JP5240183B2 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
JP5240183B2
JP5240183B2 JP2009293089A JP2009293089A JP5240183B2 JP 5240183 B2 JP5240183 B2 JP 5240183B2 JP 2009293089 A JP2009293089 A JP 2009293089A JP 2009293089 A JP2009293089 A JP 2009293089A JP 5240183 B2 JP5240183 B2 JP 5240183B2
Authority
JP
Japan
Prior art keywords
temperature
heat exchanger
indoor
humidity
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009293089A
Other languages
English (en)
Other versions
JP2011133170A (ja
Inventor
靖史 堀
昌由 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2009293089A priority Critical patent/JP5240183B2/ja
Publication of JP2011133170A publication Critical patent/JP2011133170A/ja
Application granted granted Critical
Publication of JP5240183B2 publication Critical patent/JP5240183B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、再熱除湿運転が可能な空気調和装置に関する。
凝縮機として機能する室外側熱交換器を備えた室外機と、蒸発機として機能する第1の室内側熱交換器を備えた室内機と、室外側熱交換器及び第1の室内側熱交換器との間で冷媒を循環させる圧縮機とを有する空気調和装置において、室内機に、再熱器として機能する第2の室内側熱交換器をさらに備え、第1の室内側熱交換器により冷却・除湿した空気を第2の室内側熱交換器により加熱することによって、温度を下げることなく湿度だけを下げた空気を室内機から吹き出すように構成された再熱除湿運転が可能な空気調和装置が知られている(例えば、特許文献1参照)。
特許文献1記載の空気調和装置は、室内の温度を室内温度検出手段によって検出するとともに、この室内の温度と所定の設定温度との差を求め、この差に応じて室外側熱交換器通過後の膨張弁の開度や室外ファンの風量、圧縮機の運転周波数等を調節し、顕熱能力を制御して快適な除湿運転を可能にするものとされている。
特開2002−89998号公報
しかしながら、特許文献1の空気調和装置では、室内機から吹き出された空気の温度が室内の温度に反映されて、再度、室内温度検出手段によって検出されるまでに時間がかかり、そのために制御遅れが生じやすく、目標温度を中心に室内の温度が上下にハンチングして目標温度に安定するまでに時間がかかるという欠点がある。
また、特許文献1に記載の技術は、室内の温度調整のみに着目して制御を行っているので、室内の温度を所定の設定温度に調整することができても、室内の湿度を所定の設定湿度に調整するのは困難である。
したがって、本発明は、室内の温度を短時間で目標温度に安定させることができるとともに、室内の温度及び湿度の双方を適切に所定の目標値に調整することが可能な空気調和装置を提供することを目的とする。
本発明の空気調和装置は、凝縮器として機能する室外側熱交換器と、蒸発器として機能する第1室内側熱交換器と、凝縮器として機能する第2室内側熱交換器と、これら各熱交換器を含む冷媒回路内で冷媒を循環させる圧縮機と、を備えており、前記第1室内側熱交換器と、前記第2室内側熱交換器とを備えた室内機の内部に室内の空気を吸い込み、当該空気を前記第1室内側熱交換器により冷却・除湿するとともに前記第2室内側熱交換器により加熱した後、前記室内機から吹き出すように構成された、再熱除湿運転が可能な空気調和装置であって、
前記第2室内側熱交換器への冷媒の流量を調整する流量調整機構と、
前記室内機への吸込空気の温度を検出する吸込温度センサと、
前記室内機への吸込空気の湿度を検出する吸込湿度センサと、
前記室内機からの吹出空気の温度を検出する吹出温度センサと、
前記吸込湿度センサにより検出される吸込空気の湿度を所定の目標値に調整するべく、前記圧縮機の運転周波数を制御して前記第1室内側熱交換器による除湿能力を調整する湿度制御部と、
前記吸込温度センサにより検出される吸込空気の温度と前記吹出温度センサにより検出される吹出空気の温度との差を所定の目標値に調整するべく、前記流量調整機構を制御して第2室内側熱交換器による再熱能力を調整する第1温度制御部と、
室内温度が所定の目標値と同じかそれより高いために前記第1温度制御部が前記流量調整機構による前記第2室内側熱交換器への冷媒流量を減少させるべき状態にあるにも関わらず、当該冷媒流量が下限に達していることによって当該冷媒流量を更に減少させることができない場合で、かつ室内湿度が所定の目標値と同じかそれよりも低いために前記湿度制御部が前記圧縮機の運転周波数を低下させるか又は維持するべき状態にある場合に、
前記第1温度制御部が前記流量調整機構により当該冷媒流量を増大させる制御を行う温度領域に室内の温度を低下させるように前記圧縮機の運転周波数を維持するか又は上昇させる制御を行う第2温度制御部と、を備えていることを特徴とする。
本発明の空気調和装置によれば、第1室内側熱交換器による除湿能力を制御することによって、室内の湿度(吸込空気の湿度)を所定の目標値に調整し、第2室内側熱交換器による再熱能力を制御することによって、室内の温度(吸込空気の温度)を所定の目標値に調整する。したがって、室内の温度及び湿度の双方を所定の目標値に調整し、適切な恒温恒湿運転を行うことが可能となる。
また、室内の温度を制御するにあたり、吸込空気と吹出空気との温度差を所定の目標値に調整しているので、単に吸込空気の温度を室内の目標温度に調整する場合に比べて短時間で目標温度に安定させることができる。すなわち、吹出空気の温度を制御パラメータの一部として取り入れることによって、室内機の吹出口において検出した吹出空気の温度を即座に温度制御に反映させることができ、制御遅れやハンチングを防止することができる。
さらに、第2室内側熱交換器への冷媒の流量(流量調整機構による調整量)が下限に達し、それ以上、流量を減少させることができないような状況になった場合には、当該流量を増加させる制御が行われる温度領域に室内の温度を移行させるように圧縮機の運転周波数を制御する。これによって、温度の制御が不能な状態を回避し、恒温恒湿運転を維持することができる。
上記空気調和装置において、前記温度制御部は、吸込空気の温度と吹出空気の温度との差の目標値を、吸込空気の温度とその目標温度との偏差に基づいて更新する更新部を有していることが好ましい。
室内の温度(吸込空気の温度)とその目標温度とに偏差がある場合、室内の温度を目標温度に調整するためには、吸込空気の温度と吹出空気の温度との差の目標値も修正する必要がある。したがって、本発明の空気調和装置では、吸込空気の温度とその目標温度との偏差に基づいて、吸込空気の温度と吹出空気の温度との差の目標値を随時更新するように構成されており、これによって、室内の温度を適切に目標温度に調整することが可能となる。
上記空気調和装置において、前記冷媒回路は、前記圧縮機から吐出された冷媒を前記室外側熱交換器と前記第2室内側熱交換器とに分配して供給するとともに、前記室外側熱交換器と前記第2室内側熱交換器とを通過した冷媒を当該第1室内側熱交換器に供給する冷媒配管と、前記室外側熱交換器を通過した冷媒を膨張・減圧する第1膨張弁と、第2室内側熱交換器を通過した冷媒を膨張・減圧する第2膨張弁と、を備えており、前記第2膨張弁が、第2室内側熱交換器への流量を調整する流量調整機構を構成していることが好ましい。
この構成によれば、第1室内側熱交換器に供給される冷媒を膨張・減圧する第2膨張弁の開度を制御し、室外側熱交換器と第2室内側熱交換器とに対する冷媒の分配量を調整することによって、第2室内側熱交換器による除湿能力を制御することができる。
本発明によれば、室内の温度を短時間で目標温度に安定させることができるとともに、室内の温度及び湿度の双方を適切に所定の目標値に調整することができる。
本発明の実施の形態に係る空気調和装置の冷媒回路を示す構成図である。 空気調和装置による温度制御の手順を示すフローチャートである。 吸込空気と吹出空気の温度差の目標値を求める手順を示すフローチャートである。 吸込空気と吹出空気の温度差の目標値を更新する手順を示すフローチャートである。 空気調和装置による湿度制御の手順を示すフローチャートである。 圧縮機の動作マップである。 第2膨張弁の動作マップである。 室内の温度及び湿度に対する圧縮機及び第2膨張弁の動作の態様を示す説明図である。
〔空気調和装置10の全体構成〕
図1は、本発明の実施の形態に係る空気調和装置10を示す構成図である。本実施の形態の空気調和装置10は、例えば食材や薬剤等の保管庫や製造工場等のように、室内の温度と湿度とが一定の状態に管理される環境下で使用されるものであり、そのため、室内の温度を一定の状態に保持しつつ湿度をも一定に保持する恒温恒湿運転が可能な装置とされている。
この空気調和装置10は、室内機12及び室外機13を備えるとともに、この室外機13と室内機12の間に冷媒回路14を備えている。冷媒回路14は、室外機13に備えられた室外側熱交換器15及びレシーバ16等と、室内機12に備えられた圧縮機17、第1室内側熱交換器18、第2室内側熱交換器19、第1膨張弁20、及び第2膨張弁21等と、以上の各機器を接続する冷媒配管22と、を有している。
室外機13及び室内機12には、それぞれ室外ファン23及び室内ファン24が設けられている。また、室内機12には、室内の空気を吸い込むための吸込口25と、室内に空調後の空気を吹き出すための吹出口26とが設けられている。吸込口25には、室内機12に吸い込まれた空気の温度を検出する吸込温度センサ27と、湿度を検出する吸込湿度センサ28とが設けられ、吹出口26、特に室内ファン24の吹出部近傍には、室内に吹き出す空気の温度を検出する吹出温度センサ29が設けられている。
圧縮機17は、インバータ制御等によって運転周波数(運転回転数)を調整可能な電動機を備えた可変容量型とされている。また、第1,第2膨張弁20,21は、流通する冷媒の流量(絞り量)を調整可能とするように、開度を変更することが可能な電子膨張弁とされている。室内機12及び室外機13に備えられた各機器は、CPUやメモリーを備えたマイクロコンピュータ等からなるコントローラ(制御手段)30によって制御される。また、吸込温度センサ27、吸込湿度センサ28、及び吹出温度センサ29の検出信号はコントローラ30に入力され、後述する温度・湿度制御のために用いられる。なお、詳細な説明は後述するが、コントローラ30は、室内の温度を制御する第1,第2温度制御部31,32としての機能、室内の湿度を制御する湿度制御部33としての機能を有している。
〔冷媒配管22の構成〕
冷媒配管22は、圧縮機17の吐出側と室外側熱交換器15とを接続する第1配管36と、室外側熱交換器15と第1膨張弁20とを接続するとともにレシーバ16が設けられた第2配管37と、第1膨張弁20と第1室内側熱交換器18とを接続する第3配管38と、第1室内側熱交換器18と圧縮機17の吸込側とを接続する第4配管39とを含む。また、本実施の形態では、第1配管36と第3配管38との間をバイパスする第5配管40が設けられ、この第5配管40に第2室内側熱交換器19及び第2膨張弁21が設けられている。第1配管36及び第2配管37は、室内機12と室外機13との間にわたって設けられ、室内機12及び室外機13における出入口部近傍に閉鎖弁41を備えている。
〔空気調和装置10の恒温恒湿運転(再熱除湿運転)〕
図1に示すように、圧縮機17から吐出された高温高圧の冷媒は、第1配管36及び第5配管40を介して室外側熱交換器15及び第2室内側熱交換器19を通過した後、第1,第2膨張弁20,21で膨張・減圧され、第1室内側熱交換器18を通過して圧縮機17に戻る。この際、室外側熱交換器15は凝縮器として機能し、第2室内側熱交換器19は再熱器として機能し、第1室内側熱交換器18は蒸発器として機能する。したがって、室内ファン24によって吸込口25から室内機12に吸い込まれた空気は、第1室内側熱交換器18によって冷却・除湿され、第2室内側熱交換器19によって加熱(再熱)された後に吹出口26から吹き出される。これにより、吹出空気の温度を下げることなく湿度のみを下げる再熱除湿運転が可能となり、室内の温度及び湿度を一定に保つことが可能となっている。
また、圧縮機17の運転周波数を増大させると、第1室内側熱交換器18による冷却・除湿能力が高められ、吹出空気の温度及び湿度を下げる方向に調整することができる。逆に、圧縮機17の運転周波数を減少させると、第1室内側熱交換器18による冷却・除湿能力が抑制され、吹出空気の温度及び湿度を上げる方向に調整することができる。
第2膨張弁21は、冷媒を膨張・減圧する機能だけなく、室外側熱交換器15及び第2室内側熱交換器19へ流れる冷媒の流量(配分量)を調整する機能を有している。すなわち、第2膨張弁21の開度を大きくすると、第2室内側熱交換器19側への冷媒の流量が増加するとともに、室外側熱交換器15への冷媒の流量が減少し、逆に、第2膨張弁21の開度を小さくすると、第2室内側熱交換器19側への冷媒の流量が減少するとともに、室外側熱交換器への冷媒の流量が増加する。したがって、第2膨張弁21は、第2室内側熱交換器19へ流れる冷媒の流量を調整する、本発明の流量調整機構を構成している。そして、第2膨張弁21の開度を大きくすると、第2室内側熱交換器19による空気の再熱能力が高まって吹出空気の温度が上昇する方向に調整され、逆に、第2膨張弁21の開度を小さくすると、第2室内側熱交換器19による空気の再熱能力が低下して吹出空気の温度が低下する方向に調整される。
なお、空気調和装置10によって単に冷房運転を行うには、第2膨張弁21を閉じることによって第5配管40への冷媒の流れを絶ち、圧縮機17から吐出された冷媒を室外側熱交換器15のみへ流し、室内機12において、第1室内側熱交換器18により空気の冷却・除湿のみを行うようにすればよい。
〔空気調和装置10による温度制御及び湿度制御〕
本実施の形態の空気調和装置10は、室内の温度及び湿度が所定の設定値(目標温度及び目標湿度)に調整されるように、コントローラ30によって室内機12から吹き出す吹出空気の温度及び湿度の制御を行う。つまり、コントローラ30は、室内の温度及び湿度を制御する温度制御部31,32及び湿度制御部33としての機能を有している。室内の目標温度は、リモートコントローラ等を介してユーザーにより設定され、室内の目標湿度は、製造時に予め設定されるか、又は装置の設置時やメンテナンス時等に作業員等によって設定される。ただし、室内の目標湿度についてもユーザーが所望に設定できるようにしてもよい。
そして、本実施の形態の空気調和装置10は、吹出空気の湿度(以下、「吹出湿度」ともいう)を調整するためにコントローラ30によって圧縮機17の運転周波数を制御するように構成されている。すなわち、圧縮機17の運転周波数を制御することによって第1室内側熱交換器18による除湿能力を制御し、室内機12から吹き出す空気の湿度を調整する。
また、本実施の形態の空気調和装置10は、吹出空気の温度(以下、「吹出温度」ともいう)を調整するためにコントローラ30によって第2膨張弁21の開度を制御するように構成されている。すなわち、第2膨張弁21の開度を制御し、第2室内側熱交換器19への冷媒の流量を調整することによって第2室内側熱交換器19による空気の再熱能力を制御し、室内機12から吹き出す空気の温度を調整する。
また、第2室内側熱交換器19による空気の再熱能力の制御は、第1室内側熱交換器18による空気の冷却能力の変化に応じても行われる。例えば、上述のように、室内の湿度を下げるために圧縮機17の運転周波数を上昇させると、湿度だけでなく温度も低下してしまうが、吹出温度を維持する場合には、第2膨張弁21の開度を大きくして第2室内側熱交換器19の再熱能力を高めることで、低下した温度を同程度だけ上昇させるようにしている。
(圧縮機17及び第2膨張弁21の基本動作)
図6は、圧縮機17の動作マップであり、図7は、第2膨張弁21の動作マップである。上述したように、本実施の形態の空気調和装置10は、吹出空気の湿度を圧縮機17の運転周波数により制御し、吹出空気の温度を第2膨張弁21の開度により制御する。図6及び図7は、所定の目標温度及び目標湿度を中心として、これよりも室内の温度及び湿度(吸込空気の温度及び湿度)が高い領域及び低い領域における圧縮機17及び第2膨張弁21の動作をまとめたものである。
圧縮機17は、図6に示すように、室内の湿度が目標湿度である(又は目標湿度を含む所定範囲内にある)場合には運転周波数を維持し(図6の中段の欄参照)、室内の湿度が目標湿度よりも高い場合には運転周波数を上げる(UP)ことによって、吹出空気の湿度を下げる方向に働き(図6の上段の欄参照)、室内の湿度が目標湿度よりも低い場合には運転周波数を下げる(DOWN)ことによって、吹出空気の湿度を上げる方向に働く(図6の下段の欄参照)。
一方、第2膨張弁21は、図7に示すように、室内の温度が目標温度よりも低い場合には、開度を大きくする(開)ことによって、吹出空気の温度を上げる方向に働き(図7の左端の欄参照)、室内の温度が目標温度よりも高い場合には、開度を小さくする(絞)ことによって吹出空気の温度を下げる方向に働く(図7の右端の欄参照)。
また、第2膨張弁21は、室内の温度が目標温度であっても、湿度が目標湿度よりも高いか低い場合には、圧縮機17の動作との兼ね合いで開度を大きくするか、小さくする動作を行う。すなわち、室内の湿度が目標湿度よりも高い場合には(図6及び図7の上段真ん中の欄参照)、圧縮機17が運転周波数を上げて第1室内側熱交換器18による冷却能力をも高めるので、その分、第2膨張弁21の開度を大きくすることによって第2室内側熱交換器19による再熱能力を高め、吹出温度の低下を防止する。
逆に、室内の湿度が目標湿度よりも低い場合には(図6及び図7の下段真ん中の欄参照)、圧縮機17が運転周波数を下げて第1室内側熱交換器18による冷却能力をも低下させるので、その分、第2膨張弁21の開度を小さくすることによって第2室内側熱交換器19による再熱能力を低下させ、吹出温度の上昇を抑制する。
なお、第2膨張弁21は、室内の温度が目標温度よりも低くても室内の湿度が目標湿度よりも低い場合(図7の下段左端の欄参照)には、圧縮機17による吹出空気の温度上昇との兼ね合いで開度を絞り、第2室内側熱交換器19による再熱能力を抑制することがあり、室内の温度が目標温度よりも高くても室内の湿度が目標湿度よりも高い場合(図7の上段右端の欄参照)には、第2膨張弁21は、圧縮機17による吹出空気の温度低下との兼ね合いで開度を大きくし、第2室内側熱交換器19による再熱能力を高めることがある。
以上の圧縮機17及び第2膨張弁21の動作により、室内の温度及び湿度の双方をそれぞれ適切に目標値に調整することができる。
また、圧縮機17は、上記動作の例外として、図6に*印を付した括弧書で示すように、室内の湿度が目標湿度であっても、室内の温度が目標温度よりも高ければ運転周波数を上昇させることがあり(図6の中段右端の欄参照)、室内の湿度が目標湿度よりも低くても、室内の温度が目標温度であるか目標温度よりも高ければ、運転周波数を維持又は上昇させることがある(図6の下段真ん中、右端の欄参照)。この例外的な運転について図8を参照して説明する。
(圧縮機17の例外的動作)
図8は、室内の温度及び湿度に対する圧縮機17及び第2膨張弁21の動作の態様を示す説明図である。例えば、目標温度及び目標湿度が、図8に示す「設定値」とされている場合、室内の温度が設定値よりも高く、室内の湿度が設定値よりも低い領域(点Aを含む領域)にある条件では、図6及び図7の動作マップに基づけば、圧縮機17は運転周波数を下げ、第2膨張弁21は開度を絞るはずである。しかしながら、このような条件下では、第2膨張弁21の開度が既に最小限(下限)にまで絞られている場合があり、この場合、第2膨張弁21によって吹出温度を制御することができなくなる。
そのため、本実施の形態では、室内の温度及び湿度が点Aで示す領域にあり、且つ第2膨張弁21の開度が最小限にまで絞られている場合には、圧縮機17の運転周波数を下げるのではなく上昇させる。これにより、第1室内側熱交換器18の冷却能力及び除湿能力を高め、室内の温度及び湿度を点Bの状態に移行させる。
点Bが含まれる領域では、室内の湿度は設定値よりも低いままであるが、室内の温度は設定値よりも低くなるので、図6及び図7の動作マップに示すように、圧縮機17は運転周波数を下げ、第2膨張弁21は開度を大きくすることによって室内の温度及び湿度を上げる方向に動作する。これにより、点Bの状態から設定値へ向けて温度及び湿度が制御される。
以上の動作によって、室内の温度及び湿度は次第に設定値に収束するようになり、前述の基本動作では制御することが困難な場合であっても、適切な温度制御を行うことが可能になる。
同様に、図6及び図7において、室内の温度が目標温度であり、室内の湿度が目標湿度よりも低い場合、本来は、第2膨張弁21は開度を絞る方向に動作するはずであるが、それ以上開度を絞ることができない場合には、圧縮機17は、運転周波数を下げるのではなく、運転周波数を維持する。また、室内の温度が目標温度よりも高く、室内の湿度が目標湿度である場合も、本来は、第2膨張弁21は開度を絞る方向に動作するはずであるが、それ以上開度を絞ることができない場合には、圧縮機17の運転周波数を下げるのではなく、運転周波数を上昇する。
〔温度制御方法及び湿度制御方法〕
次に、圧縮機17及び第2膨張弁21に対して上述のような動作を行わせるための、コントローラ30による圧縮機17及び第2膨張弁21の制御方法について説明する。
(第1温度制御部31による温度制御方法)
室内の温度を制御するにあたり、例えば、吸込空気の温度を検出し、その温度が目標温度に近づくように吹出空気の温度を調整した場合、この吹出空気の温度が室内の温度に反映されて、再度、吸込温度センサ27によって検出されるまでに時間がかかり、制御遅れやハンチングが生じやすくなるという欠点がある。そのため、本実施の形態では以下のように室内の温度を目標温度に調整する。
例えば、室内の温度(吸込空気の温度)が目標温度に維持されている場合、吸込空気の温度と吹出空気の温度とは一定の関係、具体的には一定の温度差を保つはずである。したがって、本実施の形態の空気調和装置10は、吸込空気と吹出空気との温度差を求め、この温度差が所定の目標値となるように吹出空気の温度を調整する。これにより、吹出空気の温度が吸込温度センサ27によって検出されるのを待たずに、室内の温度を調整(維持)できることになる。
また、吸込空気の温度と目標温度とに差がある場合、この吸込空気の温度を目標温度に調整するためには、吸込空気と吹出空気との温度差の目標値を適宜変更していく必要がある。このため、本実施の形態では、吸込空気の温度と目標温度との差に基づいて目標値を更新し、適切な温度制御を継続して行うことができるようにしている。
以上の制御をフローチャート及び計算式を用いて説明する。
図2は、空気調和装置10による温度制御の手順を示すフローチャートである。
空気調和装置10のコントローラ30は、まず、ステップS11において、吸込空気と吹出空気の温度差の目標値を求める。ここで、吸込空気の温度をTh1とし、吹出空気の温度をTh2とすると、その温度差Tfは次の式(1)で表すことができる。
Tf=Th1−Th2 ・・・ (1)
温度差Tfの目標値Thsを求める手順を更に図3及び図4を参照して詳細に説明する。まず、図3のステップS21において、空気調和装置10が運転オフの状態では、目標値Tfsは0の状態にリセットされている。
そして、空気調和装置10が運転オンの状態になり、圧縮機17が作動していなければ(圧縮機オフ)、コントローラ30は、目標値Tfsの値を0のまま保持する(ステップS22)。
空気調和装置10の運転オンと同時に圧縮機17が作動している場合(圧縮機オン)は、目標値Tfsの初期値を以下の式(2)により求める(ステップS23)。
Tfs=Th1−Th2 ・・・ (2)
すなわち、吸込温度センサ27及び吹出温度センサ29によって検出された吸込温度Th1と吹出温度Th2との差Tfを、目標値Tfsと擬制する。
ステップS22の状態から圧縮機17が作動した場合、目標値Tfsの初期値は、そのまま0に維持される(ステップS24)。また、圧縮機17が作動状態から停止した場合にも、目標値Tfsの値は、そのまま維持される(ステップS22)。
したがって、空気調和装置10が運転を開始し圧縮機17が作動した直後、コントローラ30は、目標値Tfsの初期値として0又は式(2)で示される値を与えるための「起動制御」を行う。
そして、起動制御の後、コントローラ30は、目標値Tfsを吸込温度Th1と室内の目標温度との偏差ΔTrによって更新する「通常制御」を行う(ステップS25)。
上述したように、吸込温度Th1と吹出温度Th2との温度差Tfの目標値Tfsは、吸込温度Th1が室内の目標温度に維持されている場合には一定の値をとるが、例えば、吸込温度Th1が室内の目標温度よりも高い場合には、吸込温度Th1がより低くなるように温度差Tfを調整する必要がある。そのため、本実施の形態のコントローラ30は、吸込温度Th1と室内の目標温度との差ΔTrに基づいて目標値Tfsを随時更新する更新部46(図1参照)としての機能を有している。
図4は、目標値Tfsを更新する手順を示すフローチャートである。
まず、ステップS31において、コントローラ30は、吸込温度Th1と、室内の目標温度Th1sとの偏差ΔTrを次式(3)により求める。
ΔTr=Th1−Th1s ・・・ (3)
ついで、ステップS32において、コントローラ30は、偏差ΔTrを用いて目標値Tfsを更新するための増分(ΔTfs)を次式(4)により求める。
ΔTfs=A1×(ΔTr−ΔTr’)+B1×(ΔTr+ΔTr’) ・・・(4)
ここで、A1,B1は所定の係数(ゲイン)であり、ΔTr’は、前回の演算で求められた偏差ΔTrの値である。なお、式(4)は、ΔTrとΔTr’との偏差に基づいてPI制御(比例制御)によりΔTfsを求める式である。
ついで、ステップS33において、コントローラ30は、増分ΔTfsを用いて次式(5)により目標値Tfsを更新する。
Tfs=ΔTfs+Tfs ・・・ (5)
図2に戻って、目標値Tfsが設定乃至更新されると、ステップS12において、コントローラ30は、第2膨張弁21の開度EVを演算により求める。
まず、次式(6)により温度差Tfの値と、目標値Tfsとの偏差e1を求める。
1=Tf−Tfs ・・・ (6)
次いで、式(7)により、第2膨張弁21の開度の操作量ΔEVを求める。
ΔEV=A2×(e1−e1’)+B2×(e1+e1’)+ΔEV’ ・・・ (7)
ただし、A2,B2は所定の係数(ゲイン)、e1’は前回のe1の値、ΔEV’は前回の第2膨張弁21の操作量である。なお、式(7)は、吸込温度Th1及び吹出温度Th1の温度差Tfとその目標値Tfsとの偏差に基づいてPI制御(比例制御)により操作量ΔEVを求めるものである。
そして、ステップS12において、ΔEVを用いて次式(8)により第2膨張弁21の開度EVを求める。
EV=EV’+ΔEV ・・・ (8)
ただし、EV’は、前回の第2膨張弁21の開度である。
そして、ステップS13により、コントローラ30は、演算により求められた開度となるように第2膨張弁21を動作制御する。
以上のように第2膨張弁21の開度を制御することにより、吸込温度Th1と吹出温度Th2との温度差Tfが所定の目標値Tfsとなるように第2室内側熱交換器19の再熱能力が制御され、室内の温度を一定に保つ制御、すなわち恒温制御を行うことができる。
(湿度制御部33による湿度制御の手順)
上述したように、室内の温度制御は第2膨張弁21の開度の制御によって行われるが、湿度制御については、圧縮機17の運転周波数を制御することによって行われる。
図5は、空気調和装置10による湿度制御の手順を示すフローチャートである。
まず、ステップS41において、吸込湿度センサ28の検出値(相対湿度)がコントローラ30に入力され、現在の室内温度から絶対湿度(吸込絶対湿度)に変換される。また、予め設定されている目標湿度(相対湿度)は、室内の目標温度から目標絶対湿度に変換される。
ついで、ステップS42において、圧縮機17の制御量を演算により求める。
まず、コントローラ30は、吸込絶対湿度Xと、目標絶対湿度Xsとの偏差ΔXsを、次式(9)により求める。
ΔXs=X−Xs ・・・ (9)
ついで、コントローラ30は、圧縮機17の制御量ΔFkを次式(10)(11)により求める。
ΔFk=A3×(e2−e2’)+B3×(e2+e2’)+ΔFk’ ・・・ (10)
2=a×ΔTr+b×ΔXs ・・・ (11)
ただし、A3,B3は所定の係数(ゲイン)であり、ΔFk’は前回のΔFkの値である。また、e2’は前回のe2の値である。
式(11)において、a、bは、所定の条件に応じて設定される係数である。a及びbを設定する条件とは、第2膨張弁21の開度が最小(略全閉)であり、かつΔTr≧0、ΔXs≦0を満たすか否かである。
この条件は、図6〜図8を参照して説明したように、圧縮機17に例外的な動作を行わせる条件であり、室内の温度及び湿度が、図6及び図7の中段右端の欄、下段真ん中及び右端の欄の領域にあり、第2膨張弁21を更に絞ることができない場合に相当する。この条件を満たす場合(例外動作の場合)、aに所定の実数(a≠0)が入力されるとともに、bに0が入力され(b=0)、e2の値にはΔTrのみが反映される。すなわち、室内の湿度に関する要素ΔXsは反映されず、吸込空気の温度に関する要素ΔTrのみによって圧縮機17の制御量ΔFkが求められる。
上記条件を満たさない場合(基本動作の場合)、aに0が入力されるとともに(a=0)、bに所定の実数(b≠0)が入力され、e2の値にはΔXsのみが反映される。したがって、この場合は、室内の湿度に関する要素ΔXsのみによって圧縮機17の制御量ΔFkが求められる。
そして、ステップS43において、コントローラ30は、メモリー内に記憶されている変換テーブルを参照して、式(10)により求めた制御量ΔFkを圧縮機17の運転周波数の調整量に変換し、圧縮機17の運転周波数を調整する。これにより、室内の湿度が目標湿度に調整される。
また、上記条件を満たす場合、コントローラ30は、第2温度制御部32(図1参照)の機能により圧縮機17の運転周波数を上昇又は維持させることによって室内の温度を所定の温度領域(図8において、点Bを含む領域)に調整する。すなわち、コントローラ30は、室内の湿度ではなく専ら温度を調整するために圧縮機17を制御する。
以上のように、コントローラ30が圧縮機17の動作(運転周波数)を制御することによって、吸込湿度Xが目標湿度Xsとなるように、第1室内側熱交換器18の除湿能力が制御され、室内の湿度を一定に保つ制御、すなわち、恒湿制御を行うことができる。
本発明は、上記実施の形態に限定されることなく適宜設計変更可能である。
例えば、上記実施の形態の空気調和装置10は、除湿運転及び冷房運転を行うものであったが、暖房運転をも行うように構成されていてもよい。この場合、冷媒の流れを反転させる四路切替弁や暖房用の膨張弁等を冷媒回路14に加えればよい。
また、上記実施の形態では、圧縮機17から吐出された冷媒を室外側熱交換器15と第2室内側熱交換器19とに分岐して供給していたが、圧縮機17から吐出され、室外側熱交換器15を通過した冷媒を第2室内側熱交換器19に供給してもよい。
10: 空気調和装置
12: 室内機
13: 室外機
14: 冷媒回路
15: 室外側熱交換器
17: 圧縮機
18: 第1室内側熱交換器
19: 第2室内側熱交換器
21: 第2膨張弁(流量調整機構)
22: 冷媒配管
25: 吸込口
26: 吹出口
27: 吸込温度センサ
28: 吸込湿度センサ
29: 吹出温度センサ
30: コントローラ(制御手段)
31: 第1温度制御部
32: 第2温度制御部
33: 湿度制御部
46: 更新部

Claims (3)

  1. 凝縮器として機能する室外側熱交換器(15)と、蒸発器として機能する第1室内側熱交換器(18)と、再熱器として機能する第2室内側熱交換器(19)と、これら各熱交換器(15,18,19)を含む冷媒回路(14)内で冷媒を循環させる圧縮機(17)と、を備えており、前記第1室内側熱交換器(18)と、前記第2室内側熱交換器(19)とを備えた室内機(12)の内部に室内の空気を吸い込み、当該空気を前記第1室内側熱交換器(18)により冷却・除湿するとともに前記第2室内側熱交換器(19)により加熱した後、前記室内機(12)から吹き出すように構成された、再熱除湿運転が可能な空気調和装置(10)であって、
    前記第2室内側熱交換器(19)への冷媒の流量を調整する流量調整機構(21)と、
    前記室内機(12)への吸込空気の温度を検出する吸込温度センサ(27)と、
    前記室内機(12)への吸込空気の湿度を検出する吸込湿度センサ(28)と、
    前記室内機(13)からの吹出空気の温度を検出する吹出温度センサ(29)と、
    前記吸込湿度センサ(28)により検出される吸込空気の湿度を所定の目標値に調整するべく、前記圧縮機(17)の運転周波数を制御して前記第1室内側熱交換器(18)による除湿能力を調整する湿度制御部(33)と、
    前記吸込温度センサ(27)により検出される吸込空気の温度と前記吹出温度センサ(29)により検出される吹出空気の温度との差を所定の目標値に調整するべく、前記流量調整機構(21)を制御して第2室内側熱交換器(19)による再熱能力を調整する第1温度制御部(31)と、
    室内温度が所定の目標値と同じかそれより高いために前記第1温度制御部(31)が前記流量調整機構(21)による前記第2室内側熱交換器(19)への冷媒流量を減少させるべき状態にあるにも関わらず、当該冷媒流量が下限に達していることによって当該冷媒流量を更に減少させることができない場合で、かつ室内湿度が所定の目標値と同じかそれよりも低いために前記湿度制御部(33)が前記圧縮機(17)の運転周波数を低下させるか又は維持するべき状態にある場合に、
    前記第1温度制御部(31)が前記流量調整機構(21)により当該冷媒流量を増大させる制御を行う温度領域に室内の温度を低下させるように前記圧縮機(17)の運転周波数を維持するか又は上昇させる制御を行う第2温度制御部(32)と、
    を備えていることを特徴とする空気調和装置。
  2. 前記第1温度制御部(33)は、吸込空気と吹出空気との温度差の目標値を、吸込空気の温度とその目標温度との偏差に基づいて更新する更新部(46)を有している請求項1に記載の空気調和装置。
  3. 前記冷媒回路(14)は、前記圧縮機(17)から吐出された冷媒を前記室外側熱交換器(15)と前記第2室内側熱交換器(19)とに分配して供給するとともに、前記室外側熱交換器(15)と前記第2室内側熱交換器(19)とを通過した冷媒を当該第1室内側熱交換器(18)に供給する冷媒配管(36,37,40)と、前記室外側熱交換器(15)を通過した冷媒を膨張・減圧する第1膨張弁(20)と、第2室内側熱交換器(19)を通過した冷媒を膨張・減圧する第2膨張弁(21)と、を備えており、前記第2膨張弁(21)が、第2室内側熱交換器(19)への流量を調整する流量調整機構を構成している請求項1又は2に記載の空気調和装置。
JP2009293089A 2009-12-24 2009-12-24 空気調和装置 Active JP5240183B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009293089A JP5240183B2 (ja) 2009-12-24 2009-12-24 空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009293089A JP5240183B2 (ja) 2009-12-24 2009-12-24 空気調和装置

Publications (2)

Publication Number Publication Date
JP2011133170A JP2011133170A (ja) 2011-07-07
JP5240183B2 true JP5240183B2 (ja) 2013-07-17

Family

ID=44346104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009293089A Active JP5240183B2 (ja) 2009-12-24 2009-12-24 空気調和装置

Country Status (1)

Country Link
JP (1) JP5240183B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108139107A (zh) * 2015-08-07 2018-06-08 伸和控制工业股份有限公司 空调装置及其运转方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101183236B1 (ko) * 2012-02-10 2012-09-14 (주)세원센추리 응축열을 이용한 항온항습기
JP6182854B2 (ja) * 2012-12-04 2017-08-23 三菱電機株式会社 空気調和装置
KR102089362B1 (ko) * 2013-01-07 2020-03-16 엘지전자 주식회사 공기조화기 및 그 제어 방법
JP6476445B2 (ja) * 2013-06-04 2019-03-06 オリオン機械株式会社 温度調整装置
CN104165487A (zh) * 2014-07-31 2014-11-26 上海理工大学 独立控制制冷除湿装置及独立控制制冷除湿方法
EP3633290B1 (en) * 2017-05-31 2023-03-29 Daikin Industries, Ltd. Air conditioning apparatus
CN115307262B (zh) * 2022-07-04 2024-06-14 珠海格力电器股份有限公司 一种空调恒温除湿方法、装置及空调***
KR20240051745A (ko) * 2022-10-13 2024-04-22 삼성전자주식회사 공기 조화기 및 그 제어 방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05340594A (ja) * 1992-06-12 1993-12-21 Kubota Corp ヒートポンプ式空調装置
JP3021987B2 (ja) * 1992-09-07 2000-03-15 ダイキン工業株式会社 冷凍装置
JPH08200773A (ja) * 1995-01-24 1996-08-06 Hitachi Ltd 空気調和装置
JPH109644A (ja) * 1996-06-25 1998-01-16 Hitachi Ltd 空気調和装置
JP2000055444A (ja) * 1998-08-07 2000-02-25 Ntt Power & Building Facilities Inc 空気調和機
JP3361458B2 (ja) * 1998-08-07 2003-01-07 株式会社エヌ・ティ・ティ ファシリティーズ 空気調和機
JP2008151401A (ja) * 2006-12-18 2008-07-03 Hitachi Appliances Inc 空気調和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108139107A (zh) * 2015-08-07 2018-06-08 伸和控制工业股份有限公司 空调装置及其运转方法

Also Published As

Publication number Publication date
JP2011133170A (ja) 2011-07-07

Similar Documents

Publication Publication Date Title
JP5240183B2 (ja) 空気調和装置
JP5229208B2 (ja) 空気調和装置
JP4975164B2 (ja) 室内ユニット及びそれを備えた空気調和装置
JP6906311B2 (ja) 空気調和装置
AU2015326092B2 (en) Air conditioner
CN109425069B (zh) 一种制热电子膨胀阀控制方法
CN109405379B (zh) 一种制冷电子膨胀阀控制方法
AU2012392673B2 (en) Air conditioning apparatus
AU2012392672B2 (en) Air conditioning apparatus
JP2007218532A (ja) 空気調和装置
KR101901300B1 (ko) 공기조화기의 제어방법
JP6781395B2 (ja) 空気調和機
JP2010249452A (ja) 空気調和装置
JP7026781B2 (ja) 空気調和システム
WO2020261982A1 (ja) 空調システム
JP2007271112A (ja) 空気調和装置
CN113847699B (zh) 空调器的控制方法和具有其的空调器
JP2019066097A (ja) 空気調和装置
CN109642747B (zh) 空气调节装置
JP2008190758A (ja) 空気調和装置
KR102558826B1 (ko) 공기 조화 시스템 및 제어 방법
JP7212283B2 (ja) 空気調和装置
KR101622619B1 (ko) 공기조화기 및 그 운전 방법
JP6115594B2 (ja) 空調室内機
JP6918221B2 (ja) 空気調和機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5240183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3