JP5241734B2 - Environmentally friendly lead-free free-cutting steel with excellent machinability and hot-rollability - Google Patents

Environmentally friendly lead-free free-cutting steel with excellent machinability and hot-rollability Download PDF

Info

Publication number
JP5241734B2
JP5241734B2 JP2009543945A JP2009543945A JP5241734B2 JP 5241734 B2 JP5241734 B2 JP 5241734B2 JP 2009543945 A JP2009543945 A JP 2009543945A JP 2009543945 A JP2009543945 A JP 2009543945A JP 5241734 B2 JP5241734 B2 JP 5241734B2
Authority
JP
Japan
Prior art keywords
free
lead
steel
cutting
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009543945A
Other languages
Japanese (ja)
Other versions
JP2010514929A (en
Inventor
ヒョン ジク リー、
サン チュル シン、
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Co Ltd
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020060137003A external-priority patent/KR100825566B1/en
Priority claimed from KR1020070104423A external-priority patent/KR100979058B1/en
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2010514929A publication Critical patent/JP2010514929A/en
Application granted granted Critical
Publication of JP5241734B2 publication Critical patent/JP5241734B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【技術分野】
【0001】
本発明は、自動車精密油圧部品、事務自動化機器部品及び家電部品などの素材として使用される環境親和型無鉛快削鋼用鋼材に関し、特に、環境や人体に有害な鉛を代替することができる被削性向上元素だけでなく、精密脱酸によって鋼材に形成した低融点酸化性介在物を用いて、被削性を著しく向上させた親環境的な快削鋼用鋼材に関する。さらに、本発明は、高温延性が優れて熱間圧延の際にコーナークラックのような表面欠陷が発生しない親環境的な快削鋼用鋼材に関する。
【背景技術】
【0002】
快削鋼は、精密部品などに広く使用される素材であって、優秀な被削性を有することに特徴がある。快削鋼の優秀な被削性は、快削鋼内部に存在する金属性または非金属性介在物に起因する。工具を用いて鋼材を切削する時、工具チップ(Tip)と鋼材とが接触する部位で、MnSのような非金属性介在物が応力集中原として作用し、介在物と地鉄の界面でボイド(void)の生成と亀裂の成長を容易にし、切削に要求される力を減少させる。
【0003】
また、鉛のような金属性介在物は、切削加工熱によって比較的低い温度で溶融され、チップ(chip)と切削工具との界面において潤滑剤として作用するので、工具の摩耗を抑制し切削に必要な力を減少させる役割をする。
【0004】
したがって、快削鋼には、鋼材の被削性を高めるために、前記金属性または非金属性介在物を形成することができる元素を添加する。従来において主に用いられた非金属性介在物としてはMnSがあり、特に酸化物と混在した球形状のMnSが最も優秀な被削性を有する。
【0005】
一方、金属性介在物は一般的に被削性向上元素と呼ばれる。そのような被削性向上元素としては、鉛が最も代表的な元素である。鉛は、鉄に対する溶解度が低いので、快削鋼内部で金属性介在物として存在し易いだけでなく、327.5℃の適宜に低い融点を有するので、工具チップから発生する熱によって容易に溶融されることができる。
【0006】
よって、このような鉛は、被削性向上元素に要求される性質を十分揃えているので、現在まで鉛を含む快削鋼は、最も代表的な快削鋼として分類されており、切削加工に最も適合する鋼材として実用化されている。
【0007】
しかし、鉛を含む快削鋼は、切削作業リサイクル過程で鉛蒸気を発生させることがあり、鋼材に存在する鉛は人体に有害であるため、以前からこれを代替する必要性が提起されてきた。
【0008】
かかる鉛を含む快削鋼を代替するよう開発された鋼材としては、ビスマス(Bi)快削鋼を挙げることができる。前記ビスマスも低融点金属であり鉄に対する溶解度が低いので、被削性向上に非常に有利である。
【0009】
しかし、ビスマスは、その融点が約209℃で、鉛に比べて120℃程度低いため、より溶融され易いだけでなく、鉛に比べて低い表面張力により濡れ性(wettability)が高いという特徴を有する。このような特徴によって、鋼材の結晶粒系脆化を引き起こす問題が発生する。
【0010】
これにより、ビスマス快削鋼には、鉛快削鋼に比べて、結晶粒系脆化による高温延性の低下で、熱間圧延性が著しく低下するという問題がある。さらに、被削特性も鉛快削鋼よりは劣るため、ビスマス快削鋼が鉛快削鋼を代替するにはまだ様々な問題点が存在する。
【0011】
しかし、鉛快削鋼も多様な問題点を有している。特に、最近CNC工作機械の普及拡散が急速に増加して、高速切削加工及び自動化が行われている。このような高速切削工程時、切削工具の特定成分、例えば、超硬工具の場合に最も重要な構成元素であるタングステン(W)が1000℃以上の加工熱によりチップ(chip)に高い速度で拡散する現象が発生する。このようなタングステンのような成分の拡散によって、切削工具が急激に摩耗されるおそれがある。
【0012】
特に、鉛快削鋼は、このような熱的拡散による工具の摩耗を効果的に防ぐことができないと知られているので、高速切削の側面からも、被削性の優れた快削鋼の開発が要求されている。
【発明が解決しようとする課題】
【0013】
本発明は、上記のような問題点を解決するためのものであって、その目的は、鉛のような環境または人体に有害な元素を代替することができるビスマスと錫を鋼材に添加して、親環境的な特性を有し、高速切削過程で発生し得る工具の摩耗を抑制することができる低融点複合酸化性介在物の形成により、優秀な被削性を確保するとともに、マンガンと硼素などの元素を最適の比率で添加して、優秀な熱間圧延性を有する環境親和型無鉛快削鋼を提供することにある。
【課題を解決するための手段】
【0014】
本発明は、質量%で、炭素(C)0.03〜0.30%、シリコン(Si)0.01〜0.30%、マンガン(Mn)0.2〜2.0%、リン(P)0.02〜0.10%、硫黄(S)0.06〜0.45%、ビスマス(Bi)0.04〜0.20%、錫(Sn)0.04〜0.20%、硼素(B)0.001〜0.015%、窒素(N)0.001〜0.010%、全酸素(T[O])0.002〜0.025%及び残部Feと不可避な不純物からなり、
錫、ビスマス、硫黄、マンガン、硼素及び窒素が下記式(1)乃至(3)からなるグループから選択された一つまたは二つ以上の関係を満たすことを特徴とする被削性及び熱間圧延性の優れた環境親和型無鉛快削鋼を提供する。
【数1】

Figure 0005241734
【数2】
Figure 0005241734
【数3】
Figure 0005241734
【0015】
さらに本発明は、質量%で、炭素(C)0.03〜0.30%、シリコン(Si)0.01〜0.30%、マンガン(Mn)0.2〜2.0%、リン(P)0.02〜0.10%、硫黄(S)0.06〜0.45%、ビスマス(Bi)0.04〜0.20%、錫(Sn)0.04〜0.20%、硼素(B)0.001〜0.015%、窒素(N)0.001〜0.010%、全酸素(T[O])0.002〜0.025%及び残部Feと不可避な不純物からなり、鋼内部にMnO−SiO−Al系またはCaO−SiO−Al系またはこれらが混合された低融点複合酸化性介在物を含むことを特徴とする被削性及び熱間圧延性の優れた環境親和型無鉛快削鋼を提供する。
【発明の効果】
【0016】
本発明によれば、従来の鉛含有快削鋼に劣らない、または優秀な被削性を有しながらも環境親和的な無鉛快削鋼を提供することができる。さらに、本発明は、高温延性が優れて、熱間圧延の際に表面の欠陥発生を最小化することができるので、熱間圧延生産性の向上に大きな効果がある。
【発明を実施するための形態】
【0017】
本発明は、成分系、成分間の関係、低融点複合酸化性介在物の数を各々またはこれらの組合せを調節することにより、低速切削加工のみならず高速切削加工過程においても優秀な特性を有する無鉛快削鋼を提供する。
【0018】
以下、本発明の無鉛快削鋼を構成する成分系について詳しく説明する。
【0019】
炭素(C):0.03〜0.30質量
炭素は、表面粗度及び機械的性質を確保するために、0.03質量%以上、好ましくは、0.05質量%以上が添加されるべきである。しかし、0.30質量%を超えると、硬いパーライト組職の増加により被削性の減少をもたらす。
【0020】
シリコン(Si):0.01〜0.30質量
シリコンは、脱酸剤として作用してSiOを生成し、高速切削の際に熱的拡散による工具の摩耗を最小化できる低融点複合酸化性介在物の形成のために、0.01質量%以上、好ましくは、0.05質量%以上添加されるべきである。しかし、0.30質量%を超えると、高融点介在物またはSiO単独介在物が形成されて、むしろ工具の摩耗速度が著しく増加する。
【0021】
マンガン(Mn):0.2〜2.0質量
マンガンは、MnS介在物を形成して硫黄(S)による赤熱脆性を防止することができるので、0.2質量%以上を添加することが好ましい。しかし、2.0質量%を超えるとフェライトを固溶強化させて、被削性の減少をもたらす。マンガンは脱酸剤として作用し、MnOを形成してMnS介在物の核としても作用する。
【0022】
リン(P):0.02〜0.10質量
リンは、粒界に偏析されて被削性を向上させ、そのために0.02質量%以上存在することが好ましいが、機械的性質と冷間加工性を確保するために、0.10質量%を超えてならない。
【0023】
硫黄(S):0.06〜0.45質量
硫黄は、MnS介在物を形成して,切削作業の際に構成刃先の生成を抑制して切削工具の摩耗を減らし、被削財の表面粗度を改善する役割をする。そのために、硫黄は0.06質量%以上添加されるべきである。しかし、硫黄の量が多くなれば、低融点のFeS生成が容易になって、高温延性を減少させ、熱間圧延性が低下するるため、0.45質量%を超えてはならない。
【0024】
ビスマス(Bi):0.04〜0.20質量
ビスマスは、鋼材に添加すると金属介在物として単独で存在するかまたはMnS介在物に付着する。ビスマスは、切削時に加工熱によって容易に溶融されて切削特性を向上させ、チップ(chip)と切削工具との間で潤滑被膜として作用して、摩擦力を減少させ、切削工具の摩耗を抑制する。ビスマスの含量が0.04質量%より少ないと被削効果が減少し、一方、0.20質量%、好ましくは0.16質量%超えると鋳造性と圧延性が低下する。よって、ビスマスの含量は、0.04〜0.20質量%に限定することが好ましい。
【0025】
錫(Sn):0.04〜0.20質量
錫は、鉛と類似の役割をすることができる元素である。すなわち、錫は、鋼の被削性を向上させるメカニズムの一つの液状金属脆化と同じ役割をすることができる。具体的に、このような現象は、錫がフェライト結晶粒系に移動して偏析され、粒界結合エネルギーを減少させることにより粒界破壊を容易にすることで現われる。よって、錫による被削性向上の効果を得るためには、0.04質量%以上の錫が添加されることが要求される。しかし、0.20質量%、好ましくは0.16質量%を超えると鋳造性及び圧延性にが低下するので、0.04〜0.20質量%に限定することが好ましい。
【0026】
硼素(B):0.001〜0.015質量
オーステナイト粒界に偏析された硼素は、結晶粒系を強化させて、高温延性を向上させる。また、従来から黒鉛を含有する鋼は優秀な被削性を有すると知られているが、鋼内部で硼素が窒素と反応して、黒鉛と類似の結晶構造と物理的特性を有するBN(Boron nitride)が生成されると、黒鉛を含有する鋼と等しい被削性向上の効果を期待できるようになる。硼素は、0.001質量%未満ではその添加効果が非常に小さいので、0.001質量%以上添加する必要がある。一方、0.015質量%を超えて添加する場合には、それ以上は効果の上昇を期待することができず、オーステナイト結晶粒界に硼素系窒化物の析出により粒界強度が低下して、熱間加工性が低下するおそれがあるので、0.001〜0.015質量%に限定することが好ましい。
【0027】
窒素(N):0.001〜0.010質量
窒素は、硼素とともにBNを形成するために0.001質量%以上添加される必要がある。しかし、0.010質量%を超えるとオーステナイト結晶粒系に偏析される有効硼素の量を減少させて、粒界強化の効果を減少させる。
【0028】
全酸素(T[O]):0.002〜0.025質量
酸素は、熱間圧延時のMnS介在物延伸による被削性低下を防止するために、0.002質量%以上添加されることが要求される。しかし、切削加工の際、MnS介在物の塑性変形能を確保するためには、0.025質量%を超えてはならない。
【0029】
アルミニウム(Al)及びカルシウム(Ca):各々10ppm以下
アルミニウム及びカルシウムは、本発明で鋼中に形成される低融点複合酸化性介在物の形成に必要であるが、意図的に添加する必要はなく、スラグなどに自然に含まれる量で十分である。このようなアルミニウム及びカルシウムは、一般的に10ppm以下で存在することが好ましい。
【0030】
上述した成分系のうちBi、Sn、S、Mn及びBは、各々下記の関係式を満たすことで優秀な被削性及び熱間圧延性を提供することができる。以下、前記Bi、Sn、S、Mn及びBの関係式について詳しく説明する。
【0031】
錫、ビスマス、硫黄及びマンガンの関係式は、下記式(1)の通りである。
【数4】
Figure 0005241734
(ここで、各元素記号は質量%を表す。以下同様)
【0032】
前記の成分含量規制の他にも、本発明による優秀な被削性を有する無鉛快削鋼を提供するためには、前記式(1)を満たすことが好ましい。すなわち、錫とビスマスは、ともに金属性介在物として鋼材内部で液状金属脆化により被削性を向上させ、硫黄は、MnSの生成により被削性を向上させる。
【0033】
マンガンと硫黄の関係式は、下記式(2)の通りである。
【数5】
Figure 0005241734
【0034】
前記の成分含量規制の他にも、本発明による優秀な高温延性を有する無鉛快削鋼を提供するためには、マンガンと硫黄との関係が前記式(2)を満たすことが好ましい。前記式(2)は、マンガンが硫黄と結合して硫黄による熱間脆性を抑制できる程度が必要だということを示す。
【0035】
硼素と窒素の関係式は、下記式(3)の通りである。
【数6】
Figure 0005241734
【0036】
本発明による優秀な高温延性を有する無鉛快削鋼を提供するために、硼素と窒素は前記式(3)を満たすことが好ましい。すなわち、窒素が存在しても粒界に偏析される硼素によってオーステナイト結晶粒界を強化できる程度の量が必要である。
【0037】
上述した式(1)乃至式(3)のうちいずれか一つの関係のみを満たしても、それによる効果が現れ、二つ以上の関係を同時に満たす場合には、その効果がさらに著しく現われる。したがって、上述した式(1)乃至式(3)のうち一つ以上を満たせば、本発明の権利範囲に含まれるとすることができる。
【0038】
一方、本発明の無鉛快削鋼は、Mn、Si、Ca 及びAl成分による低融点複合酸化性介在物を含む。以下、前記低融点複合酸化性介在物について詳しく説明する。
【0039】
本発明の成分系では、Mn、Si、Ca及びAl成分の酸化が生じ、多様な低融点複合酸化性介在物が形成される。前記介在物を形成するために、Mn、Si、Ca及びAl成分が別途に添加されることが好ましいが、Ca及びAl成分は、鋼内部に基本的に存在する量でも十分に介在物を形成することができる。本発明において、このような介在物は、MnO−SiO−Al系またはCaO−SiO−Al系の形態で存在するようになる。
【0040】
前記MnO−SiO−Al系介在物は、20〜65質量%のMnO、25〜60質量%のSiO、及び0〜30質量%のAlからなり、CaO−SiO−Al系介在物は、10〜55質量%のCaO、35〜65質量%のSiO、及び0〜25質量%のAlからなることが好ましい。
【0041】
また、このようなMnO−SiO−Al系またはCaO−SiO−Al系低融点複合酸化性介在物は、線材5gごとに5個以上存在することが好ましい。もし5個以下で存在する場合には、被削性が低下する問題が発生する。
【0042】
以下、本発明を実施例を通じてより具体的に説明する。
【0043】
(実施例)
下記の表1、表2及び表3のような成分組成を有する発明鋼及び比較鋼に対して、被削性と高温延性を調査するために、旋削テストと高温引張テストを各々施した。複合酸化性介在物は、ESAA法(非金属介在物特殊電解抽出分離法)で分析した。
【0044】
【表1】
Figure 0005241734
【0045】
前記表1において、発明鋼1乃至及び比較鋼1は本発明の成分系を満たす一方、比較鋼2及び3はB及びBiが各々一致せず、比較鋼4は従来の鉛快削鋼を表す。
【0046】
【表2】
Figure 0005241734
【0047】
前記表2において、比較鋼1及び2がB/Nの適宜範囲を逸脱しており、比較鋼3は(Bi+Sn+S)/Mnの適宜範囲を逸脱していることが分かる。比較鋼4は鉛快削鋼であるので、言及しないことにする。
【0048】
【表3】
Figure 0005241734
*ESAA(非金属介在物特殊電解抽出分離法):Extraction & separation of nonmetallic inclusion in steel by electrolysis in AA solution under ultrasonic wave
【0049】
また、前記表3においては、比較鋼2に含まれる介在物の数が基準値以下であることが分かる。同様に、鉛快削鋼である比較鋼4の介在物の数は、比較対象から除外される。
【0050】
前記発明鋼及び比較鋼に対して、本発明による発明鋼の被削性を評価して、Pb快削鋼を代替できる可能性を確認するために、次のような被削性評価を施した。試片に対する被削性評価は、CNC旋盤を用いて25mm直径の棒財に対して切削油を使わない旋削テストで行った。移送速度は0.3mm/rev、切削深さは0.5mm、そして切削速度は150m/minとした。工具の摩耗程度を確認するために、同一時間旋削テストの後、工具のフランク摩耗幅(VB)を測定して相互比較した。旋削作業による工具摩耗の結果は、表4にまとめている。
【0051】
【表4】
Figure 0005241734
【0052】
前記表4から分かるように、切削テストを通じて工具摩耗程度を測定した結果、本発明による環境親和型快削鋼(発明鋼1〜)は、従来のPb快削鋼(比較鋼4)と比較した時、非常に高い水準の工具耐摩耗特性を示した。比較鋼2は、低融点酸化性介在物が形成されることができなかった場合であって、ビスマスと錫とMnSの量が十分で被削性は優秀であるが、低融点酸化性介在物が形成されず、発明鋼に比べて被削性が低かった。また、比較鋼3は、ビスマスと錫の含量未満によって、工具摩耗が最も早く進行された。
【0053】
高温延性評価のために、通常再加熱温度である1250℃で加熱して1分間維持した後、引張テストを施した。テストの後、破断面にの減少率(RA)を測定して、表5にまとめた。
【0054】
【表5】
Figure 0005241734
【0055】
前記表1及び表2に表すように、本発明の鋼種の場合(発明鋼1〜)Mn/S比が4.6以上で、低融点のFeS形成による赤熱脆性が抑制され、またB/N比が2.0以上になって、オーステナイト結晶粒界強化効果を得ることができる。これにより、900℃以上の高温引張の際、破断面減少率が70%以上の優秀な高温延性を確保することができた。したがって、コーナークラックのような表面欠陷が発生する可能性が非常に低い。
【0056】
一方、比較鋼1のように、Mn/S比が4.6以上であるがB/N比は2.0未満である場合、鋼内部の硼素が主にBNとして析出され、結晶粒界を十分に強化させることができないため、900℃で60%未満の破断面減少率が現れた。また、Mn/S比が4.6未満でB/N比も2.0未満である比較鋼2の場合は、もっと低い高温延性を現せた。
【0057】
前記実施例のように、本発明による鋼材は、B、Sn、Mn、S及びNの含量を適切な関係式によって調節するとともに低融点複合酸化性介在物を形成することにより、高速または低速にかかわらず全ての速度の切削過程で現れ得る工具摩耗を抑制することができるので、優秀な被削性を確保するとともに、マンガンと硼素などの元素を最適の比率で添加して、優秀な熱間圧延性を有する環境親和型無鉛快削鋼を提供しようとする。
【Technical field】
[0001]
The present invention relates to an environmentally friendly lead-free free-cutting steel material used as a material for automobile precision hydraulic parts, office automation equipment parts, home appliance parts, and the like, and in particular, it can replace lead that is harmful to the environment and the human body. The present invention relates to an environmentally friendly steel for free-cutting steel in which machinability is remarkably improved by using not only a machinability-enhancing element but also a low-melting-point oxidizing inclusion formed in steel by precision deoxidation. Furthermore, the present invention relates to an environmentally friendly steel material for free-cutting steel that has excellent high-temperature ductility and does not generate surface defects such as corner cracks during hot rolling.
[Background]
[0002]
Free-cutting steel is a material widely used for precision parts and the like, and is characterized by excellent machinability. The excellent machinability of free-cutting steel is due to metallic or non-metallic inclusions present inside the free-cutting steel. When cutting steel with a tool, non-metallic inclusions such as MnS act as stress concentrators at the part where the tool tip (Tip) and steel are in contact with each other. (Void) generation and crack growth are facilitated, and the force required for cutting is reduced.
[0003]
In addition, metallic inclusions such as lead are melted at a relatively low temperature by cutting heat and act as a lubricant at the interface between the chip and the cutting tool, so that the wear of the tool is suppressed and cutting is performed. It plays a role in reducing the necessary power.
[0004]
Therefore, an element capable of forming the metallic or nonmetallic inclusion is added to the free-cutting steel in order to enhance the machinability of the steel material. Conventionally, the nonmetallic inclusion mainly used is MnS. In particular, spherical MnS mixed with an oxide has the best machinability.
[0005]
On the other hand, metallic inclusions are generally called machinability improving elements. As such a machinability improving element, lead is the most typical element. Since lead has a low solubility in iron, it not only tends to exist as metallic inclusions in free-cutting steel, but also has an appropriately low melting point of 327.5 ° C., so it is easily melted by the heat generated from the tool tip. Can be done.
[0006]
Therefore, such lead has sufficient properties required for machinability improving elements, so to date free-cutting steel containing lead has been classified as the most representative free-cutting steel. Has been put to practical use as the most suitable steel material.
[0007]
However, free-cutting steel containing lead may generate lead vapor in the cutting work recycling process, and lead in steel is harmful to the human body, so there has been a need to replace it. .
[0008]
Examples of steel materials developed to replace such free-cutting steel containing lead include bismuth (Bi) free-cutting steel. The bismuth is also a low melting point metal and has low solubility in iron, which is very advantageous for improving machinability.
[0009]
However, since bismuth has a melting point of about 209 ° C. and is about 120 ° C. lower than lead, it is not only easily melted, but also has high wettability due to a lower surface tension than lead. . Such a feature causes a problem that causes grain embrittlement of the steel material.
[0010]
Thereby, bismuth free-cutting steel has a problem that hot-rollability is remarkably lowered due to a decrease in hot ductility due to grain embrittlement, as compared with lead free-cutting steel. Furthermore, since the machinability is also inferior to that of lead free-cutting steel, there are still various problems for bismuth free-cutting steel to replace lead free-cutting steel.
[0011]
However, lead free-cutting steel also has various problems. In particular, the spread of CNC machine tools has been rapidly increasing recently, and high-speed cutting and automation are performed. During such a high-speed cutting process, a specific component of the cutting tool, for example, tungsten (W), which is the most important constituent element in the case of a carbide tool, diffuses into the chip at a high rate due to processing heat of 1000 ° C. or higher. Occurs. Due to the diffusion of such components as tungsten, the cutting tool may be abruptly worn.
[0012]
In particular, lead free-cutting steel is known to be unable to effectively prevent tool wear due to such thermal diffusion. Therefore, from the aspect of high-speed cutting, free-cutting steel with excellent machinability is also used. Development is required.
[Problems to be solved by the invention]
[0013]
The present invention is for solving the above-mentioned problems, and its purpose is to add bismuth and tin, which can substitute elements harmful to the environment or the human body, such as lead, to steel materials. The formation of low melting point complex oxidative inclusions that have environmentally friendly properties and can suppress the wear of tools that can occur during high-speed cutting processes ensure excellent machinability and manganese and boron It is to provide an environment-friendly lead-free free-cutting steel having excellent hot rolling properties by adding elements such as
[Means for Solving the Problems]
[0014]
The present invention, in mass%, carbon (C) 0.03 to 0.30%, silicon (Si) 0.01 to 0.30%, manganese (Mn) 0.2 to 2.0%, phosphorus (P ) 0.02-0.10%, sulfur (S) 0.06-0.45%, bismuth (Bi) 0.04-0.20%, tin (Sn) 0.04-0.20%, boron (B) 0.001 to 0.015%, nitrogen (N) 0.001 to 0.010%, total oxygen (T [O]) 0.002 to 0.025% and the balance Fe and inevitable impurities ,
Machinability and hot rolling characterized in that tin, bismuth, sulfur, manganese, boron and nitrogen satisfy one or two or more relationships selected from the group consisting of the following formulas (1) to (3) Providing environmentally friendly lead-free free-cutting steel with excellent properties.
[Expression 1]
Figure 0005241734
[Expression 2]
Figure 0005241734
[Equation 3]
Figure 0005241734
[0015]
Furthermore, the present invention is by mass %, carbon (C) 0.03 to 0.30%, silicon (Si) 0.01 to 0.30%, manganese (Mn) 0.2 to 2.0%, phosphorus ( P) 0.02 to 0.10%, sulfur (S) 0.06 to 0.45%, bismuth (Bi) 0.04 to 0.20%, tin (Sn) 0.04 to 0.20%, From boron (B) 0.001 to 0.015%, nitrogen (N) 0.001 to 0.010%, total oxygen (T [O]) 0.002 to 0.025% and the balance Fe and inevitable impurities A machinability characterized by containing MnO—SiO 2 —Al 2 O 3 system or CaO—SiO 2 —Al 2 O 3 system or a low melting point composite oxidizing inclusion mixed with these in the steel Provide environment-friendly lead-free free-cutting steel with excellent hot-rollability.
【Effect of the invention】
[0016]
According to the present invention, it is possible to provide an environment-friendly lead-free free-cutting steel that is not inferior to conventional lead-containing free-cutting steel or has excellent machinability. Furthermore, the present invention is excellent in high temperature ductility and can minimize the occurrence of surface defects during hot rolling, so that it has a great effect on improving hot rolling productivity.
BEST MODE FOR CARRYING OUT THE INVENTION
[0017]
The present invention adjusts the component system, the relationship between the components, the number of low melting point complex oxidizing inclusions, or a combination of these, and thereby has lead-free free properties having excellent characteristics not only in low-speed cutting but also in high-speed cutting. Provide steel cutting.
[0018]
Hereafter, the component system which comprises the lead-free free-cutting steel of this invention is demonstrated in detail.
[0019]
Carbon (C): 0.03 to 0.30 mass %
Carbon should be added in an amount of 0.03% by mass or more, preferably 0.05% by mass or more in order to ensure surface roughness and mechanical properties. However, if it exceeds 0.30% by mass , machinability is reduced due to an increase in hard pearlite composition.
[0020]
Silicon (Si): 0.01-0.30 mass %
Silicon acts as a deoxidizer to produce SiO 2 and is 0.01% by weight for the formation of low melting point complex oxidizing inclusions that can minimize tool wear due to thermal diffusion during high speed cutting As mentioned above, Preferably, 0.05 mass % or more should be added. However, if it exceeds 0.30% by mass , high melting point inclusions or SiO 2 single inclusions are formed, and the wear rate of the tool is remarkably increased.
[0021]
Manganese (Mn): 0.2-2.0 mass %
Manganese can form MnS inclusions and prevent red heat embrittlement due to sulfur (S), so 0.2% by mass or more is preferably added. However, if it exceeds 2.0% by mass , the ferrite is strengthened by solid solution and machinability is reduced. Manganese acts as a deoxidizer, forms MnO, and also acts as a nucleus of MnS inclusions.
[0022]
Phosphorus (P): 0.02 to 0.10% by mass
Phosphorus is segregated at the grain boundaries to improve machinability, and for that purpose, it is preferably present in an amount of 0.02% by mass or more. However, in order to ensure mechanical properties and cold workability, 0.10% by mass is provided . Must not be exceeded.
[0023]
Sulfur (S): 0.06-0.45 mass %
Sulfur forms MnS inclusions, suppresses the generation of constituent cutting edges during cutting operations, reduces wear of the cutting tool, and improves the surface roughness of the work material. Therefore, sulfur should be added by 0.06% by mass or more. However, if the amount of sulfur is increased, the formation of FeS having a low melting point is facilitated, the high temperature ductility is reduced, and the hot rollability is lowered. Therefore, it should not exceed 0.45% by mass .
[0024]
Bismuth (Bi): 0.04 to 0.20% by mass
Bismuth, when added to a steel material, exists alone as metal inclusions or adheres to MnS inclusions. Bismuth is easily melted by processing heat during cutting to improve cutting characteristics, and acts as a lubricating film between the chip and the cutting tool to reduce frictional force and suppress wear of the cutting tool. . If the bismuth content is less than 0.04% by mass, the cutting effect is reduced. On the other hand, if it exceeds 0.20% by mass , preferably 0.16% by mass , the castability and the rollability deteriorate. Therefore, the bismuth content is preferably limited to 0.04 to 0.20% by mass .
[0025]
Tin (Sn): 0.04 to 0.20 mass %
Tin is an element that can play a role similar to lead. That is, tin can play the same role as liquid metal embrittlement, which is one of the mechanisms that improve the machinability of steel. Specifically, such a phenomenon appears when tin moves to the ferrite grain system and segregates, thereby facilitating grain boundary fracture by reducing grain boundary binding energy. Therefore, in order to obtain the effect of improving machinability by tin, it is required that 0.04% by mass or more of tin is added. However, if it exceeds 0.20% by mass , preferably 0.16% by mass , the castability and rollability deteriorate, so it is preferable to limit to 0.04 to 0.20% by mass .
[0026]
Boron (B): 0.001 to 0.015 mass %
Boron segregated at austenite grain boundaries strengthens the grain system and improves high temperature ductility. Conventionally, steel containing graphite is known to have excellent machinability, but boron reacts with nitrogen inside the steel, and BN (Boron) having a crystal structure and physical characteristics similar to graphite. When the nitride) is generated, the same machinability improvement effect as that of the steel containing graphite can be expected. If boron is less than 0.001% by mass , the effect of addition is very small, so 0.001% by mass or more must be added. On the other hand, when adding over 0.015 mass %, an increase in the effect cannot be expected beyond that, and the grain boundary strength decreases due to precipitation of boron-based nitride at the austenite grain boundaries, Since hot workability may be reduced, the content is preferably limited to 0.001 to 0.015% by mass .
[0027]
Nitrogen (N): 0.001 to 0.010 mass %
Nitrogen needs to be added in an amount of 0.001% by mass or more in order to form BN together with boron. However, if it exceeds 0.010% by mass , the amount of effective boron segregated in the austenite grain system is reduced, thereby reducing the effect of grain boundary strengthening.
[0028]
Total oxygen (T [O]): 0.002 to 0.025 mass %
Oxygen is required to be added in an amount of 0.002% by mass or more in order to prevent deterioration of machinability due to MnS inclusion stretching during hot rolling. However, in order to ensure the plastic deformability of the MnS inclusion during the cutting process, it must not exceed 0.025% by mass .
[0029]
Aluminum (Al) and calcium (Ca): each 10 ppm or less Aluminum and calcium are necessary for the formation of the low melting point complex oxidizing inclusions formed in the steel in the present invention, but it is not necessary to intentionally add them. The amount naturally contained in slag, etc. is sufficient. Such aluminum and calcium are generally preferably present at 10 ppm or less.
[0030]
Of the component systems described above, Bi, Sn, S, Mn, and B can provide excellent machinability and hot rollability by satisfying the following relational expressions. Hereinafter, the relational expressions of Bi, Sn, S, Mn, and B will be described in detail.
[0031]
The relational expression of tin, bismuth, sulfur and manganese is as shown in the following formula (1).
[Expression 4]
Figure 0005241734
(Here, each element symbol represents mass %. The same applies hereinafter.)
[0032]
In addition to the above component content regulation, in order to provide a lead-free free-cutting steel having excellent machinability according to the present invention, it is preferable to satisfy the formula (1). That is, both tin and bismuth improve the machinability by liquid metal embrittlement inside the steel as metallic inclusions, and sulfur improves the machinability by generating MnS.
[0033]
The relational expression between manganese and sulfur is as shown in the following formula (2).
[Equation 5]
Figure 0005241734
[0034]
In addition to the above component content regulation, in order to provide a lead-free free-cutting steel having excellent hot ductility according to the present invention, it is preferable that the relationship between manganese and sulfur satisfies the above formula (2). The formula (2) indicates that manganese needs to be bonded to sulfur to suppress hot brittleness due to sulfur.
[0035]
The relational expression between boron and nitrogen is as the following expression (3).
[Formula 6]
Figure 0005241734
[0036]
In order to provide a lead-free free-cutting steel having excellent hot ductility according to the present invention, it is preferable that boron and nitrogen satisfy the above formula (3). That is, an amount that can strengthen the austenite grain boundary by boron segregated at the grain boundary even in the presence of nitrogen is required.
[0037]
Even if only one of the above-described formulas (1) to (3) is satisfied, the effect is exhibited, and when two or more relationships are satisfied at the same time, the effect is further remarkably exhibited. Therefore, if at least one of the above-described formulas (1) to (3) is satisfied, it can be included in the scope of rights of the present invention.
[0038]
On the other hand, the lead-free free-cutting steel of the present invention contains low melting point complex oxidizing inclusions due to Mn, Si, Ca and Al components. Hereinafter, the low melting point composite oxidizing inclusion will be described in detail.
[0039]
In the component system of the present invention, oxidation of Mn, Si, Ca, and Al components occurs, and various low melting point complex oxidizing inclusions are formed. In order to form the inclusions, it is preferable that Mn, Si, Ca and Al components are added separately. However, the Ca and Al components sufficiently form inclusions even in an amount basically present in the steel. can do. In the present invention, such inclusions are present in the form of MnO—SiO 2 —Al 2 O 3 or CaO—SiO 2 —Al 2 O 3 .
[0040]
The MnO—SiO 2 —Al 2 O 3 inclusion is composed of 20 to 65% by mass of MnO, 25 to 60% by mass of SiO 2 , and 0 to 30% by mass of Al 2 O 3 , and includes CaO—SiO 2. -al 2 O 3 inclusions is 10 to 55 wt% of CaO, it is preferably made of SiO 2, and 0 to 25% by mass of Al 2 O 3 of 35 to 65 wt%.
[0041]
Moreover, it is preferable that 5 or more of such MnO—SiO 2 —Al 2 O 3 -based or CaO—SiO 2 —Al 2 O 3 -based low melting point complex oxidizing inclusions exist for every 5 g of wire. If the number is 5 or less, there is a problem that machinability deteriorates.
[0042]
Hereinafter, the present invention will be described more specifically through examples.
[0043]
(Example)
In order to investigate the machinability and the high temperature ductility, the turning test and the high temperature tensile test were applied to the inventive steels and comparative steels having the component compositions shown in Tables 1, 2 and 3 below. The complex oxidizing inclusions were analyzed by ESAA method (non-metallic inclusion special electrolytic extraction separation method).
[0044]
[Table 1]
Figure 0005241734
[0045]
In Table 1, invention steels 1 to 4 and comparative steel 1 satisfy the component system of the present invention, while comparative steels 2 and 3 do not match B and Bi, and comparative steel 4 is a conventional lead free cutting steel. Represent.
[0046]
[Table 2]
Figure 0005241734
[0047]
In Table 2, it can be seen that the comparative steels 1 and 2 deviate from the appropriate range of B / N, and the comparative steel 3 deviated from the appropriate range of (Bi + Sn + S) / Mn. Since comparative steel 4 is a lead free cutting steel, it will not be mentioned.
[0048]
[Table 3]
Figure 0005241734
* ESAA (non-metallic inclusions special electrolysis extraction separation method): Extraction & separation of non-metallic inclusion in steel by electrical analysis in AA solution under ultrasonic wave
[0049]
Moreover, in the said Table 3, it turns out that the number of the inclusions contained in the comparative steel 2 is below a reference value. Similarly, the number of inclusions in the comparative steel 4 which is lead free cutting steel is excluded from the comparison target.
[0050]
In order to evaluate the machinability of the inventive steel and the comparative steel according to the present invention and confirm the possibility of replacing Pb free-cutting steel, the following machinability evaluation was performed. . The machinability evaluation on the specimen was performed by a turning test using a CNC lathe without using cutting oil on a 25 mm diameter bar. The transfer speed was 0.3 mm / rev, the cutting depth was 0.5 mm, and the cutting speed was 150 m / min. In order to confirm the degree of wear of the tool, the flank wear width (VB) of the tool was measured and compared with each other after the same time turning test. The results of tool wear from turning operations are summarized in Table 4.
[0051]
[Table 4]
Figure 0005241734
[0052]
As can be seen from Table 4, as a result of measuring the degree of tool wear through a cutting test, the environment-friendly free-cutting steel (invention steels 1 to 4 ) according to the present invention is compared with the conventional Pb free-cutting steel (comparative steel 4). Showed a very high level of tool wear resistance. Comparative Steel 2 is a case where low melting point oxidizing inclusions could not be formed, and the amount of bismuth, tin and MnS was sufficient and machinability was excellent, but low melting point oxidizing inclusions Was not formed, and the machinability was lower than that of the inventive steel. In comparison steel 3, the tool wear progressed the earliest due to less than the content of bismuth and tin.
[0053]
For high-temperature ductility evaluation, a tensile test was performed after heating at 1250 ° C., which is a normal reheating temperature, and maintaining for 1 minute. After the test, the reduction rate (RA) on the fracture surface was measured and summarized in Table 5.
[0054]
[Table 5]
Figure 0005241734
[0055]
As shown in Table 1 and Table 2, in the case of the steel type of the present invention (invention steels 1 to 4 ), the Mn 3 / S ratio is 4.6 or more, and the red hot brittleness due to the formation of FeS having a low melting point is suppressed, and B The / N ratio becomes 2.0 or more, and an austenite grain boundary strengthening effect can be obtained. As a result, it was possible to ensure excellent high-temperature ductility with a fracture surface reduction rate of 70% or more during high-temperature tension at 900 ° C. or higher. Therefore, the possibility of surface defects such as corner cracks is very low.
[0056]
On the other hand, as in Comparative Steel 1, when the Mn 3 / S ratio is 4.6 or more but the B / N ratio is less than 2.0, boron inside the steel is mainly precipitated as BN, and the grain boundary As a result, the fracture surface reduction rate of less than 60% appeared at 900 ° C. Further, in the case of the comparative steel 2 having an Mn 3 / S ratio of less than 4.6 and a B / N ratio of less than 2.0, a lower hot ductility was exhibited.
[0057]
As in the above embodiment, the steel material according to the present invention can be adjusted to a high speed or a low speed by adjusting the contents of B, Sn, Mn, S and N according to an appropriate relational expression and forming a low melting point composite oxidizing inclusion. Regardless of this, the tool wear that can appear in the cutting process at all speeds can be suppressed, so that excellent machinability is ensured and elements such as manganese and boron are added at an optimum ratio to achieve excellent hot work. An environmentally friendly lead-free free-cutting steel with rolling properties.

Claims (6)

質量%で、炭素(C)0.03〜0.30%、シリコン(Si)0.01〜0.30%、マンガン(Mn)0.2〜2.0%、リン(P)0.02〜0.10%、硫黄(S)0.06〜0.45%、ビスマス(Bi)0.04〜0.20%、錫(Sn)0.04〜0.20%、硼素(B)0.001〜0.015%、窒素(N)0.001〜0.010%、全酸素(T[O])0.002〜0.025%及び残部Feと不可避な不純物からなり、
錫、ビスマス、硫黄、マンガン、硼素及び窒素が下記式(1)乃至(3)からなるグループから選択された一つまたは二つ以上の関係を満たすことを特徴とする無鉛快削鋼。
Figure 0005241734
Figure 0005241734
Figure 0005241734
In mass %, carbon (C) 0.03 to 0.30%, silicon (Si) 0.01 to 0.30%, manganese (Mn) 0.2 to 2.0%, phosphorus (P) 0.02 -0.10%, sulfur (S) 0.06-0.45%, bismuth (Bi) 0.04-0.20%, tin (Sn) 0.04-0.20%, boron (B) 0 0.001 to 0.015%, nitrogen (N) 0.001 to 0.010%, total oxygen (T [O]) 0.002 to 0.025% and the balance Fe and inevitable impurities,
A lead-free free-cutting steel characterized in that tin, bismuth, sulfur, manganese, boron, and nitrogen satisfy one or more relationships selected from the group consisting of the following formulas (1) to (3).
Figure 0005241734
Figure 0005241734
Figure 0005241734
質量%で、炭素(C)0.03〜0.30%、シリコン(Si)0.01〜0.30%、マンガン(Mn)0.2〜2.0%、リン(P)0.02〜0.10%、硫黄(S)0.06〜0.45%、ビスマス(Bi)0.04〜0.20%、錫(Sn)0.04〜0.20%、硼素(B)0.001〜0.015%、窒素(N)0.001〜0.010%、全酸素(T[O])0.002〜0.025%及び残部Feと不可避な不純物からなり、
鋼内部にMnO−SiO−Al系またはCaO−SiO−Al系またはこれらが混合された低融点複合酸化性介在物を含むことを特徴とする無鉛快削鋼。
In mass %, carbon (C) 0.03 to 0.30%, silicon (Si) 0.01 to 0.30%, manganese (Mn) 0.2 to 2.0%, phosphorus (P) 0.02 -0.10%, sulfur (S) 0.06-0.45%, bismuth (Bi) 0.04-0.20%, tin (Sn) 0.04-0.20%, boron (B) 0 0.001 to 0.015%, nitrogen (N) 0.001 to 0.010%, total oxygen (T [O]) 0.002 to 0.025% and the balance Fe and inevitable impurities,
A lead-free free-cutting steel comprising MnO—SiO 2 —Al 2 O 3 series, CaO—SiO 2 —Al 2 O 3 series, or a low-melting-point composite oxidizing inclusion in which these are mixed.
前記MnO−SiO−Al系介在物は、20〜65質量%のMnO、25〜60質量%のSiO及び0〜30質量%のAlからなることを特徴とする請求項2に記載の無鉛快削鋼。 The MnO-SiO 2 -Al 2 O 3 based inclusions claims, characterized in that it consists of 20 to 65 wt% of MnO, SiO 2 and 0-30% by mass of Al 2 O 3 of 25 to 60 wt% Item 3. A lead-free free-cutting steel according to item 2. 前記CaO−SiO−Al系介在物は、10〜55質量%のCaO、35〜65質量%のSiO及び0〜25質量%のAlからなることを特徴とする請求項2に記載の無鉛快削鋼。 The CaO-SiO 2 -Al 2 O 3 based inclusions claims, characterized in that it consists of 10 to 55 wt% of CaO, Al 2 O 3 35 to 65% by weight of SiO 2 and 0 to 25 wt% Item 3. A lead-free free-cutting steel according to item 2. 前記低融点複合酸化性介在物は、線材5g毎に5個以上存在することを特徴とする請求項2に記載の無鉛快削鋼。   5. The lead-free free-cutting steel according to claim 2, wherein five or more low melting point composite oxidizing inclusions exist for every 5 g of wire. 前記錫、ビスマス、硫黄、マンガン、硼素及び窒素は、下記式(1)乃至(3)からなるグループから選択された一つまたは二つ以上の関係を満たすことを特徴とする請求項2に記載の無鉛快削鋼。
Figure 0005241734
Figure 0005241734
Figure 0005241734
The tin, bismuth, sulfur, manganese, boron and nitrogen satisfy one or two or more relationships selected from the group consisting of the following formulas (1) to (3). Lead-free free-cutting steel.
Figure 0005241734
Figure 0005241734
Figure 0005241734
JP2009543945A 2006-12-28 2007-12-27 Environmentally friendly lead-free free-cutting steel with excellent machinability and hot-rollability Expired - Fee Related JP5241734B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR1020060137003A KR100825566B1 (en) 2006-12-28 2006-12-28 Eco-friendly pb-free free cutting steel with excellent machinability and hot workability
KR10-2006-0137003 2006-12-28
KR10-2007-0104423 2007-10-17
KR1020070104423A KR100979058B1 (en) 2007-10-17 2007-10-17 Eco-friendly pb-free free cutting steel with excellent machinability and hot workability
PCT/KR2007/006883 WO2008082153A1 (en) 2006-12-28 2007-12-27 Eco-friendly pb-free free cutting steel with excellent machinability and hot workability

Publications (2)

Publication Number Publication Date
JP2010514929A JP2010514929A (en) 2010-05-06
JP5241734B2 true JP5241734B2 (en) 2013-07-17

Family

ID=39588763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009543945A Expired - Fee Related JP5241734B2 (en) 2006-12-28 2007-12-27 Environmentally friendly lead-free free-cutting steel with excellent machinability and hot-rollability

Country Status (3)

Country Link
US (1) US20100092330A1 (en)
JP (1) JP5241734B2 (en)
WO (1) WO2008082153A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009052036A1 (en) 2009-11-05 2011-05-12 Buderus Edelstahl Band Gmbh Lead-free free-cutting steel
KR101259271B1 (en) * 2010-12-23 2013-04-29 주식회사 포스코 Method for manufacturing groove-rolling free cutting steel billet
RU2503737C1 (en) * 2012-08-06 2014-01-10 Закрытое акционерное общество "Омутнинский металлургический завод" Free-machining bismuth-containing steels
JP5937973B2 (en) * 2013-01-15 2016-06-22 株式会社神戸製鋼所 Si-killed steel wire rod having excellent fatigue characteristics and spring using the same
JP6844943B2 (en) * 2015-06-01 2021-03-17 日本製鉄株式会社 Non-microalloyed steel for induction hardening

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933662B2 (en) * 1976-10-27 1984-08-17 住友金属工業株式会社 Steel wire rod with excellent machinability
JPH03240931A (en) * 1990-02-15 1991-10-28 Nkk Corp Steel for machine structural use excellent in machinability
JP2848497B2 (en) * 1990-03-07 1999-01-20 大同特殊鋼株式会社 Cross roll processing method for BN-containing free-cutting steel
JPH10158781A (en) * 1996-12-02 1998-06-16 Kobe Steel Ltd Free cutting steel excellent in cemented carbide tool life
JP2001329335A (en) * 2000-05-16 2001-11-27 Kobe Steel Ltd Low carbon sulfur based bn free cutting steel excellent in hot ductility
JP3753054B2 (en) * 2001-06-08 2006-03-08 大同特殊鋼株式会社 Free-cutting steel for machine structures with excellent carbide tool machinability
JP2004068066A (en) * 2002-08-05 2004-03-04 Sanyo Special Steel Co Ltd Case hardened steel superior in machinability and pitting resistance
US7488396B2 (en) * 2002-11-15 2009-02-10 Nippon Steel Corporation Superior in machinability and method of production of same
JP4264329B2 (en) * 2002-11-15 2009-05-13 新日本製鐵株式会社 Steel with excellent machinability
JP4348164B2 (en) * 2002-11-15 2009-10-21 新日本製鐵株式会社 Steel with excellent machinability
JP3918787B2 (en) * 2003-08-01 2007-05-23 住友金属工業株式会社 Low carbon free cutting steel
JP4359548B2 (en) * 2004-09-22 2009-11-04 Jfe条鋼株式会社 BN free cutting steel
JP4451808B2 (en) * 2005-04-15 2010-04-14 株式会社神戸製鋼所 Rolled steel bar for case hardening with excellent fatigue characteristics and grain coarsening resistance and its manufacturing method
JP4546917B2 (en) * 2005-11-28 2010-09-22 新日本製鐵株式会社 Free-cutting steel with excellent hot ductility
KR20070067792A (en) * 2005-12-23 2007-06-29 주식회사 포스코 Eco-friendly pb-free free cutting steel with excellent machinability
US20100054984A1 (en) * 2006-11-28 2010-03-04 Masayuki Hashimura Machining steel superior in manufacturability

Also Published As

Publication number Publication date
US20100092330A1 (en) 2010-04-15
WO2008082153A1 (en) 2008-07-10
JP2010514929A (en) 2010-05-06

Similar Documents

Publication Publication Date Title
JP3758581B2 (en) Low carbon free cutting steel
JP3918787B2 (en) Low carbon free cutting steel
JP2001355048A (en) Ferritic free-cutting stainless steel
JP4986203B2 (en) BN free-cutting steel with excellent tool life
JP5241734B2 (en) Environmentally friendly lead-free free-cutting steel with excellent machinability and hot-rollability
KR100825566B1 (en) Eco-friendly pb-free free cutting steel with excellent machinability and hot workability
TWI310054B (en)
JP4502929B2 (en) Case hardening steel with excellent rolling fatigue characteristics and grain coarsening prevention characteristics
JP2000160284A (en) Free-cutting steel
JP2010236062A (en) Method for manufacturing component for machine structure
KR100940715B1 (en) Eco-friendly pb-free free cutting steel with excellent machinability and hot workability
JP2006291335A (en) Steel for case hardening having excellent high temperature carburizing characteristic and workability
JP5323369B2 (en) Case-hardened steel with excellent machinability and grain coarsening prevention properties
JP3791664B2 (en) Austenitic Ca-added free-cutting stainless steel
KR20070067792A (en) Eco-friendly pb-free free cutting steel with excellent machinability
JP4964060B2 (en) Mechanical structural steel and mechanical structural parts with excellent strength anisotropy and machinability
JP2014210941A (en) Powder high-speed tool steel excellent in high-temperature temper hardness
KR100833034B1 (en) Eco-friendly pb-free free cutting steel with excellent hot ductility and method for manufacturing the same
JP3874557B2 (en) Free-cutting non-tempered steel with excellent toughness
JP2017170499A (en) Solid wire for submerged arc welding
KR100979058B1 (en) Eco-friendly pb-free free cutting steel with excellent machinability and hot workability
JP2020045557A (en) Slide member
JP2002003991A (en) Free cutting steel
JPH02209454A (en) Free cutting stainless steel
JP2004091897A (en) Outgass resistant ferritic free-cutting stainless steel

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5241734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees