JP5252460B2 - Production method of SiC nanoparticles by nitrogen plasma - Google Patents

Production method of SiC nanoparticles by nitrogen plasma Download PDF

Info

Publication number
JP5252460B2
JP5252460B2 JP2010224452A JP2010224452A JP5252460B2 JP 5252460 B2 JP5252460 B2 JP 5252460B2 JP 2010224452 A JP2010224452 A JP 2010224452A JP 2010224452 A JP2010224452 A JP 2010224452A JP 5252460 B2 JP5252460 B2 JP 5252460B2
Authority
JP
Japan
Prior art keywords
sic
plasma
nanoparticles
nitrogen
nitrogen plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010224452A
Other languages
Japanese (ja)
Other versions
JP2011042571A (en
Inventor
秀男 奥山
雅広 宇田
義雄 目
祥 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2010224452A priority Critical patent/JP5252460B2/en
Publication of JP2011042571A publication Critical patent/JP2011042571A/en
Application granted granted Critical
Publication of JP5252460B2 publication Critical patent/JP5252460B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この出願の発明は、窒素プラズマによるSiCナノ粒子の製造法に関するものである。さらに詳しくは、この出願の発明は、SiCナノ粒子を高効率で製造することのできる窒素プラズマによるSiCナノ粒子の製造法に関するものである。   The invention of this application relates to a method for producing SiC nanoparticles by nitrogen plasma. More specifically, the invention of this application relates to a method for producing SiC nanoparticles using nitrogen plasma, which can produce SiC nanoparticles with high efficiency.

SiC粉末の製造法には、大別して以下の2つのプロセスがある(たとえば、非特許文献1、2参照)。
1)固体SiCを機械的にボールミル、振動ミルなどにより微粉砕した後、化学的精製処理、脱酸・解砕して、平均粒径400-700nmのSiC粒子を得る。
2)有機ケイ素系ポリマーの熱分解およびSiH4,SiCl4と炭化水素との反応などを利用した気相中での合成である。
There are roughly the following two processes for producing SiC powder (see, for example, Non-Patent Documents 1 and 2).
1) Solid SiC is mechanically pulverized by a ball mill, a vibration mill or the like, and then chemically refined, deoxidized and crushed to obtain SiC particles having an average particle size of 400 to 700 nm.
2) Synthesis in the gas phase using thermal decomposition of organosilicon polymer and reaction of SiH 4 , SiCl 4 and hydrocarbons.

しかしながら、従来技術により作製されるSiCナノ粒子の生成効率、純度、平均粒径は必ずしも満足することのできるものとなってはいない。   However, the production efficiency, purity, and average particle diameter of SiC nanoparticles produced by conventional techniques are not always satisfactory.

この出願の発明は、このような事情に鑑みてなされたものであり、SiCナノ粒子を高効率で製造することのできる窒素プラズマによるSiCナノ粒子の製造法を提供することを解決すべき課題としている。   The invention of this application has been made in view of such circumstances, and it is an issue to be solved to provide a method for producing SiC nanoparticles by nitrogen plasma that can produce SiC nanoparticles with high efficiency. Yes.

この出願の発明は、上記の課題を解決するものとして、第1には、窒素雰囲気中でアークプラズマを発生させ、アークプラズマを塊状SiCに照射してSiCのナノ粒子を生成させることを特徴とする窒素プラズマによるSiCナノ粒子の製造法を提供する。 In order to solve the above problems, the invention of this application is characterized in that, first, arc plasma is generated in a nitrogen atmosphere, and the SiC is irradiated with the arc plasma to generate SiC nanoparticles. A method for producing SiC nanoparticles using nitrogen plasma is provided.

この出願の発明は、第2には、窒素雰囲気中でアークプラズマを発生させ、アークプラズマを、粉末Siと粉末Cの混合粉末成形体に照射してSiCのナノ粒子を生成させることを特徴とする窒素プラズマによるSiCナノ粒子の製造法を提供する。   The invention of this application is characterized in that, secondly, an arc plasma is generated in a nitrogen atmosphere, and the mixed powder compact of powder Si and powder C is irradiated with the arc plasma to generate SiC nanoparticles. A method for producing SiC nanoparticles using nitrogen plasma is provided.

この出願の発明の窒素プラズマによるSiCナノ粒子の製造法によれば、塊状SiCまたはSiとCの混合粉末成形体に窒素プラズマを照射することにより、一種の強制蒸発、昇華現象が誘起され、直接SiCナノ粒子が高効率で製造される。得られるSiCナノ粒子は、純度が高く、平均粒径が小さい。   According to the method of producing SiC nanoparticles using nitrogen plasma of the invention of this application, a kind of forced evaporation and sublimation phenomenon is induced by irradiating the bulk SiC or the mixed powder compact of Si and C with nitrogen plasma. SiC nanoparticles are produced with high efficiency. The obtained SiC nanoparticles have high purity and a small average particle size.

ナノ粒子作製装置の概略図である。It is the schematic of a nanoparticle preparation apparatus. 塊状SiCおよびC/Si=1/1の混合粉末成形体に窒素プラズマを照射して得られたナノ粒子のX線回折結果である。It is an X-ray-diffraction result of the nanoparticle obtained by irradiating nitrogen plasma to the mixed powder compact | molding | casting of lump SiC and C / Si = 1/1. SiCナノ粒子のBET比表面積測定の結果から得られる平均粒径を示したグラフである。It is the graph which showed the average particle diameter obtained from the result of the BET specific surface area measurement of a SiC nanoparticle. 塊状SiCに100vol%N100vol% N in bulk SiC 22 プラズマを照射して得られたナノ粒子の透過顕微鏡写真である。It is a transmission-microscope photograph of the nanoparticle obtained by irradiating plasma. 50vol%N50vol% N 22 −Arおよび100vol%N-Ar and 100 vol% N 22 雰囲気で塊状SiCに窒素プラズマを照射して発生したSiCナノ粒子の発生速度を示したグラフである。It is the graph which showed the generation | occurrence | production speed | rate of the SiC nanoparticle which generate | occur | produced by irradiating nitrogen plasma to lump SiC in atmosphere.

以下、実施例を示し、この出願の発明の窒素プラズマによるSiCナノ粒子の製造法についてさらに詳しく説明する。Hereinafter, an Example is shown and the manufacturing method of the SiC nanoparticle by the nitrogen plasma of invention of this application is demonstrated in more detail.

図1は、ナノ粒子作製装置の概略図である。
ナノ粒子作製装置は、熱プラズマ炉、アーク放電用直流電源、ナノ粒子捕集用フィルター(日本精線、60φ×200L、細孔径約3μm)、真空ポンプ、循環ポンプなどから構成されている。
FIG. 1 is a schematic view of a nanoparticle production apparatus.
The nanoparticle production apparatus includes a thermal plasma furnace, a DC power source for arc discharge, a nanoparticle collection filter (Nippon Seisen, 60φ × 200 L , pore diameter of about 3 μm), a vacuum pump, a circulation pump, and the like.

アーク放電は、陽極の水冷銅ハース上の試料、陰極のタングステン電極間に発生するが、試料のサーマルショックの予防と水冷銅ハースによる試料への熱効率低下を抑制するために、水冷銅ハース上にカーボンるつぼを置き、その上に試料を置く。炉内で発生するナノ粒子は循環ポンプによるガス流により冷却されながら運ばれ、ナノ粒子捕集用フィルターで捕集される。   Arc discharge occurs between the sample on the anode water-cooled copper hearth and the tungsten electrode on the cathode. However, in order to prevent thermal shock of the sample and to suppress the decrease in thermal efficiency of the sample due to the water-cooled copper hearth, Place the carbon crucible and place the sample on it. The nanoparticles generated in the furnace are transported while being cooled by a gas flow by a circulation pump, and are collected by a filter for collecting nanoparticles.

出発原料として、SiC(高純度化学研究所、純度99.99%以上)の塊状体と混合粉末成形体を用いた。混合粉末成形体は、粉末C(高純度化学研究所、純度99.9%以上、粒径20μm)と粉末Si(高純度化学研究所、純度99.9%以上、粒径150μm)をmol比C/Si=1/1およびC/Si=6/4で混合し、結合剤であるPVB(ポリビニルブチラール)を約7.5wt%添加して240kg/cm2で一軸成形した均一な混合粉末成形体である。 As starting materials, a lump of SiC (High Purity Chemical Laboratory, purity 99.99% or more) and a mixed powder compact were used. The mixed powder compact is composed of powder C (high purity chemical laboratory, purity 99.9% or more, particle size 20 μm) and powder Si (high purity chemical laboratory, purity 99.9% or more, particle size 150 μm) in mol ratio C / Si = This is a uniform mixed powder molded body obtained by mixing at 1/1 and C / Si = 6/4, adding about 7.5 wt% of PVB (polyvinyl butyral) as a binder, and uniaxially molding at 240 kg / cm 2 .

雰囲気は、50vol%N2−Arおよび100vol%N2とした。 Atmosphere, was 50 vol% N 2 -Ar and 100 vol% N 2.

塊状SiCについては、前述のナノ粒子作製装置のカーボンるつぼの上に載せ、真空ポンプで炉内を0.13Pa以下の真空とした。この後、各雰囲気ガスを導入し、炉の圧力を0.1MPaに保ち、循環ポンプを作動させた。電流を150Aに設定し、陰極と陽極である水冷銅ハースおよびカーボンるつぼ間にアークプラズマを発生させた。アークプラズマは初期にはカーボンるつぼに照射し、塊状SiCが加熱した後にアークプラズマを塊状SiCに照射した。   The bulk SiC was placed on the carbon crucible of the above-described nanoparticle production apparatus, and the inside of the furnace was evacuated to 0.13 Pa or less with a vacuum pump. Thereafter, each atmospheric gas was introduced, the pressure of the furnace was kept at 0.1 MPa, and the circulation pump was operated. The current was set to 150 A, and arc plasma was generated between the water-cooled copper hearth and the carbon crucible as the cathode and the anode. The arc plasma was initially applied to the carbon crucible, and after the massive SiC was heated, the arc plasma was applied to the massive SiC.

粉末Cと粉末Siの混合粉末成形体については、カーボンるつぼの上に載せ、真空ポンプで炉内を0.13Pa以下の真空にした後、PVBの除去とアークプラズマによる粉末の飛散を抑制するために、雰囲気に100vol%Arを用いてArプラズマを発生させ、混合粉末成形体に照射し、加熱した。加熱時間は10sec程度とし、加熱後すぐに炉内を真空にした。この後の操作は、塊状SiCのときと同様にした。   For the mixed powder compact of powder C and powder Si, place it on a carbon crucible, vacuum the inside of the furnace with a vacuum pump to 0.13 Pa or less, and then suppress PVB removal and powder scattering by arc plasma Then, Ar plasma was generated using 100 vol% Ar in the atmosphere, and the mixed powder compact was irradiated and heated. The heating time was about 10 seconds, and the furnace was evacuated immediately after heating. The subsequent operation was the same as that for bulk SiC.

窒素プラズマを出発原料に照射するのと同時にプラズマフレームの周辺から煙状のナノ粒子が激しく噴出する様子が観察された。このような特異現象は100vol%Ar雰囲気下では観察されなかった。   At the same time that the starting material was irradiated with nitrogen plasma, smoke-like nanoparticles erupted vigorously from the periphery of the plasma flame. Such a specific phenomenon was not observed under a 100 vol% Ar atmosphere.

発生したナノ粒子について、X線回折測定(日本電子、JDX−3500)による相の同定、BET法による平均粒径の算出およびナノ粒子の発生速度の測定を行った。   About the produced | generated nanoparticle, the identification of the phase by X-ray-diffraction measurement (JEOL, JDX-3500), calculation of the average particle diameter by BET method, and the generation rate of the nanoparticle were performed.

図2(a)(b)に、出発原料に塊状SiCを、図2(c)(d)に、出発原料にC/Si=1/1の混合粉末成形体を用いたときに発生したナノ粒子の50vol%N2−Arおよび100vol%N2雰囲気におけるX線回折測定の結果を示した。全般的にSiCのピークが主体であり、50vol%N2−Ar雰囲気では僅少のSiピークが生成している。 2 (a) and 2 (b), lump SiC is used as a starting material, and FIGS. 2 (c) and 2 (d) are nano-particles generated when a mixed powder compact of C / Si = 1/1 is used as a starting material. It shows the results of X-ray diffraction measurement in 50 vol% N 2 -Ar and 100 vol% N 2 atmosphere particles. In general, a SiC peak is mainly used, and a slight Si peak is generated in a 50 vol% N 2 —Ar atmosphere.

なお、C/Si=6/4の混合粉末成形体を用いたときに発生したナノ粒子は、SiCと不純物Si、Cを含んだものであった。出発材料をCリッチ状態にしても不純物Siの生成を抑制することはできなかった。   The nanoparticles generated when using a mixed powder compact with C / Si = 6/4 contained SiC and impurities Si and C. Even when the starting material was in a C-rich state, the generation of impurity Si could not be suppressed.

図3に、得られたナノ粒子のBET比表面積測定の結果から得られる平均粒径を示した。図3(a)(b)は、出発原料が塊状SiCの場合で、図3(c)(d)は、出発原料がC/Si=1/1の混合粉末成形体の場合である。   In FIG. 3, the average particle diameter obtained from the result of the BET specific surface area measurement of the obtained nanoparticle was shown. 3A and 3B show the case where the starting material is bulk SiC, and FIGS. 3C and 3D show the case where the starting material is a mixed powder compact with C / Si = 1/1.

ナノ粒子の平均粒径D(m)は次式で求められる。   The average particle diameter D (m) of the nanoparticles is obtained by the following formula.

D=6/S・ρ・106
ここで、Sは比表面積(m2/g)、ρはナノ粒子の密度(g/cm3)である。
D = 6 / S · ρ · 10 6
Here, S is the specific surface area (m 2 / g), and ρ is the density of the nanoparticles (g / cm 3 ).

いずれの場合も、窒素を有する雰囲気中で発生したナノ粒子は、平均粒径が十分小さいことが確認される。   In any case, it is confirmed that the nanoparticles generated in the atmosphere containing nitrogen have a sufficiently small average particle diameter.

図4は、塊状SiCを100vol%N2でプラズマ照射して得られたナノ粒子の透過電子顕微鏡(TEM)写真である。 FIG. 4 is a transmission electron microscope (TEM) photograph of nanoparticles obtained by plasma irradiation of massive SiC with 100 vol% N 2 .

形状は多角形状を示し、10〜80nm程度の大きさの粒子が混在しているのが認められる。このサイズは、前述のBET法による平均粒径とよく一致している。   The shape shows a polygonal shape, and it is recognized that particles having a size of about 10 to 80 nm are mixed. This size is in good agreement with the average particle size according to the BET method described above.

図5に、50vol%N2−Arおよび100vol%N2雰囲気で塊状SiCに窒素プラズマを照射したときに発生したナノ粒子の発生速度を示した。発生速度は、窒素プラズマ照射前と照射後の出発原料の質量損失量をアークプラズマ照射時間で除して算出したものである。図5から確認されるように、雰囲気中の窒素濃度の増大とともに発生速度が比例して増大しているのがわかる。この現象は、SiC混合粉末成形体についても同様の結果を得ている。これらの結果は、出発原料を金属に置き換えて行った際に見られる現象と酷似しており、窒素ガスが熱プラズマにより活性化されることによる一種の強制蒸発現象であると考えられる。 Figure 5 shows the generation rate of the nanoparticles occurs when irradiated with nitrogen plasma bulk SiC with 50 vol% N 2 -Ar and 100 vol% N 2 atmosphere. The generation rate is calculated by dividing the mass loss amount of the starting material before and after the nitrogen plasma irradiation by the arc plasma irradiation time. As can be seen from FIG. 5, it can be seen that the generation rate increases in proportion to the increase in the nitrogen concentration in the atmosphere. This phenomenon has obtained the same result also about the SiC mixed powder compact. These results are very similar to those observed when the starting material is replaced with metal, and are considered to be a kind of forced evaporation phenomenon caused by activation of nitrogen gas by thermal plasma.

以上から明らかにされるように、この出願の発明の窒素プラズマによるSiCナノ粒子の製造方法は、不純物の少ない、平均粒径の小さなSiCナノ粒子の製造を可能にする。また、窒素プラズマを用いることから、安全であり、経済的に優れたSiCナノ粒子の製造法であると考えられる。   As is apparent from the above, the method for producing SiC nanoparticles using nitrogen plasma according to the invention of this application enables the production of SiC nanoparticles having a small average particle size with few impurities. Further, since nitrogen plasma is used, it is considered to be a safe and economical method for producing SiC nanoparticles.

もちろん、この出願の発明は、以上の実施例によって限定されるものではない。   Of course, the invention of this application is not limited by the above embodiments.

以上詳しく説明したとおり、この出願の発明によって、高純度で平均粒径の小さなSiCナノ粒子が高効率に製造される。比較的簡便なアーク溶解炉を基本とした熱プラズマ炉を用い、窒素ガスを用いることから、経済的であるとともに、安全性において優れており、波及効果は大きいと考えられる。   As explained in detail above, according to the invention of this application, SiC nanoparticles having high purity and a small average particle diameter are produced with high efficiency. Since a thermal plasma furnace based on a relatively simple arc melting furnace is used and nitrogen gas is used, it is economical and excellent in safety, and is considered to have a great ripple effect.

阿諏訪 守,SiC系セラミックス新材料,内田老鶴圃,日本学術振興会他・第124委員会編,p.122-123 (2001)Mamoru Asuwa, New SiC-Based Ceramic Materials, Uchida Otsukuru, Japan Society for the Promotion of Science and Others, 124th Committee, p. 122-123 (2001) 伊藤 淳,SiC系セラミックス新材料,内田老鶴圃,日本学術振興会他・第124委員会編,p.147-149 (2001)Satoshi Ito, SiC ceramics new material, Uchida Otsukuru, Japan Society for the Promotion of Science and others, 124th edition, p. 147-149 (2001)

Claims (5)

窒素雰囲気中でアークプラズマを発生させ、前記アークプラズマを、粉末Siと粉末Cの混合粉末成形体に照射してSiCのナノ粒子を生成させる、窒素プラズマによるSiCナノ粒子の製造法。A method for producing SiC nanoparticles by nitrogen plasma, wherein arc plasma is generated in a nitrogen atmosphere, and the arc plasma is irradiated to a powder mixture of powder Si and powder C to generate SiC nanoparticles. 前記混合粉末成形体は更に結合剤を含む、請求項1に記載の窒素プラズマによるSiCナノ粒子の製造法。The method for producing SiC nanoparticles by nitrogen plasma according to claim 1, wherein the mixed powder compact further contains a binder. 前記粉末Siと粉末Cの混合比率がモル比で1:1となるように前記混合粉末成形体を構成してある、請求項1又は2に記載の窒素プラズマによるSiCナノ粒子の製造法。The method for producing SiC nanoparticles by nitrogen plasma according to claim 1 or 2, wherein the mixed powder compact is configured so that a mixing ratio of the powder Si and the powder C is 1: 1 in terms of molar ratio. Arガス中でArプラズマを発生させ,前記混合粉末成形体を加熱した後,アークプラズマ発生室内を真空にしてから窒素ガスを導入する、請求項1から3の何れかに記載の窒素プラズマによるSiCナノ粒子の製造法。The SiC by nitrogen plasma according to any one of claims 1 to 3, wherein Ar plasma is generated in Ar gas and the mixed powder compact is heated, and then the inside of the arc plasma generation chamber is evacuated and then nitrogen gas is introduced. Nanoparticle manufacturing method. 前記窒素雰囲気はアルゴンを含む、請求項1から4の何れかに記載の窒素プラズマによるSiCナノ粒子の製造法。The said nitrogen atmosphere is a manufacturing method of the SiC nanoparticle by the nitrogen plasma in any one of Claim 1 to 4 containing argon.
JP2010224452A 2010-10-04 2010-10-04 Production method of SiC nanoparticles by nitrogen plasma Expired - Fee Related JP5252460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010224452A JP5252460B2 (en) 2010-10-04 2010-10-04 Production method of SiC nanoparticles by nitrogen plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010224452A JP5252460B2 (en) 2010-10-04 2010-10-04 Production method of SiC nanoparticles by nitrogen plasma

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004178941A Division JP4649586B2 (en) 2004-06-16 2004-06-16 Production method of SiC nanoparticles by nitrogen plasma

Publications (2)

Publication Number Publication Date
JP2011042571A JP2011042571A (en) 2011-03-03
JP5252460B2 true JP5252460B2 (en) 2013-07-31

Family

ID=43830282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010224452A Expired - Fee Related JP5252460B2 (en) 2010-10-04 2010-10-04 Production method of SiC nanoparticles by nitrogen plasma

Country Status (1)

Country Link
JP (1) JP5252460B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103539122B (en) * 2013-10-12 2015-12-02 台州市一能科技有限公司 A kind of preparation method of silicon carbide
KR102298897B1 (en) * 2020-05-13 2021-09-07 삼정이앤알 주식회사 Manufacturing method of SiC using wasted solar cell

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917045B2 (en) * 1981-09-09 1984-04-19 良二 上田 Silicon carbide ultrafine powder manufacturing equipment
JPS62167212A (en) * 1986-01-21 1987-07-23 Osamu Yamada Production of beta-type silicon carbide powder
US5460701A (en) * 1993-07-27 1995-10-24 Nanophase Technologies Corporation Method of making nanostructured materials
JPH07187639A (en) * 1993-12-22 1995-07-25 Ryoda Sato Production of silicon carbide utilizing multiarc

Also Published As

Publication number Publication date
JP2011042571A (en) 2011-03-03

Similar Documents

Publication Publication Date Title
JP4649586B2 (en) Production method of SiC nanoparticles by nitrogen plasma
Fahrenholtz et al. Synthesis of ultra-refractory transition metal diboride compounds
Xing et al. A brief review of metallothermic reduction reactions for materials preparation
Dash et al. Preparation of multi-phase composite of tungsten carbide, tungsten boride and carbon by arc plasma melting: characterization of melt-cast product
Bača et al. Adapting of sol–gel process for preparation of TiB2 powder from low-cost precursors
Ko et al. Synthesis of SiC nano-powder from organic precursors using RF inductively coupled thermal plasma
CN108698837B (en) Reduction of metal/semimetal oxides
CN102689903A (en) Method for preparing silicon carbide nanometer particle and composite material thereof by evaporating solid raw materials
Zhang et al. Recovery of silicon kerf waste from diamond wire sawing by two-step sintering and acid leaching method
Darghouth et al. High purity porous silicon powder synthesis by magnesiothermic reduction of Tunisian silica sand
Li et al. Synthesis of Ti3SiC2 powders by mechanically activated sintering of elemental powders of Ti, Si and C
JP5896968B2 (en) Zirconium carbide ingot and method for producing powder
JP5252460B2 (en) Production method of SiC nanoparticles by nitrogen plasma
JP2013071864A (en) Silicon nitride powder for mold releasing agent, and method for producing the same
Yang et al. Mechanical-activation-assisted combustion synthesis of SiC powders with polytetrafluoroethylene as promoter
Park et al. Synthesis of silicon carbide nanocrystals using waste poly (vinyl butyral) sheet
JP2015074565A (en) Spherical silicon carbide powder and method for producing the same
JP2014088292A5 (en)
JP2013532626A (en) Silicon carbide and method for producing the same
Liu et al. In situ synthesis of AlN nanoparticles by solid state reaction from plasma assisted ball milling Al and diaminomaleonitrile mixture
JP2010095442A (en) Nanoparticle production apparatus and nanoparticle production method using the same
JP2011063487A (en) Lanthanum boride sintered compact, target using sintered compact and method for producing sintered compact
Niyomwas In situ synthesis of silicon-silicon carbide composites from SiO2-C-Mg system via self-propagating high-temperature synthesis
KR101641839B1 (en) Preparation method of Si/SiC composite nanoparticles by fusion process of solid phase reaction and plasma decomposition
JP2009215150A (en) Method for preparation of titanium nitride powder

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130409

R150 Certificate of patent or registration of utility model

Ref document number: 5252460

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees