、姿勢変更用駆動機構4cには、電動アクチュエータである姿勢変更用駆動源42に供給される電力量を検出する供給電力計47が設けられている。この供給電力計47の検出値は、荷重検出手段48に出力される。荷重検出手段48は、供給電力計47の出力により、先端部材2に作用する荷重を検出する。荷重検出手段48は、上記荷重と供給電力計47の出力信号との関係を演算式またはテーブル等により設定した関係設定手段(図示せず)を有し、入力された出力信号から前記関係設定手段を用いて荷重を検出する。この荷重検出手段48は、コントローラ5に設けられたものであっても、あるいは外部の制御装置に設けられたものであってもよい。   The posture changing drive mechanism 4c is provided with a wattmeter 47 that detects the amount of power supplied to the posture changing drive source 42, which is an electric actuator. The detected value of the supplied wattmeter 47 is output to the load detecting means 48. The load detection means 48 detects the load acting on the tip member 2 based on the output of the wattmeter 47. The load detection means 48 has relation setting means (not shown) in which the relation between the load and the output signal of the supplied wattmeter 47 is set by an arithmetic expression or a table, and the relation setting means is determined from the input output signal. The load is detected using. The load detecting means 48 may be provided in the controller 5 or may be provided in an external control device.

コントローラ5は、前記姿勢検出手段46および荷重検出手段48の検出値に基づき、工具回転用駆動源41および姿勢変更用駆動源42を制御する。   The controller 5 controls the tool rotation drive source 41 and the posture change drive source 42 based on the detection values of the posture detection means 46 and the load detection means 48.

この遠隔操作型アクチュエータの動作を説明する。
工具回転用駆動源41を駆動すると、その回転力が回転軸22を介してスピンドル13に伝達されて、スピンドル13と共に工具1が回転する。工具1を回転させて骨等を切削加工する際に先端部材2に作用する荷重は、供給電力計47の検出値から、荷重検出手段48によって検出される。このように検出される荷重の値に応じて遠隔操作型アクチュエータ全体の送り量や後記先端部材2の姿勢変更を制御することにより、先端部材2に作用する荷重を適正に保った状態で骨の切削加工を行える。
The operation of this remote control type actuator will be described.
When the tool rotation drive source 41 is driven, the rotational force is transmitted to the spindle 13 via the rotation shaft 22, and the tool 1 rotates together with the spindle 13. The load acting on the tip member 2 when the tool 1 is rotated to cut bone or the like is detected by the load detection means 48 from the detection value of the supply wattmeter 47. By controlling the feed amount of the entire remote operation type actuator and the posture change of the distal end member 2 described later according to the load value thus detected, the load acting on the distal end member 2 can be appropriately maintained while maintaining the load. Cutting can be performed.

使用時には、姿勢変更用駆動源42を駆動させて、遠隔操作で先端部材2の姿勢変更を行う。例えば、姿勢変更用駆動源42により姿勢操作部材31を先端側へ進出させると、姿勢操作部材31によって先端部材2のハウジング11が押されて、先端部材2は図2(A)において先端側が下向きとなる側へ案内面F1,F2に沿って姿勢変更する。逆に、姿勢変更用駆動源42により姿勢操作部材31を後退させると、復元用弾性部材32の弾性反発力によって先端部材2のハウジング11が押し戻され、先端部材2は図2(A)において先端側が上向きとなる側へ案内面F1,F2に沿って姿勢変更する。その際、先端部材連結部15には、姿勢操作部材31の圧力、復元用弾性部材32の弾性反発力、および抜け止め部材21からの反力が作用しており、これらの作用力の釣り合いにより先端部材2の姿勢が決定される。先端部材2の姿勢は、動作量検出器45の検出値から、姿勢検出手段46によって検出される。そのため、遠隔操作で先端部材2の姿勢を適正に制御できる。   At the time of use, the posture changing drive source 42 is driven to change the posture of the tip member 2 by remote control. For example, when the posture operating member 31 is advanced to the distal end side by the posture changing drive source 42, the housing 11 of the distal end member 2 is pushed by the posture operating member 31, and the distal end member 2 is directed downward in FIG. The posture is changed along the guide surfaces F1 and F2 toward the side. On the other hand, when the posture operation member 31 is retracted by the posture changing drive source 42, the housing 11 of the tip member 2 is pushed back by the elastic repulsive force of the restoring elastic member 32, and the tip member 2 is shown in FIG. The posture is changed along the guide surfaces F1 and F2 to the side facing upward. At that time, the pressure of the posture operation member 31, the elastic repulsive force of the restoring elastic member 32, and the reaction force from the retaining member 21 act on the tip member connecting portion 15, and the balance of these acting forces The posture of the tip member 2 is determined. The posture of the tip member 2 is detected by the posture detection means 46 from the detection value of the movement amount detector 45. Therefore, the posture of the tip member 2 can be appropriately controlled by remote operation.

さらに詳しくは、姿勢操作部材31は、回転軸22の中心線CL2から偏心して位置し、その先端が先端部材2のハウジング11の基端面11bに接した状態で回転軸22の中心線CL2と平行な方向に進退する。そして、姿勢操作部材31の先端が先端部材2の接触面であるハウジング11の基端面11bを押すことによって、先端部材2が曲率中心Oを中心に首振り動作して姿勢変更される。この際、ハウジング11の基端面11bが姿勢操作部材31の進退方向と垂直、すなわち先端部材2と姿勢操作部材31の接触点Pにおける接線に対し垂直な垂線PLと回転軸22の中心線CL2とがなす角度α=0°であると、先端部材2と姿勢操作部材31との間に滑りが生じないため、先端部材2が首振り動作できない。しかし、α>0°であれば、先端部材2と姿勢操作部材31との間の摩擦、および先端部材連結部15に作用する摩擦に打ち勝って、姿勢操作部材31に対して先端部材2が滑りながら首振り動作することが可能であり、先端部材2を滑らかに姿勢変更できる。そのため、潤滑剤やコーティングを用いなくて済む。   More specifically, the posture operation member 31 is located eccentrically from the center line CL2 of the rotating shaft 22 and is parallel to the center line CL2 of the rotating shaft 22 in a state in which the distal end is in contact with the base end surface 11b of the housing 11 of the distal end member 2. Move forward and backward. Then, when the distal end of the posture operation member 31 presses the proximal end surface 11b of the housing 11 which is a contact surface of the distal end member 2, the distal end member 2 swings around the center of curvature O and the posture is changed. At this time, the base end surface 11b of the housing 11 is perpendicular to the advancing / retreating direction of the posture operation member 31, that is, a perpendicular PL perpendicular to the tangent at the contact point P between the distal end member 2 and the posture operation member 31 and the center line CL2 of the rotary shaft 22. When the angle α is 0 °, no slip occurs between the tip member 2 and the posture operation member 31, and the tip member 2 cannot swing. However, if α> 0 °, the friction between the tip member 2 and the posture operation member 31 and the friction acting on the tip member connecting portion 15 are overcome, and the tip member 2 slips with respect to the posture operation member 31. The head member 2 can be swung while the posture of the tip member 2 can be changed smoothly. Therefore, it is not necessary to use a lubricant or a coating.

図4は先端部材2と姿勢操作部材31の接触点Pに作用する力を示す説明図である。姿勢操作部材31が先端部材2を押す力をF、先端部材2と姿勢操作部材31の接触部の静摩擦係数をμとした場合、静止摩擦力の最大値はμFcos(α)、接線方向の力はFsin(α)でそれぞれ表される。先端部材2と姿勢操作部材31の接触点Pで滑りが生じるのは、μFcos(α)<Fsin(α)の関係にあるときであるから、μ<tan(α)とすれば先端部材2が姿勢変更可能である。予め静摩擦係数μを測定しておけば、先端部材2の姿勢変更動作可能な角度αの値が求められる。例えば、μ=0.3の場合、α>16.7°である。一般的に、静摩擦力は動摩擦力よりも大きいため、静摩擦力に打ち勝って動作することが可能であれば、動摩擦力に打ち勝って動作することも可能である。0<μ<1であるため、上記関係はすべての摩擦面に対応する。   FIG. 4 is an explanatory diagram showing the force acting on the contact point P between the tip member 2 and the posture operation member 31. When the posture operating member 31 pushes the tip member 2 with force F, and the static friction coefficient of the contact portion between the tip member 2 and the posture manipulating member 31 is μ, the maximum value of the static friction force is μFcos (α), and the tangential force Is represented by Fsin (α). Slip occurs at the contact point P between the tip member 2 and the posture operation member 31 when μFcos (α) <Fsin (α). Therefore, if μ <tan (α), the tip member 2 is moved. The posture can be changed. If the static friction coefficient μ is measured in advance, the value of the angle α at which the posture change operation of the tip member 2 can be obtained. For example, when μ = 0.3, α> 16.7 °. In general, since the static friction force is larger than the dynamic friction force, if the static friction force can be overcome, the dynamic friction force can be overcome. Since 0 <μ <1, the above relationship corresponds to all friction surfaces.

また、回転軸22の中心線CL2と、案内面F1,F2の曲率中心Oと接触点Pとを結ぶ線とがなす角度をθ、曲率中心Oと接触点P間の距離をrとした場合、曲率中心O回りにrFcos(α)sin(α+θ)のトルクが作用する。このトルクは、(α+θ)が90°に近づくほど大きくなる。θ=90°以外の場合、α=0°のトルクと、0°<α<45°のトルクを比較すると、0°<α<45°のトルクの方が大きい。
角度αが45°以上であると、姿勢操作部材31が先端部材2に与える力を軸方向力と径方向力に分解した場合に、軸方向力よりも径方向力の方が大きくなるため、先端部材2に駆動力を十分に伝達できない。また、径方向力が大きくなると、姿勢操作部材31とその案内面であるガイドパイプ30のガイド孔30aの内面との間で生じる摩擦力も大きくなり、大きな駆動力を必要となる。したがって、計算上、前記角度αが、0°<α<45°であるのが良い。実際には、静摩擦係数μが07以上となることは少ないため、0°<α<35°の範囲に設定すれば、十分である。
In addition, the angle formed by the center line CL2 of the rotating shaft 22 and the line connecting the center of curvature O of the guide surfaces F1 and F2 and the contact point P is θ, and the distance between the center of curvature O and the contact point P is r. A torque of rFcos (α) sin (α + θ) acts around the center of curvature O. This torque increases as (α + θ) approaches 90 °. When θ is not 90 °, comparing the torque of α = 0 ° with the torque of 0 ° <α <45 °, the torque of 0 ° <α <45 ° is larger.
When the angle α is 45 ° or more, the radial force is greater than the axial force when the force applied to the tip member 2 by the posture operation member 31 is decomposed into the axial force and the radial force. The driving force cannot be sufficiently transmitted to the tip member 2. Further, when the radial force is increased, the frictional force generated between the posture operation member 31 and the inner surface of the guide hole 30a of the guide pipe 30 which is the guide surface thereof is increased, and a large driving force is required. Therefore, in the calculation, the angle α is preferably 0 ° <α <45 °. Actually, the coefficient of static friction μ is 0 . Since it is rare to be 7 or more, it is sufficient to set it in the range of 0 ° <α <35 °.

姿勢操作部材31はガイド孔30aに挿通されているため、姿勢操作部材31が長手方向と交差する方向に位置ずれすることがなく、常に先端部材2に対し適正に作用することができ、先端部材2の姿勢変更動作が正確に行われる。また、姿勢操作部材31は主にワイヤ31aからなり可撓性であるため、スピンドルガイド部3が湾曲した状態でも先端部材2の姿勢変更動作が確実に行われる。さらに、スピンドル13と回転軸22との連結箇所の中心が案内面F1,F2の曲率中心Oと同位置であるため、先端部材2の姿勢変更によって回転軸22に対して押し引きする力がかからず、先端部材2が円滑に姿勢変更できる。   Since the posture operation member 31 is inserted through the guide hole 30a, the posture operation member 31 does not shift in the direction intersecting the longitudinal direction, and can always act properly on the tip member 2, and the tip member 2 posture change operation is performed accurately. Further, since the posture operation member 31 is mainly composed of the wire 31a and is flexible, the posture changing operation of the tip member 2 is reliably performed even when the spindle guide portion 3 is curved. Furthermore, since the center of the connecting portion between the spindle 13 and the rotating shaft 22 is at the same position as the center of curvature O of the guide surfaces F1 and F2, a force for pushing and pulling against the rotating shaft 22 by changing the posture of the tip member 2 is increased. Accordingly, the posture of the tip member 2 can be changed smoothly.

この遠隔操作型アクチュエータは、例えば人工関節置換手術において骨の髄腔部を削るのに使用されるものであり、施術時には、先端部材2の全部または一部が患者の体内に挿入して使用される。このため、上記のように先端部材2の姿勢を遠隔操作で変更できれば、常に工具1を適正な姿勢に保持した状態で骨の加工をすることができ、人工関節挿入用穴を精度良く仕上げることができる。前述したように、人体にとって好ましくない潤滑剤やコーティングを用いなくても、先端部材2を滑らかに姿勢変更できるため、医療分野で使用する医療用アクチュエータに適している。   This remote control type actuator is used, for example, for cutting the medullary cavity of bone in artificial joint replacement surgery. During the operation, all or part of the distal end member 2 is inserted into the patient's body. The For this reason, if the posture of the tip member 2 can be changed by remote control as described above, the bone can be processed while the tool 1 is always held in an appropriate posture, and the artificial joint insertion hole is finished with high accuracy. Can do. As described above, since the posture of the tip member 2 can be changed smoothly without using a lubricant or coating that is not desirable for the human body, it is suitable for a medical actuator used in the medical field.

細長形状であるスピンドルガイド部3には、回転軸22および姿勢操作部材31を保護状態で設ける必要があるが、外郭パイプ25の中心部に回転軸22を設け、外郭パイプ25と回転軸22との間に、姿勢操作部材31を収容したガイドパイプ30と補強シャフト34とを円周方向に並べて配置した構成としたことにより、回転軸22および姿勢操作部材31を保護し、かつ内部を中空して軽量化を図りつつ剛性を確保できる。また、全体のバランスも良い。   The elongated spindle guide portion 3 needs to be provided with the rotating shaft 22 and the posture operation member 31 in a protected state. The rotating shaft 22 is provided at the center of the outer pipe 25, and the outer pipe 25, the rotating shaft 22, Since the guide pipe 30 accommodating the posture operation member 31 and the reinforcing shaft 34 are arranged side by side in the circumferential direction, the rotary shaft 22 and the posture operation member 31 are protected and the interior is hollow. It is possible to secure rigidity while reducing the weight. Also, the overall balance is good.

回転軸22を支持する転がり軸受26の外径面を、ガイドパイプ30と補強シャフト34とで支持させたため、余分な部材を用いずに転がり軸受26の外径面を支持できる。また、ばね要素27A,27Bにより転がり軸受26に予圧がかけられているため、ワイヤからなる回転軸22を高速回転させることができる。そのため、スピンドル13を高速回転させて加工することができ、加工の仕上がりが良く、工具1に作用する切削抵抗を低減させられる。ばね要素27A,27Bは隣合う転がり軸受26間に設けられているので、スピンドルガイド部3の径を大きくせずにばね要素27A,27Bを設けることができる。   Since the outer diameter surface of the rolling bearing 26 that supports the rotating shaft 22 is supported by the guide pipe 30 and the reinforcing shaft 34, the outer diameter surface of the rolling bearing 26 can be supported without using extra members. Moreover, since the preload is applied to the rolling bearing 26 by the spring elements 27A and 27B, the rotating shaft 22 made of a wire can be rotated at a high speed. Therefore, machining can be performed by rotating the spindle 13 at a high speed, the machining finish is good, and the cutting resistance acting on the tool 1 can be reduced. Since the spring elements 27A and 27B are provided between the adjacent rolling bearings 26, the spring elements 27A and 27B can be provided without increasing the diameter of the spindle guide portion 3.

先端部材2の姿勢操作部材31との接触面であるハウジング11の基端面11bの断面形状は、図5に示すような姿勢操作部材31側に凸となる円弧状にしてもよい。その場合、円弧の中心が姿勢操作部材31の中心線上に存在しなければ、常にα>0°の関係が保たれる。基端面11bの断面形状を円弧状とすることで、同図(A),(B),(C)にそれぞれ示すように、先端部材2がどのような姿勢になっても、角度αがほとんど一定であるように設計することができる。(A)は先端部材2の回動角度β=0°の状態、(B)はβ=10°の状態、(C)はβ=−10°の状態をそれぞれ示す。いずれの状態も、角度αがほとんど一定である。そのため、先端部材2の姿勢に関係なく先端部材2のスムーズな動作が実現できる。   The cross-sectional shape of the base end surface 11b of the housing 11 that is a contact surface with the posture operation member 31 of the distal end member 2 may be an arc shape protruding toward the posture operation member 31 as shown in FIG. In this case, if the center of the arc does not exist on the center line of the posture operation member 31, the relationship of α> 0 ° is always maintained. By making the cross-sectional shape of the base end face 11b an arc shape, the angle α is almost no matter what the posture of the tip member 2 is as shown in FIGS. Can be designed to be constant. (A) shows the state of the rotation angle β = 0 ° of the tip member 2, (B) shows the state of β = 10 °, and (C) shows the state of β = −10 °. In any state, the angle α is almost constant. Therefore, a smooth operation of the tip member 2 can be realized regardless of the posture of the tip member 2.

図6は異なる実施形態を示す。この遠隔操作型アクチュエータは、外郭パイプ25内の互いに180度の位相にある周方向位置に2本のガイドパイプ30を設け、そのガイドパイプ30の内径孔であるガイド孔30a内に前記同様の姿勢操作部材31が進退自在に挿通してある。2本のガイドパイプ30間には、ガイドパイプ30と同一ピッチ円C上に複数本の補強シャフト34が配置されている。復元用弾性部材32は設けられていない。案内面F1,F2は、曲率中心が点Oである球面、または点Oを通るX軸を軸心とする円筒面である。   FIG. 6 shows a different embodiment. This remote control type actuator is provided with two guide pipes 30 at circumferential positions in the outer pipe 25 that are 180 degrees in phase with each other, and in the guide hole 30a that is the inner diameter hole of the guide pipe 30, the same attitude as described above. The operating member 31 is inserted so as to freely advance and retract. Between the two guide pipes 30, a plurality of reinforcing shafts 34 are arranged on the same pitch circle C as the guide pipe 30. The restoring elastic member 32 is not provided. The guide surfaces F1 and F2 are spherical surfaces whose center of curvature is the point O, or cylindrical surfaces whose axis is the X axis passing through the point O.

駆動部4(図示せず)には、2つの姿勢操作部材31をそれぞれ個別に進退操作させる2つの姿勢変更用駆動源42(図示せず)が設けられており、これら2つの姿勢変更用駆動源42を互いに逆向きに駆動することで先端部材2の姿勢変更を行う。
例えば、図6における上側の姿勢操作部材31を先端側へ進出させ、かつ下側の姿勢操作部材31を後退させると、上側の姿勢操作部材31によって先端部材2のハウジング11が押されることにより、先端部材2は図6(A)において先端側が下向きとなる側へ案内面F1,F2に沿って姿勢変更する。逆に、両姿勢操作部材31を逆に進退させると、下側の姿勢操作部材31によって先端部材2のハウジング11が押されることにより、先端部材2は図6(A)において先端側が上向きとなる側へ案内面F1,F2に沿って姿勢変更する。その際、先端部材連結部15には、上下2つの姿勢操作部材31の圧力、および抜け止め部材21からの反力が作用しており、これらの作用力の釣り合いにより先端部材2の姿勢が決定される。
この構成では、2つの姿勢操作部材31で先端部材2のハウジング11に加圧されるため、1つ姿勢操作部材31だけで加圧される前記実施形態に比べ、先端部材2の姿勢安定性を高めることができる。
The drive unit 4 (not shown) is provided with two posture change drive sources 42 (not shown) for individually moving the two posture operation members 31 forward and backward, and these two posture change drives. The posture of the tip member 2 is changed by driving the sources 42 in opposite directions.
For example, when the upper posture operation member 31 in FIG. 6 is advanced to the distal end side and the lower posture operation member 31 is retracted, the housing 11 of the distal end member 2 is pushed by the upper posture operation member 31. The posture of the tip member 2 is changed along the guide surfaces F1 and F2 to the side where the tip side faces downward in FIG. Conversely, when both posture operation members 31 are moved back and forth, the housing 11 of the tip member 2 is pushed by the lower posture operation member 31, so that the tip member 2 is directed upward in FIG. 6A. The posture is changed along the guide surfaces F1 and F2 to the side. At that time, the pressure of the two upper and lower posture operating members 31 and the reaction force from the retaining member 21 are acting on the tip member connecting portion 15, and the posture of the tip member 2 is determined by the balance of these acting forces. Is done.
In this configuration, the housing 11 of the tip member 2 is pressurized by the two posture operation members 31, so that the posture stability of the tip member 2 is improved as compared with the embodiment in which the pressure is applied by only one posture operation member 31. Can be increased.

図7はさらに異なる実施形態を示す。この遠隔操作型アクチュエータは、外郭パイプ25内の互いに120度の位相にある周方向位置に3本のガイドパイプ30を設け、そのガイドパイプ30の内径孔であるガイド孔30a内に前記同様の姿勢操作部材31が進退自在に挿通してある。3本のガイドパイプ30間には、ガイドパイプ30と同一ピッチ円C上に複数本の補強シャフト34が配置されている。復元用弾性部材32は設けられていない。案内面F1,F2は曲率中心が点Oである球面であり、先端部材2は任意方向に傾動可能である。   FIG. 7 shows a further different embodiment. This remote control type actuator is provided with three guide pipes 30 at circumferential positions at a phase of 120 degrees in the outer pipe 25, and the same posture as described above in a guide hole 30 a which is an inner diameter hole of the guide pipe 30. The operating member 31 is inserted so as to freely advance and retract. Between the three guide pipes 30, a plurality of reinforcing shafts 34 are arranged on the same pitch circle C as the guide pipes 30. The restoring elastic member 32 is not provided. The guide surfaces F1 and F2 are spherical surfaces whose center of curvature is a point O, and the tip member 2 can tilt in any direction.

駆動部4には、3つの姿勢操作部材31(31U,31L,31R)をそれぞれ個別に進退操作させる3つの姿勢変更用駆動源42(42U,42L,42R)(図8)が設けられており、これら3つの姿勢変更用駆動源42を互いに連係させて駆動することで先端部材2の姿勢変更を行う。
例えば、図7における上側の1つの姿勢操作部材31Uを先端側へ進出させ、かつ他の2つの姿勢操作部材31L,31Rを後退させると、上側の姿勢操作部材31Uによって先端部材2のハウジング11が押されることにより、先端部材2は図7(A)において先端側が下向きとなる側へ案内面F1,F2に沿って姿勢変更する。このとき、各姿勢操作部材31の進退量が適正になるよう、各姿勢変更用駆動源42が制御される。各姿勢操作部材31を逆に進退させると、左右の姿勢操作部材31L,31Rによって先端部材2のハウジング11が押されることにより、先端部材2は図7(A)において先端側が上向きとなる側へ案内面F1,F2に沿って姿勢変更する。
また、上側の姿勢操作部材31Uは静止させた状態で、左側の姿勢操作部材31Lを先端側へ進出させ、かつ右側の姿勢操作部材31Rを後退させると、左側の姿勢操作部材31Lによって先端部材2のハウジング11が押されることにより、先端部材2は右向き、すなわち図7(A)において紙面の裏側向きとなる側へ案内面F1,F2に沿って姿勢変更する。左右の姿勢操作部材31L,31Rを逆に進退させると、右の姿勢操作部材31Rによって先端部材2のハウジング11が押されることにより、先端部材2は左向きとなる側へ案内面F1,F2に沿って姿勢変更する。
このように姿勢操作部材31を円周方向の3箇所に設けることにより、先端部材2を上下左右の2軸(X軸、Y軸)の方向に姿勢変更することができる。その際、先端部材連結部15には、3つの姿勢操作部材31の圧力、および抜け止め部材21からの反力が作用しており、これらの作用力の釣り合いにより先端部材2の姿勢が決定される。この構成では、3つの姿勢操作部材31で先端部材2のハウジング11に加圧されるため、さらに先端部材2の姿勢安定性を高めることができる。姿勢操作部材31の数をさらに増やせば、先端部材2の姿勢安定性をより一層高めることができる。
The drive unit 4 is provided with three posture change drive sources 42 (42U, 42L, 42R) (FIG. 8) for individually moving the three posture operation members 31 (31U, 31L, 31R) forward and backward. The attitude of the tip member 2 is changed by driving these three attitude changing drive sources 42 in conjunction with each other.
For example, when the upper one posture operation member 31U in FIG. 7 is advanced to the distal end side and the other two posture operation members 31L and 31R are moved backward, the upper posture operation member 31U causes the housing 11 of the distal end member 2 to move. By being pushed, the tip member 2 changes its posture along the guide surfaces F1 and F2 to the side in which the tip side faces downward in FIG. At this time, each posture changing drive source 42 is controlled so that the amount of advance / retreat of each posture operation member 31 is appropriate. When each posture operation member 31 is moved back and forth, the housing 11 of the tip member 2 is pushed by the left and right posture operation members 31L and 31R, so that the tip member 2 moves to the side in which the tip side is upward in FIG. The posture is changed along the guide surfaces F1 and F2.
Further, when the left posture operation member 31L is advanced to the distal end side and the right posture operation member 31R is moved backward while the upper posture operation member 31U is stationary, the distal end member 2 is moved by the left posture operation member 31L. When the housing 11 is pressed, the tip member 2 changes its posture along the guide surfaces F1 and F2 to the right, that is, the side facing the back side of the paper surface in FIG. When the left and right posture operation members 31L and 31R are moved back and forth, the housing 11 of the tip member 2 is pushed by the right posture operation member 31R, so that the tip member 2 moves along the guide surfaces F1 and F2 toward the left side. Change the posture.
Thus, by providing the posture operation member 31 at three positions in the circumferential direction, the tip member 2 can be changed in posture in the directions of the upper, lower, left and right axes (X axis, Y axis). At that time, the pressure of the three posture operating members 31 and the reaction force from the retaining member 21 are acting on the tip member connecting portion 15, and the posture of the tip member 2 is determined by the balance of these acting forces. The In this configuration, since the pressure is applied to the housing 11 of the tip member 2 by the three posture operation members 31, the posture stability of the tip member 2 can be further improved. If the number of posture operation members 31 is further increased, the posture stability of the tip member 2 can be further enhanced.

姿勢操作部材31が周方向の3箇所に設けられている場合、姿勢変更駆動機構4cを例えば図8のように構成することができる。すなわち、各姿勢操作部材31(31U,31L,31R)をそれぞれ個別に進退操作させる3つの姿勢変更用駆動源42(42U,42L,42R)を左右並列に配置すると共に、各姿勢変更用駆動源42に対応するレバー43b(43bU,43bL,43bR)を共通の支軸43a回りに回動自在に設け、各レバー43bにおける支軸43aからの距離が長い作用点P1(P1U,P1L,P1R)に各姿勢変更用駆動源42の出力ロッド42a(42aU,42aL,42aR)の力が作用し、支軸43aからの距離が短い力点P2(P2U,P2L,P2R)で姿勢操作部材31に力を与える構成としてある。これにより、各姿勢変更用駆動源42の出力が増力して対応する姿勢操作部材31に伝達させることができる。なお、回転軸22は、上側の姿勢操作部材31U用のレバー43bUに形成された開口44を貫通させてある。   When the posture operation member 31 is provided at three locations in the circumferential direction, the posture change drive mechanism 4c can be configured as shown in FIG. 8, for example. That is, three posture change drive sources 42 (42U, 42L, 42R) for individually moving the posture operation members 31 (31U, 31L, 31R) forward and backward are arranged in parallel on the left and right sides, and each posture change drive source is provided. A lever 43b (43bU, 43bL, 43bR) corresponding to 42 is provided so as to be rotatable around a common support shaft 43a, and each lever 43b has a long distance from the support shaft 43a at an action point P1 (P1U, P1L, P1R). The force of the output rod 42a (42aU, 42aL, 42aR) of each posture changing drive source 42 is applied, and a force is applied to the posture operating member 31 at a force point P2 (P2U, P2L, P2R) having a short distance from the support shaft 43a. As a configuration. Thereby, the output of each posture change drive source 42 can be increased and transmitted to the corresponding posture operation member 31. The rotary shaft 22 passes through an opening 44 formed in the lever 43bU for the upper posture operation member 31U.

図9はさらに異なる実施形態を示す。この実施形態は、先端部材2のハウジング11の基端面11b(同図(C))に径方向の溝部11c(同図(C))を形成し、この溝部11cの底面に、姿勢操作部材31の球面状をした先端を当接させている。溝部11cおよび姿勢操作部材31で回転防止機構37を構成し、溝部11cに挿入された姿勢操作部材31の先端部が溝部11cの側面に当たることで、先端部材2がスピンドルガイド部3に対してスピンドル13の中心線CL1回りに回転するのを防止している。   FIG. 9 shows a further different embodiment. In this embodiment, a radial groove portion 11c (FIG. (C)) is formed on the proximal end surface 11b (FIG. (C)) of the housing 11 of the distal end member 2, and the posture operation member 31 is formed on the bottom surface of the groove portion 11c. The spherical tip is abutted. The rotation prevention mechanism 37 is constituted by the groove portion 11c and the posture operation member 31, and the tip end portion of the posture operation member 31 inserted into the groove portion 11c hits the side surface of the groove portion 11c, so that the tip member 2 is in a spindle with respect to the spindle guide portion 3. The rotation around the 13 center line CL1 is prevented.

このような回転防止機構37を設けることにより、姿勢操作部材31の進退を制御する姿勢操作用駆動機構4cやその制御装置の故障等により工具1を保持する先端部材2が制御不能となった場合でも、先端部材2が中心線CL1回りに回転して加工箇所の周りを傷付けたり、先端部材2自体が破損したりすることを防止できる。   When the rotation preventing mechanism 37 is provided, the posture operation drive mechanism 4c for controlling the advance / retreat of the posture operation member 31 and the tip member 2 holding the tool 1 become uncontrollable due to a failure of the control device or the like. However, it is possible to prevent the distal end member 2 from rotating around the center line CL1 and scratching the periphery of the processed portion, or the distal end member 2 itself from being damaged.

この実施形態は、姿勢操作部材31を周方向の1箇所に設けた例であるが、姿勢操作部材31を互いに180度の位相にある2箇所の周方向位置に設けた構成や、姿勢操作部材31を互いに120度の位相にある3箇所の周方向位置に設けた構成にも適用できる。   This embodiment is an example in which the posture operation member 31 is provided at one place in the circumferential direction. However, a configuration in which the posture operation member 31 is provided at two circumferential positions at a phase of 180 degrees, or a posture operation member. The present invention can also be applied to a configuration in which 31 is provided at three circumferential positions at a phase of 120 degrees with respect to each other.

図10はさらに異なる実施形態を示す。この遠隔操作型アクチュエータのスピンドルガイド部3は、外郭パイプ25の中空孔24が、中心部の円形孔部24aと、この円形孔部24aの外周における互いに120度の位相をなす周方向位置から外径側へ凹んだ3つの溝状部24bとでなる。溝状部24bの先端の周壁は、断面半円形である。そして、円形孔部24aに回転軸22と転がり軸受26とが収容され、各溝状部24bに姿勢操作部材31が収容されている。   FIG. 10 shows a further different embodiment. The spindle guide portion 3 of the remote control type actuator is configured so that the hollow hole 24 of the outer pipe 25 is out of the circumferential position where the central circular hole portion 24a and the outer periphery of the circular hole portion 24a form a phase of 120 degrees with each other. It consists of three groove-like parts 24b recessed to the radial side. The peripheral wall at the tip of the groove-like portion 24b has a semicircular cross section. The rotary shaft 22 and the rolling bearing 26 are accommodated in the circular hole portion 24a, and the posture operation member 31 is accommodated in each groove portion 24b.

外郭パイプ25を上記断面形状としたことにより、外郭パイプ25の溝状部24b以外の箇所の肉厚tが厚くなり、外郭パイプ25の断面2次モーメントが大きくなる。すなわち、スピンドルガイド部3の剛性が高まる。それにより、先端部材2の位置決め精度が向上させられるとともに、切削性を向上させられる。また、溝状部24bにガイドパイプ30をそれぞれ配置したことにより、ガイドパイプ30の円周方向の位置決めを容易に行え、組立性が良好である。   By making the outer pipe 25 have the above-described cross-sectional shape, the thickness t of the outer pipe 25 other than the groove-like portion 24b is increased, and the second moment of the outer pipe 25 is increased. That is, the rigidity of the spindle guide portion 3 is increased. Thereby, the positioning accuracy of the tip member 2 is improved and the machinability is improved. Further, by arranging the guide pipes 30 in the groove-like portions 24b, the guide pipes 30 can be easily positioned in the circumferential direction, and the assemblability is good.

この実施形態は、姿勢操作部材31を互いに120度の位相にある3箇所の周方向位置に設けた例であるが、姿勢操作部材31を互いに180度の位相にある2箇所の周方向位置に設けた構成や、周方向の1箇所に設けた姿勢操作部材31とこれに対応する復元用弾性部材32とを組み合わせた構成にも適用できる。例えば、姿勢操作部材31を周方向の1箇所に設けた構成において、図10の外郭パイプ25と同様に中空孔24の溝状部24bを周方向の3箇所に設け、1つの溝状部24bには姿勢操作部材31を収容し、他の溝状部24bには補強シャフト34(図2等を参照)を収容してもよい。   In this embodiment, the posture operation member 31 is provided at three circumferential positions at a phase of 120 degrees, but the posture operation member 31 is at two circumferential positions at a phase of 180 degrees. The present invention can also be applied to a configuration in which the posture operation member 31 provided at one place in the circumferential direction and the corresponding elastic member 32 for restoration are combined. For example, in the configuration in which the posture operation member 31 is provided at one place in the circumferential direction, the groove portions 24b of the hollow hole 24 are provided at three places in the circumferential direction as in the case of the outer pipe 25 in FIG. May accommodate the posture operation member 31, and the other groove-like portion 24b may accommodate the reinforcing shaft 34 (see FIG. 2 and the like).

上記各実施形態はスピンドルガイド部3が直線形状であるが、この発明の遠隔操作型アクチュエータは、姿勢操作部材31が可撓性であり、スピンドルガイド部3が湾曲した状態でも先端部材2の姿勢変更動作が確実に行われるので、図11のようにスピンドルガイド部3を初期状態で湾曲形状としてもよい。あるいは、スピンドルガイド部3の一部分のみを湾曲形状としてもよい。スピンドルガイド部3が湾曲形状であれば、直線形状では届きにくい骨の奥まで先端部材2を挿入することが可能となる場合があり、人工関節置換手術における人工関節挿入用穴の加工を精度良く仕上げることが可能になる。   In each of the above embodiments, the spindle guide portion 3 has a linear shape. However, in the remote control type actuator of the present invention, the posture operation member 31 is flexible, and the posture of the tip member 2 is maintained even when the spindle guide portion 3 is curved. Since the changing operation is performed reliably, the spindle guide portion 3 may be curved in the initial state as shown in FIG. Alternatively, only a part of the spindle guide portion 3 may be curved. If the spindle guide portion 3 is curved, it may be possible to insert the distal end member 2 to the back of the bone, which is difficult to reach in the straight shape, so that the hole for artificial joint insertion can be accurately processed in artificial joint replacement surgery. It becomes possible to finish.

スピンドルガイド部3を湾曲形状とする場合、外郭パイプ25、ガイドパイプ30、および補強シャフト34を湾曲形状とする必要がある。また、回転軸22は変形しやすい材質を用いるのが良く、例えば形状記憶合金が適する。姿勢操作部材31は、ワイヤ31aからなるものの他に、複数のボールからなるものとしてもよく、あるいはガイドパイプ30の湾曲形状に合わせて湾曲させた複数の柱状体からなるものとしてもよい。後者の場合、湾曲させた柱状体は、長さが短めであり、面取り等により角部が落とされた形状であるのが好ましい。   When the spindle guide portion 3 has a curved shape, the outer pipe 25, the guide pipe 30, and the reinforcing shaft 34 need to have a curved shape. The rotating shaft 22 is preferably made of a material that is easily deformed, and for example, a shape memory alloy is suitable. The posture operation member 31 may be composed of a plurality of balls in addition to the wire 31a, or may be composed of a plurality of columnar bodies that are curved in accordance with the curved shape of the guide pipe 30. In the latter case, it is preferable that the curved columnar body has a short length and a shape in which corners are dropped by chamfering or the like.

以上、医療用の遠隔操作型アクチュエータについて説明したが、この発明はそれ以外の用途の遠隔操作型アクチュエータにも適用できる。例えば、機械加工用とした場合、湾曲状をした孔のドリル加工や、溝内部の奥まった箇所の切削加工が可能になる。   The medical remote control actuator has been described above, but the present invention can be applied to remote control actuators for other purposes. For example, in the case of machining, drilling of a curved hole or cutting of a deep part inside the groove is possible.

1…工具
2…先端部材
3…スピンドルガイド部
4a…駆動部ハウジング
5…コントローラ
11…ハウジング
11b…基端面(接触面)
12…軸受
13…スピンドル
15…先端部材連結部
22…回転軸
25…外郭パイプ
26…転がり軸受
27A,27B…ばね要素
30…ガイドパイプ
30a…ガイド孔
31…姿勢操作部材
41…工具回転用駆動源
42…姿勢変更用駆動源
CL1…スピンドルの中心線
CL2…回転軸の中心線
P…接触点
PL…垂線
α…角度
DESCRIPTION OF SYMBOLS 1 ... Tool 2 ... Tip member 3 ... Spindle guide part 4a ... Drive part housing 5 ... Controller 11 ... Housing 11b ... Base end surface (contact surface)
DESCRIPTION OF SYMBOLS 12 ... Bearing 13 ... Spindle 15 ... End member connection part 22 ... Rotating shaft 25 ... Outer pipe 26 ... Rolling bearing 27A, 27B ... Spring element 30 ... Guide pipe 30a ... Guide hole 31 ... Posture operation member 41 ... Drive source for tool rotation 42 ... Attitude change drive source CL1 ... Spindle center line CL2 ... Rotation axis center line P ... Contact point PL ... Perpendicular α ... Angle

Claims (10)

細長形状のスピンドルガイド部と、このスピンドルガイド部の先端に先端部材連結部を介して姿勢変更自在に取付けられた先端部材と、前記スピンドルガイド部の基端が結合された駆動部ハウジングとを備え、
前記先端部材は、工具を保持するスピンドルを回転自在に支持し、前記スピンドルガイド部は、前記駆動部ハウジング内に設けられた工具回転用駆動源の回転を前記スピンドルに伝達する回転軸と、両端に貫通したガイド孔とを内部に有し、先端が前記先端部材に接して進退動作することにより前記先端部材を姿勢変更させる姿勢操作部材を前記ガイド孔内に進退自在に挿通し、前記姿勢操作部材を進退させる姿勢変更用駆動源を前記駆動部ハウジング内に設け、
前記先端部材と前記姿勢操作部材の接触点における接線に対し垂直な垂線と前記回転軸の中心線とがなす角度をαとした場合、α>0°であり、
前記先端部材は、筒状のハウジングと、このハウジングの内周に配置された前記スピンドルと、前記ハウジングに対し前記スピンドルを回転自在に支持する軸受とを備え、前記先端部材の姿勢が中立状態にあるとき、前記スピンドルの中心線と前記回転軸の中心線の延長線上に位置し、かつ前記姿勢操作部材は、前記回転軸の中心線から偏心して位置し、その先端が前記先端部材のハウジングの端面に接した状態で前記回転軸の中心線と平行な方向に進退するものであり、前記ハウジングの端面は外径側ほど姿勢操作部材側に近い傾斜面とされていることを特徴とする遠隔操作型アクチュエータ。
An elongated spindle guide part, a tip member attached to the tip of the spindle guide part via a tip member connecting part so that the posture can be freely changed, and a drive part housing to which the base end of the spindle guide part is coupled. ,
The tip member rotatably supports a spindle that holds a tool, and the spindle guide portion includes a rotating shaft that transmits rotation of a driving source for tool rotation provided in the driving portion housing to the spindle, and both ends. A guide hole penetrating into the guide hole, and a posture operation member for changing the posture of the tip member by advancing and retreating with the tip contacting the tip member is inserted into the guide hole so as to be able to advance and retract. A posture changing drive source for moving the member forward and backward is provided in the drive unit housing,
When an angle formed by a perpendicular perpendicular to the tangent at the contact point between the tip member and the posture operation member and the center line of the rotation axis is α, α> 0 ° ,
The tip member includes a cylindrical housing, the spindle disposed on the inner periphery of the housing, and a bearing that rotatably supports the spindle with respect to the housing, and the tip member is in a neutral state. In some cases, the position control member is positioned on an extension of the center line of the spindle and the center line of the rotation shaft, and the posture operation member is positioned eccentric from the center line of the rotation shaft, and the tip thereof is located in the housing of the tip member. The remote controller is configured to advance and retreat in a direction parallel to the center line of the rotating shaft while being in contact with the end surface, and the end surface of the housing has an inclined surface closer to the posture operation member side toward the outer diameter side. Operation type actuator.
請求項において、前記先端部材と前記姿勢操作部材の接触部の静摩擦係数をμとした場合、この静摩擦係数μと前記角度αとの間に、μ<tan(α)の関係が成り立つ遠隔操作型アクチュエータ。 2. The remote operation according to claim 1 , wherein when the static friction coefficient of the contact portion between the tip member and the posture operation member is μ, a relationship of μ <tan (α) is established between the static friction coefficient μ and the angle α. Type actuator. 請求項1または請求項2において、前記角度αが、0°<α<45°である遠隔操作型アクチュエータ。 The remote control type actuator according to claim 1 , wherein the angle α is 0 ° <α <45 °. 請求項1ないし請求項のいずれか1項において、前記先端部材の前記姿勢操作部材との接触面の断面形状が直線状である遠隔操作型アクチュエータ。 The remote operation type actuator according to any one of claims 1 to 3 , wherein a cross-sectional shape of a contact surface of the tip member with the posture operation member is linear. 請求項1ないし請求項のいずれか1項において、前記先端部材の前記姿勢操作部材との接触面の断面形状が姿勢操作部材側に凸となる円弧状である遠隔操作型アクチュエータ。 The remote operation type actuator according to any one of claims 1 to 3 , wherein a cross-sectional shape of a contact surface of the tip member with the posture operation member is an arc shape protruding toward the posture operation member. 請求項1ないし請求項のいずれか1項において、前記先端部材は、前記姿勢操作部材との対向面に1つ以上の径方向に沿う溝部を有し、この溝部の底面を、前記姿勢操作部材との接触面とした遠隔操作型アクチュエータ。 The tip member according to any one of claims 1 to 5 , wherein the tip member has one or more groove portions along a radial direction on a surface facing the posture operation member, and the bottom surface of the groove portion is used as the posture operation member. Remote control type actuator with contact surface with member. 請求項1ないし請求項のいずれか1項において、前記スピンドルガイド部が、このスピンドルガイド部の外郭となる外郭パイプを有し、前記ガイド孔が、前記外郭パイプ内に設けられたガイドパイプの内径孔である遠隔操作型アクチュエータ。 In any one of claims 1 to 6, wherein the spindle guide portion has an outer shell pipe as a shell of the spindle guide part, the guide hole, the guide pipe which is provided inside the outer pipe Remote control type actuator with an inner diameter hole. 請求項において、前記外郭パイプは、その断面2次モーメントが同外径である中実軸の断面2次モーメントの1/2以上であり、かつ内周面に前記ガイドパイプが挿入される溝状部を有する遠隔操作型アクチュエータ。 8. The groove according to claim 7 , wherein the outer pipe has a second-order moment of a cross-section of a solid shaft having the same outer diameter and is 1/2 or more of a second-order moment of a solid shaft. Remote-control actuator having a profile portion. 請求項1ないし請求項のいずれか1項において、前記スピンドルガイド部内の前記回転軸を回転自在に支持する複数の転がり軸受を設け、隣合う転がり軸受間に、これら転がり軸受に対して予圧を与えるばね要素を設けた遠隔操作型アクチュエータ。 The rolling bearing according to any one of claims 1 to 8 , wherein a plurality of rolling bearings that rotatably support the rotating shaft in the spindle guide portion are provided, and a preload is applied to the rolling bearings between adjacent rolling bearings. Remote control type actuator with spring element to give. 請求項1ないし請求項のいずれか1項において、前記スピンドルガイド部は湾曲した箇所を有する遠隔操作型アクチュエータ。 In any one of claims 1 to 9, the remote controlled actuator the spindle guide portion having a curved portion.
JP2009013009A 2008-10-08 2009-01-23 Remote control type actuator Expired - Fee Related JP5258594B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009013009A JP5258594B2 (en) 2009-01-23 2009-01-23 Remote control type actuator
PCT/JP2009/005106 WO2010041397A1 (en) 2008-10-08 2009-10-02 Remotely operated actuator
EP09818937.6A EP2364652B1 (en) 2008-10-08 2009-10-02 Remotely operated actuator
KR1020117007861A KR101287985B1 (en) 2008-10-08 2009-10-02 Remotely operated actuator
US13/080,806 US8511195B2 (en) 2008-10-08 2011-04-06 Remote-controlled actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009013009A JP5258594B2 (en) 2009-01-23 2009-01-23 Remote control type actuator

Publications (2)

Publication Number Publication Date
JP2010167537A JP2010167537A (en) 2010-08-05
JP5258594B2 true JP5258594B2 (en) 2013-08-07

Family

ID=42700151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009013009A Expired - Fee Related JP5258594B2 (en) 2008-10-08 2009-01-23 Remote control type actuator

Country Status (1)

Country Link
JP (1) JP5258594B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6025223Y2 (en) * 1981-11-27 1985-07-29 オリンパス光学工業株式会社 Drill device for intrabody cavity procedures
JP2558898Y2 (en) * 1993-02-18 1998-01-14 株式会社森精機製作所 Removable spindle turning control unit for machine tools
US5405344A (en) * 1993-09-30 1995-04-11 Ethicon, Inc. Articulable socket joint assembly for an endoscopic instrument for surgical fastner track therefor
JP2001017446A (en) * 1999-07-05 2001-01-23 Nakanishi:Kk Hand piece for medical purpose
US7462181B2 (en) * 2002-06-04 2008-12-09 Stanford Office Of Technology Licensing Device and method for rapid aspiration and collection of body tissue from within an enclosed body space
JP2007068636A (en) * 2005-09-05 2007-03-22 Olympus Corp Cell collection apparatus
EP2364652B1 (en) * 2008-10-08 2016-09-21 NTN Corporation Remotely operated actuator

Also Published As

Publication number Publication date
JP2010167537A (en) 2010-08-05

Similar Documents

Publication Publication Date Title
WO2010041397A1 (en) Remotely operated actuator
JP5464892B2 (en) Remote control type actuator
JP5289470B2 (en) Flexible cable
WO2010018665A1 (en) Remote-controlled actuator
WO2010061567A1 (en) Remote control actuator
JP5202200B2 (en) Remote control type actuator
WO2010137603A1 (en) Remotely operated actuator
WO2010029741A1 (en) Remote control actuator
JP5538795B2 (en) Remote control type actuator
WO2011037131A1 (en) Remote operation actuator and plastic forming method for attitude operation member
JP5258594B2 (en) Remote control type actuator
JP5557522B2 (en) Remote control type actuator
JP5258495B2 (en) Remote control type actuator
JP5213735B2 (en) Remote control type actuator
JP2010069289A (en) Remote-controlled actuator
JP5388702B2 (en) Remote control type actuator
JP5388701B2 (en) Remote control type actuator
JP2010088812A (en) Remote control type actuator
JP5500891B2 (en) Remote control type actuator
JP2010051439A (en) Remote-controlled actuator
JP2010046764A (en) Remote operation type actuator
JP5197293B2 (en) Remote control type actuator
JP2010046197A (en) Remote control type actuator
JP5213666B2 (en) Remote control type actuator
WO2011148892A1 (en) Remote operation type actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5258594

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees