JP5246406B2 - Shaft hole machining method for valve system holder - Google Patents

Shaft hole machining method for valve system holder Download PDF

Info

Publication number
JP5246406B2
JP5246406B2 JP2008270969A JP2008270969A JP5246406B2 JP 5246406 B2 JP5246406 B2 JP 5246406B2 JP 2008270969 A JP2008270969 A JP 2008270969A JP 2008270969 A JP2008270969 A JP 2008270969A JP 5246406 B2 JP5246406 B2 JP 5246406B2
Authority
JP
Japan
Prior art keywords
holder
valve
shaft
intake
holders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008270969A
Other languages
Japanese (ja)
Other versions
JP2010099754A (en
Inventor
大輔 吉賀
幹雄 田辺
真一 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2008270969A priority Critical patent/JP5246406B2/en
Publication of JP2010099754A publication Critical patent/JP2010099754A/en
Application granted granted Critical
Publication of JP5246406B2 publication Critical patent/JP5246406B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drilling And Boring (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Valve Device For Special Equipments (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

本発明は、シリンダヘッドに搭載可能な複数のホルダに複数の軸孔を切削加工する動弁系ホルダの軸孔加工方法に関する。   The present invention relates to a shaft hole machining method for a valve train holder that cuts a plurality of shaft holes in a plurality of holders that can be mounted on a cylinder head.

レシプロ式エンジンのシリンダヘッドに搭載される動弁系では、ロッカアームなど各種制御部材を気筒列方向に延びる複数のシャフト部材で支持させ、同シャフト部材を複数のホルダで、シリンダヘッドに搭載することが行なわれている。こうした構造は、近年、注目されている、多くの制御部材やシャフト部材で構成される可変動弁系でも用いられている。   In a valve train mounted on a cylinder head of a reciprocating engine, various control members such as a rocker arm can be supported by a plurality of shaft members extending in the cylinder row direction, and the shaft members can be mounted on the cylinder head by a plurality of holders. It is done. Such a structure is also used in a variable valve system composed of a number of control members and shaft members, which have been attracting attention in recent years.

このため、シリンダヘッドに搭載される複数のホルダには、長尺なシャフト部材が挿通するための軸孔が形成してある。
通常、こうした各ホルダの軸孔は、実際と同じ使用条件で行なわれるよう、特許文献1に開示されるように実際にシリンダヘッドにそれぞれホルダに組み付けてから、当該並んだホルダの側方から、ドリルなど切削工具を、各ホルダの各被加工位置を突き通すように進めて加工したり、あるいはシリンダヘッド相当の外形をもつ治具に、それぞれホルダを実際と同じ配置で組み付けてから、並んだホルダの側方から、ドリル工具などの切削工具を、各ホルダの各被加工位置を突き通すように進めて加工していた。
特開平6−47608号公報
For this reason, a shaft hole for inserting a long shaft member is formed in the plurality of holders mounted on the cylinder head.
Normally, the shaft hole of each of these holders is actually assembled to the holder in the cylinder head as disclosed in Patent Document 1 so as to be performed under the same use conditions as actual, and from the side of the holders arranged side by side, A drill or other cutting tool is advanced by penetrating each work position of each holder, or each holder is assembled to a jig having an outer shape equivalent to a cylinder head in the same arrangement as the actual holder, and the holders are lined up. From the side, a cutting tool such as a drill tool has been advanced so as to penetrate each work position of each holder.
JP-A-6-47608

しかしながら、こうした軸孔の加工方法は、いずれも各ホルダ間が大きく離れた状態から切削加工するために、ドリル工具がホルダを突き通す際、ドリル工具の先端部が振れやすいという問題がある。
ドリル工具の振れは、軸孔の孔径精度や各軸孔の位置精度をばらつかせる。このため、ドリル工具の振れは、シャフト部材の動きや同シャフト部材に支持される制御部材の動きをばらつかせる要因となり、昨今のような微細な精度が求められる動弁系では、要求される高精度の動きが確保しにくい。特に、可変動弁系の場合、シャフト部材の動きやシャフト部材に支持される制御部材の動きの組み合わせで、バルブリフト量や開閉タイミングなどを全気筒統一的に制御することが求められるため、軸孔の精度のばらつきが同制御に大きな影響を与える。
However, all of these shaft hole processing methods have a problem in that the tip of the drill tool is likely to swing when the drill tool penetrates the holder because cutting is performed from a state where the holders are largely separated from each other.
The runout of the drill tool varies the hole diameter accuracy of the shaft hole and the position accuracy of each shaft hole. For this reason, the deflection of the drill tool is a factor that causes the movement of the shaft member and the movement of the control member supported by the shaft member, and is required in a valve system that requires fine accuracy as in recent years. It is difficult to ensure high-precision movement. In particular, in the case of a variable valve system, it is required to control the valve lift amount and opening / closing timing in a unified manner for all cylinders by combining the movement of the shaft member and the movement of the control member supported by the shaft member. Variations in the accuracy of the holes have a significant effect on the control.

そこで、本発明の目的は、複数のホルダに、高い精度で、複数のシャフト部材を挿通させるための複数の軸孔を加工させることができる動弁系ホルダの軸孔加工方法を提供することにある。   Accordingly, an object of the present invention is to provide a shaft hole machining method for a valve train holder that can process a plurality of shaft holes for allowing a plurality of shaft members to be inserted into the plurality of holders with high accuracy. is there.

請求項1に記載の発明は、上記目的を達成するために、所定のピッチで並んでシリンダヘッドに搭載可能な複数のホルダを有し、ホルダは、カムシャフト部材と、ロッカシャフト部材の周りを回動するバルブ駆動部材と、カムシャフト部材とバルブ駆動部材との間に配置され支持シャフト部材の周りを揺動する揺動カムとを有して構成される可変動弁機構が組み付くものであり、複数のホルダに対し、切削工具により、そのホルダ列に沿って配置されるカムシャフト部材、ロッカシャフト部材、支持シャフト部材を挿通させるための複数の軸孔を切削加工する動弁系ホルダの軸孔加工方法であって、ホルダは、ホルダ部材とカムキャップ部材とからなり、ホルダ部材とカムキャップとがボルトにより締結されるとともに、ホルダ部材には、ボルトでホルダ部材とカムキャップ部材とを締結したホルダをシリンダヘッドに据付ける据付座が設けられ、ホルダの軸孔は、カムキャップ部材とホルダ部材とが締結された状態で、シリンダヘッドに搭載される一基分の数量のホルダを、各軸孔の被加工位置が連なるよう所定のピッチより短い間隔で並べて、同一の加工機械に、切削工具と共に装着した後、この状態で、並べて集約したホルダ群の側方同一方向から切削工具を進めて、ホルダ群をなす各ホルダの前記被加工位置を順次突き通すように切削加工されることとした。 In order to achieve the above object, the invention according to claim 1 has a plurality of holders that can be mounted on the cylinder head side by side at a predetermined pitch, and the holders surround the camshaft member and the rocker shaft member. A variable valve mechanism comprising a rotating valve drive member, and a swing cam disposed between the cam shaft member and the valve drive member and swinging around the support shaft member is assembled. There is a valve system holder for cutting a plurality of shaft holes for inserting a camshaft member, a rocker shaft member, and a support shaft member arranged along the holder row with a cutting tool. The shaft hole machining method includes a holder member and a cam cap member, and the holder member and the cam cap are fastened by bolts. DOO mounting seat installing the entered into the holder and a holder member and the cam cap member to the cylinder head is provided with, the shaft hole of the holder, in a state in which the cam cap member and the holder member is fastened, it is mounted on the cylinder head The holders of the same quantity are arranged at intervals shorter than the predetermined pitch so that the processing positions of the shaft holes are continuous, and are mounted together with the cutting tool on the same processing machine, and in this state, the holders are arranged side by side. The cutting tool is advanced from the same side of the group, and cutting is performed so as to sequentially penetrate the processing positions of the holders forming the holder group.

同方法により、複数の軸孔は、ホルダ間の距離が抑えられた加工ピッチで切削加工が行なわれるため、ホルダを突き通す際の切削工具の振れは抑えられる。これにより、各ホルダには、複数の軸孔が高い精度(孔径精度や各軸孔の位置精度)で加工される。特に切削加工は、シリンダヘッドに搭載される一基分のホルダを集約したホルダ群を一つの単位として行なわれるから、シリンダヘッド毎に、安定した精度が確保される。しかも、同一の加工機械に切削工具とホルダ群とが固定された状態で切削加工を行ったり、同一方向から切削工具を進めて切削加工を行ったりするので、複数の軸孔が一層、高精度で切削加工される。特にカムシャフト部材、ロッカシャフト部材の周りを回動するバルブ駆動部材、カムシャフト部材とバルブ駆動部材との間に配置され支持シャフト部材の周りを揺動する揺動カムとを有して構成される可変動弁機構が組み付くホルダには、十分にその効果が発揮される。 By this method, the plurality of shaft holes are cut at a processing pitch in which the distance between the holders is suppressed, so that the vibration of the cutting tool when penetrating the holder is suppressed. Thereby, a plurality of shaft holes are processed in each holder with high accuracy (hole diameter accuracy and position accuracy of each shaft hole). In particular, the cutting process is performed by using a holder group in which one holder mounted on the cylinder head is integrated as one unit, so that stable accuracy is ensured for each cylinder head. In addition, cutting is performed with the cutting tool and the holder group fixed to the same processing machine, or cutting is performed by advancing the cutting tool from the same direction. With cutting. In particular, the camshaft member includes a camshaft member, a valve drive member that rotates around the rocker shaft member, and a swing cam that is disposed between the camshaft member and the valve drive member and swings around the support shaft member. The effect is sufficiently exhibited in the holder to which the variable valve mechanism is assembled.

請求項2に記載の発明は、可変動弁機構は、制御可変部材を有し、ロッカシャフト部材は、吸気バルブを駆動する吸気バルブ駆動部材を回動可能に支持する吸気ロッカシャフト部材と、排気バルブを駆動する排気バルブ駆動部材を回動可能に支持する排気ロッカシャフト部材からなり、吸気ロッカシャフト部材は、制御シャフト部材を兼ねており、揺動カムは、ローラ部材を備えて制御可変部材と接するとともに、一端部が支持シャフト部材に揺動可能に支持され、他端部は吸気ブルブ駆動部材に接し、制御可変部材は、制御シャフト部材に屈曲可能に支持されるとともに揺動カムのローラ部材および吸気カムシャフト部材と接し、制御シャフト部材が回動変位すると、制御可変部材が、吸気カムシャフト部材との接する位置を変更しながら、吸気カムシャフト部材のカム部の面を進角方向あるいは遅角方向へ変位し、変位で揺動カムの姿勢が変化し、変化により吸気バルブ駆動部材を可変させて吸気バルブのバルブリフト量や開閉タイミングや開弁期間が連続的に可変することとした According to a second aspect of the present invention, the variable valve mechanism includes a control variable member, and the rocker shaft member includes an intake rocker shaft member that rotatably supports an intake valve drive member that drives the intake valve; An exhaust rocker shaft member that rotatably supports an exhaust valve drive member that drives the valve. The intake rocker shaft member also serves as a control shaft member, and the swing cam includes a roller member and a control variable member. One end portion of the control shaft member is swingably supported by the support shaft member, the other end portion is in contact with the intake valve drive member, and the control variable member is supported by the control shaft member so as to be bendable, and the roller member of the swing cam When the control shaft member is rotated and displaced in contact with the intake camshaft member, the control variable member changes the position in contact with the intake camshaft member. The cam part surface of the intake camshaft member is displaced in the advance direction or the retard direction, and the attitude of the swing cam changes due to the displacement, and the intake valve drive member is varied by the change to change the valve lift amount and open / close of the intake valve The timing and valve opening period are continuously variable .

請求項1,2の発明によれば、複数の軸孔は、ホルダ間の距離が抑えられた加工ピッチで切削加工が行なわれ、ホルダを突き通す際の切削工具の振れが抑えられる。
したがって、各ホルダには複数の軸孔が高い精度(孔径精度や各軸孔の位置精度)で加工できる。特に切削加工は、シリンダヘッドに搭載される一基分のホルダを集約したホルダ群を一つの単位として行なうから、シリンダヘッド毎に、安定した精度が確保できる。また加工ピッチが短くなるので、切削工具の移動量は短縮され、軸孔の加工サイクルが短縮できる。しかも、加工機械への固定時のずれや加工機械自体のばらつきに伴う、軸孔の相対位置のばらつきが抑えられ、一層、複数の軸孔を高精度で切削加工することができる。そのうえ、カムシャフト部材、ロッカシャフト部材の周りを回動するバルブ駆動部材、カムシャフト部材とバルブ駆動部材との間に配置され支持シャフト部材の周りを揺動する揺動カムとを有して構成される可変動弁機構が組み付くホルダに、高い位置精度が要求される、カムシャフト部材を支持するカムシャフト孔、バルブ駆動部材を支持するロッカシャフト部材のロッカシャフト孔、揺動カムを支持する支持シャフト孔を形成する場合には好適で、切削加工を要因とした気筒間のばらつき抑制には有効である。
According to the first and second aspects of the present invention, the plurality of shaft holes are cut at a processing pitch in which the distance between the holders is suppressed, and vibration of the cutting tool when penetrating the holder is suppressed.
Therefore, a plurality of shaft holes can be processed in each holder with high accuracy (hole diameter accuracy and position accuracy of each shaft hole). In particular, since the cutting process is performed as a unit of a group of holders each of which is mounted on the cylinder head, stable accuracy can be ensured for each cylinder head. Further, since the machining pitch is shortened, the moving amount of the cutting tool is shortened, and the machining cycle of the shaft hole can be shortened. In addition, variations in the relative positions of the shaft holes due to deviations in fixing to the processing machine and variations in the processing machine itself can be suppressed, and a plurality of shaft holes can be further cut with high accuracy. In addition, the camshaft member includes a camshaft member, a valve drive member that rotates around the rocker shaft member, and a swing cam that is disposed between the camshaft member and the valve drive member and swings around the support shaft member. The holder to which the variable valve mechanism is assembled is required to have high positional accuracy. The camshaft hole for supporting the camshaft member, the rocker shaft hole for the rocker shaft member for supporting the valve drive member, and the swing cam are supported. It is suitable for forming the support shaft hole, and is effective for suppressing variation between cylinders due to cutting.

以下、本発明を図1〜図7に示す第1の実施形態にもとづいて説明する。
ここで、ホルダ群に軸孔を加工する方法を説明する前に、加工対象のホルダ群がどのようなエンジンの動弁系に用いられる部品であるかを説明する。
ホルダ1bを含むホルダ群は、図6の斜視図および図7の断面図(図6中のA−A線)に示されるレシプロ式多気筒エンジンの吸気バルブ5や排気バルブ6が付いたシリンダヘッド7に搭載可能な可変動弁装置9を構成する重要な部品である。
Hereinafter, the present invention will be described based on a first embodiment shown in FIGS.
Here, before explaining the method of machining the shaft holes in the holder group, what kind of engine valve system is used for the holder group to be machined will be explained.
The holder group including the holder 1b is a cylinder head with an intake valve 5 and an exhaust valve 6 of a reciprocating multi-cylinder engine shown in a perspective view of FIG. 6 and a sectional view of FIG. 7 (A-A line in FIG. 6). 7 is an important component that constitutes the variable valve gear 9 that can be mounted on the motor 7.

すなわち、図6および図7を参照して可変動弁装置9の構造を説明すると、同装置9は、気筒間ピッチで気筒列に沿って配置した複数のホルダ部材2a〜2eに、上部を渡る支持シャフト部材10を設け、ホルダ部材2a〜2eの中段片側に渡り排気ロッカシャフト部材12を設け、同吸気側(排気ロッカシャフト部材12と反対側)のホルダ部材2a〜2eに渡り、吸気ロッカシャフト部材を兼ねる制御シャフト部材13(本願のロッカシャフト部材に相当)を回動可能に設ける。さらに、これらホルダ部材2a〜2eの下部に渡り、カムキャップ15a〜15eで、カムシャフト部材17を回動可能に支持する。さらに吸気側には、気筒毎に、カムシャフト部材17の吸気カム17aのバルブ特性、ここでは制御シャフト部材13の回動変位にしたがいバルブリフト量、開閉タイミング、開弁期間を可変する可変動弁機構19が組み付けてある。各ホルダ部材2a〜2eには、シリンダヘッド7に据付けるための据付座、ここでは据付脚部3a〜3eが形成されている。これより、可変動弁装置9は、ホルダ部材2a〜2eとカムキャップ15a〜15eとからなる部品をそれぞれホルダ1a〜1dとして、シリンダヘッド7に搭載できるようにしている。なお、排気ロッカシャフト部材10には、排気バルブ6を通常の一義的に開閉させる排気ロッカアーム20(図7に図示)を組み付けてある。   That is, the structure of the variable valve operating device 9 will be described with reference to FIGS. 6 and 7. The device 9 crosses the upper part with a plurality of holder members 2 a to 2 e arranged along the cylinder row at an inter-cylinder pitch. A support shaft member 10 is provided, an exhaust rocker shaft member 12 is provided across the middle one side of the holder members 2a-2e, and an intake rocker shaft is provided across the holder members 2a-2e on the same intake side (opposite side of the exhaust rocker shaft member 12). A control shaft member 13 that also serves as a member (corresponding to the rocker shaft member of the present application) is rotatably provided. Further, the cam shaft member 17 is rotatably supported by the cam caps 15a to 15e over the lower portions of the holder members 2a to 2e. Further, on the intake side, a variable valve that varies the valve characteristics of the intake cam 17a of the camshaft member 17, here, the valve lift amount, the opening / closing timing, and the valve opening period in accordance with the rotational displacement of the control shaft member 13. A mechanism 19 is assembled. Each holder member 2a to 2e is formed with an installation seat for installation on the cylinder head 7, here, installation leg portions 3a to 3e. As a result, the variable valve operating device 9 can be mounted on the cylinder head 7 with holders 2a to 2e and cam caps 15a to 15e as holders 1a to 1d, respectively. The exhaust rocker shaft member 10 is assembled with an exhaust rocker arm 20 (shown in FIG. 7) that opens and closes the exhaust valve 6 uniquely.

ここで、各気筒の可変動弁機構19は、いずれも図6および図7に示されるように、制御シャフト部材13に回動自在に支持され、吸気バルブ5を駆動する吸気ロッカアーム22(本願のバルブ駆動部材に相当)と、一端部が支持シャフト部材10に揺動可能に支持され、他端部にカム面25aを有した揺動カム25と、制御シャフト部材13に屈曲可能に支持され、揺動カム25の下部の受けローラ25bと吸気カム17aとの間に介在されるL形のセンタロッカアーム27(制御可変部材)とを有した構造である。このうち揺動カム25のカム面25aは、吸気ロッカアーム22の基端部(受け部)、ここでは同部分にあるローラ22aと転接していて、制御シャフト部材13を回動変位すると、センタロッカアーム27全体が、吸気カム17aとの転接位置を変更しながら、同吸気カム17aのカム面を進角方向や遅角方向へ変位する。そして、この変位で揺動カム25の姿勢が変化し、ローラ22aが転動するカム面25aの領域を変化させて、吸気カム17aから出力されるバルブ駆動出力、例えば吸気バルブ5のバルブリフト量や開閉タイミングや開弁期間が連続的(低リフト位相から高リフト位相まで)に可変される。   Here, as shown in FIGS. 6 and 7, the variable valve mechanism 19 of each cylinder is supported by the control shaft member 13 so as to be rotatable, and an intake rocker arm 22 that drives the intake valve 5 (in the present application). One end portion of the support shaft member 10 is swingably supported, and the other end portion of the swing cam 25 has a cam surface 25a, and the control shaft member 13 is flexibly supported. This is a structure having an L-shaped center rocker arm 27 (control variable member) interposed between the receiving roller 25b below the swing cam 25 and the intake cam 17a. Of these, the cam surface 25a of the swing cam 25 is in rolling contact with the base end portion (receiving portion) of the intake rocker arm 22, here the roller 22a, and when the control shaft member 13 is rotationally displaced, the center rocker arm 27, the cam surface of the intake cam 17a is displaced in the advance direction or the retard direction while changing the rolling contact position with the intake cam 17a. This displacement changes the posture of the swing cam 25, changes the region of the cam surface 25a on which the roller 22a rolls, changes the valve drive output output from the intake cam 17a, for example, the valve lift amount of the intake valve 5 Further, the opening / closing timing and the valve opening period are continuously changed (from the low lift phase to the high lift phase).

図1および図2のホルダ1bは、この可変動弁装置9を組立てる前におけるホルダ1a〜1eの代表として示してある。
ところで、こうした動弁系は、複数のシャフト部材が挿通するホルダ1a〜1eの軸孔の位置精度の影響を受けやすい。特に吸気バルブ5のバルブ特性を微細に制御する可変動弁装置9は、各シャフト部材が挿通するホルダ1a〜1eの軸孔、具体的には図2に示されるように支持シャフト部材10を支持する支持シャフト孔30や、制御シャフト部材13を支持する制御シャフト孔32や、カムシャフト部材17を支持するホルダ部材2a〜2eとカムキャップ15a〜15e間のカムシャフト孔34の相互の位置が、揺動カム17aの姿勢に大きく関与したり、センタロッカアーム27や揺動カム25や吸気ロッカアーム22の動きに大きく関与するため、シリンダヘッド7に搭載されるホルダ一基分の数量の中で、軸孔間位置の精度が一部でも大きくばらつくと、気筒間でバルブリフト量や開閉タイミングや開弁期間がばらつき、燃焼ばらつきを生じる要因となる。
The holder 1b of FIGS. 1 and 2 is shown as a representative of the holders 1a to 1e before the variable valve gear 9 is assembled.
By the way, such a valve operating system is easily influenced by the positional accuracy of the shaft holes of the holders 1a to 1e through which the plurality of shaft members are inserted. In particular, the variable valve operating device 9 for finely controlling the valve characteristics of the intake valve 5 supports the shaft holes of the holders 1a to 1e through which the shaft members are inserted, specifically, the support shaft member 10 as shown in FIG. The mutual position of the camshaft hole 34 between the support shaft hole 30 to be performed, the control shaft hole 32 to support the control shaft member 13, the holder members 2 a to 2 e to support the camshaft member 17 and the cam caps 15 a to 15 e, Since it is greatly involved in the posture of the swing cam 17a and greatly related to the movement of the center rocker arm 27, the swing cam 25, and the intake rocker arm 22, the number of shafts in the quantity of one holder mounted on the cylinder head 7 If there is a large variation in the accuracy of the position between holes, the amount of valve lift, opening / closing timing, and valve opening period will vary among cylinders, causing variations in combustion. To become.

そこで、ホルダ1a〜1eの各シャフト孔30,32,34は、切削工具の影響をできるだけ抑えた加工方法で切削加工されている。同加工方法の手順が図3〜図5に示されている。
つぎに、同図を参照して軸孔加工方法を説明する。
まず、シリンダヘッド7に搭載する一基分の数量のホルダ、ここでは5個のホルダ1a〜1eを用意する。同ホルダ1a〜1eは、いずれも図1および図2に示されるように各ホルダ部材2a〜2eに各カムキャップ15a〜15eをボルト部材28で固定しただけの部品である。
Therefore, the shaft holes 30, 32, and 34 of the holders 1a to 1e are cut by a machining method that suppresses the influence of the cutting tool as much as possible. The procedure of this processing method is shown in FIGS.
Next, the shaft hole machining method will be described with reference to FIG.
First, the number of holders to be mounted on the cylinder head 7, here, five holders 1 a to 1 e are prepared. Each of the holders 1a to 1e is a component in which the cam caps 15a to 15e are fixed to the holder members 2a to 2e with bolt members 28 as shown in FIGS.

これらホルダ1a〜1eを、例えば図2に示されるように治具36を用いて、図3に示されるように一箇所に、片側を基準として、各軸孔30,32,34が形成される各被加工位置が連なるように並べる。具体的には、被加工位置を、鋳造でホルダ部材2a〜2eやカムキャップ15a〜15eの外観を成形したとき得た各シャフト孔30,32,34,35の素孔の中心位置が連なるよう、ホルダ1a〜1eを並行に並べて固定する。これにより、ホルダ1a〜1eは、シリンダヘッド7に搭載するときの所定ピッチより短い間隔で並ぶ。この際、ホルダ1a〜1e間の隙間はできるだけ小さくするのが望ましい。   For example, the holders 1a to 1e are formed in one place as shown in FIG. 3 using a jig 36 as shown in FIG. Arrange so that each processing position is continuous. Specifically, the center positions of the raw holes of the shaft holes 30, 32, 34, and 35 obtained when the outer positions of the holder members 2a to 2e and the cam caps 15a to 15e are formed by casting are continuous. The holders 1a to 1e are fixed in parallel. Thereby, the holders 1a to 1e are arranged at an interval shorter than a predetermined pitch when mounted on the cylinder head 7. At this time, it is desirable to make the gap between the holders 1a to 1e as small as possible.

ホルダ1a〜1eの配置を終えると、図4に示されるように集約されたホルダ1a〜1eを切削用の加工機械50にセットする。
ここで、例えば切削用の加工機械50は、ベッド50aの一端側にワークセット部50bを有し、ベッド50aの他端側に複数の加工主軸部50cを備えるスライド可能な工具セット部50dと、これら複数の加工主軸部50cを駆動したり工具セット部50dをワークセット部50bに対し進退動させたりする駆動部50eを有している。また工具セット部50dの各加工主軸部50cには、例えば予め軸孔30,32,34の被加工位置と対応させて、複数の切削工具が装着されている。具体的には、複数のドリル工具、ここでは支持シャフト孔30を切削加工するためのドリル工具40a、制御シャフト孔32を切削加工するためのドリル工具40b、カムシャフト孔34を切削加工するためのドリル工具40c、さらに排気ロッカシャフト部材12を支持する排気ロッカシャフト孔35(図2に図示)を切削加工するためのドリル工具40dがセットされている。
When the arrangement of the holders 1a to 1e is finished, the aggregated holders 1a to 1e are set on the cutting machine 50 as shown in FIG.
Here, for example, the cutting processing machine 50 includes a slidable tool set portion 50d that includes a work set portion 50b on one end side of the bed 50a and includes a plurality of processing spindle portions 50c on the other end side of the bed 50a. A drive unit 50e is provided for driving the plurality of machining spindles 50c and for moving the tool set unit 50d forward and backward with respect to the work set unit 50b. A plurality of cutting tools are mounted on each machining spindle 50c of the tool set 50d in advance, for example, corresponding to the machining positions of the shaft holes 30, 32, 34. Specifically, a plurality of drill tools, here a drill tool 40a for cutting the support shaft hole 30, a drill tool 40b for cutting the control shaft hole 32, and a cam shaft hole 34 for cutting. A drill tool 40c and a drill tool 40d for cutting the exhaust rocker shaft hole 35 (shown in FIG. 2) for supporting the exhaust rocker shaft member 12 are set.

ホルダ1a〜1eは、治具36を介して、この加工機械50のワークセット部50bに装着される。これにより、ホルダ1a〜1eを集約したホルダ群は、各ドリル工具40a〜40dに側方にセットされる。このときホルダ1a〜1eは、ドリル工具40a〜40dの加工方向に沿って並び、各ドリル工具40a〜40dは、それぞれ被加工位置(各素孔の位置)に合わせて位置決めしてある。   The holders 1 a to 1 e are attached to the work set unit 50 b of the processing machine 50 through the jig 36. Thereby, the holder group which gathered holders 1a-1e is set to each drill tool 40a-40d laterally. At this time, the holders 1a to 1e are arranged along the processing direction of the drill tools 40a to 40d, and the respective drill tools 40a to 40d are respectively positioned in accordance with the processing positions (positions of the individual holes).

ワークセットを終えたら、加工機械50を運転して、切削加工を開始する。これにより、工具セット部50dの各ドリル工具40a〜40dは回転する。続いて、工具セット部50dと駆動部50eは、ベッド50a上を移動し、各ドリル工具40a〜40dを、図3中の矢印に示されるように同一方向から同時にホルダ群へ接近させる。
すると、進む各ドリル工具40a〜40dは、各ホルダ1a〜1dの各被加工位置の素孔を、順次、突き通す。これにより、各素孔は、同時に、同一方向から送られるドリル工具40a〜40dにより切削加工される。これで各素孔は、支持シャフト孔30、制御シャフト孔32、カムシャフト孔34、排気ロッカシャフト孔35に加工される。
When the work setting is completed, the processing machine 50 is operated to start cutting. Thereby, each drill tool 40a-40d of the tool set part 50d rotates. Subsequently, the tool setting unit 50d and the driving unit 50e move on the bed 50a, and cause each of the drill tools 40a to 40d to simultaneously approach the holder group from the same direction as indicated by arrows in FIG.
Then, each drill tool 40a-40d to advance penetrates the raw hole of each to-be-processed position of each holder 1a-1d sequentially. Thereby, each element hole is simultaneously cut by the drill tools 40a to 40d sent from the same direction. Thus, each element hole is processed into a support shaft hole 30, a control shaft hole 32, a cam shaft hole 34, and an exhaust rocker shaft hole 35.

このときホルダ1a〜1e間の距離(加工ピッチ)は、図5(b)に示されるような実際にシリンダヘッド7に搭載した状態のときや、シリンダヘッドに相当する治具に組み付けた状態のときのような大きなピッチでなく、図5(a)に示されるように、ホルダ1a〜1eを集約させることによって、零、若しくは零に近い最小ピッチに抑えられているから、ホルダ1a〜1eを突き通す際のドリル工具40a〜40dの振れは抑えられる。   At this time, the distance (working pitch) between the holders 1a to 1e is set in a state where it is actually mounted on the cylinder head 7 as shown in FIG. 5B, or in a state where it is assembled to a jig corresponding to the cylinder head. Since the holders 1a to 1e are aggregated as shown in FIG. 5 (a) instead of a large pitch as in the case of time, the holders 1a to 1e are suppressed to zero or a minimum pitch close to zero. The deflection of the drill tools 40a to 40d when penetrating is suppressed.

したがって、支持シャフト孔30、制御シャフト孔32、カムシャフト孔34といった複数の軸孔は、高い精度(孔径精度や孔の位置精度)で加工できる。しかも、軸孔の切削加工は、シリンダヘッド7に搭載される一基分のホルダ1a〜1eを集約したホルダ群を一つの単位として行われるから、安定した精度が確保できる。
この結果、ホルダ1a〜1eに動弁系の各種シャフト部材を組み付けても、シャフト部材やシャフト部材に支持される制御部材の動きに影響を与えずにすむ。特に図2および図7に示されるような可変動弁装置9の高い位置精度が要求される軸孔、すなわち揺動カム25の支持をなす支持シャフト部材10が挿通する支持シャフト孔30、センタロッカアーム27や吸気ロッカアーム22の支持をなす制御シャフト部材13が挿通する制御シャフト孔32、カムシャフト部材17が挿通するカムシャフト孔34の加工には有効で、切削加工が要因となる気筒間の制御ばらつきやエンジン毎のばらつきが抑えられ、リフト精度の安定性が図れる。これにより、燃焼が安定し、エンジン効率が高められる。さらには、ミスアライメントも抑制され、局部摩耗やフリクション増大などの課題もなくなる。
Therefore, a plurality of shaft holes such as the support shaft hole 30, the control shaft hole 32, and the cam shaft hole 34 can be processed with high accuracy (hole diameter accuracy and hole position accuracy). In addition, since the shaft hole is cut using a holder group in which the holders 1a to 1e for one unit mounted on the cylinder head 7 are integrated as one unit, stable accuracy can be ensured.
As a result, even if various valve members of the valve operating system are assembled to the holders 1a to 1e, the movement of the shaft member and the control member supported by the shaft member is not affected. In particular, a shaft hole that requires high positional accuracy of the variable valve operating device 9 as shown in FIGS. 2 and 7, that is, a support shaft hole 30 through which the support shaft member 10 that supports the swing cam 25 is inserted, and a center rocker arm 27 and the control shaft hole 32 through which the control shaft member 13 that supports the intake rocker arm 22 is inserted, and the camshaft hole 34 through which the camshaft member 17 is inserted are effective in the control variation between cylinders due to cutting. In addition, variations between engines and engines can be suppressed, and the lift accuracy can be stabilized. Thereby, combustion is stabilized and engine efficiency is increased. Furthermore, misalignment is also suppressed, and problems such as local wear and increased friction are eliminated.

しかも、一つにまとめたホルダ1a〜1eの軸孔を加工する方法は、図5に示されるように切削加工に求められるドリル工具40a〜40dの移動量が、実際にシリンダヘッドにホルダを搭載して切削加工したり、シリンダ相当の治具にホルダを搭載して切削加工したりする方法に比べ短縮でき、加工サイクルの短縮化が図れる。
そのうえ、軸孔の切削加工は、ドリル工具40a〜40dが同一加工機械50で加工されることで、ホルダ1a〜1eの固定ずれや加工機械毎の精度ばらつきをなくすことができる。
In addition, the method of machining the shaft holes of the holders 1a to 1e combined into one is that the amount of movement of the drill tools 40a to 40d required for cutting is actually mounted on the cylinder head as shown in FIG. As a result, the machining cycle can be shortened, and the machining cycle can be shortened.
Moreover, the drilling of the shaft hole can eliminate the fixed displacement of the holders 1a to 1e and the accuracy variation of each processing machine by processing the drill tools 40a to 40d with the same processing machine 50.

さらに、同一方向から行なったり、同時に行なったりすると、ホルダ1a〜1eに対する加工精度は安定するから、切削加工に伴う、軸孔のばらつきが抑えられ、一層、支持シャフト孔30、制御シャフト孔32、カムシャフト部材34の孔径精度やピッチ間精度が高まる。
もちろん、排気ロッカシャフト孔35も一緒に加工すると、一層、可変動弁機構19の各部の精度が安定する。
Furthermore, if it is performed from the same direction or simultaneously, the processing accuracy with respect to the holders 1a to 1e is stabilized, so that variations in the shaft hole due to cutting are suppressed, and further, the support shaft hole 30, the control shaft hole 32, The hole diameter accuracy and pitch accuracy of the camshaft member 34 are increased.
Of course, if the exhaust rocker shaft hole 35 is processed together, the accuracy of each part of the variable valve mechanism 19 is further stabilized.

なお、本発明は上述した実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲内で種々可変して実施しても構わない。例えば上述した第1の実施形態では、複数の軸孔に対応した複数の切削工具が装着される多軸の加工主軸部をもつ加工機械を用いて集約したホルダの軸孔を切削加工する例を挙げたが、これに限らず、図8に示す第2の実施形態にようにドリル工具40a〜40d(切削工具)の着脱が可能な1つの加工主軸部60dをもつ加工機械60を用いて、複数の切削工具40a〜40dを適宜交換し、複数回の突き通し工程で、ホルダ1a〜1eの軸孔の切削加工を行なってもよい。図8において第1の実施形態と同じ部分には同一符号を付してその説明を省略した。   Note that the present invention is not limited to the above-described embodiment, and various modifications may be made without departing from the spirit of the present invention. For example, in the first embodiment described above, an example in which the shaft holes of the holder that are aggregated are cut using a processing machine having a multi-axis machining spindle portion to which a plurality of cutting tools corresponding to the plurality of shaft holes are mounted. Although it mentioned, not only this but using the processing machine 60 which has the one processing spindle part 60d which can attach or detach drill tools 40a-40d (cutting tool) like 2nd Embodiment shown in FIG. The plurality of cutting tools 40a to 40d may be appropriately replaced, and the shaft holes of the holders 1a to 1e may be cut in a plurality of piercing steps. In FIG. 8, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

また、切削加工に関し、図示はしないが例えばドリル工具40a〜40dのうち、水平に並ぶ複数のドリル工具40b、40dを加工機械50に装着(図示しない)して、集約したホルダ1a〜1eの軸孔の切削加工を行なうようにしてもよい。   In addition, although not illustrated, for example, among the drill tools 40a to 40d, a plurality of horizontally aligned drill tools 40b and 40d are mounted on the processing machine 50 (not illustrated), and the axes of the holders 1a to 1e are aggregated. You may make it perform the cutting process of a hole.

本発明の第1の実施形態に係る軸孔加工の対象ワークとなるホルダを示す斜視図。The perspective view which shows the holder used as the object workpiece | work of the axial hole processing which concerns on the 1st Embodiment of this invention. 同ホルダの断面図。Sectional drawing of the holder. 同ホルダに軸孔加工を施す仕方を説明する図。The figure explaining the method of giving a shaft hole process to the holder. ホルダに軸孔加工を施す加工機械を示す側面図。The side view which shows the processing machine which performs a shaft hole process to a holder. 同ホルダの軸孔加工方法を、実際にシリンダヘッドにホルダを組み付けてから軸孔を加工する方法と対比して示す図。The figure which shows the shaft hole processing method of the holder in contrast with the method of processing a shaft hole, after actually attaching a holder to a cylinder head. 同ホルダを用いて構成される可変動弁装置の外観を示す斜視図。The perspective view which shows the external appearance of the variable valve apparatus comprised using the holder. 図6中のA−A線に沿う断面図。Sectional drawing which follows the AA line in FIG. 本発明の第2の実施形態の要部となる軸孔加工を施す加工機械を示す側面図。The side view which shows the processing machine which performs the shaft hole process used as the principal part of the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1a〜1e ホルダ
7 シリンダヘッド
10 支持シャフト部材(シャフト部材)
13 制御シャフト部材(シャフト部材)
17 カムシャフト部材(シャフト部材)
19 可変動弁機構
30 支持シャフト孔(軸孔)
32 制御シャフト孔(ロッカシャフト孔:軸孔)
34 カムシャフト孔(軸孔)
40a〜40d ドリル工具(切削工具)
50加工機械
1a to 1e Holder 7 Cylinder head 10 Support shaft member (shaft member)
13 Control shaft member (shaft member)
17 Camshaft member (shaft member)
19 Variable valve mechanism 30 Support shaft hole (shaft hole)
32 Control shaft hole (Rocker shaft hole: shaft hole)
34 Camshaft hole (shaft hole)
40a to 40d Drill tools (cutting tools)
50 processing machines

Claims (2)

所定のピッチで並んでシリンダヘッドに搭載可能な複数のホルダを有し、前記ホルダは、カムシャフト部材と、ロッカシャフト部材の周りを回動するバルブ駆動部材と、前記カムシャフト部材と前記バルブ駆動部材との間に配置され支持シャフト部材の周りを揺動する揺動カムとを有して構成される可変動弁機構が組み付くものであり、
前記複数のホルダに対し、切削工具により、そのホルダ列に沿って配置される前記カムシャフト部材、前記ロッカシャフト部材、前記支持シャフト部材を挿通させるための複数の軸孔を切削加工する動弁系ホルダの軸孔加工方法であって、
前記ホルダは、ホルダ部材とカムキャップ部材とからなり、前記ホルダ部材と前記カムキャップとがボルトにより締結されるとともに、前記ホルダ部材には、前記ボルトで前記ホルダ部材と前記カムキャップ部材とを締結した前記ホルダを前記シリンダヘッドに据付ける据付座が設けられ、
前記ホルダの軸孔は、前記カムキャップ部材と前記ホルダ部材とが締結された状態で、前記シリンダヘッドに搭載される一基分の数量のホルダを各軸孔の被加工位置が連なるよう前記所定のピッチより短い間隔で並べて、同一の加工機械に、前記切削工具と共に装着した後、この状態で、並べて集約したホルダ群の側方同一方向から前記切削工具を進めて、前記ホルダ群をなす各ホルダの前記被加工位置を順次突き通すように切削加工される
ことを特徴とする動弁系ホルダの軸孔加工方法。
The holder has a plurality of holders that can be mounted on the cylinder head side by side at a predetermined pitch, and the holder includes a camshaft member, a valve driving member that rotates around a rocker shaft member, the camshaft member, and the valve driving A variable valve mechanism that is arranged between the member and a swing cam that swings around the support shaft member is assembled.
A valve operating system for cutting a plurality of shaft holes for inserting the camshaft member, the rocker shaft member, and the support shaft member arranged along the holder row with respect to the plurality of holders by a cutting tool. A method for machining a shaft hole in a holder,
The holder includes a holder member and a cam cap member. The holder member and the cam cap are fastened by a bolt, and the holder member and the cam cap member are fastened to the holder member by the bolt. An installation seat for installing the holder on the cylinder head is provided,
The shaft hole of the holder, in a state in which said holder member and said cam cap member is fastened, the holder Ichiki component quantities to be mounted on the cylinder head, so that the processing position of each axis hole communicating the Arranged at shorter intervals than a predetermined pitch and mounted together with the cutting tool on the same processing machine, in this state, the cutting tool is advanced from the same side of the group of aligned holders to form the holder group. A shaft hole machining method for a valve train holder, wherein the machining is performed so as to sequentially penetrate the machining positions of the holders.
前記可変動弁機構は、制御可変部材を有し、
前記ロッカシャフト部材は、吸気バルブを駆動する吸気バルブ駆動部材を回動可能に支持する吸気ロッカシャフト部材と、排気バルブを駆動する排気バルブ駆動部材を回動可能に支持する排気ロッカシャフト部材からなり、
前記吸気ロッカシャフト部材は、制御シャフト部材を兼ねており、
前記揺動カムは、ローラ部材を備えて前記制御可変部材と接するとともに、一端部が前記支持シャフト部材に揺動可能に支持され、他端部は前記吸気ブルブ駆動部材に接し、
前記制御可変部材は、前記制御シャフト部材に屈曲可能に支持されるとともに前記揺動カムの前記ローラ部材および前記吸気カムシャフト部材と接し、
前記制御シャフト部材が回動変位すると、前記制御可変部材が、前記吸気カムシャフト部材との接する位置を変更しながら、前記吸気カムシャフト部材のカム部の面を進角方向あるいは遅角方向へ変位し、前記変位で前記揺動カムの姿勢が変化し、前記変化により前記吸気バルブ駆動部材を可変させて前記吸気バルブのバルブリフト量や開閉タイミングや開弁期間が連続的に可変することを特徴とする請求項1の動弁系ホルダの軸孔加工方法。
The variable valve mechanism has a control variable member,
The rocker shaft member includes an intake rocker shaft member that rotatably supports an intake valve drive member that drives an intake valve, and an exhaust rocker shaft member that rotatably supports an exhaust valve drive member that drives an exhaust valve. ,
The intake rocker shaft member also serves as a control shaft member,
The swing cam includes a roller member and comes into contact with the control variable member. One end of the swing cam is swingably supported by the support shaft member, and the other end comes into contact with the intake valve driving member.
The control variable member is supported by the control shaft member so as to be bendable, and is in contact with the roller member and the intake camshaft member of the swing cam,
When the control shaft member is rotationally displaced, the control variable member displaces the surface of the cam portion of the intake camshaft member in the advance direction or the retard angle direction while changing the position of contact with the intake camshaft member. The posture of the swing cam is changed by the displacement, and the intake valve driving member is changed by the change, and the valve lift amount, the opening / closing timing, and the valve opening period of the intake valve are continuously changed. A shaft hole machining method for a valve operating holder according to claim 1.
JP2008270969A 2008-10-21 2008-10-21 Shaft hole machining method for valve system holder Active JP5246406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008270969A JP5246406B2 (en) 2008-10-21 2008-10-21 Shaft hole machining method for valve system holder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008270969A JP5246406B2 (en) 2008-10-21 2008-10-21 Shaft hole machining method for valve system holder

Publications (2)

Publication Number Publication Date
JP2010099754A JP2010099754A (en) 2010-05-06
JP5246406B2 true JP5246406B2 (en) 2013-07-24

Family

ID=42290861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008270969A Active JP5246406B2 (en) 2008-10-21 2008-10-21 Shaft hole machining method for valve system holder

Country Status (1)

Country Link
JP (1) JP5246406B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101504126B1 (en) 2014-12-23 2015-03-19 정성래 Tool Device of Multi-Axis Hole Apparatus
CN105414588A (en) * 2015-12-11 2016-03-23 昌河飞机工业(集团)有限责任公司 Machining method of multi-connected precision hole
JP7509003B2 (en) 2020-11-12 2024-07-02 スズキ株式会社 Cylinder head, processing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6034204A (en) * 1983-07-29 1985-02-21 Nakamuratome Seimitsu Kogyo Kk Machine tool
JPH0326408A (en) * 1989-06-23 1991-02-05 Mazda Motor Corp Inclined hole machining device for cylinder block
JPH0723160Y2 (en) * 1991-08-19 1995-05-31 株式会社新潟鉄工所 Long terminal composite processing machine
JP2004116323A (en) * 2002-09-24 2004-04-15 Toyota Motor Corp Method for forming shaft retaining hole of cylinder head section

Also Published As

Publication number Publication date
JP2010099754A (en) 2010-05-06

Similar Documents

Publication Publication Date Title
JP4279337B2 (en) Camshaft assembly method for internal combustion engine and internal combustion engine
JP5246406B2 (en) Shaft hole machining method for valve system holder
TWI454328B (en) Tool machine control method and tool machine
CN206185572U (en) 90 chain type tool magazine of sword is fallen to side direction
US7538296B2 (en) High speed laser drilling machine and method
JP2009516366A (en) Method and automatic mounting machine for mounting electrical components on a substrate
US10052697B2 (en) Machining method and machining apparatus of valve holes of cylinder head, and clamp device
CN108655739A (en) CNC automatic turning machine
BR102013011909B1 (en) CONTROL DRIVE FOR COMBUSTION ENGINE WITH VALVE CONTROL
US5439434A (en) Automatic tool exchanger
JP2010115724A (en) Boring apparatus for shape steel
JP4745695B2 (en) Gear generating device for oscillating gear device
JP2004154921A (en) Machine tool
JP2004116323A (en) Method for forming shaft retaining hole of cylinder head section
JP3894237B2 (en) Variable valve mechanism
JP5029845B2 (en) Assembly method for variable valve gear
JPH065046Y2 (en) Cutting equipment
JP4121506B2 (en) Grinding method and grinding apparatus
JP4715763B2 (en) Variable valve gear for engine
JP2621049B2 (en) Valve system for 4-cycle engine
JP2008019784A (en) Supporting structure to cylinder head of variable valve train
KR200289598Y1 (en) line boring spindle unit
JPH056025Y2 (en)
KR100518189B1 (en) A machine for machining slots
JPS6246948Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121015

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121015

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130326

R151 Written notification of patent or utility model registration

Ref document number: 5246406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350