JP5254598B2 - Method for producing high molecular weight high ortho novolac resin - Google Patents

Method for producing high molecular weight high ortho novolac resin Download PDF

Info

Publication number
JP5254598B2
JP5254598B2 JP2007293464A JP2007293464A JP5254598B2 JP 5254598 B2 JP5254598 B2 JP 5254598B2 JP 2007293464 A JP2007293464 A JP 2007293464A JP 2007293464 A JP2007293464 A JP 2007293464A JP 5254598 B2 JP5254598 B2 JP 5254598B2
Authority
JP
Japan
Prior art keywords
ortho
molecular weight
novolak resin
reaction
high molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007293464A
Other languages
Japanese (ja)
Other versions
JP2009120649A (en
Inventor
進一 瀧本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2007293464A priority Critical patent/JP5254598B2/en
Publication of JP2009120649A publication Critical patent/JP2009120649A/en
Application granted granted Critical
Publication of JP5254598B2 publication Critical patent/JP5254598B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は未反応フェノール類、および2核体含有率が少ない高分子量ハイオルソノボラック樹脂の製造方法に関する。   The present invention relates to a method for producing unreacted phenols and a high molecular weight high ortho novolac resin having a low binuclear content.

ノボラック型フェノール樹脂は、一般にフェノール類とアルデヒド類とを酸性触媒の存在下に付加縮合して製造される。前記酸性触媒として、塩酸、硝酸、硫酸、リン酸、パラトルエンスルホン酸、シュウ酸などの強酸を使用すると、フェノール類がメチレン結合を介してオルソ位−パラ位、パラ位同士、オルソ位同士で結合したものが混在する所謂ランダムノボラック樹脂が得られる。
これに対してハイオルソノボラック樹脂はフェノール類がメチレン結合を介してオルソ位同士で結合したものを多く含む樹脂で、前記触媒として例えば二価金属(Ca、Mg、Znなど)の酢酸塩類などの弱酸を使用して反応することで得られる。
このようなハイオルソノボラック樹脂は、高温下でも揮発成分が少なく、例えばエポキシ樹脂の硬化剤として使用した場合、耐熱性に優れた成形物が得られる。また、オルソーオルソ結合の割合が高いので、分子が直鎖状となり、その結果、成形物の靭性が向上し、さらにエポキシ配合物のポットライフが長くなるなどの効果が得られる。
しかし、ハイオルソノボラック樹脂を合成する場合、反応系のpHが弱酸性領域であるためランダムノボラック樹脂と比較して反応速度が遅く、また未反応フェノール類や2核体などの低分子量成分を多く含む樹脂となる。
このような未反応物が多く含まれると、製品を使用現場で使用した時、未反応物が昇華し、生産設備に付着して汚したり、製品に混入して不良品を発生させ、生産歩留まりを低下させてしまう。
The novolac type phenol resin is generally produced by addition condensation of phenols and aldehydes in the presence of an acidic catalyst. When a strong acid such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, p-toluenesulfonic acid, or oxalic acid is used as the acidic catalyst, the phenols are ortho-para-position, para-position, and ortho-position via a methylene bond. A so-called random novolak resin in which the bonded ones are mixed is obtained.
On the other hand, high ortho novolac resin is a resin containing many phenols bonded at ortho positions through a methylene bond. Examples of the catalyst include acetates of divalent metals (Ca, Mg, Zn, etc.). It can be obtained by reacting with a weak acid.
Such a high-ortho novolak resin has few volatile components even at high temperatures. For example, when it is used as a curing agent for an epoxy resin, a molded product having excellent heat resistance can be obtained. Further, since the ratio of ortho-ortho bond is high, the molecule becomes linear, and as a result, the toughness of the molded product is improved and the pot life of the epoxy compound is increased.
However, when synthesizing a high ortho novolac resin, the reaction system has a low acidic pH range, so the reaction rate is slower than that of a random novolac resin, and there are many low molecular weight components such as unreacted phenols and dinuclear compounds. It becomes resin containing.
When such unreacted substances are contained in a large amount, when the product is used at the site of use, the unreacted substances sublimate and adhere to the production equipment and become contaminated. Will be reduced.

この問題を解決するために、従来、さまざまな方法が提案されている。
例えば特許文献1には、未反応フェノール類および2核体を水蒸気蒸留によって蒸留除去する方法が示されている。
しかし、この方法では、2核体を水蒸気蒸留で除去するためには、少なくとも220℃以上の高温で長時間蒸留を行うことが必要となる。さらに特許文献1によれば、ノボラック樹脂の分子量を上げるために未反応フェノール類および2核体を除去した後、2次反応として再びアルデヒド類とシュウ酸を加えて反応させているが、2次反応のフェノール類とアルデヒド類の反応が強酸存在下で行われること、およびこの段階で系内に存在するフェノール類のパラ位が空位であることから、2次反応で生成するメチレン結合はパラ位同士あるいはオルソ位−パラ位のものが大部分となり、高分子量のノボラック樹脂は得られるものの、オルソ位同士の結合比率は一般的なハイオルソノボラック樹脂に比べて低くなる。
特許文献2には、まず1次反応としてフェノール類とアルデヒド類とを無触媒の下、反応温度180〜280℃で反応させてハイオルソノボラック樹脂を合成した後、2次反応としてアルデヒド類と有機ホスホン酸を追加して反応を行い、高分子量ノボラック樹脂を得る方法が示されている。
しかし、前記有機ホスホン酸は、ハイオルソノボラック樹脂の合成触媒として公知である二価金属の酢酸塩類などの弱酸性触媒と比較すると、酸性度が高いため、得られるノボラック樹脂のオルソ位同士の結合比率は、一般的なハイオルソノボラック樹脂に比べて低くなる。
また特許文献3には、フェノール類と二価金属塩の存在下パラホルムアルデヒドを100〜150℃の温度で連続的に供給し、水を除去しつつ反応するノボラック樹脂の製造方法が示されている。
しかし特許文献3記載の方法は反応時間が短くなるという利点はあるものの、系内の固形分濃度が高くなることから、高分子量或いは低分子量成分の少ない樹脂の製造は困難である。そのために、未反応フェノール類および2核体の含有率が少ない高分子量ハイオルソノボラック樹脂は得られない。
In order to solve this problem, various methods have been conventionally proposed.
For example, Patent Document 1 discloses a method of distilling off unreacted phenols and dinuclear substances by steam distillation.
However, in this method, in order to remove the binuclear body by steam distillation, it is necessary to perform distillation for a long time at a high temperature of at least 220 ° C. or more. Further, according to Patent Document 1, after removing unreacted phenols and dinuclear bodies to increase the molecular weight of the novolak resin, aldehydes and oxalic acid are added and reacted again as a secondary reaction. Since the reaction of the phenols and aldehydes in the reaction is carried out in the presence of a strong acid, and the para position of the phenols present in the system at this stage is vacant, the methylene bond formed in the secondary reaction is in the para position. Although most of them are ortho-or para-positions and a high molecular weight novolak resin is obtained, the bond ratio between ortho-positions is lower than that of a general high ortho novolac resin.
In Patent Document 2, first, phenols and aldehydes are reacted as a primary reaction in the absence of a catalyst at a reaction temperature of 180 to 280 ° C. to synthesize a high ortho novolak resin, and then as secondary reactions, aldehydes and organics are synthesized. A method for obtaining a high molecular weight novolak resin by performing a reaction by adding phosphonic acid is shown.
However, since the organic phosphonic acid has a higher acidity than a weakly acidic catalyst such as a divalent metal acetate known as a synthesis catalyst for a high ortho novolac resin, the bond between the ortho positions of the resulting novolak resin is obtained. The ratio is lower than that of a general high ortho novolac resin.
Patent Document 3 discloses a method for producing a novolak resin in which paraformaldehyde is continuously supplied at a temperature of 100 to 150 ° C. in the presence of a phenol and a divalent metal salt, and the reaction is performed while removing water. .
However, although the method described in Patent Document 3 has an advantage that the reaction time is shortened, it is difficult to produce a resin having a low molecular weight or a low molecular weight component because the solid concentration in the system is high. Therefore, a high molecular weight high ortho novolac resin having a low content of unreacted phenols and dinuclear bodies cannot be obtained.

特開平11−246643号公報Japanese Patent Application Laid-Open No. 11-246643 特開2003−212943号公報JP 2003-212943 A 特開2001−247639号公報Japanese Patent Laid-Open No. 2001-247639

本発明は、以上のような従来の課題を解決するために、鋭意研究がなされたものであり、未反応フェノール類および2核体の含有率が低く、かつ高分子量でオルソ−オルソ結合を多く含むハイオルソノボラック樹脂を提供することを目的とする。   The present invention has been intensively studied in order to solve the conventional problems as described above, and has a low content of unreacted phenols and dinuclear compounds, and has a high molecular weight and a large number of ortho-ortho bonds. It aims at providing the high ortho novolak resin containing.

このような目的は、下記1〜7記載の本発明により達成される。すなわち、本発明は、
1.フェノール類と弱酸性触媒および有機溶剤の存在下、アルデヒド類を逐次的に添加して反応させると共に、系内の水分を除去することを特徴とする高分子量ハイオルソノボラック樹脂の製造方法、
2.前記反応温度が130〜180℃になるように、沸点が80〜180℃の範囲にある有機溶剤を用いる請求項1に記載の高分子量ハイオルソノボラック樹脂の製造方法、
3.さらに未反応フェノール類の減圧蒸留による除去工程が設けられ、当該除去工程における蒸留温度が180℃以下で、かつ真空度が6666Paabs(50mmHgabs)以下である請求項1または2に記載の高分子量ハイオルソノボラック樹脂の製造方法、
4.前記高分子量ハイオルソノボラック樹脂の全メチレン結合に対するオルソ−オルソ結合比率が75%以上である請求項1〜3のいずれかに記載の高分子量ハイオルソノボラック樹脂の製造方法、
を提供するものである。
Such an object is achieved by the present invention described in the following 1-7. That is, the present invention
1. A method for producing a high molecular weight high ortho novolac resin, characterized by removing hydration in the system while sequentially adding and reacting aldehydes in the presence of phenols, a weakly acidic catalyst and an organic solvent,
2. The method for producing a high molecular weight high ortho novolak resin according to claim 1, wherein an organic solvent having a boiling point in the range of 80 to 180 ° C is used so that the reaction temperature is 130 to 180 ° C.
3. A high-molecular-weight high-ortho according to claim 1 or 2, further comprising a step of removing unreacted phenols by distillation under reduced pressure, wherein the distillation temperature in the removal step is 180 ° C or lower and the degree of vacuum is 6666 Paabs (50mmHgabs) or lower. Production method of novolac resin,
4). The method for producing a high molecular weight high-ortho novolak resin according to any one of claims 1 to 3, wherein the high-molecular weight high-ortho novolak resin has an ortho-ortho bond ratio with respect to all methylene bonds of 75% or more.
Is to provide.

本発明の高分子量ハイオルソノボラック樹脂の製造方法により、樹脂中の未反応フェノール類および2核体の含有率が低く、かつ高分子量でオルソ−オルソ結合を多く含むハイオルソノボラック樹脂を提供することができる。
その結果、本発明のハイオルソノボラック樹脂は、高温下でも揮発成分が少なく、例えばエポキシ樹脂の硬化剤として使用した場合、耐熱性に優れた成形物が得られる。また、オルソーオルソ結合の割合が高いので、分子が直鎖状となり、その結果、成形物の靭性が向上し、さらにエポキシ配合物のポットライフが長くなるなどの効果が得られる。
By the method for producing a high molecular weight high ortho novolak resin of the present invention, a high ortho novolac resin having a low content of unreacted phenols and dinuclear compounds in the resin and having a high molecular weight and a large number of ortho-ortho bonds is provided. Can do.
As a result, the high-ortho novolak resin of the present invention has few volatile components even at high temperatures. For example, when it is used as a curing agent for epoxy resins, a molded product having excellent heat resistance can be obtained. Further, since the ratio of ortho-ortho bond is high, the molecule becomes linear, and as a result, the toughness of the molded product is improved and the pot life of the epoxy compound is increased.

以下、本発明を詳しく説明する。
本発明におけるハイオルソノボラック樹脂は、フェノール類とアルデヒド類を弱酸性触媒の下で反応させて製造される。
本発明方法に使用されるフェノール類としては、一般的なフェノール樹脂の製造に使用されるものであれば良く、例えばフェノール、クレゾール、エチルフェノール、キシレノール、ブチルフェノール、オクチルフェノール、ノニルフェノール、フェニルフェノール、シクロヘキシルフェノール、トリメチルフェノール、ビスフェノールA、カテコール、レゾシノール、ハイドロキノン、ナフトール、ピロガロール、バニリン、キシレノールなどを、単独又は2種以上混合して使用することができる。これらのうち、フェノールやクレゾール類が実用上好ましい。
The present invention will be described in detail below.
The high ortho novolak resin in the present invention is produced by reacting phenols and aldehydes under a weakly acidic catalyst.
The phenols used in the method of the present invention may be those used for the production of general phenol resins, such as phenol, cresol, ethylphenol, xylenol, butylphenol, octylphenol, nonylphenol, phenylphenol, cyclohexylphenol. , Trimethylphenol, bisphenol A, catechol, resorcinol, hydroquinone, naphthol, pyrogallol, vanillin, xylenol and the like can be used alone or in admixture of two or more. Of these, phenol and cresols are practically preferable.

一方、フェノール類と反応させるアルデヒド類としては、フェノール樹脂の製造に使用可能とされているアルデヒド類であれば使用可能である。例えば、ホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、ヒドロキシベンズアルデヒド、パラホルムアルデヒド、プロピルアルデヒド、ブチルアルデヒド、イソバレルアルデヒド、ヘキシルアルデヒド、グリオキザール、クロトンアルデヒド、グルタルアルデヒドなどを、単独もしくは2種以上混合して使用することができる。これらのうち、ホルムアルデヒドが実用上好ましい。
上記アルデヒド類の使用量は、フェノール類の合計量1モルに対して、0.6〜1.5モル、好ましくは0.7〜1.2モルの割合で用いるのが望ましい。このアルデヒド類の使用量が0.6モルより少ないと、低分子量の樹脂しか得られず、一方アルデヒド類が1.5モルより多いと、ゲル化の危険性が発生する可能性があるため好ましくない。
このようなアルデヒド類の逐次的添加手段としては、公知のプランジャーポンプ、ダイヤフラムポンプなどの高圧ポンプや、回転容積型の一軸偏心ネジポンプ、およびチューブポンプなどのスラリーポンプが挙げられる。
On the other hand, as aldehydes to be reacted with phenols, any aldehydes that can be used for the production of phenol resins can be used. For example, formaldehyde, acetaldehyde, benzaldehyde, hydroxybenzaldehyde, paraformaldehyde, propylaldehyde, butyraldehyde, isovaleraldehyde, hexylaldehyde, glyoxal, crotonaldehyde, glutaraldehyde, etc. can be used alone or in combination of two or more. . Of these, formaldehyde is practically preferable.
The aldehydes are used in an amount of 0.6 to 1.5 mol, preferably 0.7 to 1.2 mol, based on 1 mol of the total amount of phenols. If the amount of aldehydes used is less than 0.6 moles, only low molecular weight resins can be obtained. On the other hand, if the amount of aldehydes is more than 1.5 moles, gelation may occur, which is preferable. Absent.
Examples of the sequential addition means of aldehydes include a high-pressure pump such as a known plunger pump and a diaphragm pump, a slurry pump such as a rotary volume type uniaxial eccentric screw pump, and a tube pump.

本発明の場合、上記反応に使用する触媒の種類は、フェノール類のオルソ−オルソ結合を形成させる上で重要である。オルソ−オルソ結合を形成させるには反応系を弱酸性とすることが必要であり、この観点から本発明に適する触媒としては、二価金属(Ca、Mg、Znなど)の酢酸塩、ホウ酸、二価金属(Ca、Mg、Znなど)のホウ酸塩などの弱酸性触媒が挙げられるが、実用上酢酸亜鉛が好ましい。
これらの弱酸性触媒は、単独もしくは2種以上混合して使用することができる。
このような弱酸性触媒の配合量は、フェノール類100質量部に対して0.1〜20質量部、好ましくは0.1〜10重量部、更に好ましくは0.2〜5重量部の割合で用いるのが望ましい。
なお、通常のノボラック樹脂を製造するときに使用する触媒として、塩酸、硝酸、硫酸、リン酸、パラトルエンスルホン酸、シュウ酸などの強酸類があるが、これらを使用すると反応系のpHが低くなり過ぎ、その結果、オルソ−オルソ結合以外のメチレン結合が多く生成する結果となる。加えて、低分子量成分が十分に低減しないまま高分子量化が先に進んでしまうため、目的の樹脂が得られなくなる。
そこで、本発明方法では、このような強酸類は一切使用しないことが必要である。
In the case of the present invention, the type of catalyst used in the above reaction is important for forming an ortho-ortho bond of phenols. In order to form an ortho-ortho bond, it is necessary to make the reaction system weakly acidic. From this viewpoint, catalysts suitable for the present invention include acetates of divalent metals (Ca, Mg, Zn, etc.), boric acid. And weakly acidic catalysts such as borates of divalent metals (Ca, Mg, Zn, etc.), but zinc acetate is practically preferred.
These weakly acidic catalysts can be used alone or in admixture of two or more.
The amount of such weakly acidic catalyst is 0.1 to 20 parts by weight, preferably 0.1 to 10 parts by weight, more preferably 0.2 to 5 parts by weight, based on 100 parts by weight of phenols. It is desirable to use it.
In addition, there are strong acids such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, paratoluenesulfonic acid, oxalic acid, etc. as catalysts used in the production of ordinary novolak resins. When these are used, the pH of the reaction system is lowered. As a result, many methylene bonds other than the ortho-ortho bond are formed. In addition, since the high molecular weight is advanced without sufficiently reducing the low molecular weight component, the target resin cannot be obtained.
Therefore, in the method of the present invention, it is necessary not to use such strong acids at all.

本発明方法では、反応系の温度が130〜180℃の範囲になるように有機溶剤の種類と量を調整することが好ましい。
本発明方法においては、フェノール類とアルデヒド類は、フェノール類と弱酸性触媒および有機溶剤存在下、アルデヒド類を逐次的に添加して反応させると共に、系内の水分を除去しながら反応させることが重要であるが、このとき反応温度が130〜180℃の範囲であると、前記反応の進行が早く進み、かつ未反応のアルデヒドやメチロール基が残存しにくくなるので好ましい。
この理由で、反応溶媒として用いる有機溶剤は沸点が80〜180℃の範囲のものが好ましい。溶剤の沸点が80℃未満では、反応温度を130℃以上にするためには、その使用量が少量に限定されてしまうため好ましくなく、一方、沸点が180℃を超えると、最終的に有機溶剤が樹脂中に残存する可能性が生じるため好ましくない。
沸点が80〜180℃の範囲の有機溶剤としては、例えばプロピルアルコール、ブタノール等のアルコール類、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル等のグリコールエーテル類、メチルイソブチルケトン、シクロヘキサノン等のケトン類、酢酸ブチル、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等のエステル類、1,4−ジオキサン等のエーテル類等が単独で、若しくは二種以上を併用して使用することができる。
その使用量としては、一般的にはフェノール類100重量部に対して10〜100重量部程度である。
有機溶剤は、本発明方法においては、フェノール類とアルデヒド類を効率良く反応させるために必須である。反応が進んで、ノボラック樹脂の分子量が増大し、反応系内の粘度が高くなると、逐次的に添加しているアルデヒド類が樹脂と混合しにくくなる。しかし、有機溶剤を使用することで、系内の粘度が低く保たれ、その結果アルデヒド類とノボラック樹脂との反応が効率良く進行する。もちろん、蒸留による有機溶剤の減少、または樹脂の分子量の増大による系内の粘度上昇が認められた場合は、有機溶剤を適宜追加して添加して良い。
有機溶剤を使用しない場合、逐次的に添加されるアルデヒド類の濃度が、局部的に高くなり、その結果、スポットゲルが生じたり、アルデヒド類が反応しないまま、系外に排出されてしまうため、好ましくない。
In the method of the present invention, it is preferable to adjust the type and amount of the organic solvent so that the temperature of the reaction system is in the range of 130 to 180 ° C.
In the method of the present invention, phenols and aldehydes can be reacted with phenols in the presence of a weakly acidic catalyst and an organic solvent by sequentially adding aldehydes and removing moisture in the system. Importantly, it is preferable that the reaction temperature is in the range of 130 to 180 ° C. at this time because the reaction proceeds rapidly and unreacted aldehydes and methylol groups hardly remain.
For this reason, the organic solvent used as the reaction solvent preferably has a boiling point in the range of 80 to 180 ° C. If the boiling point of the solvent is less than 80 ° C., it is not preferable for the reaction temperature to be 130 ° C. or higher because the amount of use is limited to a small amount. On the other hand, if the boiling point exceeds 180 ° C., the organic solvent is finally used. Is not preferable because it may remain in the resin.
Examples of the organic solvent having a boiling point of 80 to 180 ° C include alcohols such as propyl alcohol and butanol, glycol ethers such as ethylene glycol monomethyl ether and ethylene glycol monoethyl ether, ketones such as methyl isobutyl ketone and cyclohexanone, Esters such as butyl acetate, ethylene glycol monomethyl ether acetate, and propylene glycol monomethyl ether acetate, ethers such as 1,4-dioxane, and the like can be used alone or in combination of two or more.
The amount used is generally about 10 to 100 parts by weight per 100 parts by weight of phenols.
In the method of the present invention, the organic solvent is essential for efficiently reacting phenols and aldehydes. As the reaction proceeds and the molecular weight of the novolak resin increases and the viscosity in the reaction system increases, the aldehydes that are sequentially added become difficult to mix with the resin. However, by using an organic solvent, the viscosity in the system is kept low, and as a result, the reaction between the aldehydes and the novolak resin proceeds efficiently. Of course, when a decrease in the organic solvent due to distillation or an increase in the viscosity of the system due to an increase in the molecular weight of the resin is observed, an organic solvent may be added as appropriate.
When organic solvents are not used, the concentration of aldehydes added sequentially increases locally, resulting in spot gels or being discharged out of the system without reacting with aldehydes, It is not preferable.

また、フェノール類とアルデヒド類との反応の進行に伴って、縮合水が発生する。この縮合水をそのまま反応系以内に留まらせておくとフェノール類とアルデヒド類とを効率良く付加縮合反応させられなくなる。そこで、本発明方法では、生成した反応液中の水分は前記有機溶剤との共沸混合物を作らせ、前記反応温度条件下に蒸留することによって除去する。このように生成した水分を除去するためにも、前記有機溶剤は重要な作用効果を発揮する。
系外に排出された共沸混合物は、公知の手段で水分を分離した後、有機溶剤は反応系内に還流させれば良い。
本発明方法における反応時間は、特に制限はなく、アルデヒド類および触媒の量、および反応温度により適宜調整すれば良い。
Further, condensed water is generated with the progress of the reaction between phenols and aldehydes. If this condensed water remains in the reaction system as it is, the phenols and aldehydes cannot be efficiently subjected to an addition condensation reaction. Therefore, in the method of the present invention, the water in the produced reaction solution is removed by making an azeotropic mixture with the organic solvent and distilling under the reaction temperature condition. In order to remove the water thus generated, the organic solvent exhibits an important effect.
The azeotropic mixture discharged out of the system is separated from moisture by a known means, and then the organic solvent may be refluxed into the reaction system.
There is no restriction | limiting in particular in the reaction time in this invention method, What is necessary is just to adjust suitably with the quantity of aldehydes and a catalyst, and reaction temperature.

こうして、アルデヒド類の添加が終了した後、さらに、通常0.5〜2時間程度、反応を継続させる。その後、脱水して縮合水をさらに除去し、また必要に応じて水洗して、残存触媒を除去しても良い。
こうして得られた反応液には、未反応フェノール類が残存しているので、続いて、未反応フェノールの除去工程に入る。
未反応フェノールの除去手段としては、公知の手段、たとえば減圧蒸留法や水蒸気蒸留法などが例示される。
減圧蒸留或いは水蒸気蒸留を行って未反応フェノール類を除去する場合、蒸留温度は180℃以下が好ましい。180℃以上でも未反応フェノール類は除去できるが、除去効率はほとんど変わらず、かえってエネルギーコストがかかるため好ましくない。また本発明の製造方法では未反応フェノール類の除去工程の前の段階で既に2核体量が十分低減されているため、未反応フェノール類を除去できるだけの条件があればよく、そのためには180℃以上の温度は必要ない。
未反応フェノール類を主に効率良く除去するためには、180℃以下の温度で、かつ真空度を6666Paabs(50mmHgabs)以下にすることが望ましい。その結果、本発明においては、2核体以下の成分を8%程度以下とすることができる。
Thus, after the addition of aldehydes is completed, the reaction is usually continued for about 0.5 to 2 hours. Thereafter, the condensed water may be further removed by dehydration, and the remaining catalyst may be removed by washing with water if necessary.
Since the unreacted phenols remain in the reaction solution thus obtained, the process proceeds to a process for removing unreacted phenol.
Examples of means for removing unreacted phenol include known means such as vacuum distillation and steam distillation.
When removing unreacted phenols by performing vacuum distillation or steam distillation, the distillation temperature is preferably 180 ° C. or lower. Although unreacted phenols can be removed even at 180 ° C. or higher, the removal efficiency is hardly changed, and the energy cost is increased, which is not preferable. In the production method of the present invention, since the amount of the binuclear substance has already been sufficiently reduced before the step of removing the unreacted phenols, it is sufficient that there are conditions sufficient to remove the unreacted phenols. Temperatures above ℃ are not necessary.
In order to mainly remove unreacted phenols efficiently, it is desirable that the temperature is 180 ° C. or less and the vacuum is 6666 Paabs (50 mmHgabs) or less. As a result, in the present invention, the component of a binuclear body or less can be reduced to about 8% or less.

以上のようにして、本発明方法では、高分子量でオルソ−オルソ結合を多く含むハイオルソノボラック樹脂が製造される。
このオルソノボラック樹脂の重量平均分子量は、10,000以上、好ましくは、30,000〜100,0000、より好ましくは40,000〜70,000程度の高分子である。
また、オルソノボラック樹脂のオルソーオルソ結合比率が75%以上のものが得られる。
As described above, in the method of the present invention, a high-ortho novolac resin having a high molecular weight and containing a large number of ortho-ortho bonds is produced.
The ortho novolak resin has a weight average molecular weight of 10,000 or more, preferably 30,000 to 100,000, more preferably about 40,000 to 70,000.
Further, an ortho-novolak resin having an ortho-ortho bond ratio of 75% or more is obtained.

以上に説明した通り、本発明方法により得られる高分子量ハイオルソノボラック樹脂は、高温下でも揮発成分が少なく、例えばエポキシ樹脂の硬化剤として使用した場合、耐熱性に優れた成形物が得られる。またオルソ−オルソ結合の割合が高いことから分子が直鎖状となり、その結果、成型物の靭性が向上し、更にエポキシ配合物のポットライフが長くなるなどの優れた効果が得られる。   As described above, the high molecular weight high ortho novolak resin obtained by the method of the present invention has few volatile components even at high temperatures. For example, when used as a curing agent for an epoxy resin, a molded product having excellent heat resistance can be obtained. Moreover, since the ratio of the ortho-ortho bond is high, the molecule becomes linear, and as a result, excellent effects such as improved toughness of the molded product and longer pot life of the epoxy compound are obtained.

以下に本発明方法による高分子量ハイオルソノボラック樹脂の合成方法をさらに具体的に説明するが、本発明方法は以下の合成例に限定されるものではない。ここで、部および%は質量基準である。
本実施例で使用した樹脂の分析方法は以下の通りである。
(1)GPC
カラム構成は昭和電工(株)製のKF−804+KF−804で行い、溶媒としてテトラヒドロフランを使用し、流量1ml/分で測定した。
分子量はポリスチレン換算、含有率は全ピーク面積中の百分率で算出した。
(2)オルソ−オルソ結合比
13C−NMRスペクトルによるオルソ−オルソ、オルソ−パラ、パラ−パラのメチレン結合の比率から算出した。
オルソ−オルソ結合比率(%)=(オルソ−オルソ結合/全メチレン結合)×100
(3)軟化点
エレックス科学製気相軟化点測定装置EX−719PDを用いて昇温速度2.5℃/分で測定した。
(4)加熱減量
SII社製SSC/5200を使用して空気雰囲気中、昇温速度10℃/分で測定した。
The method for synthesizing a high molecular weight high ortho novolak resin by the method of the present invention will be described more specifically below, but the method of the present invention is not limited to the following synthesis examples. Here, parts and% are based on mass.
The analysis method of the resin used in this example is as follows.
(1) GPC
The column configuration was KF-804 + KF-804 manufactured by Showa Denko KK, and tetrahydrofuran was used as a solvent, and measurement was performed at a flow rate of 1 ml / min.
The molecular weight was calculated in terms of polystyrene, and the content was calculated as a percentage of the total peak area.
(2) Ortho-ortho coupling ratio
It calculated from the ratio of the ortho-ortho, ortho-para, para-para methylene bond by < 13 > C-NMR spectrum.
Ortho-ortho bond ratio (%) = (ortho-ortho bond / total methylene bond) × 100
(3) Softening point It measured with the temperature increase rate of 2.5 degree-C / min using the vapor-phase softening point measuring apparatus EX-719PD by Elex Scientific.
(4) Loss on heating It was measured at 10 ° C./min in the air atmosphere using SSC / 5200 manufactured by SII.

実施例1
冷却管、攪拌機を備えたフラスコに、フェノール100部、酢酸亜鉛0.5部、メチルイソブチルケトン20部を仕込み、内温を150℃にして37%ホルマリン69部を3時間かけて滴下した。滴下中にメチルイソブチルケトンと水が共沸するが、このうち水は除去し、メチルイソブチルケトンは還流するようにした。
滴下終了後、同温度で1時間さらに反応させた後、数回水洗を行い、触媒を除去した。
次いで170℃、50mmHgabの減圧下で水蒸気蒸留を行い、未反応フェノールを除去した。その結果、2核体以下の低分子量成分の含有率が4.9%、重量平均分子量が49000の高分子量ハイオルソノボラック樹脂が得られた。
Example 1
A flask equipped with a condenser and a stirrer was charged with 100 parts of phenol, 0.5 part of zinc acetate and 20 parts of methyl isobutyl ketone, the internal temperature was 150 ° C., and 69 parts of 37% formalin was added dropwise over 3 hours. During the dropwise addition, methyl isobutyl ketone and water azeotrope, but water was removed and methyl isobutyl ketone was refluxed.
After completion of the dropwise addition, the reaction was further continued at the same temperature for 1 hour, followed by washing with water several times to remove the catalyst.
Subsequently, steam distillation was performed under reduced pressure of 170 ° C. and 50 mmHgab to remove unreacted phenol. As a result, a high molecular weight high ortho novolac resin having a low molecular weight component content of 2.9% or less and a weight average molecular weight of 49000 was obtained.

実施例2
冷却管、攪拌機を備えたフラスコに、フェノール100部、酢酸亜鉛0.5部、プロピレングリコールモノメチルエーテルアセテート20部を仕込み、内温を150℃にして、37%ホルマリン69部を3時間かけて滴下した。滴下中に溜出する共沸混合物はすべて系外に排出した。滴下終了後、同温度で1時間熟成反応させた後、数回水洗を行い触媒を除去した。次いで170℃、6666Paabs(50mmHgabs)の減圧下で水蒸気蒸留を行い、未反応フェノールを除去した。その結果、2核体以下の低分子量成分の含有率が4.5%、重量平均分子量が50200の高分子量ハイオルソノボラック樹脂が得られた。
Example 2
A flask equipped with a condenser and a stirrer was charged with 100 parts of phenol, 0.5 part of zinc acetate and 20 parts of propylene glycol monomethyl ether acetate, the internal temperature was 150 ° C., and 69 parts of 37% formalin was added dropwise over 3 hours. did. All the azeotropic mixture distilled during the dropping was discharged out of the system. After completion of the dropping, the reaction was aged at the same temperature for 1 hour, and then washed with water several times to remove the catalyst. Next, steam distillation was performed under reduced pressure at 170 ° C. and 6666 Paabs (50 mmHgabs) to remove unreacted phenol. As a result, a high molecular weight high ortho novolac resin having a low molecular weight component content of less than 2 nuclei of 4.5% and a weight average molecular weight of 50200 was obtained.

実施例3
フェノール類としてメタクレゾール100部、37%ホルマリンを41部使用した以外は合成例1と同様に行なった。その結果、2核体以下の低分子量成分の含有率が6.1%、重量平均分子量が56000の高分子量ハイオルソノボラック樹脂が得られた。
Example 3
The procedure was the same as in Synthesis Example 1 except that 100 parts of metacresol and 41 parts of 37% formalin were used as phenols. As a result, a high molecular weight high ortho novolak resin having a content of low molecular weight components of 2 or less nuclei of 6.1% and a weight average molecular weight of 56000 was obtained.

実施例4
フェノール類としてメタクレゾール100部、37%ホルマリンを41部使用した以外は合成例2と同様に行なった。その結果、2核体以下の低分子量成分の含有率が5.5%、重量平均分子量が60300の高分子量ハイオルソノボラック樹脂が得られた。
Example 4
The same procedure as in Synthesis Example 2 was performed except that 100 parts of metacresol and 41 parts of 37% formalin were used as phenols. As a result, a high molecular weight high ortho novolac resin having a low molecular weight component content of less than 2 nuclei of 5.5% and a weight average molecular weight of 60,300 was obtained.

比較例1
冷却管、攪拌機を備えたフラスコに、フェノール100部、シュウ酸0.5部、メチルイソブチルケトン20部を仕込み、内温を150℃にして37%ホルマリン69部を3時間かけて滴下した。滴下中にメチルイソブチルケトンと水が共沸するので、このうち水は除去し、メチルイソブチルケトンは還流するようにした。
滴下終了後、同温度で1時間反応した後、170℃、6666Paabs
(50mmHgabs)の減圧下で水蒸気蒸留を行って未反応フェノールを除去した。その結果、2核体以下の低分子量成分の含有率が12.2%、重量平均分子量が51500のノボラック樹脂が得られた。
Comparative Example 1
A flask equipped with a condenser and a stirrer was charged with 100 parts of phenol, 0.5 part of oxalic acid, and 20 parts of methyl isobutyl ketone, the internal temperature was 150 ° C., and 69 parts of 37% formalin was added dropwise over 3 hours. Since methyl isobutyl ketone and water azeotrope during the dropwise addition, water was removed and methyl isobutyl ketone was refluxed.
After completion of the dropwise addition, the mixture was reacted at the same temperature for 1 hour, and then 170 ° C., 6666 Paabs.
Unreacted phenol was removed by steam distillation under reduced pressure (50 mmHgabs). As a result, a novolak resin having a low molecular weight component content of 12.2% or less and a weight average molecular weight of 51,500 was obtained.

比較例2
冷却管、攪拌機を備えたフラスコに、フェノール100部、酢酸亜鉛0.5部、メチルイソブチルケトン20部を仕込み、内温を130℃にして37%ホルマリン69部を3時間かけて滴下した。滴下中は水分を除去せず、常圧還流により反応させたところ、内温は徐々に100℃まで低下した。
滴下終了後、100℃で1時間熟成反応させた後、数回水洗を行い、触媒を除去した。次いで170℃、6666Paabs(50mmHgabs)の減圧下で水蒸気蒸留を行なった。その結果、未反応フェノールを除去し、2核体以下の低分子量成分の含有率が9.9%、重量平均分子量が23200のノボラック樹脂が得られた。
Comparative Example 2
A flask equipped with a condenser and a stirrer was charged with 100 parts of phenol, 0.5 part of zinc acetate, and 20 parts of methyl isobutyl ketone, the internal temperature was 130 ° C., and 69 parts of 37% formalin was added dropwise over 3 hours. During the dropwise addition, water was not removed, and the reaction was performed under normal pressure reflux. As a result, the internal temperature gradually decreased to 100 ° C.
After completion of the dropwise addition, the mixture was aged at 100 ° C. for 1 hour and then washed with water several times to remove the catalyst. Next, steam distillation was performed under reduced pressure at 170 ° C. and 6666 Paabs (50 mmHgabs). As a result, unreacted phenol was removed, and a novolak resin having a low molecular weight component content of 9.9% or less and a weight average molecular weight of 23200 was obtained.

比較例3
水蒸気蒸留を170℃、20000Paabs(150mmHgabs)で実施した以外は、比較例2と同様に行なった。その結果、2核体以下の低分子量成分の含有率が13.1%、重量平均分子量が15600のノボラック樹脂が得られた。
Comparative Example 3
Comparative Example 2 was carried out except that the steam distillation was carried out at 170 ° C. and 20000 Paabs (150 mmHgabs). As a result, a novolak resin having a content of low molecular weight components of 2 nuclei or less of 13.1% and a weight average molecular weight of 15600 was obtained.

比較例4
冷却管、攪拌機を備えたフラスコに、フェノール100部、37%ホルマリン69部、酢酸亜鉛0.5部を仕込み、100℃で5時間還流させた。次いで170℃、6666Paabs(50mmHgabs)の減圧下で水蒸気蒸留を行い、未反応フェノールを除去した。その結果、2核体以下の低分子量成分の含有率が10.4%、重量平均分子量が19700のノボラック樹脂が得られた。
実施例1〜4、比較例1〜4で得られたノボラック樹脂の特性値を表1に示す。
Comparative Example 4
A flask equipped with a condenser and a stirrer was charged with 100 parts of phenol, 69 parts of 37% formalin, and 0.5 part of zinc acetate and refluxed at 100 ° C. for 5 hours. Next, steam distillation was performed under reduced pressure at 170 ° C. and 6666 Paabs (50 mmHgabs) to remove unreacted phenol. As a result, a novolak resin having a low molecular weight component content of 10.4% or less and a weight average molecular weight of 19,700 was obtained.
Table 1 shows the characteristic values of the novolak resins obtained in Examples 1 to 4 and Comparative Examples 1 to 4.

Figure 0005254598
Figure 0005254598

実施例5〜8、比較例5〜8
実施例1〜4で得られた高分子量ハイオルソノボラック樹脂、比較例1〜4で得られたノボラック樹脂のそれぞれに、オルソクレゾール型エポキシ樹脂(エポキシ当量205)を、フェノール性水酸基と当量になるように配合し、硬化促進剤のトリフェニルフォスフィンをエポキシ樹脂100部に対して1部、さらに充填材として溶融シリカ粉末を配合物全重量の70%になるように配合した。これらを100℃の熱ロールにて溶融混練して熱硬化性樹脂組成物を得た。
得られた熱硬化性樹脂組成物を金型にて170℃−15分、圧力30kg/cm2で加圧成形した。その後、170℃−3.5時間アフターキュアを行って、テストピースを作製した。これらを前記の順に対応させて実施例5〜8、比較例5〜8とした。
Examples 5-8, Comparative Examples 5-8
An ortho-cresol type epoxy resin (epoxy equivalent 205) is equivalent to a phenolic hydroxyl group in each of the high molecular weight high ortho novolak resin obtained in Examples 1 to 4 and the novolak resin obtained in Comparative Examples 1 to 4. The curing accelerator triphenylphosphine was added to 1 part of 100 parts of the epoxy resin, and the fused silica powder was added to 70% of the total weight of the composition as a filler. These were melt-kneaded with a hot roll at 100 ° C. to obtain a thermosetting resin composition.
The obtained thermosetting resin composition was pressure-molded in a mold at 170 ° C. for 15 minutes at a pressure of 30 kg / cm 2 . Thereafter, after-curing was performed at 170 ° C. for 3.5 hours to prepare a test piece. These were made to correspond to said order, and were set as Examples 5-8 and Comparative Examples 5-8.

本発明の熱硬化性樹脂組成物及び比較例の試料について、曲げ強度を次の方法により評価した。
(5)曲げ強度
JIS K−6911に準拠した方法で測定した。
実施例5〜8、比較例5〜8について、特性評価試験の結果を表2に示す。
About the thermosetting resin composition of this invention and the sample of the comparative example, bending strength was evaluated by the following method.
(5) Bending strength It measured by the method based on JISK-6911.
Table 2 shows the results of the characteristic evaluation tests for Examples 5 to 8 and Comparative Examples 5 to 8.

Figure 0005254598
*1 熱ロール混練中に増粘したため成型品得られず
以上の実施例から、本発明方法で製造される高分子量ハイオルソノボラック樹脂は、未反応フェノールが少なく、かつ、オルソーオルソ結合比率が非常に高く、軟化点も高いことがわかる。また、オルソーオルソ結合比率が高いため、分子が直鎖状となり、その結果、それを用いた成形物の靭性が向上したことが分かる。
Figure 0005254598
* 1 Molded product could not be obtained due to thickening during hot roll kneading From the above examples, the high molecular weight high ortho novolac resin produced by the method of the present invention has little unreacted phenol and a very high ortho ortho bond ratio. It can be seen that it has a high softening point. Moreover, since the ortho-ortho bond ratio is high, it can be seen that the molecule is linear, and as a result, the toughness of the molded product using the molecule is improved.

本発明方法により得られる高分子量ハイオルソノボラック樹脂は、高温下でも揮発成分が少なく、例えばエポキシ樹脂の硬化剤として使用した場合、耐熱性に優れた成形物が得られる。またオルソ−オルソ結合の割合が高いことから分子が直鎖状となり、その結果成型物の靭性が向上し、更にエポキシ配合物のポットライフが長くなるなどの効果が得られ、産業上、有用である。   The high molecular weight high-ortho novolak resin obtained by the method of the present invention has few volatile components even at high temperatures. For example, when it is used as a curing agent for an epoxy resin, a molded product having excellent heat resistance can be obtained. Moreover, since the ratio of the ortho-ortho bond is high, the molecule becomes linear, and as a result, the toughness of the molded product is improved, and the pot life of the epoxy compound is further increased. is there.

Claims (4)

フェノール類と、Ca、Mg、及びZnから選ばれる二価金属の酢酸塩又はホウ酸塩のいずれか一方からなる弱酸性触媒と、有機溶剤の存在下、アルデヒド類を逐次的に添加して反応させると共に、系内の水分を除去する高分子量ハイオルソノボラック樹脂の製造方法であって、高分子量ハイオルソノボラック樹脂の重量平均分子量が10,000以上であり、全メチレン結合に対するオルソ−オルソ結合比率が75%以上であり、反応温度が130〜180℃になるように、沸点が80〜180℃の範囲にある有機溶剤を用いることを特徴とする高分子量ハイオルソノボラック樹脂の製造方法。 And phenols, Ca, Mg, and a weakly acidic catalyst consisting of either the acetate or borate divalent metal selected from Zn, in the presence of an organic solvent, and sequentially adding aldehyde with the reaction, a method of producing a high molecular weight high-ortho novolak resin you remove water in the system, the weight average molecular weight of the high molecular weight high-ortho novolak resin is 10,000 or more, ortho to the total methylene bonds - ortho and a coupling ratio of 75% or more, such that the reaction temperature is 130 to 180 ° C., a method for manufacturing high molecular weight high-ortho novolak resin having a boiling point, characterized in Rukoto using an organic solvent in the range of 80 to 180 ° C. . さらに未反応フェノール類の減圧蒸留による除去工程が設けられ、当該除去工程における蒸留温度が180℃以下で、かつ真空度が6666Paabs(50mmHgabs)以下である請求項1に記載の高分子量ハイオルソノボラック樹脂の製造方法。 2. The high molecular weight high-ortho novolak resin according to claim 1, further comprising a step of removing unreacted phenols by distillation under reduced pressure, wherein a distillation temperature in the removing step is 180 ° C. or lower and a degree of vacuum is 6666 Paabs (50 mmHgabs) or lower. Manufacturing method. 反応液中に生成した水と有機溶剤との共沸混合物を反応系外に排出し、水を分離した後、有機溶剤を反応系内に還流させる、請求項1又は2に記載の高分子量ハイオルソノボラック樹脂の製造方法。The azeotropic mixture of water and an organic solvent produced in the reaction solution is discharged out of the reaction system, and after separating the water, the organic solvent is refluxed into the reaction system. Method for producing ortho-novolak resin. 反応液を水洗することにより残存触媒を除去する、請求項1〜3のいずれかに記載の高分子量ハイオルソノボラック樹脂の製造方法。The manufacturing method of the high molecular weight high ortho novolak resin in any one of Claims 1-3 which removes a residual catalyst by washing the reaction liquid with water.
JP2007293464A 2007-11-12 2007-11-12 Method for producing high molecular weight high ortho novolac resin Expired - Fee Related JP5254598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007293464A JP5254598B2 (en) 2007-11-12 2007-11-12 Method for producing high molecular weight high ortho novolac resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007293464A JP5254598B2 (en) 2007-11-12 2007-11-12 Method for producing high molecular weight high ortho novolac resin

Publications (2)

Publication Number Publication Date
JP2009120649A JP2009120649A (en) 2009-06-04
JP5254598B2 true JP5254598B2 (en) 2013-08-07

Family

ID=40813174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007293464A Expired - Fee Related JP5254598B2 (en) 2007-11-12 2007-11-12 Method for producing high molecular weight high ortho novolac resin

Country Status (1)

Country Link
JP (1) JP5254598B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60260611A (en) * 1984-06-08 1985-12-23 Mitsubishi Petrochem Co Ltd Production of high-molecular weight cresol novolak resin
JPS60262815A (en) * 1984-06-11 1985-12-26 Sumitomo Deyurezu Kk Production of novolak resin
JPH02248417A (en) * 1989-03-22 1990-10-04 Fuji Photo Film Co Ltd Production of high-molecular weight phenol resin
JP2637623B2 (en) * 1990-11-30 1997-08-06 住友デュレズ 株式会社 Method for producing high-ortho novolak resin
JP2000273132A (en) * 1999-03-19 2000-10-03 Sumitomo Durez Co Ltd Novolak type phenolic resin
JP2001247639A (en) * 2000-03-08 2001-09-11 Sumitomo Durez Co Ltd Method for manufacturing novolak phenolic resin
JP4275380B2 (en) * 2002-10-10 2009-06-10 昭和高分子株式会社 Method for producing high molecular weight cresol novolac resin
JP2005290026A (en) * 2004-03-31 2005-10-20 Sumitomo Bakelite Co Ltd Method for producing photoresist phenol resin and photoresist resin composition

Also Published As

Publication number Publication date
JP2009120649A (en) 2009-06-04

Similar Documents

Publication Publication Date Title
TWI465488B (en) Novolac resin and method for producing the same
TWI466965B (en) Method for producing novolak resin and novolak resin
WO2011118147A1 (en) Solid resol-type phenolic resin and method for producing same
JP5254598B2 (en) Method for producing high molecular weight high ortho novolac resin
JP3879971B2 (en) Method for producing resol type phenolic resin
JP4013111B2 (en) Method for producing resole resin
JP4661087B2 (en) Method for producing solid resol type phenolic resin
JPH06192361A (en) Phenolic resin and epoxy resin composition and maleimide resin composition comprising the same
JP2007169457A (en) Phenolic resin for sheet molding compound and method for producing the same and sheet molding compound obtained from the same
JP2005075938A (en) Manufacturing process of high ortho novolac type phenolic resin
JP2005075936A (en) Novolac type phenolic resin and its manufacturing process
JP5400324B2 (en) Method for producing novolac resin
JP2005232389A (en) Curable resin composition
JP3874338B2 (en) Method for producing novolac type phenolic resin
JP2006265427A (en) Alkyl etherified phenol resin and process for producing the same
JP4609148B2 (en) Filter resin composition
JP2007099789A (en) Solid resol type phenolic resin and its manufacturing method
JP2002167417A (en) Method for producing aromatic hydrocarbon modified phenolic resin
JPH03243613A (en) Phenol-melamine cocondensation resin and production thereof
JP2005089662A (en) Method for manufacturing resol type phenolic resin
JP2005095933A (en) Novolak type phenolic resin for shell mold
JP2003212944A (en) Manufacturing method of novolac type phenol resin
JP2003082046A (en) Phenolic resin for polyester resin coating material
JP2006265428A (en) Process for producing curing agent for epoxy resin
JP2003292555A (en) Method for producing solid resol type phenolic resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100916

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130418

R150 Certificate of patent or registration of utility model

Ref document number: 5254598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees