JP5239932B2 - Thermoelectric power generation module and manufacturing method thereof - Google Patents

Thermoelectric power generation module and manufacturing method thereof Download PDF

Info

Publication number
JP5239932B2
JP5239932B2 JP2009037195A JP2009037195A JP5239932B2 JP 5239932 B2 JP5239932 B2 JP 5239932B2 JP 2009037195 A JP2009037195 A JP 2009037195A JP 2009037195 A JP2009037195 A JP 2009037195A JP 5239932 B2 JP5239932 B2 JP 5239932B2
Authority
JP
Japan
Prior art keywords
thermoelectric
power generation
bottomed hole
generation module
thermoelectric power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009037195A
Other languages
Japanese (ja)
Other versions
JP2010192775A (en
Inventor
杵鞭  義明
ヴィルドゥゴ ファン パウロ ウィフ
久美 岡上
渡利  広司
森光  英樹
知裕 青木
石黒  裕之
政彦 長坂
雅也 堀田
内村  勝次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintokogio Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Sintokogio Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Sintokogio Ltd
Priority to JP2009037195A priority Critical patent/JP5239932B2/en
Publication of JP2010192775A publication Critical patent/JP2010192775A/en
Application granted granted Critical
Publication of JP5239932B2 publication Critical patent/JP5239932B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は、熱電発電モジュール及び該熱電発電モジュールの製造方法に関するものであり、更に詳しくは、熱電発電モジュールを構成する熱電素子と絶縁基板との接合構造において、遠心加圧溶融法により、絶縁基板の有底穴の内部に熱電素子を成形した構造とすることにより、熱電素子と絶縁基板間の熱膨張係数の違いによって生じる熱応力の発生を防止し、熱電発電モジュール内での熱応力の発生を低下させることができる熱電発電モジュール及びその製造方法に関するものである。   The present invention relates to a thermoelectric power generation module and a method for manufacturing the thermoelectric power generation module, and more specifically, in a junction structure between a thermoelectric element and an insulating substrate constituting the thermoelectric power generation module, by an centrifugal pressure melting method, the insulating substrate By forming a thermoelectric element inside the bottomed hole of the heat generating element, it prevents the generation of thermal stress caused by the difference in thermal expansion coefficient between the thermoelectric element and the insulating substrate, and the generation of thermal stress in the thermoelectric power generation module. The present invention relates to a thermoelectric power generation module capable of reducing the temperature and a method for manufacturing the same.

本発明は、絶縁基板と熱電発電素子の熱膨張係数が大きく異なっていても、2つの部材間の熱膨張係数の違いに起因する熱応力が発生しないと共に、熱応力による熱電発電モジュールの破損を防止するための複雑な構造も必要としないことで特徴付けられる、熱電発電モジュールに関する新技術を提供するものである。   The present invention does not generate thermal stress due to the difference in thermal expansion coefficient between two members even if the thermal expansion coefficients of the insulating substrate and the thermoelectric power generation element are greatly different, and damage of the thermoelectric power generation module due to thermal stress. It provides a new technology for thermoelectric power generation modules, characterized by not requiring complex structures to prevent.

従来、熱電発電モジュールにおいて、モジュール内に発生する温度勾配や熱電発電時に加わるヒートサイクルなどにより、絶縁基板や熱電素子が歪んだり、クラックが生じる問題などがあった。熱電発電モジュール内で発生する熱応力は、熱電発電モジュールを構成している異種部材間の熱膨張係数の違いによる熱応力の発生が、大きな要因である。   Conventionally, in a thermoelectric power generation module, there has been a problem that an insulating substrate or a thermoelectric element is distorted or cracked due to a temperature gradient generated in the module or a heat cycle applied during thermoelectric power generation. A major factor of the thermal stress generated in the thermoelectric power generation module is the generation of thermal stress due to the difference in the thermal expansion coefficient between different members constituting the thermoelectric power generation module.

このような熱応力によって生じる上述の問題を解決するために、先行技術として、熱電モジュール内に応力緩和機構を取り付けた熱電モジュールは公知であり、例えば、熱電素子内に生じる応力によって熱電素子内に亀裂が生じるなどの不良を、応力緩和部を取付ることによって抑制できるようにした熱電素子が提案されている(例えば、特許文献1参照)。   In order to solve the above-described problems caused by such thermal stress, as a prior art, a thermoelectric module in which a stress relaxation mechanism is attached in the thermoelectric module is known. For example, the thermoelectric module has a stress relaxation mechanism. A thermoelectric element has been proposed in which defects such as cracks can be suppressed by attaching a stress relaxation portion (see, for example, Patent Document 1).

しかしながら、この種の熱電素子の場合には、熱電モジュール内の構造が複雑になり、部品点数が増えるだけでなく、組み付け操作も煩雑となるという欠点があった。また、従来、熱電発電モジュール内で発生する熱応力を生じさせる最大の要因の一つが、熱電発電モジュールを構成している異種部材間の熱膨張係数の違いによるものであることも公知であり(例えば、特許文献2〜5)、その解決方法も、種々提案されている(例えば、特許文献6〜8)。   However, in the case of this type of thermoelectric element, the structure in the thermoelectric module becomes complicated, and not only the number of parts increases, but also the assembling operation becomes complicated. In addition, it is known that one of the biggest factors that cause the thermal stress generated in the thermoelectric power generation module is due to a difference in thermal expansion coefficient between different members constituting the thermoelectric power generation module ( For example, Patent Documents 2 to 5) and various solutions have been proposed (for example, Patent Documents 6 to 8).

特開2007−116087号公報JP 2007-116087 A 特開2001−320096号公報JP 2001-320096 A 特開2002−76449号公報JP 2002-76449 A 特開2003−273413号公報JP 2003-273413 A 特開2004−140064号公報JP 2004-140064 A 特開2005−191040号公報JP-A-2005-191040 特開2005−317648号公報JP 2005-317648 A 特開2008−135516号公報JP 2008-135516 A

このような状況の中で、本発明者らは、上記従来技術に鑑みて、熱応力によって熱電発電モジュールが破損することなく、しかも熱電モジュール内の構造が複雑にならない、新しい熱電発電モジュールを開発することを目標として鋭意研究を重ねた結果、熱電素子と絶縁基板を固着させない特定の接合構造を採用することにより、熱電発電モジュール内での熱応力の発生を低下させ、所期の目的を達成することができることを見出し、本発明を完成するに至った。   Under such circumstances, the present inventors have developed a new thermoelectric power generation module that does not cause damage to the thermoelectric power generation module due to thermal stress and does not complicate the structure inside the thermoelectric module. As a result of intensive research aimed at achieving this goal, the use of a specific joint structure that does not allow the thermoelectric element and insulating substrate to adhere to each other reduces the generation of thermal stress in the thermoelectric generator module and achieves the intended purpose. As a result, the present invention has been completed.

本発明は、上記熱電発電モジュール内で発生する熱応力によって生じる熱電発電モジュールの破損を防止し、発生する熱応力を緩和するために、従来、やむを得ず行われているモジュール構造の複雑化などの問題を解決することを可能とする、熱電発電モジュールを構成する熱電素子と絶縁基板との新しい接合構造を提供することを目的とするものである。また、本発明は、これらの問題を解決して、熱電発電モジュールが熱応力によって破損することなく、かつ、よりシンプルな構造を有する新しい熱電発電モジュール及びその作製方法を提供することを目的とするものである。   In order to prevent the thermoelectric power generation module from being damaged by the thermal stress generated in the thermoelectric power generation module and to relieve the generated thermal stress, the present invention has a problem such as complicating the module structure that has been conventionally performed. It is an object of the present invention to provide a new joint structure between a thermoelectric element constituting a thermoelectric power generation module and an insulating substrate. Another object of the present invention is to solve these problems and to provide a new thermoelectric power generation module having a simpler structure and a method for manufacturing the same without causing the thermoelectric power generation module to be damaged by thermal stress. Is.

上記課題を達成するための本発明は、以下の技術的手段から構成される。
(1)熱電発電モジュールを構成する熱電素子と絶縁基板との熱膨張係数の異なる2つの部材の接合構造において、一方の部材である絶縁基板が有底穴を有し、もう一方の部材である熱電素子が遠心力を付加された状態で溶融及び凝固の過程を経て前記有底穴の内部に成形され、かつ2つの部材間に予め離型層を少なくとも1層有することで、2つの部材が固着することなく、更に、前記有底穴が該有底穴内に成形された部材を保持可能な形状を有していることを特徴とする熱電発電モジュール。
(2)前記有底穴が、その上端開口面積よりも大きい下端底面積を有する形状に形成されており、前記成形された部材が、前記有底穴内に保持されている、前記(1)に記載の熱電発電モジュール。
(3)前記有底穴を有する部材が、無機絶縁材料からなる、前記(1)又は(2)に記載の熱電発電モジュール。
(4)前記有底穴内に成形される部材が、熱電材料である、前記(1)から(3)のいずれかに記載の熱電発電モジュール。
(5)前記熱電材料が、ビスマスもしくはテルルを含む材料からなる、前記(4)に記載の熱電発電モジュール。
(6)前記熱電材料が、ケイ素を含む材料からなる、前記(4)に記載の熱電発電モジュール。
(7)前記熱電材料が、酸化物を含む材料からなる、前記(4)に記載の熱電発電モジュール。
(8)前記有底穴内に成形される部材が、厚さ10μmから10mmである、前記(1)から(7)のいずれかに記載の熱電発電モジュール。
(9)前記(1)から(8)のいずれかに記載の熱電発電モジュールの製造方法であって、熱電発電モジュールを構成する熱電素子と絶縁基板との熱膨張係数の異なる2つの部材の接合構造において、一方の部材である絶縁基板に有底穴を形成し、該有底穴に、離型層を介して、もう一方の部材である熱電素子粉末材料を充てんし、これに、遠心力を付加した状態で溶融及び凝固の過程を経て前記有底穴の内部に熱電素子を成形し、かつ2つの部材間に予め離型層を少なくとも1層形成することで、2つの部材を固着することなく、前記有底穴内に保持させることを特徴とする熱電発電モジュールの製造方法。
(10)前記有底穴が、その上端開口面積よりも大きい下端底面積を有する形状に形成されており、前記成形された部材が、前記有底穴内に保持されている、前記(9)に記載の熱電発電モジュールの製造方法。
In order to achieve the above object, the present invention comprises the following technical means.
(1) In a joining structure of two members having different thermal expansion coefficients between a thermoelectric element and an insulating substrate constituting a thermoelectric power generation module, the insulating substrate as one member has a bottomed hole and is the other member The thermoelectric element is molded into the bottomed hole through a process of melting and solidification with centrifugal force applied, and has at least one release layer in advance between the two members, so that the two members The thermoelectric power generation module, wherein the bottomed hole has a shape capable of holding a member molded in the bottomed hole without being fixed.
(2) In the above (1), the bottomed hole is formed in a shape having a lower end bottom area larger than the upper end opening area, and the molded member is held in the bottomed hole. The thermoelectric power generation module described.
(3) The thermoelectric power generation module according to (1) or (2), wherein the member having the bottomed hole is made of an inorganic insulating material.
(4) The thermoelectric power generation module according to any one of (1) to (3), wherein the member formed in the bottomed hole is a thermoelectric material.
(5) The thermoelectric power generation module according to (4), wherein the thermoelectric material is made of a material containing bismuth or tellurium.
(6) The thermoelectric power generation module according to (4), wherein the thermoelectric material is made of a material containing silicon.
(7) The thermoelectric power generation module according to (4), wherein the thermoelectric material is made of a material containing an oxide.
(8) The thermoelectric power generation module according to any one of (1) to (7), wherein the member formed in the bottomed hole has a thickness of 10 μm to 10 mm.
(9) The method for manufacturing a thermoelectric power generation module according to any one of (1) to (8), wherein two members having different thermal expansion coefficients between a thermoelectric element and an insulating substrate constituting the thermoelectric power generation module are joined. In the structure, a bottomed hole is formed in an insulating substrate that is one member, and the bottomed hole is filled with a thermoelectric element powder material that is the other member via a release layer, and this is subjected to centrifugal force. A thermoelectric element is formed in the bottomed hole through a process of melting and solidification with the addition of, and at least one release layer is previously formed between the two members, thereby fixing the two members. The method for manufacturing a thermoelectric power module is characterized in that it is held in the bottomed hole without any problem.
(10) In the above (9), the bottomed hole is formed in a shape having a lower end bottom area larger than the upper end opening area, and the molded member is held in the bottomed hole. The manufacturing method of the thermoelectric power generation module of description.

次に、本発明について詳細に説明する。
本発明は、熱電発電モジュールを構成する熱電素子と絶縁基板との熱膨張係数の異なる2つの部材の接合構造において、一方の部材である絶縁基板が有底穴を有し、もう一方の部材である熱電素子が、遠心力を付加された状態で溶融及び凝固のプロセス(以下、本発明では、これを遠心加熱溶融法という。)により、前記有底穴の内部に成形され、かつ2つの部材間に予め離型層を少なくとも1層有することで、2つの部材が固着することなく、前記有底穴が、該有底穴内に成形された部材を保持可能な形状を有していることを特徴とするものである。
Next, the present invention will be described in detail.
The present invention relates to a joining structure of two members having different thermal expansion coefficients between a thermoelectric element and an insulating substrate constituting a thermoelectric power generation module, and the insulating substrate as one member has a bottomed hole, and the other member A thermoelectric element is formed inside the bottomed hole by a melting and solidifying process (hereinafter referred to as a centrifugal heating and melting method in the present invention) with a centrifugal force applied, and two members By having at least one release layer in between, the bottomed hole has a shape capable of holding the member molded in the bottomed hole without the two members being fixed. It is a feature.

また、本発明は、前記の熱電発電モジュールを製造する方法であって、熱電発電モジュールを構成する熱電素子と絶縁基板との熱膨張係数の異なる2つの部材の接合構造において、一方の部材である絶縁基板に有底穴を形成し、該有底穴に、離型層を介して、もう一方の部材である熱電素子粉末材料を充てんし、前述の遠心加圧溶融法により、遠心力を付加した状態で溶融及び凝固のプロセスにより、前記有底穴の内部に熱電素子を成形することで、2つの部材を固着することなく、前記有底穴内に保持させることを特徴とするものである。   Further, the present invention is a method of manufacturing the thermoelectric power generation module described above, and is one member in a joining structure of two members having different thermal expansion coefficients between the thermoelectric element and the insulating substrate constituting the thermoelectric power generation module. Form a bottomed hole in the insulating substrate, fill the bottomed hole with the thermoelectric element powder material, which is the other member, through the release layer, and apply centrifugal force by the centrifugal pressure melting method described above In this state, a thermoelectric element is formed inside the bottomed hole by a process of melting and solidification, so that the two members are held in the bottomed hole without being fixed.

本発明は、熱電素子と絶縁基板を、直接、固着させない接合構造とすることにより、熱電素子と絶縁基板間の熱膨張係数の違いによって生じる熱応力の発生を防止し、熱電発電モジュール内での熱応力の発生を低下させることを可能とするものである。そして、それにより、モジュール構造の複雑化を伴うことなく、熱応力による熱電発電モジュールの破損を防ぎ、前記した各種課題を解決することを可能とするものである。   The present invention prevents the generation of thermal stress caused by the difference in the coefficient of thermal expansion between the thermoelectric element and the insulating substrate by adopting a bonding structure in which the thermoelectric element and the insulating substrate are not directly fixed to each other. It is possible to reduce the generation of thermal stress. And thereby, without complicating the module structure, it is possible to prevent the thermoelectric power generation module from being damaged by thermal stress and to solve the various problems described above.

次に、本発明の実施の形態について詳しく説明する。本発明は、頻繁、かつ多くのヒートサイクルに晒される熱電発電モジュールのような構造品において、熱膨張係数の異なる部材が隣り合って形成される場合に、隣り合う部材間の熱膨張係数の違いに起因して発生する熱応力を、簡便な構造及び製造工程により緩和し、構造品の破損を防止する該部材の接合構造及びその作製方法を提供するものである。   Next, embodiments of the present invention will be described in detail. The present invention relates to a structural product such as a thermoelectric power generation module that is frequently and subjected to many heat cycles. The present invention provides a joining structure for a member and a method for producing the same, in which thermal stress generated due to the above is relaxed by a simple structure and a manufacturing process, and damage to a structural product is prevented.

本発明において、有底穴とは、例えば、絶縁基板に一体成形で形成された有底穴、貫通孔の一端を封止して形成された有底穴、上端開口面積よりも大きい下端底面積を有するように形成された有底穴、などが例示されるが、その具体的な形状及び構造は、使用する熱電発電モジュールの形態などに応じて適宜設計することができる。   In the present invention, the bottomed hole is, for example, a bottomed hole formed integrally with an insulating substrate, a bottomed hole formed by sealing one end of a through hole, and a bottom end bottom area larger than the top end opening area. Although the bottomed hole formed so as to have the shape is exemplified, the specific shape and structure can be appropriately designed according to the form of the thermoelectric power generation module to be used.

上端開口面積よりも大きい下端底面積を有するように形成された有底穴とは、例えば、比較的簡単な形状であれば、開口部が最小径の円形状であり、深さ方向に進むにつれて、深さ方向に対し、垂直な断面形状が開口部径よりも大きくなるような、逆テーパ形状の円形有底穴が挙げられる。該有底穴は、有底穴内部に成形される部材が開口部から抜け落ちないように、機械的に保持される形状であればよく、有底穴の形状が、これらに限定されるものではない。しかし、有底穴の形状が、あまりに複雑形状のものは、加工コストが高くなるため、実用的ではない。   The bottomed hole formed so as to have a lower end bottom area larger than the upper end opening area is, for example, a circular shape having a minimum diameter if the opening has a relatively simple shape, and progresses in the depth direction. In addition, a circular bottomed hole having an inverted taper shape in which a cross-sectional shape perpendicular to the depth direction is larger than the diameter of the opening can be given. The bottomed hole may be a shape that is mechanically held so that a member molded inside the bottomed hole does not fall out of the opening, and the shape of the bottomed hole is not limited to these. Absent. However, if the shape of the bottomed hole is too complicated, the processing cost will be high, which is not practical.

本発明では、有底穴を形成する以外に、格別の形状加工を絶縁基板に施工しない場合は、熱電素子は、基板に固着していないため、熱電素子のみを基板から取り出し、特段の加工を施すことなく、発電モジュールの熱電素子として利用することが可能である。本発明では、熱電素子を、離型層を介して、絶縁基板の有底穴に形成する。離型層として、熱電素子と反応をしない材料を利用することが肝要であり、代表的な材料としては、例えば、窒化ホウ素、酸化ケイ素、シリコン系、炭素系、などが例示されるが、これらに限定されるものではない。   In the present invention, in addition to forming a bottomed hole, if no special shape processing is applied to the insulating substrate, the thermoelectric element is not fixed to the substrate, so only the thermoelectric element is taken out of the substrate and subjected to special processing. Without application, it can be used as a thermoelectric element of a power generation module. In the present invention, the thermoelectric element is formed in the bottomed hole of the insulating substrate via the release layer. It is important to use a material that does not react with the thermoelectric element as the release layer, and examples of typical materials include boron nitride, silicon oxide, silicon-based, and carbon-based materials. It is not limited to.

本発明においては、絶縁基板は、板形状である必要はなく、十分な深さを有する有底穴を設ければ、厚膜熱電素子の作製だけでなく、バルク熱電素子の成形も可能である。また、本発明の接合構造は、熱電素子の成膜、成形だけでなく、熱膨張係数の異なる2つの部材が隣接し、かつお互いに離れることなく保持された状態が必要とされる構造体において、ヒートサイクルが生じる場合などに、同様に、かつ有効に利用することができる。   In the present invention, the insulating substrate does not need to have a plate shape, and if a bottomed hole having a sufficient depth is provided, not only a thick film thermoelectric element but also a bulk thermoelectric element can be formed. . In addition, the bonding structure of the present invention is not only for forming and forming a thermoelectric element, but also for a structure that requires two members having different thermal expansion coefficients to be adjacent and held without being separated from each other. In the case where a heat cycle occurs, it can be used similarly and effectively.

本発明において、有底穴内に成形される部材の厚さは、10μmから10mmが好ましい。部材の厚さが、10μm未満であると、遠心加圧溶融法の適用が難しいという問題があり、部材の厚さが、10mmを超えると、遠心加圧溶融法を用いたとき、絶縁基板にかかる溶融部材の荷重が大きくなりすぎるため、実用的でないという問題がある。   In the present invention, the thickness of the member formed in the bottomed hole is preferably 10 μm to 10 mm. When the thickness of the member is less than 10 μm, there is a problem that it is difficult to apply the centrifugal pressure melting method. When the thickness of the member exceeds 10 mm, when the centrifugal pressure melting method is used, an insulating substrate is used. Since the load of such a melting member becomes too large, there is a problem that it is not practical.

本発明では、p型熱電材料、及びn型熱電材料の原料粉末を、適宜の有底穴を有する、アルミナ、コージェライト製などの適宜のセラミックス絶縁基板の有底穴に交互に充てんする。そして、これに、蓋となる基板を乗せ、セラミックスの有底穴の深さ方向に、300G〜10,000G、好ましくは1,000G程度の遠心力を加えながら、原料の融点から+0〜50℃程度、好ましくは、例えば、ビスマス又はテルルを含む熱電材料では600〜650℃、ケイ素を含む熱電材料では1,100〜1,200℃で、溶融温度の保持時間を0超〜60min、好ましくは20min程度として、加熱溶融させた後、冷却して、p型熱電素子、及びn型熱電素子を作製する。   In the present invention, the raw powder of the p-type thermoelectric material and the n-type thermoelectric material is alternately filled into the bottomed holes of an appropriate ceramic insulating substrate made of alumina or cordierite having appropriate bottomed holes. Then, a substrate serving as a lid is placed on this, and a centrifugal force of about 300 G to 10,000 G, preferably about 1,000 G, is applied in the depth direction of the bottomed hole of the ceramic, while the +0 to 50 ° C. Degree, preferably, for example, 600 to 650 ° C. for a thermoelectric material containing bismuth or tellurium, 1,100 to 1,200 ° C. for a thermoelectric material containing silicon, and a melting temperature holding time of more than 0 to 60 min, preferably 20 min As a degree, after being heated and melted, it is cooled to produce p-type thermoelectric elements and n-type thermoelectric elements.

本発明では、熱電素子の原材料として、例えば、ビスマスもしくはテルルを含む材料、ケイ素を含む材料、酸化物を含む材料などが例示されるが、本発明は、熱電素子の原材料の種類に制限されることなく適用されるものであり、公知又は新規の原材料である適宜の原材料を用いることができる。   In the present invention, examples of the raw material of the thermoelectric element include a material containing bismuth or tellurium, a material containing silicon, and a material containing an oxide. However, the present invention is limited to the kind of raw material of the thermoelectric element. Appropriate raw materials that are known or new raw materials can be used.

本発明においては、熱電発電モジュールを構成する熱電素子と絶縁基板との熱膨張係数の異なる2つの部材の接合構造において、一方の部材である絶縁基板に有底穴を形成し、該有底穴に、離型層を介して、もう一方の部材である熱電素子粉末材料を充てんし、これに、遠心力を付加した状態で溶融及び凝固の過程を経て、前記有底穴の内部に熱電素子を成形し、かつ2つの部材間に予め離型層を少なくとも1層形成することで、2つの部材を固着することなく、前記有底穴内に保持させて、熱電発電モジュールを製造する。   In the present invention, in the joining structure of two members having different thermal expansion coefficients between the thermoelectric element and the insulating substrate constituting the thermoelectric power generation module, a bottomed hole is formed in the insulating substrate which is one member, and the bottomed hole is formed. In addition, the thermoelectric element powder material, which is the other member, is filled through the release layer, and after the process of melting and solidification with the centrifugal force applied thereto, the thermoelectric element is placed inside the bottomed hole. And at least one release layer is formed in advance between the two members, so that the two members are held in the bottomed hole without being fixed, and a thermoelectric power generation module is manufactured.

前記有底穴を有する部材としては、無機絶縁材料、例えば、アルミナ、ジルコニア、石英に加え、アルミナ系、マグネシア系、シリカ系、チタニア系などの材料が例示される。前記有底穴内に成形される部材としては、熱電材料、例えば、ビスマスもしくはテルルを含む材料、ケイ素を含む材料、酸化物を含む材料などが例示され、その原料粉末は、遠心加圧溶融法による溶融凝固で得られる熱電素子の必要組成となるように、複数の純度3Nないし4Nの単組成粉末を混合して用いる。また、一旦、混合溶融冷却したインゴットや、固相反応や液−固相反応による合成体を粉砕した合成粉末を用いても、同様に熱電素子を作製することが可能である。   Examples of the member having a bottomed hole include inorganic insulating materials such as alumina, zirconia, and quartz, as well as materials such as alumina, magnesia, silica, and titania. Examples of the member formed in the bottomed hole include a thermoelectric material, for example, a material containing bismuth or tellurium, a material containing silicon, a material containing an oxide, and the raw material powder is obtained by a centrifugal pressure melting method. A plurality of single-composition powders having a purity of 3N to 4N are mixed and used so as to have a required composition of a thermoelectric element obtained by melt solidification. In addition, a thermoelectric element can be similarly produced using a mixed melt-cooled ingot or a synthetic powder obtained by pulverizing a synthetic body obtained by solid phase reaction or liquid-solid phase reaction.

図1に、本発明の熱電発電モジュールの構造図の一例を示す。図1において、絶縁基板1は、逆テーパ形状の有底穴を有する絶縁基板であり、p型熱電素子2及びn型熱電素子3は、絶縁基板の有底穴内に厚膜熱電素子として成膜される。本発明では、p型熱電素子及びn型熱電素子が交互に配置するように成膜され、成膜された厚膜熱電素子間に、スパッタ法、めっき法などの適宜の方法で、電極4を取り付け、その両端にリード線5を取り付ける。   FIG. 1 shows an example of a structural diagram of the thermoelectric power generation module of the present invention. In FIG. 1, an insulating substrate 1 is an insulating substrate having a reverse-tapered bottomed hole, and a p-type thermoelectric element 2 and an n-type thermoelectric element 3 are formed as thick film thermoelectric elements in the bottomed hole of the insulating substrate. Is done. In the present invention, the p-type thermoelectric elements and the n-type thermoelectric elements are formed so as to be alternately arranged, and the electrode 4 is formed between the formed thick film thermoelectric elements by an appropriate method such as sputtering or plating. Attach the lead wire 5 to both ends.

図2に、本発明の熱電発電モジュールの断面形状を示す。絶縁基板1に設けられた逆テーパ形状の有底穴の断面形状は、図2に示されるような形状を有している。また、熱電素子2、3と絶縁基板1の間には、離型層6が存在し、それによって、熱電素子と絶縁基板が、直接、固着しない構造となっている。   In FIG. 2, the cross-sectional shape of the thermoelectric power generation module of this invention is shown. The cross-sectional shape of the inverted tapered bottomed hole provided in the insulating substrate 1 has a shape as shown in FIG. In addition, a release layer 6 exists between the thermoelectric elements 2 and 3 and the insulating substrate 1, thereby preventing the thermoelectric elements and the insulating substrate from directly adhering.

次に、本発明の熱電発電モジュールの作製工程を説明すると、絶縁基板の表面に、逆テーパ形状の有底穴を設け、絶縁基板に設けられた有底穴の内壁に、離型層を塗布など適宜の方法により形成し、次いで、有底穴の中に、熱電素子の原材料となるp型熱電素子材料粉末及びn型熱伝素子材料粉末を充てんする。   Next, the manufacturing process of the thermoelectric power generation module of the present invention will be described. A reverse-tapered bottomed hole is provided on the surface of the insulating substrate, and a release layer is applied to the inner wall of the bottomed hole provided in the insulating substrate. Then, the bottomed hole is filled with p-type thermoelectric element material powder and n-type heat transfer element material powder as raw materials for the thermoelectric element.

有底穴の中にp型熱電素子材料粉末及びn型熱伝素子材料粉末を充てんした後、絶縁基板と同じ材質の密閉板で覆い、4辺を適宜の封止剤で封止して、材料粉末の充てんされている空間を密閉状態にする。封止剤には、高温にも耐えられるように、適宜の耐熱性無機接着剤が使用される。   After filling the bottomed hole with p-type thermoelectric element material powder and n-type thermoelectric element material powder, cover with a sealing plate of the same material as the insulating substrate, and seal the four sides with an appropriate sealant, The space filled with the material powder is sealed. An appropriate heat-resistant inorganic adhesive is used for the sealant so that it can withstand high temperatures.

次に、加熱ヒーターを有する断熱容器の内部において、高速回転するローターに設けられたポケットに、密閉板を封止剤で封止した状態の封止された絶縁基板を設置し、これに遠心力を付加しながら、加熱及び冷却をすることで、材料粉末を溶融及び凝固させる遠心加圧溶融プロセスにより、絶縁基板の有底穴内に、厚膜熱電素子を作製する。   Next, a sealed insulating substrate with a sealing plate sealed with a sealant is installed in a pocket provided in a rotor that rotates at high speed inside a heat insulating container having a heater, and centrifugal force is applied to this. A thick film thermoelectric element is produced in the bottomed hole of the insulating substrate by a centrifugal pressure melting process in which the material powder is melted and solidified by heating and cooling while adding.

溶融状態にある熱電素子材料は、密閉板で密閉されているため、蒸発せず、組成ずれの心配はなく、また、溶融状態にある熱電素子材料には、遠心力が付加されているため、凝固した後の熱電素子内部に残留気孔が発生しない。更に、この手法によって、成膜された厚膜熱電素子は、結晶配向熱電材料となる。   Since the thermoelectric element material in the molten state is sealed with a sealing plate, it does not evaporate, there is no fear of compositional deviation, and since the centrifugal force is added to the thermoelectric element material in the molten state, Residual pores are not generated inside the thermoelectric element after solidification. Furthermore, the thick film thermoelectric element formed by this method becomes a crystal orientation thermoelectric material.

その後、密閉板を除去することで、絶縁基板の有底穴内に、p型厚膜熱電素子及びn型厚膜熱電素子が、交互に配置するように形成されている、電極形成前の熱電モジュールを得て、これに、電極及びリード線を設けることで、熱電発電モジュールを作製する。   Thereafter, by removing the sealing plate, the p-type thick film thermoelectric element and the n-type thick film thermoelectric element are formed alternately in the bottomed hole of the insulating substrate, and the thermoelectric module before electrode formation is formed. A thermoelectric power module is manufactured by providing an electrode and a lead wire.

絶縁基板の有底穴の内壁に塗布した離型層により、絶縁基板と熱電素子は、固着することなく成膜され、有底穴を逆テーパ形状にすることで、成膜された熱電素子は、機械的に保持され、有底穴から抜け落ちることはない。   By the release layer applied to the inner wall of the bottomed hole of the insulating substrate, the insulating substrate and the thermoelectric element are formed without sticking, and by forming the bottomed hole in a reverse taper shape, the formed thermoelectric element is It is held mechanically and does not fall out of the bottomed hole.

本発明により、次のような効果が奏される。
(1)絶縁基板と熱電発電素子の熱膨張係数が大きく異なっていても、2つの部材間の熱膨張係数の違いに起因する熱応力は発生しないと共に、熱応力による熱電発電モジュールの破損を防止するための、複雑な構造も必要としない新しい熱電発電モジュールを提供することができる。
(2)熱電素子と絶縁基板を固着させないことにより、熱電素子と絶縁基板間の熱膨張係数の違いによって生じる熱応力の発生を防止し、熱電発電モジュール内での熱応力の発生を低下させることができる。
(3)モジュール構造の複雑化を伴うことなく、熱応力による熱電発電モジュールの破損を防ぐことができるため、前記した各種課題を解決することができる。
(4)本発明は、熱電発電モジュールに好適に適用されるが、熱膨張率の大きく異なる2つの部材が隣り合って形成される同等の構造品において利用することが可能である。
The present invention has the following effects.
(1) Even if the thermal expansion coefficients of the insulating substrate and the thermoelectric power generation element are significantly different, thermal stress due to the difference in thermal expansion coefficient between the two members does not occur, and damage to the thermoelectric power generation module due to thermal stress is prevented. Therefore, a new thermoelectric power generation module that does not require a complicated structure can be provided.
(2) By preventing the thermoelectric element and the insulating substrate from being fixed, the generation of thermal stress caused by the difference in thermal expansion coefficient between the thermoelectric element and the insulating substrate can be prevented, and the generation of thermal stress in the thermoelectric power generation module can be reduced. Can do.
(3) Since it is possible to prevent breakage of the thermoelectric power generation module due to thermal stress without complicating the module structure, the various problems described above can be solved.
(4) Although the present invention is preferably applied to a thermoelectric power generation module, it can be used in an equivalent structure product in which two members having greatly different coefficients of thermal expansion are formed adjacent to each other.

本発明を利用して作製した熱電発電モジュールの構造図の一例を示す概略図である。It is the schematic which shows an example of the structural drawing of the thermoelectric power generation module produced using this invention. 熱電発電モジュールの断面形状を示す概略図である。It is the schematic which shows the cross-sectional shape of a thermoelectric power generation module. 絶縁基板に設けられた有底穴の断面を示す概略図である。It is the schematic which shows the cross section of the bottomed hole provided in the insulated substrate. 絶縁基板に設けられた有底穴内の内壁に窒化ホウ素の離型層を塗布した状態の断面を示す概略図である。It is the schematic which shows the cross section of the state which apply | coated the release layer of boron nitride to the inner wall in the bottomed hole provided in the insulated substrate. 絶縁基板に設けられた有底穴内に熱電素子の材料粉末を充てんした状態の断面を示す概略図である。It is the schematic which shows the cross section of the state which filled the material powder of the thermoelectric element in the bottomed hole provided in the insulated substrate. 絶縁基板に設けられた有底穴内に充てんした粉末熱電材料を密閉板と封止剤で封止した状態の断面を示す概略図である。It is the schematic which shows the cross section of the state which sealed the powder thermoelectric material filled in the bottomed hole provided in the insulated substrate with the sealing board and the sealing agent. 絶縁基板に設けられた有底穴内に充てんした粉末熱電材料を密閉板と封止剤で封止した状態の外観を示す概略図である。It is the schematic which shows the external appearance of the state which sealed the powder thermoelectric material filled in the bottomed hole provided in the insulated substrate with the sealing board and the sealing agent. 遠心加圧溶融法により、絶縁基板の有底穴内に厚膜熱電素子を作製する工程の様子を示した概略図である。It is the schematic which showed the mode of the process of producing a thick film thermoelectric element in the bottomed hole of an insulated substrate by the centrifugal pressure melting method. 絶縁基板と熱電素子の熱膨張係数の違い及びヒートサイクルによって熱電素子に生じたクラック発生箇所の写真である。It is a photograph of the difference of the thermal expansion coefficient of an insulating substrate and a thermoelectric element, and the crack generation location which arose in the thermoelectric element by the heat cycle.

次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.

以下の実施例では、ビスマステルルを含む材料を用いて熱電発電モジュールを作製した。図1は、本発明を用いて作製した熱電発電モジュールの構造図の一例である。図1において、絶縁基板1は、逆テーパ形状の有底穴を有するジルコニア絶縁基板であり、p型熱電素子2及びn型熱電素子3は、絶縁基板1の有底穴内に成膜された厚膜熱電素子である。   In the following examples, thermoelectric power generation modules were produced using a material containing bismuth tellurium. FIG. 1 is an example of a structural diagram of a thermoelectric power generation module manufactured using the present invention. In FIG. 1, an insulating substrate 1 is a zirconia insulating substrate having a bottom hole with an inverted taper shape, and a p-type thermoelectric element 2 and an n-type thermoelectric element 3 are formed in the bottomed hole of the insulating substrate 1. It is a membrane thermoelectric element.

本実施例では、p型熱電素子材料には、Bi0.5Sb1.5Teを、n型熱電素子材料には、Bi1.2Sb0.2Te2.85Se0.15を用いて、p型熱電素子及びn型熱電素子が交互に配置するように成膜された厚膜熱電素子を形成し、該厚膜熱電素子間に、スパッタ法ないしめっき法で、電極4を取り付け、両端にはリード線5を取り付けた。 In this example, Bi 0.5 Sb 1.5 Te 3 is used for the p-type thermoelectric element material, and Bi 1.2 Sb 0.2 Te 2.85 Se 0.15 is used for the n-type thermoelectric element material. A thick film thermoelectric element formed so that p-type thermoelectric elements and n-type thermoelectric elements are alternately arranged, and electrodes 4 are attached between the thick film thermoelectric elements by sputtering or plating. The lead wire 5 was attached to both ends.

図2は、図1に示される熱電発電モジュールの断面形状である。絶縁基板1に設けられた逆テーパ形状の有底穴の断面形状は、図2に示されるような形状になっている。また、熱電素子2、3と絶縁基板1の間には、離型層6が存在し、それによって、熱電素子2、3と絶縁基板1が、直接、固着しない構造となっている。離型層6には、窒化ホウ素(電気化学工業株式会社製)を使用した。   FIG. 2 is a cross-sectional shape of the thermoelectric power generation module shown in FIG. The cross-sectional shape of the inverted tapered bottomed hole provided in the insulating substrate 1 is as shown in FIG. In addition, a release layer 6 exists between the thermoelectric elements 2 and 3 and the insulating substrate 1, thereby preventing the thermoelectric elements 2 and 3 and the insulating substrate 1 from being directly fixed. For the release layer 6, boron nitride (manufactured by Denki Kagaku Kogyo Co., Ltd.) was used.

次に、図1及び図2の熱電発電モジュールの作製工程を説明する。図3は、絶縁基板1の断面形状を示している。ジルコニア絶縁基板1の表面に、逆テーパ形状の有底穴を設ける。更に、図4に示されるように、絶縁基板1に設けられた有底穴の内壁に、離型層6として、窒化ホウ素の層を塗布により形成した。次いで、図5に示されるように、有底穴の中に、熱電素子の原材料となるp型熱電素子材料粉末7及びn型熱伝素子材料粉末8を充てんした。   Next, a manufacturing process of the thermoelectric power generation module shown in FIGS. 1 and 2 will be described. FIG. 3 shows a cross-sectional shape of the insulating substrate 1. An inverted tapered bottomed hole is provided on the surface of the zirconia insulating substrate 1. Further, as shown in FIG. 4, a boron nitride layer was formed on the inner wall of the bottomed hole provided in the insulating substrate 1 as a release layer 6 by coating. Next, as shown in FIG. 5, the bottomed hole was filled with p-type thermoelectric element material powder 7 and n-type heat transfer element material powder 8 which are raw materials of the thermoelectric element.

有底穴の中にp型熱電素子材料粉末7及びn型熱伝素子材料粉末8を充てんした後、図6に示されるように、絶縁基板1と同じ材質の密閉板9で覆い、4辺を封止剤で封止して、材料粉末の充てんされている空間を密閉状態にした。封止剤には、高温にも耐えられるように、耐熱性無機接着剤アロンセラミック(東亞合成株式会社製)を使用した。図7は、密閉板9を封止剤10で封止した状態の外観を示す概略図である。   After filling the bottomed hole with the p-type thermoelectric element material powder 7 and the n-type thermoelectric element material powder 8, as shown in FIG. 6, it is covered with a sealing plate 9 made of the same material as that of the insulating substrate 1. Was sealed with a sealant, and the space filled with the material powder was sealed. As the sealant, a heat-resistant inorganic adhesive Aron ceramic (manufactured by Toagosei Co., Ltd.) was used so as to withstand high temperatures. FIG. 7 is a schematic view showing the appearance of the sealing plate 9 sealed with the sealing agent 10.

次に、図8に示されるように、加熱ヒーター11を有する断熱容器12の内部において、高速回転するローター13に設けられたポケット14に、図7に示される、密閉板9を封止剤10で封止した状態の封止された絶縁基板1を設置し、これに遠心力を付加しながら、加熱及び冷却をすることで、材料粉末を溶融及び凝固させる遠心加圧溶融プロセスにより、絶縁基板1の有底穴内に、厚膜熱電素子を作製した。   Next, as shown in FIG. 8, the sealing plate 9 shown in FIG. 7 is placed in the pocket 14 provided in the rotor 13 that rotates at high speed inside the heat insulating container 12 having the heater 11. Insulating substrate 1 is installed by a centrifugal pressure melting process in which the material powder is melted and solidified by heating and cooling while applying sealed centrifugal substrate 1 in a sealed state. A thick film thermoelectric element was fabricated in the bottomed hole 1.

溶融状態にある熱電素子材料は、密閉板9で密閉されているため、蒸発せず、組成ずれの心配はないこと、また、溶融状態にある熱電素子材料には、遠心力が付加されているため、凝固した後の熱電素子内部に残留気孔が発生しないこと、更に、この手法によって、成膜された厚膜熱電素子は、結晶配向熱電材料となること、が確認された。   Since the thermoelectric element material in the molten state is sealed by the sealing plate 9, it does not evaporate and there is no fear of compositional deviation, and centrifugal force is added to the thermoelectric element material in the molten state. Therefore, it was confirmed that no residual pores were generated in the thermoelectric element after solidification, and that the thick film thermoelectric element formed by this method became a crystal orientation thermoelectric material.

その後、図6に示される密閉板9を除去することで、電極形成前の熱電モジュールを得た。絶縁基板1の有底穴内には、p型厚膜熱電素子2及びn型厚膜熱電素子3が、交互に配置するように形成されており、これに、電極4及びリード線5を設けることで、熱電発電モジュールを作製した。   Then, the thermoelectric module before electrode formation was obtained by removing the sealing board 9 shown by FIG. In the bottomed hole of the insulating substrate 1, the p-type thick film thermoelectric element 2 and the n-type thick film thermoelectric element 3 are formed so as to be alternately arranged, and the electrode 4 and the lead wire 5 are provided thereon. Thus, a thermoelectric power generation module was produced.

絶縁基板1の有底穴の内壁に塗布した窒化ホウ素の離型層6により、絶縁基板1と熱電素子2、3は、固着することなく成膜されたが、前記有底穴を逆テーパ形状にすることで、成膜された熱電素子は、機械的に保持され、有底穴から抜け落ちることはないことが分かった。   The insulating substrate 1 and the thermoelectric elements 2 and 3 were formed without being adhered to each other by the boron nitride release layer 6 applied to the inner wall of the bottomed hole of the insulating substrate 1. By doing so, it was found that the formed thermoelectric element is mechanically held and does not fall out of the bottomed hole.

絶縁基板1と熱電素子2、3が固着していないため、熱電発電モジュールに加わるヒートサイクル及び絶縁基板と熱電素子の両者間の熱膨張係数の違いに起因する熱応力の発生は生じないことが分かった。例えば、30℃での冷却、100℃での昇温を繰り返すヒートサイクルテストを行った結果、有底穴の内壁に、窒化ホウ素の離型層6を塗布せずに熱電素子を成膜した場合、p型熱電素子2において、実験開始当初、熱電素子抵抗値が45mΩであったものが、1000サイクル時点では、75mΩに上昇した。   Since the insulating substrate 1 and the thermoelectric elements 2 and 3 are not fixed, the generation of thermal stress due to the heat cycle applied to the thermoelectric power generation module and the difference in thermal expansion coefficient between the insulating substrate and the thermoelectric element may not occur. I understood. For example, when a heat cycle test in which cooling at 30 ° C. and heating at 100 ° C. are repeated, a thermoelectric element is formed on the inner wall of the bottomed hole without applying the boron nitride release layer 6 In the p-type thermoelectric element 2, the thermoelectric element resistance value was 45 mΩ at the beginning of the experiment, but increased to 75 mΩ at 1000 cycles.

なお、1サイクルは、5分とした。このとき、p型熱電素子2には、熱応力により、図9に示されるようなクラックが発生した。一方、有底穴の内壁に、窒化ホウ素の離型層6を塗布し、絶縁基板と熱電素子が固着しないようにした場合、このようなクラックが発生する問題は解消された。   One cycle was 5 minutes. At this time, cracks as shown in FIG. 9 occurred in the p-type thermoelectric element 2 due to thermal stress. On the other hand, when the release layer 6 of boron nitride is applied to the inner wall of the bottomed hole so that the insulating substrate and the thermoelectric element are not fixed, the problem of such cracks has been solved.

以上詳述したように、本発明は、熱電発電モジュール及びその製造方法に係るものであり、本発明により、絶縁基板と熱電発電素子の熱膨張係数が大きく異なっていても、2つの部材間の熱膨張係数の違いに起因する熱応力は発生しないと共に、熱応力による熱電発電モジュールの破損を防止するための、複雑な構造も必要としない、熱電発電モジュールを提供することができる。本発明は、熱電発電モジュールに熱膨張率の大きく異なる2つの部材が隣り合って形成される同等の構造品において好適に適用される。熱電素子と絶縁基板を固着させないことにより、熱電素子と絶縁基板間の熱膨張係数の違いによって生じる熱応力の発生を防止し、熱電発電モジュール内での熱応力の発生を低下させることができる。本発明は、モジュール構造の複雑化を伴うことなく、熱応力による熱電発電モジュールの破損を防ぐことができる、新しい熱電発電モジュールを提供するものとして有用である。   As described above in detail, the present invention relates to a thermoelectric power generation module and a method for manufacturing the same, and according to the present invention, even if the thermal expansion coefficients of the insulating substrate and the thermoelectric power generation element are greatly different, the two members It is possible to provide a thermoelectric power generation module that does not generate a thermal stress due to a difference in thermal expansion coefficient and does not require a complicated structure for preventing the thermoelectric power generation module from being damaged by the thermal stress. The present invention is suitably applied to an equivalent structure product in which two members having greatly different coefficients of thermal expansion are formed adjacent to each other in a thermoelectric power generation module. By not fixing the thermoelectric element and the insulating substrate, it is possible to prevent the generation of thermal stress caused by the difference in thermal expansion coefficient between the thermoelectric element and the insulating substrate, and to reduce the generation of thermal stress in the thermoelectric power generation module. The present invention is useful as a new thermoelectric power generation module that can prevent the thermoelectric power generation module from being damaged by thermal stress without complicating the module structure.

1 絶縁基板
2 p型熱電素子
3 n型熱電素子
4 電極
5 リード線
6 離型層
7 p型熱電素子材料粉末
8 n型熱電素子材料粉末
9 密閉板
10 封止剤
11 加熱ヒーター
12 断熱容器
13 ローター
14 ポケット
15 モーター
16 シャフト
DESCRIPTION OF SYMBOLS 1 Insulation board | substrate 2 p-type thermoelectric element 3 n-type thermoelectric element 4 Electrode 5 Lead wire 6 Release layer 7 p-type thermoelectric element material powder 8 n-type thermoelectric element material powder 9 Sealing plate 10 Sealant 11 Heater 12 Heat insulation container 13 Rotor 14 Pocket 15 Motor 16 Shaft

Claims (10)

熱電発電モジュールを構成する熱電素子と絶縁基板との熱膨張係数の異なる2つの部材の接合構造において、一方の部材である絶縁基板が有底穴を有し、もう一方の部材である熱電素子が遠心力を付加された状態で溶融及び凝固の過程を経て前記有底穴の内部に成形され、かつ2つの部材間に予め離型層を少なくとも1層有することで、2つの部材が固着することなく、更に、前記有底穴が該有底穴内に成形された部材を保持可能な形状を有していることを特徴とする熱電発電モジュール。   In the joining structure of two members having different thermal expansion coefficients between the thermoelectric element and the insulating substrate constituting the thermoelectric power generation module, the insulating substrate as one member has a bottomed hole, and the thermoelectric element as the other member is Two members are fixed by being molded in the bottomed hole through a process of melting and solidification with a centrifugal force applied and having at least one release layer in advance between the two members. And the bottomed hole has a shape capable of holding a member formed in the bottomed hole. 前記有底穴が、その上端開口面積よりも大きい下端底面積を有する形状に形成されており、前記成形された部材が、前記有底穴内に保持されている、請求項1に記載の熱電発電モジュール。   The thermoelectric power generation according to claim 1, wherein the bottomed hole is formed in a shape having a lower end bottom area larger than an upper end opening area thereof, and the molded member is held in the bottomed hole. module. 前記有底穴を有する部材が、無機絶縁材料からなる、請求項1又は2に記載の熱電発電モジュール。   The thermoelectric power generation module according to claim 1, wherein the member having the bottomed hole is made of an inorganic insulating material. 前記有底穴内に成形される部材が、熱電材料である、請求項1から3のいずれかに記載の熱電発電モジュール。   The thermoelectric power generation module according to claim 1, wherein the member molded in the bottomed hole is a thermoelectric material. 前記熱電材料が、ビスマスもしくはテルルを含む材料からなる、請求項4に記載の熱電発電モジュール。   The thermoelectric power generation module according to claim 4, wherein the thermoelectric material is made of a material containing bismuth or tellurium. 前記熱電材料が、ケイ素を含む材料からなる、請求項4に記載の熱電発電モジュール。   The thermoelectric power generation module according to claim 4, wherein the thermoelectric material is made of a material containing silicon. 前記熱電材料が、酸化物を含む材料からなる、請求項4に記載の熱電発電モジュール。   The thermoelectric power generation module according to claim 4, wherein the thermoelectric material is made of a material containing an oxide. 前記有底穴内に成形される部材が、厚さ10μmから10mmである、請求項1から7のいずれかに記載の熱電発電モジュール。   The thermoelectric power generation module according to any one of claims 1 to 7, wherein a member formed in the bottomed hole has a thickness of 10 µm to 10 mm. 請求項1からのいずれかに記載の熱電発電モジュールの製造方法であって、熱電発電モジュールを構成する熱電素子と絶縁基板との熱膨張係数の異なる2つの部材の接合構造において、一方の部材である絶縁基板に有底穴を形成し、該有底穴に、離型層を介して、もう一方の部材である熱電素子粉末材料を充てんし、これに、遠心力を付加した状態で溶融及び凝固の過程を経て前記有底穴の内部に熱電素子を成形し、かつ2つの部材間に予め離型層を少なくとも1層形成することで、2つの部材を固着することなく、前記有底穴内に保持させることを特徴とする熱電発電モジュールの製造方法。 The method for manufacturing a thermoelectric power generation module according to any one of claims 1 to 8 , wherein one member is a joining structure of two members having different thermal expansion coefficients between a thermoelectric element and an insulating substrate constituting the thermoelectric power generation module. A bottomed hole is formed in the insulating substrate, and the bottomed hole is filled with the thermoelectric element powder material, which is the other member, through the release layer, and melted with centrifugal force applied thereto. And forming a thermoelectric element inside the bottomed hole through a solidification process, and forming at least one release layer in advance between the two members, so that the two bottomed members are not fixed. A method of manufacturing a thermoelectric power generation module, characterized by being held in a hole. 前記有底穴が、その上端開口面積よりも大きい下端底面積を有する形状に形成されており、前記成形された部材が、前記有底穴内に保持されている、請求項9に記載の熱電発電モジュールの製造方法。   The thermoelectric power generation according to claim 9, wherein the bottomed hole is formed in a shape having a bottom end bottom area larger than an upper end opening area thereof, and the molded member is held in the bottomed hole. Module manufacturing method.
JP2009037195A 2009-02-19 2009-02-19 Thermoelectric power generation module and manufacturing method thereof Active JP5239932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009037195A JP5239932B2 (en) 2009-02-19 2009-02-19 Thermoelectric power generation module and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009037195A JP5239932B2 (en) 2009-02-19 2009-02-19 Thermoelectric power generation module and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010192775A JP2010192775A (en) 2010-09-02
JP5239932B2 true JP5239932B2 (en) 2013-07-17

Family

ID=42818464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009037195A Active JP5239932B2 (en) 2009-02-19 2009-02-19 Thermoelectric power generation module and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5239932B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790328A (en) * 1993-09-20 1995-04-04 Kubota Corp Manufacture of member with coated layer
JP3586712B2 (en) * 2001-01-26 2004-11-10 国立大学法人島根大学 Thermoelectric conversion material manufacturing method and apparatus
JP4543127B2 (en) * 2005-03-17 2010-09-15 独立行政法人産業技術総合研究所 Structure of oxide thermoelectric conversion material

Also Published As

Publication number Publication date
JP2010192775A (en) 2010-09-02

Similar Documents

Publication Publication Date Title
JP4882385B2 (en) Thermoelectric element and method of manufacturing thermoelectric module
WO2014013925A1 (en) Cylindrical sputtering target and manufacturing method therefor
EP2014803B1 (en) Device for manufacturing a block of a crystalline material with modulation of its thermal conductivity
JP2006332188A (en) Thermoelectric power generation module
EP2399864B1 (en) Method for sealing two elements by low-temperature thermocompression
WO2011122585A1 (en) Multilayer crucible for casting silicon ingot and method for manufacturing the crucible
JP2011510507A5 (en)
JP2010157645A (en) Thermoelectric power generation unit
KR20160065864A (en) Method for producing a metal-ceramic soldered connection
JP5239932B2 (en) Thermoelectric power generation module and manufacturing method thereof
WO2013013138A1 (en) Substrate for use in preparing solar cells
JP2000299504A (en) Semiconductor material and manufacture thereof
JP5359845B2 (en) Single crystal growth equipment
JP5177421B2 (en) Thermoelectric module
JP5177420B2 (en) Thermoelectric power generation module and manufacturing method thereof
JP2001168252A (en) Semiconductor device and manufacturing method thereof
JP2004296961A (en) Thermoelectric element and its manufacturing method
JP4872092B2 (en) Manufacturing method of micro thermoelectric element
JP2004119833A (en) Thermoelement module and its manufacturing method
JP2007329156A (en) Semiconductor device, manufacturing method thereof, and electronic component
JP6022927B2 (en) Thermoelectric module
JP4023388B2 (en) Manufacturing method of semiconductor device
JP2000351688A (en) Crucible for producing crystalline silicon and its production
JP5686017B2 (en) Manufacturing method of sputtering target
JPH07225169A (en) Glass sealing method of single-crystal chip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5239932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250