JP5251617B2 - Screw shape measuring device and screw shape measuring method - Google Patents

Screw shape measuring device and screw shape measuring method Download PDF

Info

Publication number
JP5251617B2
JP5251617B2 JP2009054183A JP2009054183A JP5251617B2 JP 5251617 B2 JP5251617 B2 JP 5251617B2 JP 2009054183 A JP2009054183 A JP 2009054183A JP 2009054183 A JP2009054183 A JP 2009054183A JP 5251617 B2 JP5251617 B2 JP 5251617B2
Authority
JP
Japan
Prior art keywords
screw
light
optical system
light receiving
receiving optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009054183A
Other languages
Japanese (ja)
Other versions
JP2010210292A (en
Inventor
俊文 児玉
秀行 湯澤
博之 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009054183A priority Critical patent/JP5251617B2/en
Publication of JP2010210292A publication Critical patent/JP2010210292A/en
Application granted granted Critical
Publication of JP5251617B2 publication Critical patent/JP5251617B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

この発明は、ねじ、例えば鋼管の管端に加工されたねじの形状、さらには、ねじ高さ、リード、テーパ等のねじパラメータを測定するねじ形状測定装置およびねじ形状測定方法に関するものである。   The present invention relates to a screw shape measuring device and a screw shape measuring method for measuring the shape of a screw, for example, a screw machined on a pipe end of a steel pipe, as well as screw parameters such as a screw height, a lead, and a taper.

従来から、油井管等の鋼管製品では、出荷前に端部を接続するため、管端部にねじ切り加工を行うものがあるが、このねじ部に切削不良があるとねじ嵌合が不足して搬送媒体の漏出などのトラブルが発生するため、出荷前あるいはねじ切り加工ラインでのねじ形状の検査は重要な品質管理項目である。このため、従来から、種々のねじ検査方法や装置が考案、提案され、例えば、API Spec 5B,” Specification for Threading, Gauging, and Thread Inspection of Casing, Tubing, and Line Pipe Threads “、などの規格や、各製造者が独自に策定する検査基準として公開あるいは鋼管の使用者に提示されている。   Conventionally, some steel pipe products such as oil well pipes are threaded at the end of the pipe in order to connect the end before shipment. Since troubles such as leakage of the transport medium occur, inspection of the thread shape before shipment or on the threading line is an important quality control item. For this reason, various screw inspection methods and devices have been devised and proposed in the past, such as API Spec 5B, “Specification for Threading, Gauging, and Thread Inspection of Casing, Tubing, and Line Pipe Threads“ These are disclosed to the users of steel pipes as inspection standards developed independently by each manufacturer.

ここで、前記管端部のねじ切りは、「特殊ねじハンドブック」等で規定されているとおり、鋼管の太さや用途によりさまざまな形状が規定されているが、通例、鋼管長手、数十mm〜百数十mmの長さ、かつねじ高さは2mm弱〜5,6mmであるが、測定結果の精度としては、一般的な機械工作公差相当、即ち数十μm程度の高精度計測が求められる。このような背景から、従来より、広く用いられまた前記規格等で推奨されている検査方法は、測定子をねじ溝に沿って移動させながら形状の測定を行う接触式形状検査技術や、ダイヤルゲージやマイクロメーターといった機械的測定手段と測定項目毎に特化した形状の冶具を組み合わせた機械的ねじ検査技術であった。ここでダイヤルゲージやマイクロメーターのよみは10μm台のものを用いることで、前記測定精度の要請に応えている。   Here, as described in the “Special Screw Handbook” and the like, the threaded end of the pipe end is defined in various shapes depending on the thickness and use of the steel pipe. Although the length is several tens of mm and the screw height is slightly less than 2 mm to 5,6 mm, the accuracy of the measurement results is required to be equivalent to general machining tolerances, that is, high-precision measurement of about several tens of μm. From such a background, conventionally used inspection methods that are widely used and recommended in the above standards, such as contact-type shape inspection technology that measures the shape while moving the probe along the screw groove, and a dial gauge It was a mechanical screw inspection technology that combined mechanical measuring means such as a micrometer and a jig with a shape specialized for each measurement item. Here, the dial gauge and the micrometer are used in the order of 10 μm to meet the demand for the measurement accuracy.

また、一方では光学式のねじ形状検査技術の提案もなされている(特許文献1参照)。この特許文献1に記載されたものは、ねじの形状を透過光式で測定するもので、レーザーの光路をねじの巻き線と平行に設定し、かつレーザーの走査光が作る走査面をねじの軸に対して傾斜させながら、ねじの形状を測定する方式である。具体的には、レーザーの走査方向をねじの高さ方向とし、レーザーの走査タイミングと光量の変化の関係より、ねじの軸方向の、ある1点でのねじ高さ情報を得るもので、この装置をねじの長手方向に移動させることで、ねじの断面形状を測定するようにしている。   On the other hand, an optical screw shape inspection technique has also been proposed (see Patent Document 1). In this patent document 1, the shape of a screw is measured by a transmitted light method, the laser optical path is set in parallel with the winding of the screw, and the scanning surface created by the laser scanning light is set on the screw. In this method, the shape of the screw is measured while being inclined with respect to the axis. Specifically, the laser scanning direction is the screw height direction, and the screw height information at a certain point in the axial direction of the screw is obtained from the relationship between the laser scanning timing and the change in the amount of light. The cross-sectional shape of the screw is measured by moving the device in the longitudinal direction of the screw.

また、特許文献2には、ねじの一方に光源を、他方にテレビカメラを設け、光軸がその管軸を通る水平面に合わせて正対させてあり、その撮像視野が縦長となるような向きにセットし、テレビカメラと鋼管との間に鏡を設置してテレビカメラの撮像視野をねじの上下外縁部のみとし、このような配置とすることでカメラの視野には水平に置かれた鋼管の上下の外縁にあるねじ部分の形状がシルエット映像として映し出されるようにしている。   In Patent Document 2, a light source is provided on one of the screws, a television camera is provided on the other, and the optical axis is aligned with a horizontal plane passing through the tube axis so that the imaging field of view is vertically long. The mirror is installed between the TV camera and the steel pipe so that the imaging field of view of the TV camera is only the upper and lower outer edges of the screw, and this arrangement allows the steel pipe placed horizontally in the camera field of view. The shape of the screw part on the upper and lower outer edges is projected as a silhouette image.

さらに、特許文献3には、ねじ溝に平行に照射した光が、ねじ溝を通過した光を拡大光学系通すか、前記のようなねじ溝の透過光を投影板に投射してできるシルエット画像を撮像するか、あるいは前記の投影板を斜めに傾けて投影してシルエット像を拡大しこれを撮像する、などの原理に基づき、各光学要素としては、光源として平行光源を用いたり、投影板に投影されたシルエット像の撮像手段として放物面鏡とミラー走査装置を用いたり、ねじと投影スクリーンとの間の光学系としてテレセントリック光学系を用いて平行光に投影板に投影するようにする、などを組み合わせたものが記載されている。   Further, Patent Document 3 discloses a silhouette image formed by irradiating light parallel to a thread groove through light that has passed through the thread groove through an enlarged optical system or projecting light transmitted through the thread groove onto the projection plate. Based on the principle that the projection plate is tilted and projected to incline and the silhouette image is magnified to capture the image, each optical element uses a parallel light source as the light source, or the projection plate A parabolic mirror and a mirror scanning device are used as the imaging means for the silhouette image projected on the lens, or a telecentric optical system is used as the optical system between the screw and the projection screen to project the parallel light onto the projection plate. , Etc. are combined.

特開昭63−191007号公報JP 63-191007 A 特開昭58−62505号公報Japanese Patent Laid-Open No. 58-62505 特開2007−10393号公報JP 2007-10393 A

しかしながら、上述したAPI Spec 5B等の機械式変位測定による方法では、ねじに測定子あるいは冶具を当接させて測定を行うため、接触させる力の大きさや向きが測定値に影響を与えるという精度上の問題があった。また、この方法では、数10mm〜百数十mmの長手方向に分布するねじプロフィールの特定の数点でのねじ径やねじ高さ、長手スパンといった代表点のみの測定であるので、局所的なねじ形状の不良が検査結果に反映しないという問題があった。さらに、この方法では、測定時間がかかるため数十秒〜数分毎に加工させる鋼管の全数を検査できない場合があるという運用上の問題もあった。   However, in the method based on mechanical displacement measurement such as API Spec 5B described above, since the measurement is performed by bringing a probe or a jig into contact with the screw, the accuracy and the magnitude and direction of the contact force affect the measurement value. There was a problem. In this method, only representative points such as screw diameter, screw height, and longitudinal span are measured at specific points of a screw profile distributed in the longitudinal direction of several tens to several hundreds of millimeters. There was a problem that the defect of the screw shape was not reflected in the inspection result. Furthermore, in this method, since it takes a measurement time, there is an operational problem that the total number of steel pipes to be processed every tens of seconds to several minutes may not be inspected.

また、特許文献1に記載されたレーザー走査式では、ねじの長手方向での測定ピッチ毎にレーザーを走査させて計測し、次の測定点に測定装置を移動するという計測手順を繰り返すが、ねじの測定ピッチを細かくするとそれに応じて測定時間がかかるという問題があった。   The laser scanning method described in Patent Document 1 repeats the measurement procedure of scanning and measuring a laser at each measurement pitch in the longitudinal direction of the screw and moving the measuring device to the next measurement point. If the measurement pitch is made finer, there is a problem that the measurement time is accordingly increased.

さらに、特許文献2に記載された方法では、ねじの形状をテレビカメラで映し出すことになっているが、上述したとおり、測定範囲が長手方向に百mm程度、高さ方向に数mm程度であって、且つ必要な測定精度は数十μmであるから、シルエットを映像として測定する場合の画素数(走査線数)は、長手方向で1万程度の大きな数が必要であるのに対し、テレビカメラの走査線数、あるいは2次元カメラの画素数は高々、千程度で精度不足であり、カメラを長手方向に複数台並べるように構成する、あるいは長手方向に移動させる、という手法でこの問題点を補う対策が容易に想起されるが、一回のねじ形状を得るための手順や装置構成が複雑になる、もしくはレーザー走査式の場合と同様に測定時間がかかる、といった問題点があった。   Furthermore, in the method described in Patent Document 2, the shape of the screw is projected with a television camera. As described above, the measurement range is about 100 mm in the longitudinal direction and about several mm in the height direction. In addition, since the required measurement accuracy is several tens of μm, the number of pixels (the number of scanning lines) when measuring a silhouette as an image needs to be a large number of about 10,000 in the longitudinal direction, whereas a television The number of scanning lines of a camera or the number of pixels of a two-dimensional camera is at most about 1000, which is insufficient in accuracy, and this problem is caused by a method in which a plurality of cameras are arranged in the longitudinal direction or moved in the longitudinal direction. However, there is a problem that the procedure and apparatus configuration for obtaining a single screw shape are complicated, or that the measurement time is long as in the case of the laser scanning type.

また、特許文献3では、投影スクリーンを介したシルエット映像を撮像すると、スクリーンの汚れや撓み等の平面度不良がねじ形状測定上の誤差になるばかりか、投影スクリーン表面粗さに起因してシルエット境界に発生する細かな凹凸(ぎざぎざ状)がねじ形状プロフィールのノイズになるという問題点や、投影スクリーンを傾けてシルエット像を拡大した場合もCCDカメラで撮像する画素分解能は向上するものの、測定対象であるねじの形状の測定の分解能はねじとスクリーンの間の光学系の光学的解像度で決定されるために本質的な計測の精度向上にはつながらないばかりか、投影板を斜めにすることにより必然的に投影板と対象物の間の光路長に差が生じ、結果として投影される映像はフォーカスがずれた部位が発生して逆に計測の精度が悪化するという問題点があった。   Further, in Patent Document 3, when a silhouette image is captured through a projection screen, not only flatness defects such as screen contamination and deflection become errors in screw shape measurement, but also silhouette due to the projection screen surface roughness. The problem that fine irregularities (jagged edges) at the boundary become noise of the screw profile, and even if the silhouette image is enlarged by tilting the projection screen, the pixel resolution captured by the CCD camera is improved, but the measurement target Since the resolution of the measurement of the screw shape is determined by the optical resolution of the optical system between the screw and the screen, it does not lead to an essential improvement in measurement accuracy, but it is inevitably caused by tilting the projection plate. As a result, there is a difference in the optical path length between the projection plate and the object. But there is a problem that is worse.

この発明は、上記に鑑みてなされたものであって、ねじなどの軸方向が長い測定対象物であっても、簡易な構成で高精度にねじ形状を測定することができるねじ形状測定装置およびねじ形状測定方法を提供することを目的とする。   The present invention has been made in view of the above, and a screw shape measuring apparatus capable of measuring a screw shape with high accuracy with a simple configuration, even for a measuring object such as a screw having a long axial direction, and An object is to provide a thread shape measuring method.

上述した課題を解決し、目的を達成するために、この発明にかかるねじ形状測定装置は、光源からの光をねじの螺旋に平行に照射する投光手段と、前記投光手段と同一の受光光軸を有する受光光学系と、前記受光光学系の経路内に配置され、前記ねじの管軸方向に走査する走査手段と、前記ねじの管軸に直交する方向の1次元画像を検出する検出手段と、を備え、前記走査手段による走査に伴って得られる1次元画像を管軸方向に合成することによって前記ねじの形状を測定することを特徴とする。   In order to solve the above-described problems and achieve the object, a screw shape measuring apparatus according to the present invention includes a light projecting unit that irradiates light from a light source in parallel with a screw spiral, and the same light reception as the light projecting unit. A light receiving optical system having an optical axis, a scanning means arranged in the path of the light receiving optical system and scanning in the tube axis direction of the screw, and a detection for detecting a one-dimensional image in a direction perpendicular to the tube axis of the screw And measuring the shape of the screw by synthesizing in the tube axis direction a one-dimensional image obtained along with the scanning by the scanning means.

また、この発明にかかるねじ形状測定装置は、上記の発明において、前記光源は、平行光源であることを特徴とする。   In the screw shape measuring apparatus according to the present invention as set forth in the invention described above, the light source is a parallel light source.

また、この発明にかかるねじ形状測定装置は、上記の発明において、前記ねじと前記走査手段との間の受光光学系は、テレセントリック光学系であり、前記走査手段は、角度可変の反射鏡であり、前記受光光学系の画角と結像高さとの関係の逆関数に比例した角度指令値の時間波形を生成して前記反射鏡に該角度指令値を出力する波形発生器を備え、前記検出手段は、一定時間間隔で、前記管軸方向に対する一次元画像を順次検出することを特徴とする。   In the screw shape measuring apparatus according to the present invention, in the above invention, the light receiving optical system between the screw and the scanning unit is a telecentric optical system, and the scanning unit is a variable angle reflecting mirror. A waveform generator that generates a time waveform of an angle command value proportional to an inverse function of a relationship between an angle of view and an imaging height of the light receiving optical system, and outputs the angle command value to the reflecting mirror; The means sequentially detects one-dimensional images in the tube axis direction at regular time intervals.

また、この発明にかかるねじ形状測定装置は、上記の発明において、前記受光光学系は、前記ねじと前記走査手段との間の受光光学系に受像軸と画角との関係が比例関係となるf−θレンズを用い、前記走査手段は、角度可変の反射鏡であり、時間の1次関数となる角度指令値の時間波形を生成して前記反射鏡に該角度指令値を出力する波形発生器を備え、前記検出手段は、一定時間間隔で、前記管径方向に対する一次元画像を順次検出することを特徴とする。   In the screw shape measuring apparatus according to the present invention, in the above invention, the light receiving optical system is proportional to the relationship between the image receiving axis and the angle of view in the light receiving optical system between the screw and the scanning unit. Using an f-θ lens, the scanning means is a variable angle reflecting mirror, and generates a waveform of an angle command value that is a linear function of time and outputs the angle command value to the reflecting mirror. And the detecting means sequentially detects one-dimensional images in the tube diameter direction at regular time intervals.

また、この発明にかかるねじ形状測定装置は、上記の発明のいずれか一つに記載のねじ形状測定装置を、前記ねじの管軸周りに等角度分割された各角度境界位置の螺旋部分のねじ形状を測定する位置に複数配置し、前記ねじを等角度分割された角度分、回転させて前記ねじの形状を測定することを特徴とする。   The screw shape measuring device according to the present invention is the screw shape measuring device according to any one of the above inventions, wherein the screw at the spiral portion at each angular boundary position divided at equal angles around the tube axis of the screw. A plurality of shapes are arranged at positions to measure the shape, and the shape of the screw is measured by rotating the screw by an angle divided by equal angles.

また、この発明にかかるねじ形状測定方法は、光源からの光をねじの螺旋に平行に照射し、ねじ螺旋の空隙部を通過した通過光を、前記光源と同一の受光光軸を有する受光光学系を経由させて前記ねじのシルエット画像を検出手段によって検出して前記ねじの形状を測定するねじ形状測定方法において、前記受光光学系の経路内に配置された走査手段によって前記通過光を前記ねじの管軸方向に走査し、前記ねじの管軸に直交する方向の1次元画像を検出する検出手段が該走査された通過光を検出し、前記走査手段による走査に伴って得られる1次元画像を管軸方向に合成することによって前記ねじの形状を測定することを特徴とする。   Further, the screw shape measuring method according to the present invention irradiates light from a light source parallel to the spiral of the screw, and passes through the gap of the screw spiral to receive light having the same light receiving optical axis as the light source. In a screw shape measuring method for measuring the shape of the screw by detecting a silhouette image of the screw through a system by a detecting means, the passing light is transmitted by the scanning means arranged in the path of the light receiving optical system. The detection means for scanning in the direction of the tube axis and detecting the one-dimensional image in the direction orthogonal to the tube axis of the screw detects the scanned passing light, and the one-dimensional image obtained along with the scanning by the scanning means The shape of the screw is measured by synthesizing in the tube axis direction.

また、この発明にかかるねじ形状測定方法は、上記の発明において、前記光源は、平行光源であることを特徴とする。   In the screw shape measuring method according to the present invention as set forth in the invention described above, the light source is a parallel light source.

また、この発明にかかるねじ形状測定方法は、上記の発明において、前記ねじと前記走査手段との間の受光光学系は、テレセントリック光学系であり、前記走査手段は、角度可変の反射鏡であり、前記受光光学系の画角と結像高さとの関係の逆関数に比例した角度指令値の時間波形を生成して前記反射鏡に該角度指令値を出力し、前記検出手段が、一定時間間隔で、前記管軸方向に対する一次元画像を順次検出することを特徴とする。   In the screw shape measuring method according to the present invention, in the above invention, the light receiving optical system between the screw and the scanning unit is a telecentric optical system, and the scanning unit is a variable angle reflecting mirror. Generating a time waveform of an angle command value proportional to the inverse function of the relationship between the angle of view of the light receiving optical system and the imaging height, and outputting the angle command value to the reflecting mirror. One-dimensional images with respect to the tube axis direction are sequentially detected at intervals.

また、この発明にかかるねじ形状測定方法は、上記の発明において、前記受光光学系は、前記ねじと前記走査手段との間の受光光学系に受像軸と画角との関係が比例関係となるf−θレンズを用い、前記走査手段は、角度可変の反射鏡であり、1次関数となる角度指令値の時間波形を生成して前記反射鏡に該角度指令値を出力し、前記検出手段が、一定時間間隔で、前記管径方向に対する一次元画像を順次検出することを特徴とする。   In the screw shape measuring method according to the present invention, in the above invention, the light receiving optical system is proportional to the relationship between the image receiving axis and the angle of view in the light receiving optical system between the screw and the scanning unit. An f-θ lens is used, the scanning means is a variable angle reflecting mirror, generates a time waveform of an angle command value as a linear function, outputs the angle command value to the reflecting mirror, and the detecting means However, it is characterized in that a one-dimensional image in the tube diameter direction is sequentially detected at regular time intervals.

また、この発明にかかるねじ形状測定方法は、上記の発明のいずれか1つのねじ形状測定方法を実現するねじ形状測定装置を、前記ねじの管軸周りに等角度分割された各角度境界位置の螺旋部分のねじ形状を測定する位置に複数配置し、前記ねじを等角度分割された角度分、回転させて前記ねじの形状を測定することを特徴とする。   The screw shape measuring method according to the present invention is a screw shape measuring device that realizes any one of the above-described screw shape measuring methods, at each angular boundary position divided by equal angles around the tube axis of the screw. A plurality of screw shapes of the spiral portion are arranged at positions to be measured, and the screw shape is measured by rotating the screw by an equal angle divided angle.

この発明によれば、光源からの光をねじの螺旋に平行に照射する投光手段と、前記投光手段と同一の受光光軸を有する受光光学系とを備え、走査手段が、前記受光光学系の経路内に配置され、前記ねじの管軸方向に走査し、検出手段が、前記ねじの管軸に直交する方向の1次元画像を検出し、前記走査手段による走査に伴って得られる1次元画像を管軸方向に合成することによって前記ねじの形状を測定するようにしているので、ねじなどの軸方向が長い測定対象物であっても、簡易な構成で高精度にねじ形状を測定することができる。   According to this invention, the light projecting means for irradiating the light from the light source in parallel with the spiral of the screw, and the light receiving optical system having the same light receiving optical axis as the light projecting means, the scanning means includes the light receiving optical system. 1 arranged in the path of the system and scanning in the tube axis direction of the screw, and the detection means detects a one-dimensional image in a direction perpendicular to the tube axis of the screw, and is obtained 1 following the scanning by the scanning means. Since the shape of the screw is measured by synthesizing a dimensional image in the tube axis direction, the screw shape can be measured with a simple configuration and high accuracy even for a measuring object with a long axial direction such as a screw. can do.

図1は、この発明の実施の形態1であるねじ形状測定装置の概要構成を示す模式図である。FIG. 1 is a schematic diagram showing a schematic configuration of a screw shape measuring apparatus according to Embodiment 1 of the present invention. 図2は、一般のレンズにおける画角と結像高さとの関係を示す模式図である。FIG. 2 is a schematic diagram showing the relationship between the angle of view and the imaging height in a general lens. 図3は、この発明の実施の形態2であるねじ形状測定装置の概要構成を示す模式図である。FIG. 3 is a schematic diagram showing a schematic configuration of a screw shape measuring apparatus according to Embodiment 2 of the present invention. 図4は、f−θレンズにおける画角と結像高さとの関係を示す模式図である。FIG. 4 is a schematic diagram showing the relationship between the field angle and the imaging height in the f-θ lens. 図5は、この発明の実施の形態3であるねじ形状測定装置の概要構成を示す模式図である。FIG. 5 is a schematic diagram showing a schematic configuration of a screw shape measuring apparatus according to Embodiment 3 of the present invention.

以下、添付図面を参照して、この発明に係るねじ形状測定装置およびねじ形状測定方法の好適な実施の形態について説明する。なお、実施の形態により、この発明が限定されるものではない。また、図面の記載において、同一部分又は相当する部分には同一の符号を付している。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of a screw shape measuring device and a screw shape measuring method according to the present invention will be described with reference to the accompanying drawings. Note that the present invention is not limited to the embodiments. In the description of the drawings, the same or corresponding parts are denoted by the same reference numerals.

(実施の形態1)
まず、この発明の実施の形態1について説明する。図1は、この発明の実施の形態1であるねじ形状測定装置の概要構成を示す模式図である。図1において、投光手段としての光源1は、測定対象であるねじ10の管軸に対して概垂直な向きから、ねじ10に対して光を照射する。光源1は、ねじ溝に沿って平行光を照射するのが好ましい。さらに、光源1は、撮像装置5の受光感度に足り、かつ測定視野範囲内で概均一な照度を有するものが好ましく、具体的には、ハロゲンランプやメタルハライドランプと拡散板、およびテレセントリック光学系などで構成するものが好ましい。
(Embodiment 1)
First, a first embodiment of the present invention will be described. FIG. 1 is a schematic diagram showing a schematic configuration of a screw shape measuring apparatus according to Embodiment 1 of the present invention. In FIG. 1, a light source 1 as a light projecting unit irradiates light to a screw 10 from a direction substantially perpendicular to a tube axis of the screw 10 to be measured. The light source 1 preferably emits parallel light along the thread groove. Further, the light source 1 preferably has sufficient light receiving sensitivity of the imaging device 5 and has substantially uniform illuminance within the measurement visual field range. Specifically, a halogen lamp, a metal halide lamp, a diffusion plate, a telecentric optical system, and the like What comprises is preferable.

受光光学系2は、ねじ10のねじ溝部を透過した光を、撮像装置5のラインセンサ5aに結像させるもので、光軸に平行な成分のみを結像させるため平行光源と同一の光軸位置に配置したテレセントリック特性を有するものであることが好ましい。   The light receiving optical system 2 forms an image of the light transmitted through the screw groove portion of the screw 10 on the line sensor 5a of the image pickup device 5, and forms the image of only the component parallel to the optical axis. It is preferable to have a telecentric characteristic arranged at a position.

反射鏡3は、走査手段として機能し、ねじ10と受光光学系2とを通過してきた光のうち、撮像装置5に投影するねじ10の長手位置、すなわち管軸方向位置を変更するものである。反射鏡3は、ポリゴンミラーや回転鏡などで構成してもよいが、好適には角度制御に柔軟性を有するガルバノモーターと平面鏡とにより構成するのが好ましい。   The reflecting mirror 3 functions as a scanning unit, and changes the longitudinal position of the screw 10 projected on the imaging device 5, that is, the position in the tube axis direction, out of the light passing through the screw 10 and the light receiving optical system 2. . The reflecting mirror 3 may be composed of a polygon mirror, a rotating mirror, or the like, but is preferably composed of a galvano motor having flexibility in angle control and a plane mirror.

波形発生器6は、反射鏡3に対して、ラインセンサ5aによる測定タイミング毎の角度指令値を出力するための角度指令値の時間波形(時間に関する角度指令値の波形)を生成し、反射鏡3の回転位置調整を行うものである。この波形発生器6は、反射鏡3の駆動機構に応じて信号発生器やディジタル通信器等を用いて実現され、角度指令値を出力する時間波形は、受光光学系2の画角特性の逆関数となるような時間波形とすればよい。   The waveform generator 6 generates a time waveform of an angle command value (a waveform of an angle command value related to time) for outputting an angle command value at each measurement timing by the line sensor 5a to the reflecting mirror 3, and the reflecting mirror 3 3 is performed. The waveform generator 6 is realized by using a signal generator, a digital communication device, or the like according to the driving mechanism of the reflecting mirror 3, and the time waveform for outputting the angle command value is the inverse of the field angle characteristic of the light receiving optical system 2. The time waveform may be a function.

すなわち、図2に示すように、一般にレンズL1の結像高さfは入射角θの関数関係、例えば理想レンズにおいてはf∝tan(θ)で表される関数関係にあるので、角度指令値の時間波形φ(t)としては、F(φ)の逆関数G(f)を用いて、G(f)の結像高さfを時間tに置き換えてφ(t)=G(t)の波形とすれば、合成される1次元画像の長手方向(管径方向)がほぼ等間隔となる。この結果、反射鏡3の角度が、受光光学系2内の対物レンズへの入射角θと結像高さfとの関係であるf=F(θ)の逆関数に比例した時間波形として出力されることによって調整され、撮像装置5が一定時間間隔で順次撮像した1次元画像である光強度波形を合成する際、管径方向の間隔がほぼ等間隔となる。   That is, as shown in FIG. 2, the imaging height f of the lens L1 generally has a functional relationship of the incident angle θ, for example, a functional relationship represented by f 関 数 tan (θ) in an ideal lens. As the time waveform φ (t), φ (t) = G (t) using the inverse function G (f) of F (φ) and replacing the imaging height f of G (f) with time t. In this case, the longitudinal direction (tube diameter direction) of the synthesized one-dimensional image is substantially equidistant. As a result, the angle of the reflecting mirror 3 is output as a time waveform proportional to the inverse function of f = F (θ), which is the relationship between the incident angle θ to the objective lens in the light receiving optical system 2 and the imaging height f. Thus, when the light intensity waveform, which is a one-dimensional image sequentially captured by the imaging device 5 at regular time intervals, is synthesized, the intervals in the tube diameter direction are substantially equal.

結像レンズ4は、回転鏡3を経由した光を撮像装置5の受光部であるラインセンサ5aに結像させるための光学系である。なお、受光光学系4のみで撮像装置5に結像できるのであれば、結像レンズ4は削除してもよい。   The imaging lens 4 is an optical system for imaging light that has passed through the rotary mirror 3 onto the line sensor 5 a that is a light receiving unit of the imaging device 5. Note that the imaging lens 4 may be omitted if only the light receiving optical system 4 can form an image on the imaging device 5.

撮像装置5は、上述したように、ねじ10のねじ溝を通過して結像された光の強度分布を、それに対応した電気信号あるいは数値に変換するもので、CCD型のラインセンサ5aが用いられる。このラインセンサ5aは、Z方向の1次元センサである。なお、反射鏡3は、ねじ10の管軸方向を走査するもので、XY平面上を走査する。ラインセンサ5aは、5000〜10000画像程度の画素数を有し、10kHz〜30kHz程度の測定周波数が、必要な測定分解能、測定速度に応じて選定され、検出した電気信号あるいは数値データは、制御部11内の画像処理部12に出力される。   As described above, the imaging device 5 converts the intensity distribution of the light imaged through the screw groove of the screw 10 into an electric signal or a numerical value corresponding to the light intensity distribution, and is used by the CCD type line sensor 5a. It is done. The line sensor 5a is a one-dimensional sensor in the Z direction. The reflecting mirror 3 scans the tube axis direction of the screw 10 and scans on the XY plane. The line sensor 5a has a number of pixels of about 5000 to 10000 images, a measurement frequency of about 10 kHz to 30 kHz is selected according to the required measurement resolution and measurement speed, and the detected electrical signal or numerical data is a control unit. 11 is output to the image processing unit 12 in the system 11.

画像処理部12は、撮像装置5によって撮像され、順次送られた1次元画像、すなわち、ねじ10の管径方向の1次元画像を、管軸方向に沿って合成し、ねじ10のシルエット画像を生成し、さらにこのシルエット画像からエッジ処理などによって形状プロフィールを生成する。この形状プロフィールなどは、記憶部13あるいは表示部14に出力される。なお、制御部11は、反射鏡3および撮像装置5を制御し、入力部15は、所望の指示信号などを制御部11に入力する。   The image processing unit 12 synthesizes a one-dimensional image captured by the imaging device 5 and sequentially sent, that is, a one-dimensional image in the pipe radial direction of the screw 10 along the pipe axis direction, and a silhouette image of the screw 10 is obtained. Then, a shape profile is generated from the silhouette image by edge processing or the like. The shape profile and the like are output to the storage unit 13 or the display unit 14. The control unit 11 controls the reflecting mirror 3 and the imaging device 5, and the input unit 15 inputs a desired instruction signal or the like to the control unit 11.

ここで、光源1からねじ10のねじ溝に平行な平行光が照射されると、ねじ10あるいはねじ溝部分のシルエット画像が受光光学系2を介して反射鏡3に入力される。反射鏡3に入力された光は、波形発生器6からの角度指令値をもとに回転制御される反射鏡3によって反射される。この反射によって走査された反射光を、結像レンズ4を介して撮像装置5のラインセンサ5aに出力する。ラインセンサ5aは、一定時間間隔で、反射鏡3の1走査によって管軸方向のねじ10あるいはねじ溝の複数の1次元画像を順次検出出力し、画像処理部12は、管軸方向に対してほぼ等間隔で取得された1次元画像をもとに、ねじ10あるいはねじ溝の2次元画像を生成し、さらに形状プロフィールを生成する。   Here, when parallel light parallel to the screw groove of the screw 10 is irradiated from the light source 1, a silhouette image of the screw 10 or the screw groove portion is input to the reflecting mirror 3 via the light receiving optical system 2. The light input to the reflecting mirror 3 is reflected by the reflecting mirror 3 whose rotation is controlled based on the angle command value from the waveform generator 6. The reflected light scanned by this reflection is output to the line sensor 5 a of the imaging device 5 through the imaging lens 4. The line sensor 5a sequentially detects and outputs a plurality of one-dimensional images of the screw 10 or the screw groove in the tube axis direction by one scan of the reflecting mirror 3 at regular time intervals. A two-dimensional image of the screw 10 or the screw groove is generated based on the one-dimensional image acquired at substantially equal intervals, and a shape profile is further generated.

ところで、上述したように光源1からねじ10に平行光を照射し、同一の光軸を有するテレセントリック受光系の受光光学系2でねじ10のシルエット画像を結像させるが、高さ方向(管径方向)の光強度分布を数μm程度の細かい分解能で計測するためにラインセンサ5aを用いている。そして、管軸方向の視野を可変として計測するために、受光光学系2と撮像装置5との間に角度可変の反射鏡3を設置している。この場合、管軸方向の分解能を高めるためには、反射鏡3の走査速度を遅くすればよい。換言すれば、波形発生器6が発生する時間波形の時間を大きくすればよい。   By the way, as described above, parallel light is irradiated from the light source 1 to the screw 10, and a silhouette image of the screw 10 is formed by the light receiving optical system 2 of the telecentric light receiving system having the same optical axis. The line sensor 5a is used to measure the light intensity distribution in the direction) with a fine resolution of about several μm. In order to measure the field of view in the tube axis direction as variable, a reflecting mirror 3 having a variable angle is installed between the light receiving optical system 2 and the imaging device 5. In this case, in order to increase the resolution in the tube axis direction, the scanning speed of the reflecting mirror 3 may be decreased. In other words, the time of the time waveform generated by the waveform generator 6 may be increased.

なお、光源1として、通常の光学測定装置で用いられる拡散光源を用いると、ねじ10の切り立った面(ねじ面、あるいはフランク面)、ねじ山や谷底、鋼管外面などでは光の経路方向に奥行きがあって、そこで反射してから結像部に到達する光路が存在しうるために、計測されるシルエット像にゴーストが重なってしまい正確なプロフィールが得られなくなる。したがって、ゴーストの原因となる非平行な光線成分を抑制することが必要であり、この実施の形態1では、光源1からは平行光を照射し、受光光学系2側も光軸に平行な成分のみを結像させるテレセントリックレンズを用い、またねじ面の反射抑制に関しては投光の光軸をねじの螺旋の向きと一致させるようにしている。   In addition, when a diffused light source used in a normal optical measuring device is used as the light source 1, the depth in the light path direction is high on the surface (screw surface or flank surface) of the screw 10, the thread or valley bottom, the outer surface of the steel pipe, and the like. Then, since there may be an optical path that reaches the image forming portion after being reflected there, a ghost overlaps the measured silhouette image and an accurate profile cannot be obtained. Therefore, it is necessary to suppress the non-parallel light component that causes ghost. In the first embodiment, the light source 1 emits parallel light, and the light receiving optical system 2 side is also a component parallel to the optical axis. A telecentric lens that forms an image only is used, and with respect to the reflection suppression of the thread surface, the optical axis of the light projection is made to coincide with the direction of the spiral of the screw.

この実施の形態1では、ねじの管軸方向および管径方向に関する二次元形状を一度の測定動作で計測するようにしたので、短時間でねじ形状の測定を行うことができる。この場合、管径方向には、高解像度のラインセンサによって一次元画像を取得し、管軸方向に走査することによって二次元画像を取得するようにしているので、簡易な構成で高精度の形状測定を実現することができる。換言すれば、管径方向に延びるラインセンサを管軸方向に走査したことに相当する。さらに、測定は、非接触、かつ管軸方向の測定ピッチを稠密にしたので、従来の機械的手法のような測定子の当たり具合や押し付け力による測定誤差や代表点のみの検査に比べ稠密なねじ形状検査が可能となる。さらに、ねじの高さ方向(管径方向)の測定分解能を高めることも容易なので、従来のTVモニタ方式などに比較して高い分解能での検査が可能となる。また、反射スクリーン等を用いない構造としたので、スクリーンの汚れや変形、表面粗さ等の外乱因子や、傾けることに夜フォーカスずれ等の問題がなくなり、より正確なねじ形状検査が可能である。   In the first embodiment, since the two-dimensional shape related to the tube axis direction and the tube diameter direction of the screw is measured by one measurement operation, the screw shape can be measured in a short time. In this case, in the tube diameter direction, a one-dimensional image is acquired by a high-resolution line sensor, and a two-dimensional image is acquired by scanning in the tube axis direction. Measurement can be realized. In other words, this corresponds to scanning the line sensor extending in the tube diameter direction in the tube axis direction. Furthermore, the measurement is non-contact and the measurement pitch in the tube axis direction is made dense, so that the measurement error due to the contact state of the probe and the pressing force as in the conventional mechanical method and the inspection only for the representative point are denser. Screw shape inspection is possible. Furthermore, since it is easy to increase the measurement resolution in the screw height direction (tube diameter direction), it is possible to perform inspection with a higher resolution than conventional TV monitor systems. In addition, since a structure that does not use a reflective screen or the like, there are no disturbance factors such as screen contamination, deformation, and surface roughness, and there is no problem of tilting at night due to tilting, and more accurate screw shape inspection is possible. .

(実施の形態2)
つぎに、この発明の実施の形態2について説明する。この実施の形態2では、受光光学系2に対応する受光光学系22内に、画角θと結像高さfとの関係がf−θ特性となるf−θレンズ22aを用いている。また、これに関連して、波形発生器6に対応する波形発生器16は、反射鏡3への角度指令値の時間波形(時間に関する角度指令値の波形)を時間に比例した一次関数(直線)としている。
(Embodiment 2)
Next, a second embodiment of the present invention will be described. In the second embodiment, an f-θ lens 22a in which the relationship between the field angle θ and the imaging height f has f-θ characteristics is used in the light receiving optical system 22 corresponding to the light receiving optical system 2. In relation to this, the waveform generator 16 corresponding to the waveform generator 6 converts the time waveform of the angle command value to the reflecting mirror 3 (the waveform of the angle command value related to time) to a linear function (straight line) proportional to time. ).

すなわち、図4に示すように、f−θレンズL2、結像高さfが画角θに比例した関数関係、すなわちf∝θの関係をもつため、波形発生器26は、角度指令値の時間波形を単純な直線となる。   That is, as shown in FIG. 4, since the f-θ lens L2 and the imaging height f have a functional relationship proportional to the angle of view θ, that is, a relationship of f∝θ, the waveform generator 26 The time waveform becomes a simple straight line.

ここで、撮像装置5は、実施の形態1と同様に、一定時間間隔で、ラインセンサ5aによる一次元画像を取得する。そして、波形発生器26の時間波形も一次関数(直線)なので、反射鏡3の回転速度も一定となる。   Here, the imaging device 5 acquires a one-dimensional image by the line sensor 5a at regular time intervals, as in the first embodiment. Since the time waveform of the waveform generator 26 is also a linear function (straight line), the rotational speed of the reflecting mirror 3 is also constant.

この実施の形態2では、f−θレンズ22aとこれに対応する波形発生器26とを設けるのみで、さらに簡易な構成のねじ形状測定装置を実現することができる。   In the second embodiment, it is possible to realize a screw shape measuring apparatus having a simpler configuration simply by providing the f-θ lens 22a and the waveform generator 26 corresponding thereto.

(実施の形態3)
この発明の実施の形態3では、複数のねじ形状測定装置を用いて、高速測定を行うようにしている。
(Embodiment 3)
In Embodiment 3 of the present invention, high-speed measurement is performed using a plurality of screw shape measuring devices.

すなわち、図5に示すように、4つのねじ形状測定装置31a,31b、32a,32b、33a,33b、34a,34bを、ねじ10の管軸周りに90度分割された各角度境界位置の螺旋部分のねじ形状を測定する位置に配置し、ねじ10を90度回転させることによって、ねじ10の三次元形状を取得するようにしている。   That is, as shown in FIG. 5, the four screw shape measuring devices 31 a, 31 b, 32 a, 32 b, 33 a, 33 b, 34 a, 34 b are spirals at respective angular boundary positions divided by 90 degrees around the tube axis of the screw 10. The three-dimensional shape of the screw 10 is acquired by arranging the screw shape of the portion at a position to be measured and rotating the screw 10 by 90 degrees.

なお、上述した実施の形態1〜3では、ねじ10を固定させてねじ形状を測定するようにしていたが、これに限らず、ねじ10を回転させて、ねじ10の周方向の3次元形状を得るようにしてもよい。さらには、ねじ10を固定配置し、その周方向に、1以上のねじ形状測定装置を回転させるようにしてもよい。   In Embodiments 1 to 3 described above, the screw 10 is fixed and the screw shape is measured. However, the present invention is not limited to this, and the screw 10 is rotated to provide a three-dimensional shape in the circumferential direction of the screw 10. May be obtained. Furthermore, the screw 10 may be fixedly arranged, and one or more screw shape measuring devices may be rotated in the circumferential direction.

1 光源
2,22 受光光学系
3 反射鏡
4 結像レンズ
5 撮像装置
5a ラインセンサ
6,26 波形発生器
10 ねじ
11 制御部
12 画像処理部
13 記憶部
14 表示部
15 入力部
22a f−θレンズ
DESCRIPTION OF SYMBOLS 1 Light source 2,22 Light reception optical system 3 Reflecting mirror 4 Imaging lens 5 Imaging device 5a Line sensor 6,26 Waveform generator 10 Screw 11 Control part 12 Image processing part 13 Storage part 14 Display part 15 Input part 22a f-theta lens

Claims (6)

光源からの光をねじの螺旋に平行に照射する投光手段と、
前記投光手段と同一の受光光軸を有する受光光学系と、
前記受光光学系の経路内に配置され、前記ねじの管軸方向に走査する走査手段と、
前記ねじの管軸に直交する方向の1次元画像を検出する検出手段と、
を備え、前記走査手段による走査に伴って得られる1次元画像を管軸方向に合成することによって前記ねじの形状を測定することを特徴とするねじ形状測定装置。
A light projecting means for irradiating light from the light source parallel to the screw spiral;
A light receiving optical system having the same light receiving optical axis as the light projecting means;
A scanning means disposed in the path of the light receiving optical system and scanning in the tube axis direction of the screw;
Detecting means for detecting a one-dimensional image in a direction perpendicular to the tube axis of the screw;
And measuring the shape of the screw by synthesizing, in the tube axis direction, a one-dimensional image obtained along with the scanning by the scanning means.
前記光源は、平行光源であることを特徴とする請求項1に記載のねじ形状測定装置。   The screw shape measuring apparatus according to claim 1, wherein the light source is a parallel light source. 前記ねじと前記走査手段との間の受光光学系は、テレセントリック光学系であり、
前記走査手段は、角度可変の反射鏡であり、
前記受光光学系の画角と結像高さとの関係の逆関数に比例した角度指令値の時間波形を生成して前記反射鏡に該角度指令値を出力する波形発生器を備え、
前記検出手段は、一定時間間隔で、前記管軸方向に対する一次元画像を順次検出することを特徴とする請求項1または2に記載のねじ形状測定装置。
The light receiving optical system between the screw and the scanning means is a telecentric optical system,
The scanning means is a variable angle reflecting mirror,
A waveform generator that generates a time waveform of an angle command value proportional to an inverse function of a relationship between an angle of view of the light receiving optical system and an imaging height, and outputs the angle command value to the reflecting mirror;
The screw shape measuring apparatus according to claim 1, wherein the detection unit sequentially detects one-dimensional images in the tube axis direction at regular time intervals.
前記受光光学系は、前記ねじと前記走査手段との間の受光光学系に受像軸と画角との関係が比例関係となるf−θレンズを用い、
前記走査手段は、角度可変の反射鏡であり、
時間の1次関数となる角度指令値の時間波形を生成して前記反射鏡に該角度指令値を出力する波形発生器を備え、
前記検出手段は、一定時間間隔で、前記管径方向に対する一次元画像を順次検出することを特徴とする請求項1または2に記載のねじ形状測定装置。
The light receiving optical system uses an f-θ lens in which the relationship between the image receiving axis and the angle of view is proportional to the light receiving optical system between the screw and the scanning unit.
The scanning means is a variable angle reflecting mirror,
A waveform generator that generates a time waveform of an angle command value that is a linear function of time and outputs the angle command value to the reflecting mirror;
The screw shape measuring apparatus according to claim 1, wherein the detection unit sequentially detects a one-dimensional image with respect to the pipe diameter direction at regular time intervals.
請求項1〜4のいずれか一つに記載のねじ形状測定装置を、前記ねじの管軸周りに等角度分割された各角度境界位置の螺旋部分のねじ形状を測定する位置に複数配置し、前記ねじを等角度分割された角度分、回転させて前記ねじの形状を測定することを特徴とするねじ形状測定装置。   A plurality of screw shape measuring devices according to any one of claims 1 to 4 are arranged at positions to measure the screw shape of the spiral portion of each angular boundary position divided equiangularly around the tube axis of the screw, A screw shape measuring apparatus, wherein the screw is rotated by an angle divided by equal angles to measure the shape of the screw. 光源からの光をねじの螺旋に平行に照射し、ねじ螺旋の空隙部を通過した通過光を、前記光源と同一の受光光軸を有する受光光学系を経由させて前記ねじのシルエット画像を検出手段によって検出して前記ねじの形状を測定するねじ形状測定方法において、
前記受光光学系の経路内に配置された走査手段によって前記通過光を前記ねじの管軸方向に走査し、前記ねじの管軸に直交する方向の1次元画像を検出する検出手段が該走査された通過光を検出し、前記走査手段による走査に伴って得られる1次元画像を管軸方向に合成することによって前記ねじの形状を測定することを特徴とするねじ形状測定方法。
Light from the light source is irradiated parallel to the screw spiral, and the passing light passing through the screw spiral gap is detected via the light receiving optical system having the same light receiving optical axis as the light source to detect the silhouette image of the screw. In a screw shape measuring method for detecting the shape of the screw detected by means,
Scanning means arranged in the path of the light receiving optical system scans the passing light in the direction of the tube axis of the screw, and the detection means for detecting a one-dimensional image in a direction orthogonal to the tube axis of the screw is scanned. A screw shape measuring method characterized by measuring the shape of the screw by detecting the passing light and synthesizing a one-dimensional image obtained along with scanning by the scanning means in the tube axis direction.
JP2009054183A 2009-03-06 2009-03-06 Screw shape measuring device and screw shape measuring method Expired - Fee Related JP5251617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009054183A JP5251617B2 (en) 2009-03-06 2009-03-06 Screw shape measuring device and screw shape measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009054183A JP5251617B2 (en) 2009-03-06 2009-03-06 Screw shape measuring device and screw shape measuring method

Publications (2)

Publication Number Publication Date
JP2010210292A JP2010210292A (en) 2010-09-24
JP5251617B2 true JP5251617B2 (en) 2013-07-31

Family

ID=42970633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009054183A Expired - Fee Related JP5251617B2 (en) 2009-03-06 2009-03-06 Screw shape measuring device and screw shape measuring method

Country Status (1)

Country Link
JP (1) JP5251617B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4789028B2 (en) * 2010-01-29 2011-10-05 住友金属工業株式会社 Defect inspection equipment
JP2013246143A (en) * 2012-05-29 2013-12-09 Jfe Steel Corp Optical axis adjustment method in optical type screw element measuring device
JP2013250126A (en) * 2012-05-31 2013-12-12 Jfe Steel Corp Optical axis adjustment method in optical type screw element measuring device
JP2016027320A (en) * 2014-06-23 2016-02-18 日産ネジ株式会社 Automatic screw dimensions measuring system
JP6248887B2 (en) * 2014-10-03 2017-12-20 Jfeスチール株式会社 Apparatus and method for measuring thread shape of threaded member having hook-like flank

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48102656A (en) * 1972-03-10 1973-12-24
JPS6269113A (en) * 1985-09-20 1987-03-30 Sumitomo Metal Ind Ltd Inspection instrument for surface of screw
JPH06294621A (en) * 1993-04-07 1994-10-21 Kobe Steel Ltd Optical profile measuring equipment
JP2626611B2 (en) * 1995-01-27 1997-07-02 日本電気株式会社 Object shape measurement method
JP5146180B2 (en) * 2008-07-31 2013-02-20 Jfeスチール株式会社 Oil well pipe thread shape all-around measuring device

Also Published As

Publication number Publication date
JP2010210292A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
US7684054B2 (en) Profile inspection system for threaded and axial components
WO2009090871A1 (en) Apparatus for inspecting subject to be inspected
JP4706356B2 (en) Screw shape measuring device
JP5251617B2 (en) Screw shape measuring device and screw shape measuring method
JP5176975B2 (en) Stator coil shape inspection method and shape inspection jig
JP6748803B2 (en) Optical cutting device for inspection of welding marks in tanks
JP4680640B2 (en) Image input apparatus and image input method
JP3914500B2 (en) Defect inspection equipment
JP2008051576A (en) Shape-measuring apparatus and shape-measuring method
JP2014062940A (en) Checking device
JP2016205972A (en) Scan type glossy cylindrical-surface-shape inspection device
JP2011145160A (en) Device and method for multi-focus inspection
JP3099462B2 (en) Cylindrical surface inspection method and apparatus
JP4859127B2 (en) Cylindrical automatic inspection method
JP6604258B2 (en) Thread shape measuring device for threaded tubes
JP2020101743A (en) Confocal microscope and its imaging method
JP5367292B2 (en) Surface inspection apparatus and surface inspection method
JP2009229221A (en) Optical device defect inspection method and optical device defect inspecting apparatus
US7920254B2 (en) Shaft cone crown measurement system and methodology
JP2002148029A (en) Apparatus and method of inspecting cylindrical object surface irregularities
JP2006145503A (en) Visual inspection apparatus for cylindrical work
JP4258401B2 (en) Surface defect inspection system for uneven surfaces
US20230334681A1 (en) Shape-data acquisition apparatus
JP2006010550A (en) Surface defect inspection apparatus
JP2024049778A (en) Cylinder inner peripheral surface inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R150 Certificate of patent or registration of utility model

Ref document number: 5251617

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees