JP5239269B2 - Dinuclear ruthenium complex dye and method for producing the same - Google Patents

Dinuclear ruthenium complex dye and method for producing the same Download PDF

Info

Publication number
JP5239269B2
JP5239269B2 JP2007235136A JP2007235136A JP5239269B2 JP 5239269 B2 JP5239269 B2 JP 5239269B2 JP 2007235136 A JP2007235136 A JP 2007235136A JP 2007235136 A JP2007235136 A JP 2007235136A JP 5239269 B2 JP5239269 B2 JP 5239269B2
Authority
JP
Japan
Prior art keywords
ruthenium complex
acid
dye
formula
complex dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007235136A
Other languages
Japanese (ja)
Other versions
JP2009067838A (en
Inventor
剛久 角田
貴文 岩佐
崇 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2007235136A priority Critical patent/JP5239269B2/en
Publication of JP2009067838A publication Critical patent/JP2009067838A/en
Application granted granted Critical
Publication of JP5239269B2 publication Critical patent/JP5239269B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、初期光電変換効率及び耐久性に優れた二核ルテニウム錯体色素及び当該錯体によって光増感された半導体微粒子を用いた光電変換素子、並びにそれを用いた光化学電池に関する。   The present invention relates to a dinuclear ruthenium complex dye excellent in initial photoelectric conversion efficiency and durability, a photoelectric conversion element using semiconductor fine particles photosensitized by the complex, and a photochemical battery using the photoelectric conversion element.

太陽電池はクリーンな再生型エネルギー源として大きく期待されており、例えば、単結晶シリコン系、多結晶シリコン系、アモルファスシリコン系の太陽電池やテルル化カドミウム、セレン化インジウム銅等の化合物からなる太陽電池の実用化をめざした研究がなされている。しかしながら、家庭用電源として普及させるためには、いずれの電池も製造コストが高いことや原材料の確保が困難なことやリサイクルの問題、又、大面積化が困難であるなど克服しなければならない等の多くの問題を抱えている。そこで、大面積化や低価格化を目指し有機材料を用いた太陽電池が提案されてきたが、いずれも変換効率が1%程度と実用化にはほど遠いものであった。   Solar cells are greatly expected as clean renewable energy sources, such as single-crystal silicon-based, polycrystalline silicon-based, amorphous silicon-based solar cells and solar cells composed of compounds such as cadmium telluride and indium copper selenide. Research has been conducted with the aim of practical use. However, in order to disseminate as a household power source, all the batteries have to be overcome, such as high manufacturing costs, difficulty in securing raw materials, recycling problems, and difficulty in increasing the area. Have many problems. Thus, solar cells using organic materials have been proposed with the aim of increasing the area and reducing the price, but all have a conversion efficiency of about 1%, which is far from practical use.

こうした状況の中、グレッツェルらにより、色素によって増感された半導体微粒子を用いた光電変換素子及び太陽電池、並びにこの太陽電池の作製に必要な材料及び製造技術が開示された(例えば、非特許文献1、特許文献1参照)。当該電池はルテニウム色素によって増感された多孔質チタニア薄膜を作用電極とする湿式太陽電池である。この太陽電池の利点は、安価な材料を高純度に精製する必要がなく用いられるため、安価な光電変換素子として提供できること、更に用いられる色素の吸収がブロードであり、広い可視光の波長域にわたって太陽光を電気に変換できることである。しかしながら、実用化のためには更なる変換効率の向上が必要であり、より高い吸光係数を有し、より高波長域まで光を吸収する色素の開発が依然として望まれている。   Under such circumstances, Gretzel et al. Disclosed a photoelectric conversion element and a solar cell using semiconductor fine particles sensitized with a dye, and materials and manufacturing techniques necessary for the production of the solar cell (for example, non-patent literature). 1, see Patent Document 1). The battery is a wet solar battery using a porous titania thin film sensitized with a ruthenium dye as a working electrode. The advantage of this solar cell is that it is possible to provide an inexpensive photoelectric conversion element because it is not necessary to purify an inexpensive material with high purity, and furthermore, the absorption of the dye used is broad, over a wide visible light wavelength range. It can convert sunlight into electricity. However, further improvement in conversion efficiency is necessary for practical use, and development of a dye having a higher extinction coefficient and absorbing light up to a higher wavelength region is still desired.

従来、光電変換素子として有用な金属錯体色素であるジピリジル配位子含有金属単核錯体(例えば、特許文献2参照)や多核β-ジケトナート錯体色素が開示されている(例えば、非特許文献2参照)。
最近、光等の活性光線のエネルギーを受けて電子を取り出す光電変換機能の優れた新規な複核錯体として、複数の金属と複数の配位子を有し、その複数の金属に配位する橋かけ配位子(BL)が複素共役環を有する配位構造と複素共役環を有しない配位構造を有する複核錯体(例えば、特許文献3参照)が、又、高い光電変換効率を有する光電変換素子が得られる金属錯体色素として、複素共役環を有する配位構造を有する二核金属錯体において、反応液に酸を加えてpHを2.5とした二核金属錯体が開示されている(例えば、特許文献4参照)。
しかしながら、これらの色素は、依然として実用化という観点からは満足するものではなく、光電変換素子に用いる色素として、高い光電変換効率を有し、且つ優れた耐久性を有する光電変換素子を実現できる金属錯体色素が望まれている。
特開平1-220380号公報 特開2006-107771号公報 特開2004-359677号公報 国際公開第2006/038587号 Nature,737,353(1991) 色素増感太陽電池の最新技術,株式会社シーエムシー発行、117頁(2001年)
Conventionally, dipyridyl ligand-containing metal mononuclear complexes (for example, see Patent Document 2) and polynuclear β-diketonate complex dyes that are metal complex dyes useful as photoelectric conversion elements have been disclosed (for example, see Non-Patent Document 2). ).
Recently, as a new binuclear complex with a photoelectric conversion function that takes out electrons by receiving the energy of actinic rays such as light, it has multiple metals and multiple ligands and is a bridge that coordinates to the multiple metals A photoelectric conversion element in which a binuclear complex having a coordination structure in which the ligand (BL) has a heteroconjugated ring and a coordination structure having no heteroconjugated ring (see, for example, Patent Document 3) has high photoelectric conversion efficiency As a metal complex dye that provides a binuclear metal complex having a coordination structure having a heteroconjugated ring, a binuclear metal complex having an acid added to the reaction solution and having a pH of 2.5 is disclosed (for example, Patent Documents) 4).
However, these dyes are still unsatisfactory from the viewpoint of practical use, and as a dye used for a photoelectric conversion element, a metal capable of realizing a photoelectric conversion element having high photoelectric conversion efficiency and excellent durability. Complex dyes are desired.
Japanese Unexamined Patent Publication No. 1-220380 JP 2006-107771 A JP 2004-359677 A International Publication No. 2006/038587 Nature, 737,353 (1991) The latest technology of dye-sensitized solar cells, published by CMC Co., Ltd., page 117 (2001)

本発明の目的は、上記問題点を解決し、初期光電変換効率及び耐久性に優れた二核ルテニウム錯体色素及び当該錯体によって光増感された半導体微粒子を用いた光電変換素子、並びにそれを用いた光化学電池を提供することである。   An object of the present invention is to solve the above-mentioned problems, a binuclear ruthenium complex dye excellent in initial photoelectric conversion efficiency and durability, a photoelectric conversion element using semiconductor fine particles photosensitized by the complex, and a method using the same. Is to provide a photochemical battery.

本発明の課題は、一般式(1)   The subject of this invention is general formula (1).

Figure 0005239269
Figure 0005239269

(式中、Yは、ハロゲン原子を示す。)
で示されるルテニウム錯体(1)と一般式(2)
(In the formula, Y represents a halogen atom.)
Ruthenium complex (1) and general formula (2)

Figure 0005239269
Figure 0005239269

で示されるルテニウム錯体(2)とを反応させた後、酸を加えて反応液のpHを2.5より大きく5以下となるように調整することによって得られる二核ルテニウム錯体色素によって解決される。 This is solved by a binuclear ruthenium complex dye obtained by reacting with the ruthenium complex (2) represented by formula (2) and then adjusting the pH of the reaction solution to be greater than 2.5 and less than 5 by adding an acid.

本発明により、初期光電変換効率及び耐久性に優れた二核ルテニウム錯体色素及び当該錯体によって光増感された半導体微粒子を用いた光電変換素子、並びにそれを用いた光化学電池を提供することができる。なお、当該光化学電池は、安定性が極めて高く、高耐久性を有し、光電変換効率が高いために、実用化に適したものであると考えられる。   The present invention can provide a binuclear ruthenium complex dye excellent in initial photoelectric conversion efficiency and durability, a photoelectric conversion element using semiconductor fine particles photosensitized by the complex, and a photochemical battery using the photoelectric conversion element. . The photochemical battery is considered to be suitable for practical use because it has extremely high stability, high durability, and high photoelectric conversion efficiency.

本発明の二核ルテニウム錯体色素は、一般式(1)   The binuclear ruthenium complex dye of the present invention has the general formula (1)

Figure 0005239269
Figure 0005239269

(式中、Yは、ハロゲン原子を示す。)
で示されるルテニウム錯体(1)と一般式(2)
(In the formula, Y represents a halogen atom.)
Ruthenium complex (1) and general formula (2)

Figure 0005239269
Figure 0005239269

で示されるルテニウム錯体(2)とを反応させた後、酸を加えて反応液のpHを2.5より大きく5以下となるように調整することによって得られるものである。 After reacting with the ruthenium complex (2) represented by the formula (1), an acid is added to adjust the pH of the reaction solution to be greater than 2.5 and 5 or less.

前記ルテニウム錯体(1)は一般式(1)で示される。その一般式(1)において、Yは、ハロゲン原子を示すが、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子であるが、好ましくは塩素原子、臭素原子である。なお、ふたつのYは異なっていても良い。   The ruthenium complex (1) is represented by the general formula (1). In the general formula (1), Y represents a halogen atom, and is, for example, a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, preferably a chlorine atom or a bromine atom. The two Ys may be different.

本発明の二核ルテニウム錯体色素は、以下のふたつの工程によって得られる。
(A)ルテニウム錯体(1)とルテニウム錯体(2)とを反応させる第1工程。
(B)次いで、酸を加えて反応液のpHを2.5より大きく5以下となるように調整する第2工程。
The dinuclear ruthenium complex dye of the present invention can be obtained by the following two steps.
(A) The 1st process with which a ruthenium complex (1) and a ruthenium complex (2) are made to react.
(B) Next, a second step of adjusting the pH of the reaction solution to be greater than 2.5 and 5 or less by adding an acid.

(A)第1工程
本発明の第1工程は、ルテニウム錯体(1)とルテニウム錯体(2)とを反応させる工程であり、好ましくは水と有機溶媒の混合溶媒中で反応を行うが、更に好ましくは式(3)で示されるように、予めルテニウム錯体(2)を脱プロトン化させた後に、脱プロトン化されたルテニウム錯体(2)とルテニウム錯体(1)を反応させる方法によって行われる。
(A) 1st process The 1st process of this invention is a process with which a ruthenium complex (1) and a ruthenium complex (2) are made to react, Preferably it reacts in the mixed solvent of water and an organic solvent. Preferably, as shown by the formula (3), the ruthenium complex (2) is deprotonated in advance, and then the deprotonated ruthenium complex (2) is reacted with the ruthenium complex (1).

Figure 0005239269
Figure 0005239269

前記有機溶媒としては、例えば、メタノール、エタノール、イソプロピルアルコール、t-ブチルアルコール、エチレングリコール等のアルコール類;アセトニトリル、プロピオニトリル等のニトリル類;N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等のアミド類;N-メチルピロリドン等の尿素類;ジメチルスルホキシド等のスルホキシド類が挙げられるが、好ましくはエタノール、N,N-ジメチルホルムアミド、更に好ましくはエタノールが使用される。なお、これらの有機溶媒は、単独又は二種以上を混合して使用しても良い。   Examples of the organic solvent include alcohols such as methanol, ethanol, isopropyl alcohol, t-butyl alcohol, and ethylene glycol; nitriles such as acetonitrile and propionitrile; N, N-dimethylacetamide, N, N-dimethylformamide Amides such as: Ureas such as N-methylpyrrolidone; Sulphoxides such as dimethyl sulfoxide, etc., preferably ethanol, N, N-dimethylformamide, and more preferably ethanol. In addition, you may use these organic solvents individually or in mixture of 2 or more types.

前記水と有機溶媒の混合溶媒の使用量は、ルテニウム錯体(1)1ミリモルに対して、好ましくは60〜360ml、更に好ましくは120〜180mlであり、その混合比(容量比)は、水1に対して、有機溶媒が好ましくは1〜5倍、更に好ましくは1〜2倍である。   The amount of the mixed solvent of water and organic solvent used is preferably 60 to 360 ml, more preferably 120 to 180 ml per 1 mmol of ruthenium complex (1). On the other hand, the organic solvent is preferably 1 to 5 times, more preferably 1 to 2 times.

前記ルテニウム錯体(2)の使用量は、ルテニウム錯体(1)1モルに対して、好ましくは0.9〜1.5モル、更に好ましくは1.0〜1.2モル、特に好ましくは1.0〜1.1である。   The amount of the ruthenium complex (2) to be used is preferably 0.9 to 1.5 mol, more preferably 1.0 to 1.2 mol, particularly preferably 1.0 to 1.1, per 1 mol of the ruthenium complex (1).

本発明の第1工程は、塩基の存在下で行うのが望ましい。使用される塩基としては、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物;炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩;炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属炭酸水素塩;ナトリウムメトキシド、カリウムメトキシド、ナトリウムエトキシド、カリウムエトキシド、ナトリウムt-ブトキシド、カリウムt-ブトキシド等のアルカリ金属アルコキシド;水素化リチウム、水素化ナトリウム、水素化カリウム、水素化カルシウム等のアルカリ金属水素化物;トリエチルアミン、ジイソプロピルエチルアミン、トリブチルアミン等のアミン類;ピリジン、キノリン等の複素環式アミン類が挙げられるが、ルテニウム錯体(2)を脱プロトン化する際には、好ましくはアルカリ金属アルコキシド、更に好ましくはナトリウムメトキシド、リチウムメトキシドが使用され、ルテニウム錯体(1)と脱プロトン化後のルテニウム錯体(2)との反応においては、好ましくはアルカリ金属水酸化物、更に好ましくは水酸化リチウム、水酸化ナトリウム、水酸化カリウムが使用される(これらの塩基は同一又は異なっていても良い)。なお、これらの塩基は、単独又は二種以上を混合して使用しても良く、水や各種有機溶媒に溶解しているものでも良い。   The first step of the present invention is desirably performed in the presence of a base. Examples of the base used include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate; alkali metal hydrogen carbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate Alkali metal alkoxides such as sodium methoxide, potassium methoxide, sodium ethoxide, potassium ethoxide, sodium t-butoxide, potassium t-butoxide; alkalis such as lithium hydride, sodium hydride, potassium hydride, calcium hydride Metal hydrides; amines such as triethylamine, diisopropylethylamine, and tributylamine; heterocyclic amines such as pyridine and quinoline, and the like. When deprotonating the ruthenium complex (2), an alkali metal alkoxide is preferable. , More preferably, sodium methoxide or lithium methoxide is used. In the reaction of the ruthenium complex (1) with the deprotonated ruthenium complex (2), preferably an alkali metal hydroxide, more preferably lithium hydroxide. Sodium hydroxide, potassium hydroxide are used (the bases may be the same or different). In addition, these bases may be used individually or in mixture of 2 or more types, and what was melt | dissolved in water and various organic solvents may be used.

前記塩基の使用量は、ルテニウム錯体(1)1モルに対して、ルテニウム錯体(2)の脱プロトン化においては、好ましくは2〜20モル、更に好ましくは4〜10モル、ルテニウム錯体(1)と脱プロトン化後のルテニウム錯体(2)との反応においては、好ましくは4〜5モル、更に好ましくは4.1〜4.5モルである。   The amount of the base used is preferably 2 to 20 mol, more preferably 4 to 10 mol, and ruthenium complex (1) in the deprotonation of ruthenium complex (2) with respect to 1 mol of ruthenium complex (1). In the reaction of ruthenium complex (2) after deprotonation, the amount is preferably 4 to 5 mol, more preferably 4.1 to 4.5 mol.

本発明の第1工程は、まず、ルテニウム錯体(2)、塩基及び水と有機溶媒の混合溶媒を混合して、攪拌しながら、好ましくは20〜200℃、更に好ましくは50〜90℃で反応させてルテニウム錯体(2)を脱プロトン化させた後に、脱プロトン化されたルテニウム錯体(2)とルテニウム錯体(1)を、新たな塩基を加えて、攪拌しながら、好ましくは50〜200℃、更に好ましくは80〜100℃で反応させる等の方法によって行われる。なお、反応圧力は特に制限されない。   In the first step of the present invention, first, a ruthenium complex (2), a base and a mixed solvent of water and an organic solvent are mixed, and the reaction is preferably performed at 20 to 200 ° C., more preferably 50 to 90 ° C. with stirring. After deprotonating the ruthenium complex (2), the deprotonated ruthenium complex (2) and the ruthenium complex (1) are preferably added at a temperature of 50 to 200 ° C. while adding a new base and stirring. More preferably, it is carried out by a method such as reacting at 80 to 100 ° C. The reaction pressure is not particularly limited.

(B)本発明の第2工程は、第1工程で得られた反応液に、酸を加えて反応液のpHを2.5より大きく5以下となるように調整する工程であるが、使用される酸としては、例えばヘキサフルオロリン酸、過塩素酸、テトラフェニルホウ酸、テトラフルオロホウ酸、トリフルオロメタンスルホン酸、チオシアン酸、硫酸、硝酸、フッ化水素酸、塩酸、臭化水素酸、ヨウ化水素酸等が挙げられるが、好ましくはヘキサフルオロリン酸、テトラフルオロホウ酸、トリフルオロメタンスルホン酸、硝酸、ヨウ化水素酸、更に好ましくはヘキサフルオロリン酸、テトラフルオロホウ酸、硝酸が使用される。なお、これらの酸は、単独又は二種以上を混合して使用しても良い。 (B) The second step of the present invention is a step in which an acid is added to the reaction solution obtained in the first step to adjust the pH of the reaction solution to be greater than 2.5 and 5 or less. Examples of acids include hexafluorophosphoric acid, perchloric acid, tetraphenylboric acid, tetrafluoroboric acid, trifluoromethanesulfonic acid, thiocyanic acid, sulfuric acid, nitric acid, hydrofluoric acid, hydrochloric acid, hydrobromic acid, and iodide. Examples include hydrogen acid, but preferably hexafluorophosphoric acid, tetrafluoroboric acid, trifluoromethanesulfonic acid, nitric acid, hydroiodic acid, more preferably hexafluorophosphoric acid, tetrafluoroboric acid, nitric acid are used. . In addition, you may use these acids individually or in mixture of 2 or more types.

前記酸の使用量は、反応液のpHを2.5より大きく5以下(更に好ましくは3より大きく5以下)となるように調整することができる量であれば特に制限されない。   The amount of the acid used is not particularly limited as long as the pH of the reaction solution can be adjusted to be greater than 2.5 and less than or equal to 5 (more preferably greater than 3 and less than or equal to 5).

本発明の第2工程は、第1工程で得られた反応液に、酸を加えて反応液のpHを2.5より大きく5以下となるように調整する等の方法によって行われる。当該工程によって、二核ルテニウム錯体色素が析出してくるが、この固体を濾過等によって取得することによって二核ルテニウム錯体色素を単離することができる。   The second step of the present invention is carried out by a method such as adding an acid to the reaction solution obtained in the first step to adjust the pH of the reaction solution to be greater than 2.5 and not more than 5. By this step, a binuclear ruthenium complex dye is precipitated, and the dinuclear ruthenium complex dye can be isolated by obtaining this solid by filtration or the like.

本発明の二核ルテニウム錯体色素によって増感された半導体微粒子とは、前記の第2工程によって得られた二核ルテニウム錯体色素と半導体微粒子とを公知の接触させることによって得られるものである。   The semiconductor fine particles sensitized with the binuclear ruthenium complex dye of the present invention are obtained by bringing the binuclear ruthenium complex dye obtained in the second step into contact with the semiconductor fine particles in a known manner.

前記半導体微粒子としては、例えば、酸化チタン、酸化亜鉛、酸化スズ、酸化インジウム、酸化ニオブ、酸化タングステン、酸化バナジウム等の金属酸化物類;チタン酸ストロンチウム、チタン酸カルシウム、チタン酸バリウム、ニオブ酸カリウム等の金属酸アルカリ金属類;硫化カドミウム、硫化ビスマス等の金属硫化物;セレン化カドミウム等の金属セレン化物;テルル化カドミウム等の金属テルル化物;リン化ガリウム等の金属リン化物;ヒ素化ガリウム等の金属ヒ素化物が挙げられるが、好ましくは金属酸化物、更に好ましくは酸化チタン、酸化亜鉛、酸化スズが使用される。なお、半導体微粒子の一次粒子径は特に制限されないが、好ましくは1〜5000nm、更に好ましくは2〜500nm、特に好ましくは3〜300nmのものが使用され、これらの半導体微粒子は、単独又は二種以上を混合して使用しても良い。   Examples of the semiconductor fine particles include metal oxides such as titanium oxide, zinc oxide, tin oxide, indium oxide, niobium oxide, tungsten oxide, and vanadium oxide; strontium titanate, calcium titanate, barium titanate, and potassium niobate. Metallic acid alkali metals such as: metal sulfides such as cadmium sulfide and bismuth sulfide; metal selenides such as cadmium selenide; metal tellurides such as cadmium telluride; metal phosphides such as gallium phosphide; gallium arsenide and the like The metal arsenides are preferably metal oxides, more preferably titanium oxide, zinc oxide and tin oxide. The primary particle size of the semiconductor fine particles is not particularly limited, but preferably 1 to 5000 nm, more preferably 2 to 500 nm, and particularly preferably 3 to 300 nm. These semiconductor fine particles may be used alone or in combination of two or more. May be used in combination.

前記二核ルテニウム錯体色素により増感された半導体微粒子は、例えば、二核ルテニウム錯体色素を溶媒に溶解した溶液を、半導体微粒子に接触(例えば、塗布、浸漬等)させることによって製造される(例えば、特許文献5参照)。なお、接触させた後に、各種溶媒で洗浄して乾燥させるのが望ましい。
国際公開第2006/038587号
The semiconductor fine particles sensitized with the dinuclear ruthenium complex dye are produced, for example, by bringing a solution obtained by dissolving the dinuclear ruthenium complex dye in a solvent into contact with the semiconductor fine particles (for example, coating, dipping, etc.) (for example, , See Patent Document 5). In addition, after making it contact, it is desirable to wash | clean with various solvents and to dry.
International Publication No. 2006/038587

本発明の光電変換素子は、先述した二核ルテニウム錯体色素により増感された半導体微粒子であるが、具体的には、例えば、当該ルテニウム錯体色素により増感された半導体微粒子を電極上に固定したものである。   The photoelectric conversion element of the present invention is a semiconductor fine particle sensitized by the aforementioned binuclear ruthenium complex dye. Specifically, for example, the semiconductor fine particle sensitized by the ruthenium complex dye is fixed on the electrode. Is.

前記電極は、導電性電極であり、好ましくは透明基板上に形成された透明電極である。導電剤としては、金、銀、銅、白金、パラジウム等の金属、スズをドープした酸化インジウム(ITO)に代表される酸化インジウム系化合物、フッ素をドープした酸化スズ(FTO)に代表される酸化スズ系化合物、酸化亜鉛系化合物などが挙げられる。   The electrode is a conductive electrode, preferably a transparent electrode formed on a transparent substrate. Conductive agents include metals such as gold, silver, copper, platinum and palladium, indium oxide compounds typified by tin-doped indium oxide (ITO), and oxides typified by fluorine-doped tin oxide (FTO). Examples thereof include tin compounds and zinc oxide compounds.

本発明の光化学電池は、二核ルテニウム錯体を含む半導体微粒子を用いて製造することができる。   The photochemical battery of the present invention can be produced using semiconductor fine particles containing a dinuclear ruthenium complex.

本発明の光化学電池は、具体的には、電極として上記の本発明の光電変換素子と対極とを有し、その間に電解質溶液層を有するものである。なお、本発明の光電変換素子に用いた電極と対極の少なくとも片方は透明電極である。   Specifically, the photochemical cell of the present invention has the above-described photoelectric conversion element of the present invention and a counter electrode as electrodes, and an electrolyte solution layer therebetween. Note that at least one of the electrode and the counter electrode used in the photoelectric conversion element of the present invention is a transparent electrode.

対極は光電変換素子と組み合わせて光化学電池としたときに正極として作用するものである。対極としては、上記導電性電極と同様に導電層を有する基板を用いることもできるが、金属板そのものを使用すれば、基板は必ずしも必要ではない。対極に用いる導電剤としては、例えば、白金等の金属、炭素、フッ素をドープした酸化スズ等の導電性金属酸化物が好適に使用される。   The counter electrode functions as a positive electrode when combined with a photoelectric conversion element to form a photochemical battery. As the counter electrode, a substrate having a conductive layer can be used as in the case of the conductive electrode. However, if the metal plate itself is used, the substrate is not necessarily required. As the conductive agent used for the counter electrode, for example, a conductive metal oxide such as tin oxide doped with a metal such as platinum or carbon or fluorine is preferably used.

前記電解質溶液は、レドックス対(酸化還元対)を含んでいることが望ましく、使用するレドックス対は特に限定されないが、例えば、
(1)ヨウ素とヨウ化物(例えば、ヨウ化リチウム、ヨウ化カリウム等の金属ヨウ化物;ヨウ化テトラブチルアンモニウム、ヨウ化テトラプロピルアンモニウム、ヨウ化ピリジニウム、ヨウ化イミダゾリウム等の4級アンモニウム化合物のヨウ化物)の組み合わせ、
(2)臭素と臭化物(例えば、ヨウ化リチウム、ヨウ化カリウム等の金属ヨウ化物;ヨウ化テトラブチルアンモニウム、ヨウ化テトラプロピルアンモニウム、ヨウ化ピリジニウム、ヨウ化イミダゾリウム等の4級アンモニウム化合物のヨウ化物)の組み合わせ、
(3)塩素と塩化物(例えば、ヨウ化リチウム、ヨウ化カリウム等の金属ヨウ化物;ヨウ化テトラブチルアンモニウム、ヨウ化テトラプロピルアンモニウム、ヨウ化ピリジニウム、ヨウ化イミダゾリウム等の4級アンモニウム化合物のヨウ化物)の組み合わせ、
(4)アルキルビオローゲンとその還元体の組み合わせ、
(5)キノン/ハイドロキノン、鉄(II)イオン/鉄(III)イオン、銅(I)イオン/銅(II)イオン、マンガン(II)イオン/マンガン(III)イオン、コバルトイオン(II)/コバルトイオン(III))等の遷移金属イオン対、
(6)フェロシアン/フェリシアン、四塩化コバルト(II)/四塩化コバルト(III)、四臭化コバルト(II)/四臭化コバルト(III)、六塩化イリジウム(II)/六塩化イリジウム(III)、六シアノ化ルテニウム(II)/六シアノ化ルテニウム(III)、六塩化ロジウム(II)/六塩化ロジウム(III)、六塩化レニウム(III)/六塩化レニウム(IV)、六塩化レニウム(IV)/六塩化レニウム(V)、六塩化オスミウム(III)/六塩化オスミウム(IV)、六塩化オスミウム(IV)/六塩化オスミウム(V)等の錯イオンの組み合わせ、
(7)コバルト、鉄、ルテニウム、マンガン、ニッケル、レニウムといった遷移金属と、ビピリジンやその誘導体、ターピリジンやその誘導体、フェナントロリンやその誘導体等の複素共役環及びその誘導体で形成されている錯体類、
(8)フェロセン/フェロセニウムイオン、コバルトセン/コバルトセニウムイオン、ルテノセン/ルテノセウムイオン等のシクロペンタジエン及びその誘導体と金属の錯体類、
(9)ポルフィリン系化合物類
が挙げられるが、好ましくは前記(1)で挙げたレドックス対が使用される。なお、これらのレドックス対は、単独又は二種以上を混合して使用しても良い。
The electrolyte solution preferably includes a redox pair (a redox pair), and the redox pair to be used is not particularly limited.
(1) iodine and iodide (for example, metal iodides such as lithium iodide and potassium iodide; quaternary ammonium compounds such as tetrabutylammonium iodide, tetrapropylammonium iodide, pyridinium iodide and imidazolium iodide) (Iodide) combinations,
(2) Bromine and bromides (for example, metal iodides such as lithium iodide and potassium iodide; iodine of quaternary ammonium compounds such as tetrabutylammonium iodide, tetrapropylammonium iodide, pyridinium iodide and imidazolium iodide) Combination),
(3) Chlorine and chloride (for example, metal iodides such as lithium iodide and potassium iodide; quaternary ammonium compounds such as tetrabutylammonium iodide, tetrapropylammonium iodide, pyridinium iodide and imidazolium iodide) (Iodide) combinations,
(4) Combination of alkyl viologen and its reduced form,
(5) quinone / hydroquinone, iron (II) ion / iron (III) ion, copper (I) ion / copper (II) ion, manganese (II) ion / manganese (III) ion, cobalt ion (II) / cobalt Transition metal ion pairs such as ions (III)),
(6) Ferrocyanian / ferricyan, cobalt tetrachloride / cobalt tetrachloride, cobalt tetrabromide / II / cobalt tetrabromide, iridium hexachloride / II / iridium hexachloride III), ruthenium hexacyanide (II) / ruthenium hexacyanide (III), rhodium hexachloride (II) / rhodium hexachloride (III), rhenium hexachloride (III) / rhenium hexachloride (IV), rhenium hexachloride A combination of complex ions such as (IV) / rhenium hexachloride (V), osmium hexachloride (III) / osmium hexachloride (IV), osmium hexachloride (IV) / osmium hexachloride (V),
(7) Complexes formed of transition metals such as cobalt, iron, ruthenium, manganese, nickel, rhenium, and heteroconjugated rings such as bipyridine and derivatives thereof, terpyridine and derivatives thereof, phenanthroline and derivatives thereof, and derivatives thereof,
(8) Complexes of cyclopentadiene such as ferrocene / ferrocenium ion, cobaltcene / cobaltcenium ion, ruthenocene / ruthenoceum ion, etc. and their derivatives and metals,
(9) Porphyrin-based compounds can be mentioned, and preferably the redox couples mentioned in (1) above are used. In addition, you may use these redox pairs individually or in mixture of 2 or more types.

本発明の光化学電池は、従来から適用されている方法を適用することができ、例えば、
(1)透明電極上に酸化物等の半導体微粒子のペーストを塗布し、加熱焼成して半導体微粒子の薄膜を作製する。
(2)次いで、半導体微粒子の薄膜がチタニアの場合、温度400〜550℃で0.5〜1時間焼成する。
(3)得られた薄膜の付いた透明電極を色素溶液に浸漬し、二核ルテニウム錯体色素を担持して光電変換素子を作製する。
(4)更に、この光電変換素子と対極として白金又は炭素を蒸着した透明電極を合わせ、その間に電解質溶液を入れる。
という操作を行うことにより、本発明の光化学電池を製造することが出来る。
For the photochemical cell of the present invention, a conventionally applied method can be applied, for example,
(1) A semiconductor fine particle paste such as an oxide is applied on a transparent electrode and heated and fired to produce a thin film of semiconductor fine particles.
(2) Next, when the thin film of semiconductor fine particles is titania, baking is performed at a temperature of 400 to 550 ° C. for 0.5 to 1 hour.
(3) The transparent electrode with the obtained thin film is immersed in a dye solution, and a dinuclear ruthenium complex dye is supported to produce a photoelectric conversion element.
(4) Furthermore, this photoelectric conversion element is combined with a transparent electrode on which platinum or carbon is vapor-deposited as a counter electrode, and an electrolyte solution is put therebetween.
The photochemical battery of the present invention can be manufactured by performing the operation described above.

次に、実施例を挙げて本発明を具体的に説明するが、本発明の範囲はこれらに限定されるものではない。なお、光化学電池の光電変換効率は、ソーラーシュミレーター(英弘精機株式会社製)の擬似太陽光を照射して測定した。   Next, the present invention will be specifically described with reference to examples, but the scope of the present invention is not limited thereto. In addition, the photoelectric conversion efficiency of the photochemical cell was measured by irradiating simulated sunlight from a solar simulator (manufactured by Eihiro Seiki Co., Ltd.).

参考例1(ルテニウム錯体(1)(Y=塩素原子)の合成)
攪拌装置、温度計及び還流冷却器を備えた内容積500mlの三口フラスコに、市販の三塩化ルテニウム・三水和物3.22g(12.3mmol)、4,4'-ジカルボキシ-2,2'-ビピリジン5.72g(23.4mmol)及びN,N'-ジメチルホルムアミド300mlを加え、2.45GHzのマイクロ波照射下にて、窒素雰囲気下、攪拌しながら158〜162℃にて45分間反応させた。反応終了後、反応液を濾過し、濾液を減圧下で濃縮した。得られた濃縮物をアセトン/ジエチルエーテル(=1/4(容量比))の混合液で洗浄し、次いで、2mol/l塩酸300mlを加え、超音波攪拌を30分間、通常の攪拌を2時間行った。攪拌終了後、得られた溶液を濾過した後、濾物を2mol/l塩酸及びアセトン/ジエチルエーテル(=1/4(容量比))の混合液、ジエチルエーテルの順で洗浄し、固体を乾燥させ、暗紫色固体として、ルテニウム錯体(1)7.23gを得た(単離収率;88.6%)。
Reference Example 1 (Synthesis of ruthenium complex (1) (Y = chlorine atom))
In a three-necked flask with an internal volume of 500 ml equipped with a stirrer, a thermometer and a reflux condenser, 3.22 g (12.3 mmol) of commercially available ruthenium trichloride trihydrate, 4,4′-dicarboxy-2,2′- 5.72 g (23.4 mmol) of bipyridine and 300 ml of N, N′-dimethylformamide were added, and the mixture was reacted at 158 to 162 ° C. for 45 minutes with stirring under a nitrogen atmosphere under 2.45 GHz microwave irradiation. After completion of the reaction, the reaction solution was filtered, and the filtrate was concentrated under reduced pressure. The obtained concentrate was washed with a mixed solution of acetone / diethyl ether (= 1/4 (volume ratio)), then 300 ml of 2 mol / l hydrochloric acid was added, ultrasonic stirring for 30 minutes, and normal stirring for 2 hours. went. After the stirring, the resulting solution was filtered, and the residue was washed with a mixture of 2 mol / l hydrochloric acid and acetone / diethyl ether (= 1/4 (volume ratio)) and diethyl ether in this order, and the solid was dried. As a dark purple solid, 7.23 g of ruthenium complex (1) was obtained (isolation yield: 88.6%).

参考例2(ルテニウム錯体(2)の合成)
攪拌装置、温度計及び還流冷却器を備えた内容積200mlの三口フラスコに、ジクロロビス(4,4'-ジメチル-2,2'-ビピリジル)ルテニウム(II)1.50g(2.69mmol)、2,2'-ビベンズイミダゾール0.755g(3.22mmol)及びエチレングリコール60mlを加え、2.45GHzのマイクロ波照射下にて、窒素雰囲気下、攪拌しながら200〜204℃にて5分間反応させた。反応終了後、水120mlを加え、通常の攪拌を1時間行った。攪拌終了後、得られた溶液を濾過し、濾液に3.58mol/lヘキサフルオロリン酸アンモニウム水溶液3mlを加え、通常の攪拌を1時間行った。攪拌終了後、析出した固体を濾過し、濾物を水及びアセトン/ジエチルエーテル(=1/4(容量比))の混合液、ジエチルエーテルの順で洗浄し、固体を乾燥させ、暗橙色固体として、ルテニウム錯体(2)2.39gを得た(単離収率;89.4%)。
Reference Example 2 (Synthesis of Ruthenium Complex (2))
To a 200 ml three-necked flask equipped with a stirrer, thermometer and reflux condenser, dichlorobis (4,4′-dimethyl-2,2′-bipyridyl) ruthenium (II) 1.50 g (2.69 mmol), 2,2 '-Bibenzimidazole (0.755 g, 3.22 mmol) and ethylene glycol (60 ml) were added, and the mixture was reacted at 200 to 204 ° C for 5 minutes with stirring under a nitrogen atmosphere under 2.45 GHz microwave irradiation. After completion of the reaction, 120 ml of water was added and normal stirring was performed for 1 hour. After completion of the stirring, the obtained solution was filtered, 3 ml of a 3.58 mol / l ammonium hexafluorophosphate aqueous solution was added to the filtrate, and normal stirring was performed for 1 hour. After completion of the stirring, the precipitated solid was filtered, and the residue was washed with water and a mixture of acetone / diethyl ether (= 1/4 (volume ratio)) and diethyl ether in this order, and the solid was dried to give a dark orange solid As a result, 2.39 g of a ruthenium complex (2) was obtained (isolation yield; 89.4%).

参考例3(脱プロトン化されたルテニウム錯体(2)の合成)
攪拌装置、温度計及び還流冷却器を備えた内容積100mの三口フラスコに、先に得られたルテニウム錯体(2)2.38g(2.40mmol)及びメタノール24mlを加えた後、28%ナトリウムメトキシドメタノール溶液4.79ml(24.0mmol)を加え、窒素雰囲気下、攪拌しながら82〜86℃で1時間反応させた。反応終了後、反応液を濾過し、濾物を水、ジエチルエーテルの順で洗浄し、固体を乾燥させ、暗赤紫色固体として、脱プロトン化されたルテニウム錯体(2)1.77gを得た(単離収率;95.6%)。
Reference Example 3 (Synthesis of deprotonated ruthenium complex (2))
After adding 2.38 g (2.40 mmol) of the ruthenium complex (2) obtained above and 24 ml of methanol to a three-necked flask with an internal volume of 100 m equipped with a stirrer, thermometer and reflux condenser, 28% sodium methoxide methanol 4.79 ml (24.0 mmol) of the solution was added, and the mixture was reacted at 82 to 86 ° C. for 1 hour with stirring under a nitrogen atmosphere. After completion of the reaction, the reaction solution was filtered, and the residue was washed with water and diethyl ether in this order, and the solid was dried to obtain 1.77 g of a deprotonated ruthenium complex (2) as a dark red purple solid ( Isolated yield; 95.6%).

実施例1(二核ルテニウム錯体色素(pH2.8)の合成)
攪拌装置、温度計及び還流冷却器を備えた内容積500mlの三口フラスコに、ルテニウム錯体(1)1.14g(1.64mmol)、水100ml、エタノール100ml及び1mol/l水酸化ナトリウム水溶液6.40ml(6.40mmol)を加えた。次いで、ルテニウム錯体(2)1.33g(1.72mmol)を加え、2.45GHzのマイクロ波照射下にて、窒素雰囲気下、攪拌しながら86〜90℃にて30分間反応させた。反応終了後、反応液を濾過し、濾液を減圧下で濃縮した。濃縮後、得られた溶液を濾過し、濾液に0.5mol/lヘキサフルオロリン酸水溶液を反応液のpHが2.8になるまで加え、4℃に冷却し一晩放置した。析出した結晶を濾過し、pH2.8のヘキサフルオロリン酸水溶液、アセトン/ジエチルエーテル(=1/4(容量比))の混合液、ジエチルエーテルの順で洗浄し、固体を乾燥させ、暗赤紫色固体として、二核ルテニウム錯体色素(pH2.8)2.15gを得た(単離収率;90.2%)。
Example 1 (Synthesis of dinuclear ruthenium complex dye (pH 2.8))
Into a 500 ml three-necked flask equipped with a stirrer, thermometer and reflux condenser, 1.14 g (1.64 mmol) of ruthenium complex (1), 100 ml of water, 100 ml of ethanol and 6.40 ml (6.40 mmol) of 1 mol / l sodium hydroxide aqueous solution ) Was added. Next, 1.33 g (1.72 mmol) of ruthenium complex (2) was added, and the mixture was reacted at 86 to 90 ° C. for 30 minutes with stirring under a nitrogen atmosphere under 2.45 GHz microwave irradiation. After completion of the reaction, the reaction solution was filtered, and the filtrate was concentrated under reduced pressure. After concentration, the obtained solution was filtered, and 0.5 mol / l hexafluorophosphoric acid aqueous solution was added to the filtrate until the pH of the reaction solution reached 2.8, cooled to 4 ° C. and left overnight. The precipitated crystals were filtered, washed with an aqueous solution of hexafluorophosphoric acid at pH 2.8, a mixture of acetone / diethyl ether (= 1/4 (volume ratio)) and diethyl ether in this order, and the solid was dried and dark red As a purple solid, 2.15 g of dinuclear ruthenium complex dye (pH 2.8) was obtained (isolation yield: 90.2%).

実施例2〜5、比較例1(反応液のpHを変えた二核ルテニウム錯体色素の合成)
実施例1において、反応液のpHを3.0、3.2、3.8に変えたこと以外は実施例1と同様に反応を行い、それぞれ二核ルテニウム錯体色素(pH3.0)、二核ルテニウム錯体色素(pH3.2)、二核ルテニウム錯体色素(pH3.8)を得た。又、比較として、反応液のpHを2.5としたルテニウム錯体色素(pH2.5)も得た。なお、pH5.0を超える条件下においては、二核ルテニウム錯体色素の単離が困難であった。
Examples 2 to 5 and Comparative Example 1 (Synthesis of a dinuclear ruthenium complex dye in which the pH of the reaction solution was changed)
In Example 1, the reaction was carried out in the same manner as in Example 1 except that the pH of the reaction solution was changed to 3.0, 3.2, and 3.8, and a binuclear ruthenium complex dye (pH 3.0) and a binuclear ruthenium complex dye (pH 3), respectively. .2) A dinuclear ruthenium complex dye (pH 3.8) was obtained. For comparison, a ruthenium complex dye (pH 2.5) having a reaction solution pH of 2.5 was also obtained. Note that it was difficult to isolate the dinuclear ruthenium complex dye under conditions exceeding pH 5.0.

実施例6(光電変換効率の評価)
(多孔質チタニア電極の作製)
チタニアペーストPST−18NR(触媒化成製)を透明層に、PST−400C(触媒化成製)を拡散層に用い、透明導電性ガラス電極(旭硝子株式会社製)の上に、スクリーン印刷機を用いて塗布した。得られた膜を25℃、相対湿度60%の雰囲気下で5分エージングし、このエージングした膜を440〜460℃で30分間焼成した。この操作を繰り返すことで、16mm2の多孔質チタニア電極を作製した。
Example 6 (Evaluation of photoelectric conversion efficiency)
(Preparation of porous titania electrode)
Using a titania paste PST-18NR (catalyst conversion) for the transparent layer, PST-400C (catalyst conversion) for the diffusion layer, and using a screen printer on a transparent conductive glass electrode (Asahi Glass Co., Ltd.) Applied. The obtained film was aged for 5 minutes in an atmosphere of 25 ° C. and a relative humidity of 60%, and the aged film was baked at 440 to 460 ° C. for 30 minutes. By repeating this operation, a 16 mm 2 porous titania electrode was produced.

(色素を吸着した多孔質チタニア電極の作製)
t-ブチルアルコール/アセトニトリル(=1/1(容量比))に、合成した各種二核ルテニウム錯体色素を加えて当該ルテニウム錯体色素の飽和色素溶液を調整した。次いで、多孔質チタニア電極を、前記飽和色素溶液に、内温30℃の恒温器中で20時間浸漬した後に乾燥させ、光電変換効率測定用の色素を吸着した多孔質チタニア電極を作製した。
(Preparation of porous titania electrode adsorbed with dye)
Various dinuclear ruthenium complex dyes synthesized were added to t-butyl alcohol / acetonitrile (= 1/1 (volume ratio)) to prepare a saturated dye solution of the ruthenium complex dyes. Next, the porous titania electrode was immersed in the saturated dye solution for 20 hours in an incubator with an internal temperature of 30 ° C. and then dried to prepare a porous titania electrode adsorbing the dye for measuring the photoelectric conversion efficiency.

(光電変換素子(多孔質チタニア膜を色素で増感した電極)及び光化学電池の作製)
前記色素吸着多孔質チタニア電極と白金板(対極)を重ね合わせた後、3-メトキシプロピオニトリル、ヨウ化リチウム、ヨウ素、4-t-ブチルピリジン及び1,2-ジメチル-3-プロピルイミダゾリウムアイオダイドとから、ヨウ化物イオンの濃度が0.65mol/lの電解質溶液を調整した。得られた電解質溶液を両電極の隙間に毛細管現象を利用して染み込ませることによって光化学電池を作製した(同時に光電変換素子も作製されている)。各々の二核ルテニウム錯体色素を用いて作製した光化学電池の変換効率を表1に示した。
(Photoelectric conversion element (electrode sensitized with porous titania film with dye) and production of photochemical battery)
After superposing the dye adsorbing porous titania electrode and platinum plate (counter electrode), 3-methoxypropionitrile, lithium iodide, iodine, 4-t-butylpyridine and 1,2-dimethyl-3-propylimidazolium An electrolyte solution having an iodide ion concentration of 0.65 mol / l was prepared from iodide. A photochemical battery was produced by impregnating the obtained electrolyte solution into the gap between both electrodes using a capillary phenomenon (at the same time, a photoelectric conversion element was also produced). Table 1 shows the conversion efficiencies of the photochemical batteries prepared using each dinuclear ruthenium complex dye.

Figure 0005239269
Figure 0005239269

その結果、二核ルテニウム錯体色素(pH2.8)、二核ルテニウム錯体色素(pH3.0)、二核ルテニウム錯体色素(pH3.2)、二核ルテニウム錯体色素(pH3.8)が、ルテニウム錯体色素(pH2.5)よりも高い光変換効率を示すことが分かる。   As a result, dinuclear ruthenium complex dye (pH2.8), dinuclear ruthenium complex dye (pH3.0), dinuclear ruthenium complex dye (pH3.2), dinuclear ruthenium complex dye (pH3.8) are ruthenium complex. It can be seen that the photoconversion efficiency is higher than that of the dye (pH 2.5).

本発明により、初期光電変換効率及び耐久性に優れた二核ルテニウム錯体色素及び当該錯体によって光増感された半導体微粒子を用いた光電変換素子、並びにそれを用いた光化学電池を提供することができる。   The present invention can provide a binuclear ruthenium complex dye excellent in initial photoelectric conversion efficiency and durability, a photoelectric conversion element using semiconductor fine particles photosensitized by the complex, and a photochemical battery using the photoelectric conversion element. .

Claims (9)

一般式(1)
Figure 0005239269
(式中、Yは、ハロゲン原子を示す。)
で示されるルテニウム錯体(1)と一般式(2)
Figure 0005239269
で示されるルテニウム錯体(2)とを反応させた後、酸を加えて反応液のpHを2.5より大きく5以下となるように調整することによって得られる二核ルテニウム錯体色素。
General formula (1)
Figure 0005239269
(In the formula, Y represents a halogen atom.)
Ruthenium complex (1) and general formula (2)
Figure 0005239269
A binuclear ruthenium complex dye obtained by reacting with the ruthenium complex (2) represented by formula (2) and then adjusting the pH of the reaction solution to be greater than 2.5 and less than or equal to 5 by adding an acid.
一般式(1)
Figure 0005239269
(式中、Yは、ハロゲン原子を示す。)
で示されるルテニウム錯体(1)と一般式(2)
Figure 0005239269
で示されるルテニウム錯体(2)とを水と有機溶媒の混合溶媒中で反応させた後、酸を加えて反応液のpHを2.5より大きく5以下となるように調整することによって得られる二核ルテニウム錯体色素。
General formula (1)
Figure 0005239269
(In the formula, Y represents a halogen atom.)
Ruthenium complex (1) and general formula (2)
Figure 0005239269
The dinuclear compound obtained by reacting the ruthenium complex (2) represented by the formula (2) in a mixed solvent of water and an organic solvent, and then adjusting the pH of the reaction solution to be greater than 2.5 and less than 5 by adding an acid. Ruthenium complex dye.
一般式(1)
Figure 0005239269
(式中、Yは、ハロゲン原子を示す。)
で示されるルテニウム錯体(1)と一般式(2)
Figure 0005239269
で示されるルテニウム錯体(2)とを水と有機溶媒の混合溶媒中で反応させた後、酸を加えて反応液のpHを2.5より大きく5以下となるように調整して、析出した固体を取得することを特徴とする、請求項1乃至2記載の二核ルテニウム錯体色素の製造方法。
General formula (1)
Figure 0005239269
(In the formula, Y represents a halogen atom.)
Ruthenium complex (1) and general formula (2)
Figure 0005239269
After reacting the ruthenium complex (2) represented by the formula (2) in a mixed solvent of water and an organic solvent, an acid is added to adjust the pH of the reaction solution to be more than 2.5 and 5 or less. The method for producing a binuclear ruthenium complex dye according to claim 1, wherein the dye is obtained.
ルテニウム錯体(1)とルテニウム錯体(2)との反応を、塩基の存在下で行う請求項1乃至3記載の二核ルテニウム錯体色素の製造方法。   4. The method for producing a binuclear ruthenium complex dye according to claim 1, wherein the reaction between the ruthenium complex (1) and the ruthenium complex (2) is carried out in the presence of a base. 酸が、ヘキサフルオロリン酸、硝酸、塩酸、臭化水素酸、ヨウ化水素酸、過塩素酸、テトラフルオロホウ酸、テトラフェニルホウ酸、トリフルオロメタンスルホン酸、酢酸である請求項1乃至3記載の二核ルテニウム錯体色素及びその製造方法。   The acid is hexafluorophosphoric acid, nitric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, perchloric acid, tetrafluoroboric acid, tetraphenylboric acid, trifluoromethanesulfonic acid, or acetic acid. The binuclear ruthenium complex dye and its production method. 請求項1又は2記載の二核ルテニウム錯体色素によって増感された半導体微粒子。   Semiconductor fine particles sensitized by the binuclear ruthenium complex dye according to claim 1 or 2. 半導体微粒子が、酸化チタン、酸化亜鉛、酸化スズ、又はそれらの混合物である請求項記載の半導体微粒子。 The semiconductor fine particles according to claim 6 , wherein the semiconductor fine particles are titanium oxide, zinc oxide, tin oxide, or a mixture thereof. 請求項1又は2記載の二核ルテニウム錯体色素により増感された半導体微粒子を含む光電変換素子。   A photoelectric conversion element comprising semiconductor fine particles sensitized by the binuclear ruthenium complex dye according to claim 1. 請求項記載の光電変換素子と電解質溶液から構成される光化学電池。 A photochemical battery comprising the photoelectric conversion element according to claim 8 and an electrolyte solution.
JP2007235136A 2007-09-11 2007-09-11 Dinuclear ruthenium complex dye and method for producing the same Expired - Fee Related JP5239269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007235136A JP5239269B2 (en) 2007-09-11 2007-09-11 Dinuclear ruthenium complex dye and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007235136A JP5239269B2 (en) 2007-09-11 2007-09-11 Dinuclear ruthenium complex dye and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009067838A JP2009067838A (en) 2009-04-02
JP5239269B2 true JP5239269B2 (en) 2013-07-17

Family

ID=40604443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007235136A Expired - Fee Related JP5239269B2 (en) 2007-09-11 2007-09-11 Dinuclear ruthenium complex dye and method for producing the same

Country Status (1)

Country Link
JP (1) JP5239269B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7825250B2 (en) * 2004-10-01 2010-11-02 Ube Industries, Ltd. Binuclear metal complex, metal complex dye, photoelectric conversion element, and photochemical battery
JP5003865B2 (en) * 2006-03-17 2012-08-15 宇部興産株式会社 Binuclear metal complex dye solution, photoelectric conversion element using this solution, and photochemical battery
JP5170357B2 (en) * 2006-03-17 2013-03-27 宇部興産株式会社 Photoelectric conversion element and photochemical battery

Also Published As

Publication number Publication date
JP2009067838A (en) 2009-04-02

Similar Documents

Publication Publication Date Title
JP5003871B2 (en) Binuclear metal complex, metal complex dye, photoelectric conversion element, and photochemical battery
JP5633370B2 (en) Binuclear ruthenium complex dye, ruthenium-osmium complex dye, photoelectric conversion element having the complex dye, and photochemical battery
KR20110084301A (en) Photochemical cell comprising semiconductor microparticles sensitized with binuclear metal complex dye and electrolysis solution mainly composed of ionic liquid
JP5003865B2 (en) Binuclear metal complex dye solution, photoelectric conversion element using this solution, and photochemical battery
JP5761024B2 (en) Photoelectric conversion element having binuclear ruthenium complex dye having substituted bipyridyl group, and photochemical battery
JP5293190B2 (en) Method for producing binuclear metal complex
JP5428312B2 (en) Photoelectric conversion element and photochemical battery
JP5170357B2 (en) Photoelectric conversion element and photochemical battery
JP5493857B2 (en) Dinuclear ruthenium complex dye, dinuclear ruthenium complex dye acidic aqueous solution and method for producing the same
WO2009102068A1 (en) Binuclear ruthenium complex dye solution, photoelectric conversion device using photosensitized semiconductor particle obtained by using the complex dye solution, and photochemical cell using the photoelectric conversion device
KR20130028912A (en) Photoelectric conversion element that contains dye consisting of binuclear ruthenium complex having substituted bipyridyl groups, and photochemical cell
JP5061626B2 (en) Method for producing binuclear metal complex
JP5239269B2 (en) Dinuclear ruthenium complex dye and method for producing the same
JP2011195745A (en) Dye and dye-sensitized solar cell using the same
JP6086069B2 (en) Binuclear ruthenium complex dye, photoelectric conversion element having the dye, and photochemical battery
JP5556096B2 (en) Photoelectric conversion element having a binuclear ruthenium complex dye having a linking molecule having an electron withdrawing group as a substituent, and a photochemical battery
JP2009129652A (en) Photoelectric conversion element and photochemical battery
JP5838820B2 (en) Binuclear ruthenium complex dye, photoelectric conversion element having the dye, and photochemical battery
JP5446207B2 (en) Photoelectric conversion element and photochemical battery
JP5573056B2 (en) A photochemical battery comprising semiconductor fine particles sensitized by a dinuclear ruthenium complex dye and an electrolyte solution containing an arylamine compound
JP4565158B2 (en) Dye-sensitized photoelectric conversion element and solar cell using titanium oxide particles as oxide semiconductor
JP2011146276A (en) Photoelectric conversion element using photosensitized semiconductor fine particle obtained using binuclear ruthenium complex dye solution, and photochemical battery using the same
KR20130104784A (en) Dye for dye sensitized sola cell comprising bicarbazole derivatives and sola cell comprising it
TWI432401B (en) Novel sensitizers for dye-sensitized solar cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees