JP2010046197A - Remote control type actuator - Google Patents

Remote control type actuator Download PDF

Info

Publication number
JP2010046197A
JP2010046197A JP2008211688A JP2008211688A JP2010046197A JP 2010046197 A JP2010046197 A JP 2010046197A JP 2008211688 A JP2008211688 A JP 2008211688A JP 2008211688 A JP2008211688 A JP 2008211688A JP 2010046197 A JP2010046197 A JP 2010046197A
Authority
JP
Japan
Prior art keywords
posture
tip member
spindle
tip
force transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008211688A
Other languages
Japanese (ja)
Inventor
Hiroshi Isobe
浩 磯部
Yoshitaka Nagano
佳孝 永野
Yukihiro Nishio
幸宏 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2008211688A priority Critical patent/JP2010046197A/en
Publication of JP2010046197A publication Critical patent/JP2010046197A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drilling And Boring (AREA)
  • Surgical Instruments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a remote control type actuator which reliably alters a posture of a tool provided at a distal end of an elongated pipe part by remote control. <P>SOLUTION: The remote control type actuator includes an elongated spindle guide part 3 which is the pipe part, a distal end member 2 mounted on a distal end of the spindle guide part 3 in a manner to alter the posture, and a housing for a driving part where a proximal end of the spindle guide part 3 is coupled. The distal end member 2 supports a spindle 13 holding the tool 1 rotatably. The spindle guide part 3 has a rotational shaft 22 for the spindle 13 and a guide opening 30a penetrating between both ends in the inside. A posture operating member 31 for altering the posture of the distal end member 2 is inserted in the guide opening 30a in a manner to advance and retreat, and a driving source for altering a posture in the housing for a driving part advances and retreats the posture operating member 31. The posture operating member 31 consists of a plurality of force transmission members 31a, 31b arranged in a line, and the adjacent force transmission members 31a, 31b mutually make contact at a spherical surface and a planar surface. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、工具の姿勢を遠隔操作で変更可能で、医療用、機械加工等の用途で用いられる遠隔操作型アクチュエータに関する。   The present invention relates to a remotely operated actuator that can change the posture of a tool by remote operation and is used for medical use, machining, and the like.

医療用として骨の加工に用いられたり、機械加工用としてドリル加工や切削加工に用いられたりする遠隔操作型アクチュエータがある。遠隔操作型アクチュエータは、直線形状や湾曲形状をした細長いパイプ部の先端に設けた工具を遠隔操作で制御する。ただし、従来の遠隔操作用アクチュエータは、工具の回転のみを遠隔操作で制御するだけであったため、医療用の場合、複雑な形状の加工や外からは見えにくい箇所の加工が難しかった。また、ドリル加工では、直線だけではなく、湾曲状の加工が可能なことが求められる。さらに、切削加工では、溝内部の奥まった箇所の加工が可能なことが求められる。以下、医療用を例にとって、遠隔操作型アクチュエータの従来技術と課題について説明する。   There are remote-operated actuators that are used for bone processing for medical purposes and drilling and cutting for mechanical processing. The remote operation type actuator remotely controls a tool provided at the end of a long and narrow pipe portion having a linear shape or a curved shape. However, since the conventional remote control actuator only controls the rotation of the tool by remote control, in the case of medical use, it was difficult to process a complicated shape or a part that is difficult to see from the outside. Further, in drilling, it is required that not only a straight line but also a curved shape can be processed. Furthermore, in the cutting process, it is required that a deep part inside the groove can be processed. Hereinafter, taking the medical use as an example, the prior art and problems of the remote control type actuator will be described.

整形外科分野において、骨の老化等によって擦り減って使えなくなった関節を新しく人工のものに取り替える人工関節置換手術がある。この手術では、患者の生体骨を人工関節が挿入できるように加工する必要があるが、その加工には、術後の生体骨と人工関節との接着強度を高めるために、人工関節の形状に合わせて精度良く加工することが要求される。   In the field of orthopedics, there is an artificial joint replacement operation in which a joint that has become worn out due to bone aging or the like is replaced with a new artificial one. In this operation, it is necessary to process the patient's living bone so that the artificial joint can be inserted. In order to increase the adhesive strength between the living bone and the artificial joint after the operation, the shape of the artificial joint is required. It is required to process with high accuracy.

例えば、股関節の人工関節置換手術では、大腿骨の骨の中心にある髄腔部に人工関節挿入用の穴を形成する。人工関節と骨との接触強度を保つには両者の接触面積を大きくとる必要があり、人工関節挿入用の穴は、骨の奥まで延びた細長い形状に加工される。このような骨の切削加工に用いられる医療用アクチュエータとして、細長いパイプ部の先端に工具を回転自在に設け、パイプ部の基端側に設けたモータ等の回転駆動源の駆動により、パイプ部の内部に配した回転軸を介して工具を回転させる構成のものがある(例えば特許文献1)。この種の医療用アクチュエータは、外部に露出した回転部分は先端の工具のみであるため、工具を骨の奥まで挿入することができる。   For example, in hip joint replacement surgery, an artificial joint insertion hole is formed in the medullary cavity at the center of the femur bone. In order to maintain the contact strength between the artificial joint and the bone, it is necessary to increase the contact area between them, and the hole for inserting the artificial joint is processed into an elongated shape extending to the back of the bone. As a medical actuator used for such a bone cutting process, a tool is rotatably provided at the distal end of an elongated pipe portion, and by driving a rotational drive source such as a motor provided on the proximal end side of the pipe portion, There exists a thing of the structure which rotates a tool via the rotating shaft arrange | positioned inside (for example, patent document 1). In this type of medical actuator, the rotating part exposed to the outside is only the tool at the tip, so that the tool can be inserted deep into the bone.

人工関節置換手術では、皮膚切開や筋肉の切断を伴う。すなわち、人体に傷を付けなければならない。その傷を最小限に抑えるためには、前記パイプ部は真っ直ぐでなく、適度に湾曲している方が良い場合がある。このような状況に対応するためのものとして、次のような従来技術がある。例えば、特許文献2は、パイプ部の中間部を2重に湾曲させて、パイプ部の先端側の軸心位置と基端側の軸心位置とをずらせたものである。このようにパイプ部の軸心位置が先端側と軸心側とでずれているものは、他にも知られている。また、特許文献3は、パイプ部を180度回転させたものである。
特開2007−301149号公報 米国特許第4,466,429号明細書 米国特許第4,265,231号明細書 特開2001−17446号公報
Artificial joint replacement surgery involves skin incision and muscle cutting. That is, the human body must be damaged. In order to minimize the scratches, the pipe part may not be straight but may be appropriately curved. In order to cope with such a situation, there are the following conventional techniques. For example, in Patent Document 2, an intermediate portion of a pipe portion is bent twice, and the axial center position on the distal end side and the axial center position on the proximal end side of the pipe portion are shifted. There are other known cases where the axial position of the pipe portion is shifted between the tip end side and the axial center side. In Patent Document 3, the pipe portion is rotated 180 degrees.
JP 2007-301149 A U.S. Pat. No. 4,466,429 US Pat. No. 4,265,231 JP 2001-17446 A

生体骨の人工関節挿入用穴に人工関節を嵌め込んだ状態で、生体骨と人工関節との間に広い隙間があると、術後の接着時間が長くなるため、前記隙間はなるべく狭いのが望ましい。また、生体骨と人工関節の接触面が平滑であることも重要であり、人工関節挿入用穴の加工には高い精度が要求される。しかし、パイプ部がどのような形状であろうとも、工具の動作範囲はパイプ部の形状の制約を受けるため、皮膚切開や筋肉の切断をできるだけ小さくしながら、生体骨と人工関節との間の隙間を狭くかつ両者の接触面が平滑になるように人工関節挿入用穴を加工するのは難しい。   If there is a wide gap between the living bone and the artificial joint with the artificial joint inserted in the artificial bone insertion hole of the living bone, the adhesion time after the operation becomes longer, so the gap is as narrow as possible. desirable. It is also important that the contact surface between the living bone and the artificial joint is smooth, and high accuracy is required for processing the hole for inserting the artificial joint. However, no matter what the shape of the pipe part, the operating range of the tool is limited by the shape of the pipe part. It is difficult to process the artificial joint insertion hole so that the gap is narrow and the contact surface of both is smooth.

一般に、人工関節置換手術が行われる患者の骨は、老化等により強度が弱くなっていることが多く、骨そのものが変形している場合もある。したがって、通常考えられる以上に、人工関節挿入用穴の加工は難しい。   Generally, bones of patients undergoing artificial joint replacement surgery are often weakened due to aging or the like, and the bones themselves may be deformed. Therefore, it is more difficult to process the artificial joint insertion hole than is normally conceivable.

そこで、本出願人は、人工関節挿入用穴の加工を比較的容易にかつ精度良く行えるようにすることを目的として、先端に設けた工具の姿勢を遠隔操作で変更可能とすることを試みた。工具の姿勢が変更可能であれば、パイプ部の形状に関係なく、工具を適正な姿勢に保持することができるからである。しかし、工具は細長いパイプ部の先端に設けられているため、工具の姿勢を変更させる機構を設ける上で制約が多く、それを克服するための工夫が必要である。また、パイプ部が湾曲部を有することも予想され、その場合でも確実に姿勢変更動作をさせられることが望まれる。   Therefore, the present applicant tried to make it possible to remotely change the posture of the tool provided at the tip for the purpose of relatively easily and accurately processing the hole for inserting the artificial joint. . This is because, if the posture of the tool can be changed, the tool can be held in an appropriate posture regardless of the shape of the pipe portion. However, since the tool is provided at the tip of the elongated pipe portion, there are many restrictions in providing a mechanism for changing the posture of the tool, and a device for overcoming it is necessary. Further, it is expected that the pipe portion has a curved portion, and it is desired that the posture changing operation can be surely performed even in that case.

なお、細長いパイプ部を有しない遠隔操作型アクチュエータでは、手で握る部分に対して工具が設けられた部分が姿勢変更可能なものがある(例えば特許文献4)が、遠隔操作で工具の姿勢を変更させるものは提案されていない。   In addition, some remote operation type actuators that do not have an elongated pipe portion can change the posture of the portion where the tool is provided with respect to the portion gripped by the hand (for example, Patent Document 4). No changes have been proposed.

この発明は、細長いパイプ部の先端に設けられた工具の姿勢を遠隔操作で変更することができ、しかもパイプ部が曲がった場合でも確実に姿勢変更させられる遠隔操作型アクチュエータを提供することを課題としている。   It is an object of the present invention to provide a remote operation type actuator that can change the posture of a tool provided at the tip of an elongated pipe portion by remote operation and can reliably change the posture even when the pipe portion is bent. It is said.

この発明にかかる遠隔操作型アクチュエータは、細長形状のスピンドルガイド部と、このスピンドルガイド部の先端に先端部材連結部を介して姿勢変更自在に取付けられた先端部材と、前記スピンドルガイド部の基端が結合された駆動部ハウジングとを備え、前記先端部材は、工具を保持するスピンドルを回転自在に支持し、前記スピンドルガイド部は、前記駆動部ハウジング内に設けられた工具回転用駆動源の回転を前記スピンドルに伝達する回転軸と、両端に貫通したガイド孔とを内部に有し、先端が前記先端部材に接して進退動作することにより前記先端部材を姿勢変更させる姿勢操作部材を前記ガイド孔内に進退自在に挿通し、前記姿勢操作部材を進退させる姿勢変更用駆動源を前記駆動部ハウジング内に設け、前記姿勢操作部材は、一列に配列された複数個の力伝達部材からなり、これら各力伝達部材は、隣合う力伝達部材が互いに球面と平面とで接する形状であることを特徴とする。   A remote-control actuator according to the present invention includes an elongated spindle guide portion, a tip member attached to the tip of the spindle guide portion via a tip member connecting portion so that the posture can be freely changed, and a base end of the spindle guide portion And the tip member rotatably supports a spindle holding a tool, and the spindle guide portion rotates a tool rotation drive source provided in the drive unit housing. A rotation shaft that transmits the tip member to the spindle, and a guide hole that penetrates both ends of the shaft, and a posture operation member that changes the posture of the tip member by advancing and retracting with the tip contacting the tip member. An attitude change drive source is provided in the drive unit housing, and the attitude operation member is inserted into the drive unit housing so as to advance and retract. Consists plurality of force transmitting members arranged in a row, each of these force transmitting member may be adjacent force transmitting member has a shape in contact with the spherical surface and the plane with one another.

この構成によれば、先端部材に設けた工具の回転により、骨等の切削加工が行われる。その場合に、姿勢変更用駆動源により姿勢操作部材を進退させると、この姿勢操作部材の先端が先端部材に対し作用することにより、スピンドルガイド部の先端に先端部材連結部を介して姿勢変更自在に取付けられた先端部材が姿勢変更する。姿勢変更用駆動源は、スピンドルガイド部の基端側の駆動部ハウジング内に設けられており、上記先端部材の姿勢変更は遠隔操作で行われる。   According to this configuration, cutting of bone or the like is performed by the rotation of the tool provided on the tip member. In this case, when the posture operation member is moved forward and backward by the posture change drive source, the tip of the posture operation member acts on the tip member, so that the posture can be changed to the tip of the spindle guide portion via the tip member connecting portion. The position of the tip member attached to is changed. The posture changing drive source is provided in the drive portion housing on the proximal end side of the spindle guide portion, and the posture change of the tip member is performed by remote control.

加工中に先端部材に力が作用した際、細長形状であるスピンドルガイド部が大きく撓むことが考えられる。また、スピンドルガイド部は、湾曲部を有する形状となることも考えられる。しかし、姿勢操作部材は、ガイド孔に一列に配列された複数個の力伝達部材からなり、全体で可撓性であるため、スピンドルガイド部の撓みや湾曲形状に合わせて姿勢操作部材も撓む。そのため、スピンドルガイド部が撓んだ場合もしくは湾曲部を有する場合でも姿勢変更動作が確実に行われる。   When a force acts on the tip member during processing, it is conceivable that the elongated spindle guide portion bends greatly. It is also conceivable that the spindle guide portion has a curved portion. However, since the posture operation member is composed of a plurality of force transmission members arranged in a line in the guide hole and is flexible as a whole, the posture operation member also bends in accordance with the bending or bending shape of the spindle guide portion. . Therefore, even when the spindle guide portion is bent or has a curved portion, the posture changing operation is reliably performed.

また、隣合う力伝達部材が互いに球面と平面とで接することにより、次の作用が得られる。
第1の作用は、スピンドルガイド部が撓んだ状態もしくは湾曲部を有する場合であっても、常に隣合う力伝達部材のそれぞれの接触面が中央部で接触することである。例えば、隣合う力伝達部材の接触面が共に平面である場合、スピンドルガイド部が撓んだ状態もしくは湾曲部を有する場合では、各力伝達部材の接触面の向きに若干の違いが生じ、対向する一対の接触面が端部しか接触しない。そのため、隣合う力伝達部材間で力を正確に伝達することが難しい。その点、隣合う力伝達部材が互いに球面と平面とで接していると、常に対向する一対の接触面が中央部で接触するため、隣合う力伝達部材間で力を正確に伝達できる。これにより、姿勢変更用駆動源を小型化することが可能になると共に、姿勢変更用駆動源の消費電力を低減できる。
第2の作用は、姿勢操作部材に力が印加されたときに、隣合う一対の力伝達部材が力伝達部材並び方向と交差する方向にずれにくいことである。力伝達部材はガイド孔内に配置されているが、力伝達部材とガイド孔の内径面との間には若干の隙間がある。例えば、隣合う力伝達部材が互いに球面で接する場合、姿勢操作部材に力が印加されると、隣合う一対の力伝達部材が前記隙間の分だけ互いに逆向きに力伝達部材の並び方向と交差する方向に滑って、前記一対の力伝達部材がガイド孔内径面の周方向反対側の箇所に接する状態となる。その結果、各力伝達部材間の並び方向の距離が狭くなり、姿勢操作部材の全長が変わるため、先端部材の姿勢変更精度が低下する。また、各力伝達部材がガイド孔内径面に接すると、力伝達部材とガイド孔内径面間に摩擦力が発生するため、姿勢変更用駆動源が大きな駆動力を要する。その点、隣合う力伝達部材が互いに球面と平面とで接していると、隣合う一対の力伝達部材が力伝達部材並び方向と交差する方向にずれにくく、先端部材の姿勢を正確にコントロールでき、かつ姿勢変更用駆動源を小型化し、姿勢変更用駆動源の消費電力を低減できる。
Further, the following actions can be obtained when the adjacent force transmission members are in contact with each other on the spherical surface and the flat surface.
The first action is that the contact surfaces of the adjacent force transmission members always come into contact with each other even in the case where the spindle guide portion is bent or has a curved portion. For example, when the contact surfaces of the adjacent force transmission members are both flat, when the spindle guide portion is bent or has a curved portion, the direction of the contact surface of each force transmission member is slightly different, A pair of contact surfaces that are in contact with each other only at the ends. Therefore, it is difficult to accurately transmit force between adjacent force transmission members. In that respect, when the adjacent force transmission members are in contact with each other at the spherical surface and the flat surface, the pair of contact surfaces that always face each other are in contact with each other at the center, so that the force can be accurately transmitted between the adjacent force transmission members. As a result, the posture changing drive source can be reduced in size, and the power consumption of the posture changing drive source can be reduced.
A second effect is that when a force is applied to the posture operation member, a pair of adjacent force transmission members are unlikely to shift in a direction intersecting the force transmission member arrangement direction. The force transmission member is disposed in the guide hole, but there is a slight gap between the force transmission member and the inner diameter surface of the guide hole. For example, when adjacent force transmission members are in contact with each other on a spherical surface, when a force is applied to the posture operation member, a pair of adjacent force transmission members cross the direction in which the force transmission members are arranged in opposite directions by the gap. The pair of force transmission members come into contact with the circumferentially opposite side of the guide hole inner diameter surface. As a result, the distance in the arrangement direction between the force transmission members is reduced and the total length of the posture operation member is changed, so that the posture change accuracy of the tip member is lowered. Further, when each force transmission member comes into contact with the inner diameter surface of the guide hole, a frictional force is generated between the force transmission member and the inner diameter surface of the guide hole, so that the posture changing drive source requires a large driving force. In that respect, if the adjacent force transmission members are in contact with each other on the spherical surface and the flat surface, the pair of adjacent force transmission members are not easily displaced in the direction intersecting the force transmission member alignment direction, and the posture of the tip member can be accurately controlled. In addition, the posture changing drive source can be downsized, and the power consumption of the posture changing drive source can be reduced.

この発明において、前記力伝達部材は柱状体およびボールであり、これら2種の力伝達部材を交互に配置して前記姿勢操作部材とすることができる。または、前記力伝達部材は、一方の端面が球面に加工され、もう一方の端面が平面に加工された柱状体であり、この力伝達部材を同じ向きに並べて前記姿勢操作部材としてもよい。
いずれの場合も、隣合う力伝達部材が互いに球面と平面とで接するため、前記作用が得られる。
In the present invention, the force transmission member is a columnar body and a ball, and these two types of force transmission members can be alternately arranged to form the posture operation member. Alternatively, the force transmission member may be a columnar body in which one end surface is processed into a spherical surface and the other end surface is processed into a flat surface, and the force transmission members may be arranged in the same direction as the posture operation member.
In any case, since the adjacent force transmission members are in contact with each other on the spherical surface and the flat surface, the above-described operation can be obtained.

この発明において、前記ガイド孔およびこのガイド孔内に挿通された姿勢操作部材を1箇所のみに設け、前記先端部材を所定姿勢側へ付勢する復元用弾性部材を設け、前記姿勢操作部材は前記復元用弾性部材の付勢力に抗して前記先端部材を姿勢変更させることができる。また、前記ガイド孔およびこのガイド孔内に挿通された姿勢操作部材を2箇所に設け、前記姿勢変更用駆動源を各姿勢操作部材に対して個別に設け、前記2箇所の姿勢操作部材の前記先端部材への作用力の釣り合いにより前記先端部材の姿勢を変更、維持させてもよい。これらの場合、1本の姿勢変更軸回りに先端部材の姿勢を変更できる。後者は、2つの姿勢操作部材で先端部材に加圧されるため、1つ姿勢操作部材だけで加圧される前者に比べ、先端部材の姿勢安定性を高めることができる。   In the present invention, the guide hole and the posture operation member inserted into the guide hole are provided in only one place, a restoring elastic member for urging the tip member toward a predetermined posture is provided, and the posture operation member is The posture of the tip member can be changed against the biasing force of the restoring elastic member. Further, the guide hole and the posture operation member inserted into the guide hole are provided at two positions, the posture change drive source is provided individually for each posture operation member, and the posture control members of the two positions are provided. You may change and maintain the attitude | position of the said front-end | tip member by the balance of the acting force to a front-end | tip member. In these cases, the posture of the tip member can be changed around one posture changing axis. In the latter, since the tip member is pressurized by two posture operation members, the posture stability of the tip member can be improved as compared with the former in which pressure is applied by only one posture operation member.

さらに、前記先端部材連結部が、前記先端部材を任意方向に傾動可能に支持するものであり、前記ガイド孔およびこのガイド孔内に挿通された姿勢操作部材を、前記先端部材の傾動中心の周りの3箇所以上に設け、前記姿勢変更用駆動源を各姿勢操作部材に対して個別に設け、前記3箇所以上の姿勢操作部材の前記先端部材への作用力の釣り合いにより前記先端部材の姿勢を変更、維持させてもよい。この場合、2本の姿勢変更軸回りに先端部材の姿勢を変更できる。この構成では、3つ以上の姿勢操作部材で先端部材に加圧されるため、さらに先端部材の姿勢安定性を高めることができる。   Further, the tip member connecting portion supports the tip member so that the tip member can tilt in an arbitrary direction, and the guide hole and the posture operation member inserted into the guide hole are arranged around the tilt center of the tip member. The posture changing drive source is provided individually for each posture operation member, and the posture of the tip member is adjusted by balancing the acting forces of the posture operation members of the three or more locations on the tip member. It may be changed and maintained. In this case, the posture of the tip member can be changed around the two posture change axes. In this configuration, since the tip member is pressurized by three or more posture operation members, the posture stability of the tip member can be further improved.

この発明において、前記姿勢変更用駆動源の動作量を検出する動作量検出器を設け、この動作量検出器の検出値から前記先端部材の姿勢を検出する姿勢検出手段を設けると良い。
この構成によれば、姿勢検出手段の検出結果に基づき適正な先端部材姿勢制御を行うことができる。
In the present invention, an operation amount detector for detecting an operation amount of the attitude changing drive source may be provided, and an attitude detection means for detecting the attitude of the tip member from a detection value of the operation amount detector may be provided.
According to this configuration, appropriate tip member posture control can be performed based on the detection result of the posture detection means.

前記姿勢変更用駆動源が電動アクチュエータである場合には、この電動アクチュエータへの供給電力を計測して前記先端部材に作用する荷重を検出する荷重検出手段を設けるのが良い。
この構成によれば、荷重検出手段の検出結果に基づき、遠隔操作型アクチュエータ全体の送り量や先端部材の姿勢変更を制御することにより、先端部材に作用する荷重を適正に保った状態で骨の切削加工を行える。
When the posture changing drive source is an electric actuator, it is preferable to provide load detecting means for measuring the power supplied to the electric actuator and detecting the load acting on the tip member.
According to this configuration, by controlling the feed amount of the entire remote-operated actuator and the posture change of the tip member based on the detection result of the load detection means, the load of the bone is maintained in a state where the load acting on the tip member is properly maintained. Cutting can be performed.

この発明において、前記スピンドルガイド部が、このスピンドルガイド部の外郭となる外郭パイプを有し、前記ガイド孔を、前記外郭パイプ内に設けられたガイドパイプの内径孔とすることができる。
この構成であれば、外郭パイプによりスピンドルガイド部の内部を保護しつつ、スピンドルガイド部を中空状にして軽量化を図れる。
In the present invention, the spindle guide portion may include an outer pipe serving as an outer shell of the spindle guide portion, and the guide hole may be an inner diameter hole of a guide pipe provided in the outer pipe.
With this configuration, it is possible to reduce the weight by making the spindle guide hollow while protecting the inside of the spindle guide by the outer pipe.

上記構成とする場合、前記外郭パイプ内の中心に前記回転軸を配置し、この回転軸と外郭パイプの内径面との間に、複数本の補強シャフトと前記ガイドパイプとを円周方向に並べて設けるのが良い。
このように補強シャフトとガイドパイプとを設けることにより、これらをスピンドルガイド部内にバランス良く配置して、スピンドルガイド部の剛性向上を図れる。
In the case of the above configuration, the rotating shaft is arranged at the center in the outer pipe, and a plurality of reinforcing shafts and the guide pipe are arranged in a circumferential direction between the rotating shaft and the inner diameter surface of the outer pipe. It is good to provide.
By providing the reinforcing shaft and the guide pipe in this manner, they can be arranged in a well-balanced manner in the spindle guide portion, and the rigidity of the spindle guide portion can be improved.

上記構成において、前記スピンドルガイド部内の前記回転軸を回転自在に支持する複数の転がり軸受を設ける場合、これら複数の転がり軸受の外径面を、前記複数本の補強シャフトと前記ガイドパイプとで支持することができる。
補強シャフトとガイドパイプとを利用することで、余分な部材を用いずに転がり軸受の外径面を支持できる。
In the above configuration, when a plurality of rolling bearings that rotatably support the rotating shaft in the spindle guide portion are provided, the outer diameter surfaces of the plurality of rolling bearings are supported by the plurality of reinforcing shafts and the guide pipe. can do.
By using the reinforcing shaft and the guide pipe, the outer diameter surface of the rolling bearing can be supported without using an extra member.

また、前記スピンドルガイド部内の前記回転軸を回転自在に支持する複数の転がり軸受を設ける場合、隣合う転がり軸受間に、これら転がり軸受に対して予圧を与えるばね要素を設けるのが望ましい。
加工の仕上がりを良くするには、スピンドルを高速回転させて加工するのがよい。スピンドルを高速回転させると、工具に作用する切削抵抗を低減させる効果もある。スピンドルはワイヤ等からなる細い回転軸を介して回転力が伝達されるので、スピンドルの高速回転を実現させるため、回転軸を支持する転がり軸受に予圧をかけておくことが必要となる。この予圧のためのばね要素を隣合う転がり軸受間に設ければ、スピンドルガイド部の径を大きくせずにばね要素を設けられる。
Moreover, when providing the several rolling bearing which supports the said rotating shaft in the said spindle guide part rotatably, it is desirable to provide the spring element which gives a preload with respect to these rolling bearings between adjacent rolling bearings.
In order to improve the finish of processing, it is preferable to rotate the spindle at high speed. When the spindle is rotated at a high speed, there is an effect of reducing cutting resistance acting on the tool. Since the rotational force is transmitted to the spindle through a thin rotating shaft made of a wire or the like, it is necessary to preload the rolling bearing that supports the rotating shaft in order to realize high-speed rotation of the spindle. If a spring element for this preload is provided between adjacent rolling bearings, the spring element can be provided without increasing the diameter of the spindle guide portion.

この発明において、前記スピンドルガイド部は湾曲した箇所を有していてもよい。
姿勢操作部材は可撓性であるため、スピンドルガイド部に湾曲した箇所があっても、ガイド孔内で進退させることができる。
In the present invention, the spindle guide portion may have a curved portion.
Since the posture operation member is flexible, even if there is a curved portion in the spindle guide portion, it can be advanced and retracted in the guide hole.

この発明の遠隔操作型アクチュエータは、細長形状のスピンドルガイド部と、このスピンドルガイド部の先端に先端部材連結部を介して姿勢変更自在に取付けられた先端部材と、前記スピンドルガイド部の基端が結合された駆動部ハウジングとを備え、前記先端部材は、工具を保持するスピンドルを回転自在に支持し、前記スピンドルガイド部は、前記駆動部ハウジング内に設けられた工具回転用駆動源の回転を前記スピンドルに伝達する回転軸と、両端に貫通したガイド孔とを内部に有し、先端が前記先端部材に接して進退動作することにより前記先端部材を姿勢変更させる姿勢操作部材を前記ガイド孔内に進退自在に挿通し、前記姿勢操作部材を進退させる姿勢変更用駆動源を前記駆動部ハウジング内に設け、前記姿勢操作部材は、一列に配列された複数個の力伝達部材からなり、これら各力伝達部材は、隣合う力伝達部材が互いに球面と平面とで接する形状であるため、細長形状であるスピンドルガイド部の先端に設けられた工具の姿勢を遠隔操作で変更することができ、しかもスピンドルガイド部が曲がった場合でも確実に姿勢変更させられる。   The remote control type actuator according to the present invention comprises an elongated spindle guide portion, a tip member attached to the tip of the spindle guide portion via a tip member connecting portion so that the posture can be freely changed, and a base end of the spindle guide portion. A driving unit housing coupled thereto, wherein the tip member rotatably supports a spindle holding a tool, and the spindle guide unit rotates a driving source for rotating the tool provided in the driving unit housing. There is a rotation shaft that transmits to the spindle and guide holes that penetrate through both ends, and a posture operation member that changes the posture of the tip member by moving the tip member forward and backward while contacting the tip member. An attitude change drive source is provided in the drive unit housing for allowing the attitude operation member to advance and retract, and the attitude operation member is arranged in a row. Each of the force transmission members has a shape in which adjacent force transmission members are in contact with each other on a spherical surface and a flat surface, so that each of the force transmission members is provided at the tip of an elongated spindle guide portion. The posture of the tool can be changed by remote control, and the posture can be reliably changed even when the spindle guide portion is bent.

この発明の実施形態を図1〜図3と共に説明する。図1において、この遠隔操作型アクチュエータは、回転式の工具1を保持する先端部材2と、この先端部材2が先端に姿勢変更自在に取付けられた細長形状のスピンドルガイド部3と、このスピンドルガイド部3の基端が結合された駆動部ハウジング4aと、この駆動部ハウジング4a内の工具回転用駆動機構4bおよび姿勢変更用駆動機構4cを制御するコントローラ5とを備える。駆動部ハウジング4aは、内蔵の工具回転用駆動機構4bおよび姿勢変更用駆動機構4cと共に駆動部4を構成する。   An embodiment of the present invention will be described with reference to FIGS. In FIG. 1, the remote control type actuator includes a tip member 2 for holding a rotary tool 1, an elongated spindle guide portion 3 having the tip member 2 attached to the tip so that the posture can be freely changed, and the spindle guide. A drive unit housing 4a to which the base end of the unit 3 is coupled, and a controller 5 for controlling the tool rotation drive mechanism 4b and the attitude change drive mechanism 4c in the drive unit housing 4a are provided. The drive unit housing 4a constitutes the drive unit 4 together with the built-in tool rotation drive mechanism 4b and posture changing drive mechanism 4c.

図2に示すように、先端部材2は、略円筒状のハウジング11の内部に、一対の軸受12によりスピンドル13が回転自在に支持されている。スピンドル13は、先端側が開口した筒状で、中空部に工具1のシャンク1aが嵌合状態に挿入され、回り止めピン14によりシャンク1aが回転不能に結合される。この先端部材2は、先端部材連結部15を介してスピンドルガイド部3の先端に取付けられる。先端部材連結部15は、先端部材2を姿勢変更自在に支持する手段であり、球面軸受からなる。具体的には、先端部材連結部15は、ハウジング11の基端の内径縮径部からなる被案内部11aと、スピンドルガイド部3の先端に固定された抜け止め部材21の鍔状部からなる案内部21aとで構成される。両者11a,21aの互いに接する各案内面F1,F2は、スピンドル13の中心線CL上に曲率中心Oが位置し、基端側ほど径が小さい球面とされている。これにより、スピンドルガイド部3に対して先端部材2が抜け止めされるとともに、姿勢変更自在に支持される。この例は、曲率中心Oを通るX軸回りに先端部材2が姿勢変更する構成であるため、案内面F1,F2が、点Oを通るX軸を軸心とする円筒面であってもよい。   As shown in FIG. 2, the tip member 2 has a spindle 13 rotatably supported by a pair of bearings 12 inside a substantially cylindrical housing 11. The spindle 13 has a cylindrical shape with an open end, and the shank 1a of the tool 1 is inserted into the hollow portion in a fitted state, and the shank 1a is non-rotatably coupled by the rotation prevention pin 14. The tip member 2 is attached to the tip of the spindle guide portion 3 via the tip member connecting portion 15. The tip member connecting portion 15 is a means for supporting the tip member 2 so that the posture thereof can be freely changed, and includes a spherical bearing. Specifically, the distal end member connecting portion 15 includes a guided portion 11 a that is a reduced inner diameter portion of the proximal end of the housing 11 and a hook-shaped portion of a retaining member 21 that is fixed to the distal end of the spindle guide portion 3. It is comprised with the guide part 21a. The guide surfaces F1 and F2 that are in contact with each other 11a and 21a are spherical surfaces having a center of curvature O located on the center line CL of the spindle 13 and having a smaller diameter toward the proximal end side. As a result, the tip member 2 is prevented from being detached from the spindle guide portion 3 and is supported so as to be freely changeable in posture. In this example, since the tip member 2 is configured to change the posture around the X axis passing through the center of curvature O, the guide surfaces F1 and F2 may be cylindrical surfaces having the X axis passing through the point O as an axis. .

スピンドルガイド部3は、駆動部ハウジング4a内の工具回転用駆動源41(図3)の回転力を前記スピンドル13へ伝達する回転軸22を有する。この例では、回転軸22はワイヤとされ、ある程度の弾性変形が可能である。ワイヤの材質としては、例えば金属、樹脂、グラスファイバー等が用いられる。ワイヤは単線であっても、撚り線であってもよい。図2(C)に示すように、スピンドル13と回転軸22とは、自在継手等の継手23を介して回転伝達可能に接続されている。継手23は、スピンドル13の閉塞した基端に設けられた溝13aと、回転軸22の先端に設けられ前記溝13aに係合する突起22aとで構成される。上記溝13aと突起22aとの連結箇所の中心は、前記案内面F1,F2の曲率中心Oと同位置である。   The spindle guide portion 3 has a rotating shaft 22 that transmits the rotational force of the tool rotation drive source 41 (FIG. 3) in the drive portion housing 4 a to the spindle 13. In this example, the rotating shaft 22 is a wire and can be elastically deformed to some extent. As the material of the wire, for example, metal, resin, glass fiber or the like is used. The wire may be a single wire or a stranded wire. As shown in FIG. 2C, the spindle 13 and the rotary shaft 22 are connected so as to be able to transmit rotation via a joint 23 such as a universal joint. The joint 23 includes a groove 13 a provided at the closed base end of the spindle 13 and a protrusion 22 a provided at the distal end of the rotating shaft 22 and engaged with the groove 13 a. The center of the connecting portion between the groove 13a and the protrusion 22a is at the same position as the center of curvature O of the guide surfaces F1 and F2.

スピンドルガイド部3は、このスピンドルガイド部3の外郭となる外郭パイプ25を有し、この外郭パイプ25の中心に前記回転軸22が位置する。回転軸22は、それぞれ軸方向に離れて配置された複数の転がり軸受26によって回転自在に支持されている。各転がり軸受26間には、これら転がり軸受26に予圧を発生させるためのばね要素27A,27Bが設けられている。ばね要素27A,27Bは、例えば圧縮コイルばねである。転がり軸受26の内輪に予圧を発生させる内輪用ばね要素27Aと、外輪に予圧を発生させる外輪用ばね要素27Bとがあり、これらが交互に配置されている。前記抜け止め部材21は、固定ピン28により外郭パイプ25のパイプエンド部25aに固定され、その先端内周部で転がり軸受29を介して回転軸22の先端部を回転自在に支持している。パイプエンド部25aは、外郭パイプ25と別部材とし、溶接等により結合してもよい。   The spindle guide section 3 has an outer pipe 25 that is an outer shell of the spindle guide section 3, and the rotation shaft 22 is located at the center of the outer pipe 25. The rotating shaft 22 is rotatably supported by a plurality of rolling bearings 26 that are arranged apart from each other in the axial direction. Between each rolling bearing 26, spring elements 27A and 27B for generating a preload on the rolling bearing 26 are provided. The spring elements 27A and 27B are, for example, compression coil springs. There are an inner ring spring element 27A for generating a preload on the inner ring of the rolling bearing 26 and an outer ring spring element 27B for generating a preload on the outer ring, which are arranged alternately. The retaining member 21 is fixed to the pipe end portion 25a of the outer pipe 25 by a fixing pin 28, and rotatably supports the distal end portion of the rotary shaft 22 via a rolling bearing 29 at the distal end inner peripheral portion thereof. The pipe end portion 25a may be a separate member from the outer pipe 25 and may be joined by welding or the like.

外郭パイプ25の内径面と回転軸22の間には、両端に貫通する1本のガイドパイプ30が設けられ、このガイドパイプ30の内径孔であるガイド孔30a内に姿勢操作部材31が進退自在に挿通されている。姿勢操作部材31は、力伝達部材であるボール31aおよび柱状体31bを交互にガイド孔30aの長さ方向に沿って一列に配列し、両端に柱状ピン31cを配してある。ボール31aと柱状体31b、およびボール31aと柱状ピン31cは、互いに球面と平面とで接している。先端部材2側の柱状ピン31cの先端は球面状で、ハウジング11の基端面に当接している。駆動部ハウジング4a側の柱状ピン31cの先端も球面状で、後記レバー43b(図3)の側面に当接している。   Between the inner diameter surface of the outer pipe 25 and the rotary shaft 22, one guide pipe 30 penetrating at both ends is provided, and the posture operation member 31 can freely advance and retreat in the guide hole 30 a that is the inner diameter hole of the guide pipe 30. Is inserted. In the posture operation member 31, balls 31a and columnar bodies 31b as force transmission members are alternately arranged in a line along the length direction of the guide hole 30a, and columnar pins 31c are arranged at both ends. The ball 31a and the columnar body 31b, and the ball 31a and the columnar pin 31c are in contact with each other by a spherical surface and a plane. The distal end of the columnar pin 31 c on the distal end member 2 side is spherical and is in contact with the proximal end surface of the housing 11. The tip of the columnar pin 31c on the drive unit housing 4a side is also spherical, and is in contact with the side surface of the lever 43b (FIG. 3) described later.

上記姿勢操作部材31が位置する周方向位置に対し180度の位相の位置には、先端部材2のハウジング11の基端面とスピンドルガイド部3の外郭パイプ25の先端面との間に、例えば圧縮コイルばねからなる復元用弾性部材32が設けられている。この復元用弾性部材32は、先端部材2を所定姿勢側へ付勢する作用をする。   For example, compression is provided between the proximal end surface of the housing 11 of the distal end member 2 and the distal end surface of the outer pipe 25 of the spindle guide portion 3 at a position 180 degrees relative to the circumferential position where the posture operation member 31 is located. A restoring elastic member 32 made of a coil spring is provided. The restoring elastic member 32 acts to urge the tip member 2 toward a predetermined posture.

また、外郭パイプ25の内径面と回転軸22の間には、前記ガイドパイプ30とは別に、このガイドパイプ30と同一ピッチ円C上に、複数本の補強シャフト34が配置されている。これらの補強シャフト34は、スピンドルガイド部3の剛性を確保するためのものである。ガイドパイプ30と補強シャフト34の配列間隔は等間隔とされている。ガイドパイプ30および補強シャフト34は、外郭パイプ25の内径面におよび前記転がり軸受26の外径面に接している。これにより、転がり軸受26の外径面を支持している。   In addition to the guide pipe 30, a plurality of reinforcing shafts 34 are arranged on the same pitch circle C as the guide pipe 30 between the inner diameter surface of the outer pipe 25 and the rotary shaft 22. These reinforcing shafts 34 are for ensuring the rigidity of the spindle guide portion 3. The intervals between the guide pipe 30 and the reinforcing shaft 34 are equal. The guide pipe 30 and the reinforcing shaft 34 are in contact with the inner diameter surface of the outer pipe 25 and the outer diameter surface of the rolling bearing 26. Thereby, the outer diameter surface of the rolling bearing 26 is supported.

図3は、駆動部ハウジング4a内の工具回転用駆動機構4bおよび姿勢変更用駆動機構4cを示す。工具回転用駆動機構4bは、コントローラ5により制御される工具回転用駆動源41を備える。工具回転用駆動源41は、例えば電動モータであり、その出力軸41aが前記回転軸22の基端に結合させてある。姿勢変更用駆動機構4cは、コントローラ5により制御される姿勢変更用駆動源42を備える。姿勢変更用駆動源42は、例えば電動リニアアクチュエータであり、図3(A)の左右方向に移動する出力ロッド42aの動きが、増力伝達機構43を介して前記姿勢操作部材31に伝達される。増力伝達機構43は、支軸43a回りに回動自在なレバー43bを有し、このレバー43bにおける支軸43aからの距離が長い作用点P1に出力ロッド42aの力が作用し、支軸43aからの距離が短い力点P2で姿勢操作部材31に力を与える構成であり、姿勢変更用駆動源42の出力が増力して姿勢操作部材31に伝達される。増力伝達機構43を設けると、小さな出力のリニアアクチュエータでも姿勢操作部材31に大きな力を与えることができるので、リニアアクチュエータの小型化が可能になる。なお、回転軸22は、レバー43bに形成された開口44を貫通させてある。なお、ロータリアクチュエータ等を設ける代わりに、手動により先端部材2の姿勢を遠隔操作してもよい。   FIG. 3 shows a tool rotation drive mechanism 4b and a posture change drive mechanism 4c in the drive unit housing 4a. The tool rotation drive mechanism 4 b includes a tool rotation drive source 41 controlled by the controller 5. The tool rotation drive source 41 is, for example, an electric motor, and its output shaft 41 a is coupled to the proximal end of the rotation shaft 22. The posture changing drive mechanism 4 c includes a posture changing drive source 42 controlled by the controller 5. The posture changing drive source 42 is, for example, an electric linear actuator, and the movement of the output rod 42 a that moves in the left-right direction in FIG. 3A is transmitted to the posture operating member 31 through the force transmission mechanism 43. The boost transmission mechanism 43 has a lever 43b that is rotatable around a support shaft 43a. The force of the output rod 42a acts on an action point P1 of the lever 43b that is long from the support shaft 43a. The force is applied to the posture operation member 31 at the force point P <b> 2 having a short distance, and the output of the posture changing drive source 42 is increased and transmitted to the posture operation member 31. If the boost transmission mechanism 43 is provided, a large force can be applied to the posture operation member 31 even with a linear actuator having a small output, and thus the linear actuator can be downsized. The rotary shaft 22 passes through an opening 44 formed in the lever 43b. Instead of providing a rotary actuator or the like, the position of the tip member 2 may be remotely operated manually.

姿勢変更用駆動機構4cには、姿勢変更用駆動源42の動作量を検出する動作量検出器45が設けられている。この動作量検出器45の検出値は、姿勢検出手段46に出力される。姿勢検出手段46は、動作量検出器45の出力により、先端部材2のX軸(図2)回りの傾動姿勢を検出する。姿勢検出手段46は、上記傾動姿勢と動作量検出器45の出力信号との関係を演算式またはテーブル等により設定した関係設定手段(図示せず)を有し、入力された出力信号から前記関係設定手段を用いて傾動姿勢を検出する。この姿勢検出手段46は、コントローラ5に設けられたものであっても、あるいは外部の制御装置に設けられたものであってもよい。   The posture change drive mechanism 4c is provided with an operation amount detector 45 for detecting the operation amount of the posture change drive source 42. The detection value of the movement amount detector 45 is output to the posture detection means 46. The posture detection means 46 detects the tilt posture of the tip member 2 around the X axis (FIG. 2) based on the output of the movement amount detector 45. The posture detection means 46 has relationship setting means (not shown) in which the relationship between the tilt posture and the output signal of the motion amount detector 45 is set by an arithmetic expression or a table, and the relationship is determined from the input output signal. The tilting posture is detected using setting means. This posture detection means 46 may be provided in the controller 5 or may be provided in an external control device.

また、姿勢変更用駆動機構4cには、電動アクチュエータである姿勢変更用駆動源42に供給される電力量を検出する供給電力計47が設けられている。この供給電力計47の検出値は、荷重検出手段48に出力される。荷重検出手段48は、供給電力計47の出力により、先端部材2に作用する荷重を検出する。荷重検出手段48は、上記荷重と供給電力計47の出力信号との関係を演算式またはテーブル等により設定した関係設定手段(図示せず)を有し、入力された出力信号から前記関係設定手段を用いて荷重を検出する。この荷重検出手段48は、コントローラ5に設けられたものであっても、あるいは外部の制御装置に設けられたものであってもよい。   The posture changing drive mechanism 4c is provided with a wattmeter 47 that detects the amount of power supplied to the posture changing drive source 42, which is an electric actuator. The detected value of the supplied wattmeter 47 is output to the load detecting means 48. The load detection means 48 detects the load acting on the tip member 2 based on the output of the wattmeter 47. The load detection means 48 has relation setting means (not shown) in which the relation between the load and the output signal of the supplied wattmeter 47 is set by an arithmetic expression or a table, and the relation setting means is determined from the input output signal. The load is detected using. The load detecting means 48 may be provided in the controller 5 or may be provided in an external control device.

コントローラ5は、前記姿勢検出手段46および荷重検出手段48の検出値に基づき、工具回転用駆動源41および姿勢変更用駆動源42を制御する。   The controller 5 controls the tool rotation drive source 41 and the posture change drive source 42 based on the detection values of the posture detection means 46 and the load detection means 48.

この遠隔操作型アクチュエータの動作を説明する。
工具回転用駆動源41を駆動すると、その回転力が回転軸22を介してスピンドル13に伝達されて、スピンドル13と共に工具1が回転する。工具1を回転させて骨等を切削加工する際に先端部材2に作用する荷重は、供給電力計47の検出値から、荷重検出手段48によって検出される。このように検出される荷重の値に応じて遠隔操作型アクチュエータ全体の送り量や後記先端部材2の姿勢変更を制御することにより、先端部材2に作用する荷重を適正に保った状態で骨の切削加工を行える。
The operation of this remote control type actuator will be described.
When the tool rotation drive source 41 is driven, the rotational force is transmitted to the spindle 13 via the rotation shaft 22, and the tool 1 rotates together with the spindle 13. The load acting on the tip member 2 when the tool 1 is rotated to cut bone or the like is detected by the load detection means 48 from the detection value of the supply wattmeter 47. By controlling the feed amount of the entire remote operation type actuator and the posture change of the distal end member 2 described later according to the load value thus detected, the load acting on the distal end member 2 can be appropriately maintained while maintaining the load. Cutting can be performed.

使用時には、姿勢変更用駆動源42を駆動させて、遠隔操作で先端部材2の姿勢変更を行う。例えば、姿勢変更用駆動源42により姿勢操作部材31を先端側へ進出させると、姿勢操作部材31によって先端部材2のハウジング11が押されて、先端部材2は図2(A)において先端側が下向きとなる側へ案内面F1,F2に沿って姿勢変更する。逆に、姿勢変更用駆動源42により姿勢操作部材31を後退させると、復元用弾性部材32の弾性反発力によって先端部材2のハウジング11が押し戻され、先端部材2は図2(A)において先端側が上向きとなる側へ案内面F1,F2に沿って姿勢変更する。その際、先端部材連結部15には、姿勢操作部材31の圧力、復元用弾性部材32の弾性反発力、および抜け止め部材21からの反力が作用しており、これらの作用力の釣り合いにより先端部材2の姿勢が決定される。先端部材2の姿勢は、動作量検出器45の検出値から、姿勢検出手段46によって検出される。そのため、遠隔操作で先端部材2の姿勢を適正に制御できる。   At the time of use, the posture changing drive source 42 is driven to change the posture of the tip member 2 by remote control. For example, when the posture operating member 31 is advanced to the distal end side by the posture changing drive source 42, the housing 11 of the distal end member 2 is pushed by the posture operating member 31, and the distal end member 2 is directed downward in FIG. The posture is changed along the guide surfaces F1 and F2 toward the side. On the other hand, when the posture operation member 31 is retracted by the posture changing drive source 42, the housing 11 of the tip member 2 is pushed back by the elastic repulsive force of the restoring elastic member 32, and the tip member 2 is shown in FIG. The posture is changed along the guide surfaces F1 and F2 to the side facing upward. At that time, the pressure of the posture operation member 31, the elastic repulsive force of the restoring elastic member 32, and the reaction force from the retaining member 21 act on the tip member connecting portion 15, and the balance of these acting forces The posture of the tip member 2 is determined. The posture of the tip member 2 is detected by the posture detection means 46 from the detection value of the movement amount detector 45. Therefore, the posture of the tip member 2 can be appropriately controlled by remote operation.

姿勢操作部材31はガイド孔30aに挿通されているため、姿勢操作部材31が長手方向と交差する方向に位置ずれすることがなく、常に先端部材2に対し適正に作用することができ、先端部材2の姿勢変更動作が正確に行われる。また、スピンドル13と回転軸22との連結箇所の中心が案内面F1,F2の曲率中心Oと同位置であるため、先端部材2の姿勢変更によって回転軸22に対して押し引きする力がかからず、先端部材2が円滑に姿勢変更できる。   Since the posture operation member 31 is inserted through the guide hole 30a, the posture operation member 31 does not shift in the direction intersecting the longitudinal direction, and can always act properly on the tip member 2, and the tip member 2 posture change operation is performed accurately. Further, since the center of the connecting portion between the spindle 13 and the rotating shaft 22 is at the same position as the center of curvature O of the guide surfaces F1 and F2, a force for pushing and pulling with respect to the rotating shaft 22 by changing the posture of the tip member 2 is increased. Accordingly, the posture of the tip member 2 can be changed smoothly.

加工中に先端部材2に力が作用した際、細長形状であるスピンドルガイド部3が大きく撓むことがあり得る。また、スピンドルガイド部3は、湾曲部を有する形状となることも考えられる。しかし、姿勢操作部材31は、ガイド孔30a内に一列に配列された複数個の力伝達部材であるボール31aおよび柱状体31bからなり、全体で可撓性であるため、スピンドルガイド部3のガイドパイプ30の撓みもしくは湾曲形状に合わせて姿勢操作部材31も撓む。そのため、スピンドルガイド部3が撓んだ場合もしくは湾曲部を有する場合でも姿勢変更動作が確実に行われる。   When a force acts on the tip member 2 during processing, the elongated spindle guide portion 3 may be greatly bent. Further, it is conceivable that the spindle guide portion 3 has a curved portion. However, the posture operation member 31 includes a plurality of balls 31a and columnar bodies 31b which are a plurality of force transmission members arranged in a line in the guide hole 30a, and is flexible as a whole. The posture operation member 31 is also bent in accordance with the bending or bending shape of the pipe 30. Therefore, even when the spindle guide portion 3 is bent or has a curved portion, the posture changing operation is reliably performed.

また、ボール31aと柱状体31bとを交互に配置したことにより、隣合う力伝達部材31a,31b同士が互いに球面と平面とで接する。このことにより、次の作用が得られる。
第1の作用は、スピンドルガイド部3のガイドパイプ30が撓んだ状態もしくは湾曲部を有する場合であっても、常に隣合う力伝達部材31a,31bのそれぞれの接触面が中央部で接触することである。例えば、図10のように全ての力伝達部材が柱状体31bであり、隣合う力伝達部材(柱状体)31b同士が互いに平面で接する場合、同図(B)に示すガイドパイプ30が撓んだ状態では、各力伝達部材31bの接触面の向きに若干の違いが生じ、対向する一対の接触面が端部しか接触しない。そのため、隣合う力伝達部材31b間で力を正確に伝達することが難しい。その点、隣合う力伝達部材31a,31bが互いに球面と平面とで接していると、常に対向する一対の接触面が中央部で接触するため、隣合う力伝達部材31a,31b間で力を正確に伝達できる。これにより、姿勢変更用駆動源42を小型化することが可能になると共に、姿勢変更用駆動源42の消費電力を低減できる。
Further, by alternately arranging the balls 31a and the columnar bodies 31b, the adjacent force transmission members 31a and 31b are in contact with each other by a spherical surface and a flat surface. As a result, the following effects are obtained.
The first action is that even when the guide pipe 30 of the spindle guide portion 3 is bent or has a curved portion, the contact surfaces of the adjacent force transmission members 31a and 31b always contact at the center portion. That is. For example, when all the force transmission members are columnar bodies 31b as shown in FIG. 10 and adjacent force transmission members (columnar bodies) 31b are in contact with each other in a plane, the guide pipe 30 shown in FIG. In this state, there is a slight difference in the direction of the contact surface of each force transmission member 31b, and the pair of opposed contact surfaces are in contact with only the end portions. Therefore, it is difficult to accurately transmit the force between the adjacent force transmission members 31b. In that respect, when the adjacent force transmission members 31a and 31b are in contact with each other on the spherical surface and the flat surface, a pair of opposed contact surfaces always come into contact with each other at the center portion, so that force is applied between the adjacent force transmission members 31a and 31b. Can communicate accurately. As a result, the posture changing drive source 42 can be reduced in size, and the power consumption of the posture changing drive source 42 can be reduced.

第2の作用は、姿勢操作部材31に力が印加されたときに、隣合う一対の力伝達部材31a,31bが力伝達部材並び方向と交差する方向にずれにくいことである。力伝達部材31a,31bはガイド孔30a内に配置されているが、力伝達部材31a,31bとガイド孔30aの内径面との間には若干の隙間がある。例えば、図11のように全ての力伝達部材がボール31aであり、隣合う力伝達部材31aが互いに球面で接する場合、同図(B)のように姿勢操作部材31に力Fが印加されると、隣合う一対の力伝達部材31aが前記隙間の分だけ互いに逆向きに力伝達部材並び方向と交差する方向に滑って、前記一対の力伝達部材31aがガイド孔30a内径面の周方向反対側の箇所に接する状態となる。その結果、各力伝達部材31a間の並び方向の距離が狭くなり(L1>L2)、姿勢操作部材31の全長が変わるため、先端部材2の姿勢変更精度が低下する。また、各力伝達部材31aがガイド孔31a内径面に接すると、力伝達部材31aとガイド孔30a内径面間に摩擦力が発生するため、姿勢変更用駆動源42が大きな駆動力を要する。その点、隣合う力伝達部材が互いに球面と平面とで接していると、隣合う一対の力伝達部材31a,31bが力伝達部材並び方向と交差する方向にずれにくく、先端部材2の姿勢を正確にコントロールでき、かつ姿勢変更用駆動源42を小型化し、姿勢変更用駆動源42の消費電力を低減できる。   The second effect is that when a force is applied to the posture operation member 31, the pair of adjacent force transmission members 31a and 31b are unlikely to shift in a direction intersecting the force transmission member arrangement direction. The force transmission members 31a and 31b are disposed in the guide hole 30a, but there is a slight gap between the force transmission members 31a and 31b and the inner diameter surface of the guide hole 30a. For example, when all the force transmission members are balls 31a as shown in FIG. 11 and adjacent force transmission members 31a are in contact with each other on a spherical surface, the force F is applied to the posture operation member 31 as shown in FIG. Then, a pair of adjacent force transmission members 31a slides in the direction crossing the direction in which the force transmission members are arranged in opposite directions by the gap, and the pair of force transmission members 31a are opposite to the circumferential direction of the inner diameter surface of the guide hole 30a. It will be in the state which touches the location of the side. As a result, the distance in the arrangement direction between the force transmission members 31a is reduced (L1> L2), and the total length of the posture operation member 31 is changed, so that the posture change accuracy of the tip member 2 is lowered. Further, when each force transmission member 31a comes into contact with the inner diameter surface of the guide hole 31a, a frictional force is generated between the force transmission member 31a and the inner diameter surface of the guide hole 30a, so that the posture changing drive source 42 requires a large driving force. In that respect, if the adjacent force transmission members are in contact with each other on the spherical surface and the flat surface, the pair of adjacent force transmission members 31a and 31b are not easily displaced in the direction intersecting the force transmission member arrangement direction, and the posture of the tip member 2 is changed. It is possible to accurately control, downsize the posture changing drive source 42, and reduce the power consumption of the posture changing drive source 42.

この遠隔操作型アクチュエータは、例えば人工関節置換手術において骨の髄腔部を削るのに使用されるものであり、施術時には、先端部材2の全部または一部が患者の体内に挿入して使用される。このため、上記のように先端部材2の姿勢を遠隔操作で変更できれば、常に工具1を適正な姿勢に保持した状態で骨の加工をすることができ、人工関節挿入用穴を精度良く仕上げることができる。   This remote control type actuator is used, for example, for cutting the medullary cavity of bone in artificial joint replacement surgery. During the operation, all or part of the distal end member 2 is inserted into the patient's body. The For this reason, if the posture of the tip member 2 can be changed by remote control as described above, the bone can be processed while the tool 1 is always held in an appropriate posture, and the artificial joint insertion hole is finished with high accuracy. Can do.

細長形状であるスピンドルガイド部3には、回転軸22および姿勢操作部材31を保護状態で設ける必要があるが、外郭パイプ25の中心部に回転軸22を設け、外郭パイプ25と回転軸22との間に、姿勢操作部材31を収容したガイドパイプ30と補強シャフト34とを円周方向に並べて配置した構成としたことにより、回転軸22および姿勢操作部材31を保護し、かつ内部を中空して軽量化を図りつつ剛性を確保できる。また、全体のバランスも良い。   The elongated spindle guide portion 3 needs to be provided with the rotating shaft 22 and the posture operation member 31 in a protected state. The rotating shaft 22 is provided at the center of the outer pipe 25, and the outer pipe 25, the rotating shaft 22, Since the guide pipe 30 accommodating the posture operation member 31 and the reinforcing shaft 34 are arranged side by side in the circumferential direction, the rotary shaft 22 and the posture operation member 31 are protected and the interior is hollow. It is possible to secure rigidity while reducing the weight. Also, the overall balance is good.

回転軸22を支持する転がり軸受26の外径面を、ガイドパイプ30と補強シャフト34とで支持させたため、余分な部材を用いずに転がり軸受26の外径面を支持できる。また、ばね要素27A,27Bにより転がり軸受26に予圧がかけられているため、ワイヤからなる回転軸22を高速回転させることができる。そのため、スピンドル13を高速回転させて加工することができ、加工の仕上がりが良く、工具1に作用する切削抵抗を低減させられる。ばね要素27A,27Bは隣合う転がり軸受26間に設けられているので、スピンドルガイド部3の径を大きくせずにばね要素27A,27Bを設けることができる。   Since the outer diameter surface of the rolling bearing 26 that supports the rotating shaft 22 is supported by the guide pipe 30 and the reinforcing shaft 34, the outer diameter surface of the rolling bearing 26 can be supported without using extra members. Moreover, since the preload is applied to the rolling bearing 26 by the spring elements 27A and 27B, the rotating shaft 22 made of a wire can be rotated at a high speed. Therefore, machining can be performed by rotating the spindle 13 at a high speed, the machining finish is good, and the cutting resistance acting on the tool 1 can be reduced. Since the spring elements 27A and 27B are provided between the adjacent rolling bearings 26, the spring elements 27A and 27B can be provided without increasing the diameter of the spindle guide portion 3.

この遠隔操作型アクチュエータは、スピンドルガイド部3が中空状であることを利用して、工具1等を冷却する冷却手段50を図4のように設けることができる。すなわち、冷却手段50は、遠隔操作型アクチュエータの外部に設けた冷却液供給装置51と、この冷却液供給装置51から駆動部ハウジング4a、スピンドルガイド部3、および先端部材2の内部を通って工具1に冷却液を導く冷却液供給管52とでなり、冷却液供給管52におけるスピンドルガイド部3を通る部分52aは外郭パイプ25自体が冷却液供給管52であり、外郭パイプ25の内部を冷却液が通過するようにしてある。工具1まで導かれた冷却液は、工具1の外周へ吐出される。このような冷却手段50を設ければ、冷却液により、工具1、被加工物、スピンドル13、回転軸22等の発熱箇所を冷却することができる。外郭パイプ25内に冷却液を通過させるため、冷却液供給用の管を別に設ける必要がなく、スピンドルガイド部3を簡素化および小径化できる。また、前記冷却液を転がり軸受26,29の潤滑に兼用させてもよい。そうすれば、軸受に一般的に使用されているグリス等を使用しなくてもよく、しかも別に潤滑装置を設けなくて済む。なお、工具1まで導かれた冷却液を工具1の外周へ吐出させずに、冷却液供給装置51へ戻す循環型の構成としてもよい。ただし、外郭パイプ25内に通過させる冷却液の流量が少ない場合は、さらに外部から冷却液を供給し、工具1や被加工物を冷却してもよい。   This remote control type actuator can be provided with a cooling means 50 for cooling the tool 1 or the like as shown in FIG. 4 by utilizing the fact that the spindle guide portion 3 is hollow. That is, the cooling means 50 includes a coolant supply device 51 provided outside the remote control type actuator, and a tool that passes from the coolant supply device 51 through the inside of the drive unit housing 4a, the spindle guide portion 3, and the tip member 2. 1 is a coolant supply pipe 52 that guides the coolant to 1, and a portion 52 a of the coolant supply pipe 52 that passes through the spindle guide portion 3 is the outer pipe 25 itself that is the coolant supply pipe 52, and cools the inside of the outer pipe 25. The liquid passes through. The coolant guided to the tool 1 is discharged to the outer periphery of the tool 1. If such a cooling means 50 is provided, the heat generating parts such as the tool 1, the workpiece, the spindle 13, and the rotating shaft 22 can be cooled by the coolant. Since the coolant is allowed to pass through the outer pipe 25, it is not necessary to provide a separate coolant supply pipe, and the spindle guide portion 3 can be simplified and reduced in diameter. Further, the cooling liquid may be used for lubricating the rolling bearings 26 and 29. By doing so, it is not necessary to use grease or the like generally used for bearings, and it is not necessary to provide a separate lubricating device. It is also possible to adopt a circulation type configuration in which the coolant guided to the tool 1 is returned to the coolant supply device 51 without being discharged to the outer periphery of the tool 1. However, when the flow rate of the cooling liquid passing through the outer pipe 25 is small, the cooling liquid may be further supplied from the outside to cool the tool 1 or the workpiece.

上記冷却液は、水もしくは生理食塩水であるのが望ましい。冷却液が水もしくは生理食塩水であれば、先端部材2を生体内に挿入して加工を行う場合に冷却液が生体に悪影響を与えないからである。冷却液を水もしくは生理食塩水とする場合、冷却液と接する部品の材質は、耐腐食性に優れたステンレスであるのが望ましい。この遠隔操作型アクチュエータを構成する他の各部品も、ステンレス製であってもよい。   The cooling liquid is preferably water or physiological saline. This is because if the coolant is water or physiological saline, the coolant does not adversely affect the living body when the tip member 2 is inserted into the living body to perform processing. When the coolant is water or physiological saline, it is desirable that the material of the parts in contact with the coolant is stainless steel having excellent corrosion resistance. Other parts constituting the remote control type actuator may also be made of stainless steel.

図5は異なる実施形態を示す。この遠隔操作型アクチュエータは、外郭パイプ25内の互いに180度の位相にある周方向位置に2本のガイドパイプ30を設け、そのガイドパイプ30の内径孔であるガイド孔30a内に前記同様の姿勢操作部材31が進退自在に挿通してある。2本のガイドパイプ30間には、ガイドパイプ30と同一ピッチ円C上に複数本の補強シャフト34が配置されている。復元用弾性部材32は設けられていない。案内面F1,F2は、曲率中心が点Oである球面、または点Oを通るX軸を軸心とする円筒面である。   FIG. 5 shows a different embodiment. This remote control type actuator is provided with two guide pipes 30 at circumferential positions in the outer pipe 25 that are 180 degrees in phase with each other, and in the guide hole 30a that is the inner diameter hole of the guide pipe 30, the same attitude as described above. The operating member 31 is inserted so as to freely advance and retract. Between the two guide pipes 30, a plurality of reinforcing shafts 34 are arranged on the same pitch circle C as the guide pipe 30. The restoring elastic member 32 is not provided. The guide surfaces F1 and F2 are spherical surfaces whose center of curvature is the point O, or cylindrical surfaces whose axis is the X axis passing through the point O.

駆動部4(図示せず)には、2つの姿勢操作部材31をそれぞれ個別に進退操作させる2つの姿勢変更用駆動源42(図示せず)が設けられており、これら2つの姿勢変更用駆動源42を互いに逆向きに駆動することで先端部材2の姿勢変更を行う。例えば、図5における上側の姿勢操作部材31を先端側へ進出させ、かつ下側の姿勢操作部材31を後退させると、上側の姿勢操作部材31によって先端部材2のハウジング11が押されることにより、先端部材2は図5(A)において先端側が下向きとなる側へ案内面F1,F2に沿って姿勢変更する。逆に、両姿勢操作部材31を逆に進退させると、下側の姿勢操作部材31によって先端部材2のハウジング11が押されることにより、先端部材2は図5(A)において先端側が上向きとなる側へ案内面Fに沿って姿勢変更する。その際、先端部材連結部15には、上下2つの姿勢操作部材31の圧力、および抜け止め部材21からの反力が作用しており、これらの作用力の釣り合いにより先端部材2の姿勢が決定される。この構成では、2つの姿勢操作部材31で先端部材2のハウジング11に加圧されるため、1つ姿勢操作部材31だけで加圧される前記実施形態に比べ、先端部材2の姿勢安定性を高めることができる。   The drive unit 4 (not shown) is provided with two posture change drive sources 42 (not shown) for individually moving the two posture operation members 31 forward and backward, and these two posture change drives. The posture of the tip member 2 is changed by driving the sources 42 in opposite directions. For example, when the upper posture operation member 31 in FIG. 5 is advanced to the distal end side and the lower posture operation member 31 is retracted, the housing 11 of the distal end member 2 is pushed by the upper posture operation member 31. The posture of the tip member 2 is changed along the guide surfaces F1 and F2 to the side in which the tip side faces downward in FIG. Conversely, when both posture operation members 31 are moved back and forth, the housing 11 of the tip member 2 is pushed by the lower posture operation member 31, and the tip member 2 is directed upward in FIG. 5A. The posture is changed along the guide surface F to the side. At that time, the pressure of the two upper and lower posture operating members 31 and the reaction force from the retaining member 21 are acting on the tip member connecting portion 15, and the posture of the tip member 2 is determined by the balance of these acting forces. Is done. In this configuration, the housing 11 of the tip member 2 is pressurized by the two posture operation members 31, so that the posture stability of the tip member 2 is improved as compared with the embodiment in which the pressure is applied by only one posture operation member 31. Can be increased.

図6はさらに異なる実施形態を示す。この遠隔操作型アクチュエータは、外郭パイプ25内の互いに120度の位相にある周方向位置に3本のガイドパイプ30を設け、そのガイドパイプ30の内径孔であるガイド孔30a内に前記同様の姿勢操作部材31が進退自在に挿通してある。3本のガイドパイプ30間には、ガイドパイプ30と同一ピッチ円C上に複数本の補強シャフト34が配置されている。復元用弾性部材32は設けられていない。案内面F1,F2は曲率中心が点Oである球面であり、先端部材2は任意方向に傾動可能である。   FIG. 6 shows a further different embodiment. This remote control type actuator is provided with three guide pipes 30 at circumferential positions at a phase of 120 degrees in the outer pipe 25, and the same posture as described above in a guide hole 30 a which is an inner diameter hole of the guide pipe 30. The operating member 31 is inserted so as to freely advance and retract. Between the three guide pipes 30, a plurality of reinforcing shafts 34 are arranged on the same pitch circle C as the guide pipes 30. The restoring elastic member 32 is not provided. The guide surfaces F1 and F2 are spherical surfaces whose center of curvature is a point O, and the tip member 2 can tilt in any direction.

駆動部4には、3つの姿勢操作部材31(31U,31L,31R)をそれぞれ個別に進退操作させる3つの姿勢変更用駆動源42(42U,42L,42R)(図8)が設けられており、これら3つの姿勢変更用駆動源42を互いに連係させて駆動することで先端部材2の姿勢変更を行う。
例えば、図6における上側の1つの姿勢操作部材31Uを先端側へ進出させ、かつ他の2つの姿勢操作部材31L,31Rを後退させると、上側の姿勢操作部材31Uによって先端部材2のハウジング11が押されることにより、先端部材2は図6(A)において先端側が下向きとなる側へ案内面F1,F2に沿って姿勢変更する。このとき、各姿勢操作部材31の進退量が適正になるよう、各姿勢変更用駆動源42が制御される。各姿勢操作部材31を逆に進退させると、左右の姿勢操作部材31L,31Rによって先端部材2のハウジング11が押されることにより、先端部材2は図6(A)において先端側が上向きとなる側へ案内面F1,F2に沿って姿勢変更する。
また、上側の姿勢操作部材31Uは静止させた状態で、左側の姿勢操作部材31Lを先端側へ進出させ、かつ右側の姿勢操作部材31Rを後退させると、左側の姿勢操作部材31Lによって先端部材2のハウジング11が押されることにより、先端部材2は右向き、すなわち図6(A)において紙面の裏側向きとなる側へ案内面F1,F2に沿って姿勢変更する。左右の姿勢操作部材31L,31Rを逆に進退させると、右の姿勢操作部材31Rによって先端部材2のハウジング11が押されることにより、先端部材2は左向きとなる側へ案内面F1,F2に沿って姿勢変更する。
このように姿勢操作部材31を円周方向の3箇所に設けることにより、先端部材2を上下左右の2軸(X軸、Y軸)の方向に姿勢変更することができる。その際、先端部材連結部15には、3つの姿勢操作部材31の圧力、および抜け止め部材21からの反力が作用しており、これらの作用力の釣り合いにより先端部材2の姿勢が決定される。この構成では、3つの姿勢操作部材31で先端部材2のハウジング11に加圧されるため、さらに先端部材2の姿勢安定性を高めることができる。姿勢操作部材31の数をさらに増やせば、先端部材2の姿勢安定性をより一層高めることができる。
The drive unit 4 is provided with three posture change drive sources 42 (42U, 42L, 42R) (FIG. 8) for individually moving the three posture operation members 31 (31U, 31L, 31R) forward and backward. The attitude of the tip member 2 is changed by driving these three attitude changing drive sources 42 in conjunction with each other.
For example, when the upper one posture operation member 31U in FIG. 6 is advanced to the distal end side and the other two posture operation members 31L and 31R are moved backward, the upper posture operation member 31U causes the housing 11 of the distal end member 2 to move. By being pushed, the tip member 2 changes its posture along the guide surfaces F1 and F2 to the side in which the tip side faces downward in FIG. At this time, each posture changing drive source 42 is controlled so that the amount of advance / retreat of each posture operation member 31 is appropriate. When each posture operation member 31 is moved back and forth, the housing 11 of the tip member 2 is pushed by the left and right posture operation members 31L and 31R, so that the tip member 2 moves to the side where the tip side is upward in FIG. The posture is changed along the guide surfaces F1 and F2.
Further, when the left posture operation member 31L is advanced and the right posture operation member 31R is retracted while the upper posture operation member 31U is stationary, the left posture operation member 31L is moved backward. When the housing 11 is pushed, the tip member 2 changes its posture along the guide surfaces F1 and F2 to the right, that is, the side facing the back side of the paper surface in FIG. When the left and right posture operation members 31L and 31R are moved back and forth, the housing 11 of the tip member 2 is pushed by the right posture operation member 31R, so that the tip member 2 moves along the guide surfaces F1 and F2 toward the left side. Change the posture.
Thus, by providing the posture operation member 31 at three positions in the circumferential direction, the tip member 2 can be changed in posture in the directions of the upper, lower, left and right axes (X axis, Y axis). At that time, the pressure of the three posture operating members 31 and the reaction force from the retaining member 21 are acting on the tip member connecting portion 15, and the posture of the tip member 2 is determined by the balance of these acting forces. The In this configuration, since the pressure is applied to the housing 11 of the tip member 2 by the three posture operation members 31, the posture stability of the tip member 2 can be further improved. If the number of posture operation members 31 is further increased, the posture stability of the tip member 2 can be further enhanced.

図7は、姿勢操作部材の構成が異なる実施形態を示す。この実施形態の姿勢操作部材31も、一列に配列された複数個の力伝達部材からなるが、全ての力伝達部材が、一方の端面が球面に加工され、もう一方の端面が平面に加工された柱状体31dであり、この柱状体31dを同じ向きに並べて配置してある。この場合も、隣合う力伝達部材31dが互いに球面と平面とで接するため、ボール31aと柱状体31bを交互に配置した場合と同様の作用が得られる。図例は、姿勢操作部材31を互いに120度の位相にある3箇所の周方向位置に設けた例であるが、姿勢操作部材31を互いに180度の位相にある2箇所の周方向位置に設けた構成や、周方向の1箇所に設けた姿勢操作部材31とこれに対応する復元用弾性部材32とを組み合わせた構成にも適用できる。   FIG. 7 shows an embodiment in which the configuration of the posture operation member is different. The posture operation member 31 of this embodiment also includes a plurality of force transmission members arranged in a line, but all the force transmission members have one end surface processed into a spherical surface and the other end surface processed into a flat surface. The columnar body 31d is arranged in the same direction. Also in this case, since the adjacent force transmission members 31d are in contact with each other on the spherical surface and the flat surface, the same operation as that in the case where the balls 31a and the columnar bodies 31b are alternately arranged is obtained. The illustrated example is an example in which the posture operation member 31 is provided at three circumferential positions at a phase of 120 degrees, but the posture operation member 31 is provided at two circumferential positions at a phase of 180 degrees. The present invention can also be applied to a configuration in which the posture operation member 31 provided at one place in the circumferential direction and the corresponding elastic member 32 for restoration are combined.

図6および図7のように姿勢操作部材31が周方向の3箇所に設けられている場合、姿勢変更駆動機構4cを例えば図8のように構成することができる。すなわち、各姿勢操作部材31(31U,31L,31R)をそれぞれ個別に進退操作させる3つの姿勢変更用駆動源42(42U,42L,42R)を左右並列に配置すると共に、各姿勢変更用駆動源42に対応するレバー43b(43bU,43bL,43bR)を共通の支軸43a回りに回動自在に設け、各レバー43bにおける支軸43aからの距離が長い作用点P1(P1U,P1L,P1R)に各姿勢変更用駆動源42の出力ロッド42a(42aU,42aL,42aR)の力が作用し、支軸43aからの距離が短い力点P2(P2U,P2L,P2R)で姿勢操作部材31に力を与える構成としてある。これにより、各姿勢変更用駆動源42の出力が増力して対応する姿勢操作部材31に伝達させることができる。なお、回転軸22は、上側の姿勢操作部材31U用のレバー43bUに形成された開口44を貫通させてある。   When the posture operation member 31 is provided in three places in the circumferential direction as shown in FIGS. 6 and 7, the posture change drive mechanism 4c can be configured as shown in FIG. 8, for example. That is, three posture change drive sources 42 (42U, 42L, 42R) for individually moving the posture operation members 31 (31U, 31L, 31R) forward and backward are arranged in parallel on the left and right sides, and each posture change drive source is provided. A lever 43b (43bU, 43bL, 43bR) corresponding to 42 is provided so as to be rotatable around a common support shaft 43a, and each lever 43b has a long distance from the support shaft 43a at an action point P1 (P1U, P1L, P1R). The force of the output rod 42a (42aU, 42aL, 42aR) of each posture changing drive source 42 is applied, and a force is applied to the posture operating member 31 at a force point P2 (P2U, P2L, P2R) having a short distance from the support shaft 43a. As a configuration. Thereby, the output of each posture change drive source 42 can be increased and transmitted to the corresponding posture operation member 31. The rotary shaft 22 passes through an opening 44 formed in the lever 43bU for the upper posture operation member 31U.

上記各実施形態はスピンドルガイド部3が直線形状であるが、この発明の遠隔操作型アクチュエータは、姿勢操作部材31が可撓性であり、スピンドルガイド部3が曲がっている場合でも先端部材2の姿勢変更動作が確実に行われるので、図9のようにスピンドルガイド部3を湾曲形状としてもよい。あるいは、スピンドルガイド部3の一部分のみを湾曲形状としてもよい。スピンドルガイド部3が湾曲形状であれば、直線形状では届きにくい骨の奥まで先端部材2を挿入することが可能となる場合があり、人工関節置換手術における人工関節挿入用穴の加工を精度良く仕上げることが可能になる。   In each of the above embodiments, the spindle guide portion 3 has a linear shape. However, the remote operation type actuator of the present invention is such that the posture operation member 31 is flexible and the tip member 2 is bent even when the spindle guide portion 3 is bent. Since the posture changing operation is reliably performed, the spindle guide portion 3 may be curved as shown in FIG. Alternatively, only a part of the spindle guide portion 3 may be curved. If the spindle guide portion 3 is curved, it may be possible to insert the distal end member 2 to the back of the bone, which is difficult to reach in the straight shape, so that the hole for artificial joint insertion can be accurately processed in artificial joint replacement surgery. It becomes possible to finish.

スピンドルガイド部3を湾曲形状とする場合、外郭パイプ25、ガイドパイプ30、および補強シャフト34を湾曲形状とする必要がある。また、回転軸22は変形しやすい材質を用いるのが良く、例えば形状記憶合金が適する。姿勢操作部材31は、複数のボールからなるものの他に、ガイドパイプ30の湾曲形状に合わせて湾曲させた複数の柱状体からなるものとしてもよい。その場合、湾曲させた柱状体は、長さが短めであり、面取り等により角部が落とされた形状であるのが好ましい。   When the spindle guide portion 3 has a curved shape, the outer pipe 25, the guide pipe 30, and the reinforcing shaft 34 need to have a curved shape. The rotating shaft 22 is preferably made of a material that is easily deformed, and for example, a shape memory alloy is suitable. The posture operation member 31 may be composed of a plurality of columnar bodies curved in accordance with the curved shape of the guide pipe 30 in addition to the plurality of balls. In that case, it is preferable that the curved columnar body has a short length and a shape in which corners are dropped by chamfering or the like.

この発明の実施形態にかかる遠隔操作型アクチュエータの概略構成を示す図である。It is a figure which shows schematic structure of the remote control type actuator concerning embodiment of this invention. (A)は同遠隔操作型アクチュエータの先端部材およびスピンドルガイド部の断面図、(B)はそのIIB−IIB断面図、(C)は先端部材と回転軸との連結構造を示す図である。(A) is a sectional view of the tip member and spindle guide portion of the remote operation type actuator, (B) is a sectional view taken along IIB-IIB, and (C) is a diagram showing a connection structure between the tip member and a rotating shaft. (A)は同遠隔操作型アクチュエータの工具回転用駆動機構および姿勢変更用駆動機構の正面図に制御系を組み合わせて表示した図、(B)はそのIIIB−IIIB断面図である。(A) is the figure which combined and displayed the control system in the front view of the tool rotation drive mechanism and attitude | position change drive mechanism of the remote operation type | mold actuator, (B) is the IIIB-IIIB sectional drawing. 同遠隔操作型アクチュエータに冷却手段を設けた場合の概略構成を示す図である。It is a figure which shows schematic structure at the time of providing a cooling means in the remote control type actuator. (A)はこの発明の異なる実施形態にかかる遠隔操作型アクチュエータの先端部材およびスピンドルガイド部の断面図、(B)はそのVB−VB断面図である。(A) is sectional drawing of the front-end | tip member and spindle guide part of the remote control type actuator concerning different embodiment of this invention, (B) is the VB-VB sectional drawing. (A)はこの発明のさらに異なる実施形態にかかる遠隔操作型アクチュエータの先端部材およびスピンドルガイド部の断面図、(B)はそのVIB−VIB断面図である。(A) is sectional drawing of the front-end | tip member and spindle guide part of the remote control type actuator concerning further different embodiment of this invention, (B) is the VIB-VIB sectional drawing. (A)はこの発明のさらに異なる実施形態にかかる遠隔操作型アクチュエータの先端部材およびスピンドルガイド部の断面図、(B)はそのVIIB−VIIB断面図である。(A) is sectional drawing of the front-end | tip member and spindle guide part of the remote control type actuator concerning further different embodiment of this invention, (B) is the VIIB-VIIB sectional drawing. 図6および図7に示す遠隔操作型アクチュエータの工具回転用駆動機構および姿勢変更用駆動機構の破断側面図である。FIG. 8 is a cutaway side view of a tool rotation drive mechanism and a posture change drive mechanism of the remote operation type actuator shown in FIGS. 6 and 7. スピンドルガイド部の形状が異なる遠隔操作型アクチュエータの概略構成を示す図である。It is a figure which shows schematic structure of the remote control type actuator from which the shape of a spindle guide part differs. (A)は全ての力伝達部材が柱状体からなる姿勢操作部材の真っ直ぐな状態を示す断面図、(B)は撓んだ状態を示す断面図である。(A) is sectional drawing which shows the straight state of the attitude | position operation member which all the force transmission members consist of columnar bodies, (B) is sectional drawing which shows the bent state. (A)は全ての力伝達部材がボールからなる姿勢操作部材に力が印加されていない状態を示す断面図、(B)は力が印加されている状態を示す断面図である。(A) is sectional drawing which shows the state by which the force is not applied to the attitude | position operation member which all the force transmission members consist of a ball | bowl, (B) is sectional drawing which shows the state in which the force is applied.

符号の説明Explanation of symbols

1…工具
2…先端部材
3…スピンドルガイド部
4a…駆動部ハウジング
5…コントローラ
13…スピンドル
15…先端部材連結部
22…回転軸
25…外郭パイプ
26,29…転がり軸受
27A,27B…ばね要素
30…ガイドパイプ
30a…ガイド孔
31…姿勢操作部材
31a…ボール(力伝達部材)
31b…柱状体(力伝達部材)
31d…柱状体(力伝達部材)
32…復元用弾性部材
34…補強シャフト
41…工具回転用駆動源
42…姿勢変更用駆動源
DESCRIPTION OF SYMBOLS 1 ... Tool 2 ... Tip member 3 ... Spindle guide part 4a ... Drive part housing 5 ... Controller 13 ... Spindle 15 ... Tip member connection part 22 ... Rotating shaft 25 ... Outer pipe 26, 29 ... Rolling bearing 27A, 27B ... Spring element 30 ... guide pipe 30a ... guide hole 31 ... posture operation member 31a ... ball (force transmission member)
31b ... Columnar body (force transmission member)
31d ... Columnar body (force transmission member)
32 ... Elastic member for restoration 34 ... Reinforcing shaft 41 ... Drive source for tool rotation 42 ... Drive source for posture change

Claims (13)

細長形状のスピンドルガイド部と、このスピンドルガイド部の先端に先端部材連結部を介して姿勢変更自在に取付けられた先端部材と、前記スピンドルガイド部の基端が結合された駆動部ハウジングとを備え、
前記先端部材は、工具を保持するスピンドルを回転自在に支持し、前記スピンドルガイド部は、前記駆動部ハウジング内に設けられた工具回転用駆動源の回転を前記スピンドルに伝達する回転軸と、両端に貫通したガイド孔とを内部に有し、先端が前記先端部材に接して進退動作することにより前記先端部材を姿勢変更させる姿勢操作部材を前記ガイド孔内に進退自在に挿通し、前記姿勢操作部材を進退させる姿勢変更用駆動源を前記駆動部ハウジング内に設け、
前記姿勢操作部材は、一列に配列された複数個の力伝達部材からなり、これら各力伝達部材は、隣合う力伝達部材が互いに球面と平面とで接する形状であることを特徴とする遠隔操作型アクチュエータ。
An elongated spindle guide part, a tip member attached to the tip of the spindle guide part via a tip member connecting part so that the posture can be freely changed, and a drive part housing to which the base end of the spindle guide part is coupled. ,
The tip member rotatably supports a spindle that holds a tool, and the spindle guide portion includes a rotating shaft that transmits rotation of a driving source for tool rotation provided in the driving portion housing to the spindle, and both ends. A guide hole penetrating into the guide hole, and a posture operation member for changing the posture of the tip member by advancing and retreating with the tip contacting the tip member is inserted into the guide hole so as to be able to advance and retract. A posture changing drive source for moving the member forward and backward is provided in the drive unit housing,
The posture operation member includes a plurality of force transmission members arranged in a line, and each of these force transmission members has a shape in which adjacent force transmission members are in contact with each other on a spherical surface and a plane. Type actuator.
請求項1において、前記力伝達部材は柱状体およびボールであり、これら2種の力伝達部材を交互に配置して前記姿勢操作部材とした遠隔操作型アクチュエータ。   2. The remote operation type actuator according to claim 1, wherein the force transmission member is a columnar body and a ball, and the two types of force transmission members are alternately arranged to form the posture operation member. 請求項1において、前記力伝達部材は、一方の端面が球面に加工され、もう一方の端面が平面に加工された柱状体であり、この力伝達部材を同じ向きに並べて前記姿勢操作部材とした遠隔操作型アクチュエータ。   In Claim 1, the said force transmission member is a columnar body by which one end surface was processed into the spherical surface, and the other end surface was processed into the plane, This force transmission member was put in order and used as the said attitude | position operation member. Remote control type actuator. 請求項1ないし請求項3のいずれか1項において、前記ガイド孔およびこのガイド孔内に挿通された姿勢操作部材を1箇所のみに設け、前記先端部材を所定姿勢側へ付勢する復元用弾性部材を設け、前記姿勢操作部材は前記復元用弾性部材の付勢力に抗して前記先端部材を姿勢変更させるものとした遠隔操作型アクチュエータ。   4. The restoring elasticity according to claim 1, wherein the guide hole and the posture operation member inserted into the guide hole are provided at only one position, and the tip member is urged toward a predetermined posture side. 5. A remote operation type actuator provided with a member, wherein the posture operation member changes the posture of the tip member against an urging force of the elastic member for restoration. 請求項1ないし請求項3のいずれか1項において、前記ガイド孔およびこのガイド孔内に挿通された姿勢操作部材を2箇所に設け、前記姿勢変更用駆動源を各姿勢操作部材に対して個別に設け、前記2箇所の姿勢操作部材の前記先端部材への作用力の釣り合いにより前記先端部材の姿勢を変更、維持させるものとした遠隔操作型アクチュエータ。   4. The guide hole and the posture operation member inserted into the guide hole are provided at two locations according to claim 1, and the posture change drive source is individually provided for each posture operation member. A remote-operated actuator that is provided on the front end and changes and maintains the posture of the tip member by balancing the acting forces of the two posture operation members on the tip member. 請求項1ないし請求項3のいずれか1項において、前記先端部連結部材が、前記先端部材を任意方向に傾動可能に支持するものであり、前記ガイド孔およびこのガイド孔内に挿通された姿勢操作部材を、前記先端部材の傾動中心の周りの3箇所以上に設け、前記姿勢変更用駆動源を各姿勢操作部材に対して個別に設け、前記3箇所以上の姿勢操作部材の前記先端部材への作用力の釣り合いにより前記先端部材の姿勢を変更、維持させるものとした遠隔操作型アクチュエータ。   4. The posture according to claim 1, wherein the tip end connecting member supports the tip member so as to be tiltable in an arbitrary direction, and is inserted into the guide hole and the guide hole. Operation members are provided at three or more positions around the tilt center of the tip member, and the posture changing drive source is provided individually for each posture operation member, to the tip member of the three or more posture operation members. A remote-operated actuator that changes and maintains the posture of the tip member by balancing the acting forces. 請求項1ないし請求項6のいずれか1項において、前記姿勢変更用駆動源の動作量を検出する動作量検出器を設け、この動作量検出器の検出値から前記先端部材の姿勢を検出する姿勢検出手段を設けた遠隔操作型アクチュエータ。   7. The operation amount detector for detecting an operation amount of the posture changing drive source according to claim 1, wherein the operation amount detector detects a posture of the tip member from a detection value of the operation amount detector. Remote control type actuator provided with attitude detection means. 請求項1ないし請求項7のいずれか1項において、前記姿勢変更用駆動源は電動アクチュエータであり、この電動アクチュエータへの供給電力を計測して前記先端部材に作用する荷重を検出する荷重検出手段を設けた遠隔操作型アクチュエータ。   8. The load detecting means according to claim 1, wherein the posture changing drive source is an electric actuator, and a load acting on the tip member is detected by measuring power supplied to the electric actuator. Remote operation type actuator provided with 請求項1ないし請求項8のいずれか1項において、前記スピンドルガイド部が、このスピンドルガイド部の外郭となる外郭パイプを有し、前記ガイド孔が、前記外郭パイプ内に設けられたガイドパイプの内径孔である遠隔操作型アクチュエータ。   9. The guide pipe according to claim 1, wherein the spindle guide portion includes an outer pipe serving as an outer shell of the spindle guide portion, and the guide hole is provided in the outer pipe. Remote control type actuator with an inner diameter hole. 請求項9において、前記外郭パイプ内の中心に前記回転軸を配置し、この回転軸と外郭パイプの内径面との間に、複数本の補強シャフトと前記ガイドパイプとを円周方向に並べて設けた遠隔操作型アクチュエータ。   The rotation shaft is disposed at the center of the outer pipe according to claim 9, and a plurality of reinforcing shafts and the guide pipe are arranged in a circumferential direction between the rotation shaft and an inner diameter surface of the outer pipe. Remote controlled actuator. 請求項10において、前記スピンドルガイド部内の前記回転軸を回転自在に支持する複数の転がり軸受を設け、これら複数の転がり軸受の外径面を、前記複数本の補強シャフトと前記ガイドパイプとで支持した遠隔操作型アクチュエータ。   11. The rolling bearing according to claim 10, wherein a plurality of rolling bearings are provided for rotatably supporting the rotating shaft in the spindle guide portion, and outer diameter surfaces of the plurality of rolling bearings are supported by the plurality of reinforcing shafts and the guide pipe. Remote controlled actuator. 請求項9ないし請求項11のいずれか1項において、前記スピンドルガイド部内の前記回転軸を回転自在に支持する複数の転がり軸受を設け、隣合う転がり軸受間に、これら転がり軸受に対して予圧を与えるばね要素を設けた遠隔操作型アクチュエータ。   In any one of Claims 9 thru | or 11, the some rolling bearing which supports the said rotating shaft in the said spindle guide part rotatably is provided, A preload is applied with respect to these rolling bearings between adjacent rolling bearings. Remote control type actuator with spring element to give. 請求項1ないし請求項18のいずれか1項において、前記スピンドルガイド部は湾曲した箇所を有する遠隔操作型アクチュエータ。   The remote control type actuator according to any one of claims 1 to 18, wherein the spindle guide portion has a curved portion.
JP2008211688A 2008-08-20 2008-08-20 Remote control type actuator Pending JP2010046197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008211688A JP2010046197A (en) 2008-08-20 2008-08-20 Remote control type actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008211688A JP2010046197A (en) 2008-08-20 2008-08-20 Remote control type actuator

Publications (1)

Publication Number Publication Date
JP2010046197A true JP2010046197A (en) 2010-03-04

Family

ID=42063822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008211688A Pending JP2010046197A (en) 2008-08-20 2008-08-20 Remote control type actuator

Country Status (1)

Country Link
JP (1) JP2010046197A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108623A1 (en) * 2010-03-05 2011-09-09 Ntn株式会社 Remote-controlled actuator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108623A1 (en) * 2010-03-05 2011-09-09 Ntn株式会社 Remote-controlled actuator
JP2011182851A (en) * 2010-03-05 2011-09-22 Ntn Corp Remote controlled actuator
US9282976B2 (en) 2010-03-05 2016-03-15 Ntn Corporation Remote-controlled actuator assembly

Similar Documents

Publication Publication Date Title
JP5289470B2 (en) Flexible cable
EP2340772B1 (en) Remote-controlled actuator
JP5464892B2 (en) Remote control type actuator
WO2010041397A1 (en) Remotely operated actuator
JP5202200B2 (en) Remote control type actuator
WO2010137603A1 (en) Remotely operated actuator
JP5538795B2 (en) Remote control type actuator
JP5500890B2 (en) Remote control type actuator
WO2011037131A1 (en) Remote operation actuator and plastic forming method for attitude operation member
JP5258495B2 (en) Remote control type actuator
JP2010046197A (en) Remote control type actuator
JP5213735B2 (en) Remote control type actuator
JP5557522B2 (en) Remote control type actuator
JP2010051439A (en) Remote-controlled actuator
JP5500891B2 (en) Remote control type actuator
JP2010046764A (en) Remote operation type actuator
JP2010088812A (en) Remote control type actuator
JP5495862B2 (en) Remote control type actuator
JP5388702B2 (en) Remote control type actuator
JP5388701B2 (en) Remote control type actuator
JP5258594B2 (en) Remote control type actuator
JP5197293B2 (en) Remote control type actuator
JP2012034883A (en) Remote controlled actuator
JP5213666B2 (en) Remote control type actuator
JP5213654B2 (en) Remote control type actuator