JP5234351B2 - Surface coated cutting tool with excellent wear resistance due to hard coating layer - Google Patents

Surface coated cutting tool with excellent wear resistance due to hard coating layer Download PDF

Info

Publication number
JP5234351B2
JP5234351B2 JP2008308467A JP2008308467A JP5234351B2 JP 5234351 B2 JP5234351 B2 JP 5234351B2 JP 2008308467 A JP2008308467 A JP 2008308467A JP 2008308467 A JP2008308467 A JP 2008308467A JP 5234351 B2 JP5234351 B2 JP 5234351B2
Authority
JP
Japan
Prior art keywords
cutting
coated
hard coating
coating layer
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008308467A
Other languages
Japanese (ja)
Other versions
JP2010131690A (en
Inventor
秀充 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2008308467A priority Critical patent/JP5234351B2/en
Publication of JP2010131690A publication Critical patent/JP2010131690A/en
Application granted granted Critical
Publication of JP5234351B2 publication Critical patent/JP5234351B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

この発明は、硬質被覆層がすぐれた潤滑効果を有し、したがって、切刃に対して大きな機械的負荷がかかる鋼などの重切削加工という厳しい切削条件下で用いられた場合にも、すぐれた耐欠損性、耐摩耗性を発揮し、その結果、すぐれた切削性能を長期の使用に亘って発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention has an excellent lubrication effect because the hard coating layer is also excellent when used under severe cutting conditions such as heavy cutting, such as steel, which places a large mechanical load on the cutting edge. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits fracture resistance and wear resistance, and as a result exhibits excellent cutting performance over a long period of use.

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工にバイトの先端部に着脱自在に取り付けて用いられるインサートや、前記インサートを着脱自在に取り付けて、面削加工や溝加工、さらに肩加工などに用いられるソリッドタイプのエンドミルと同様に切削加工を行うインサート式エンドミルなどが知られている。   In general, for coated tools, inserts that are detachably attached to the tip of a cutting tool for turning of work materials such as various types of steel and cast iron, and the inserts are detachably attached to be used for chamfering and grooving. An insert type end mill that performs cutting processing in the same manner as a solid type end mill used for processing and shoulder processing is known.

また、従来被覆工具として、炭化タングステン(以下、WCで示す)基超硬合金あるいは立方晶窒化ほう素(以下、cBNで示す)基超高圧焼結材料で構成された工具基体の表面に、TiとSiの窒化物((Ti,Si)N)層からなる表面被覆層を蒸着形成してなる被覆工具が知られており、これらが各種の鋼や鋳鉄などの切削加工に用いられていることも知られている。
さらに、上記の被覆工具が、例えば図1に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング(AIP)装置に上記の工具基体を装入し、ヒータで装置内を、例えば500℃に加熱した状態で、Ti−Si合金からなるカソード電極(蒸発源)と、アノード電極との間に、例えば90Aの電流を印加してアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方前記工具基体には、たとえば−100Vのバイアス電圧を印加した条件で、前記工具基体の表面に、(Ti,Si)N層を蒸着形成することにより製造されることも知られている。
特開平8−126902号公報 特開平9−11004号公報
Further, as a conventional coated tool, the surface of a tool base made of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or cubic boron nitride (hereinafter referred to as cBN) -based ultra-high pressure sintered material is formed on the surface of Ti. And coating tools formed by vapor-depositing a surface coating layer consisting of a nitride layer of Si and Si ((Ti, Si) N) are known and used for cutting various steels and cast irons. Is also known.
Further, for example, the above-mentioned coated tool is loaded with the above-mentioned tool base in an arc ion plating (AIP) apparatus which is a kind of physical vapor deposition apparatus shown schematically in FIG. For example, an arc discharge is generated by applying a current of, for example, 90 A between a cathode electrode (evaporation source) made of a Ti—Si alloy and an anode electrode while being heated to 500 ° C., and at the same time, a reactive gas in the apparatus. As an example, nitrogen gas is introduced to form a reaction atmosphere of, for example, 2 Pa. On the other hand, a (Ti, Si) N layer is deposited on the surface of the tool base under the condition that a bias voltage of, for example, −100 V is applied to the tool base. It is also known to be manufactured by forming.
JP-A-8-126902 Japanese Patent Laid-Open No. 9-11004

近年の切削加工装置のFA化はめざましく、加えて切削加工に対する省力化、省エネ化、低コスト化さらに効率化の要求も強く、これに伴い、高送り、高切り込みなどの重切削加工が要求される傾向にあるが、上記の従来被覆工具においては、各種の鋼や鋳鉄を通常条件下で切削加工した場合に特段の問題は生じないが、切刃に対して大きな負荷がかかる重切削加工に用いた場合には、切刃部に欠損を生じやすく、また、耐摩耗性も低下し、これが原因で、比較的短時間で使用寿命に至るのが現状である。   In recent years, FA of cutting devices has been remarkable, and in addition, there are strong demands for labor saving, energy saving, cost reduction and efficiency for cutting processing, and accordingly, heavy cutting processing such as high feed and high cutting is required. However, with the above-mentioned conventional coated tools, there are no particular problems when various types of steel and cast iron are machined under normal conditions, but for heavy-duty machining that places a heavy load on the cutting edge. When it is used, the cutting edge is likely to be damaged, and the wear resistance is also reduced. This causes the service life to be reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、上記の従来被覆工具のさらに一段の使用寿命の延命化を図るべく、鋭意研究を行った。
そして、本発明者等は、硬質被覆層が、TiとSiの複合窒化物((Ti,Si)N)で構成されていた上記の従来被覆工具において、硬質被覆層の構成成分としてMoを含有させ、硬質被覆層をTiとSiとMoの複合窒化物(以下、(Ti,Si,Mo)Nで示す)で構成すると、切削加工時の高熱発生により、硬質被覆層の構成成分であるSi,Moは層表面で酸化されて、シリコン酸化物及びモリブデン酸化物の形態で層表面に存在するようになり、そして、上記シリコン酸化物及びモリブデン酸化物がすぐれた潤滑性を有するために切削時の切屑流れが改善され、切粉の溶着、剥離等を原因とした欠損の発生が抑えられ、その結果、長期の使用に亘ってすぐれた耐摩耗性が発揮されるようになること、特に、ドリルの硬質被覆層を、(Ti,Si,Mo)N層で形成した場合には、ドリルのフルート溝などで切屑排出性が良好となるため、ウエット切削は勿論のこと、ドライ切削においてもすぐれた切削性能が発揮されるようになること、
を見出したのである。
In view of the above, the present inventors have conducted intensive research to further extend the service life of the conventional coated tool.
And the present inventors include Mo as a constituent component of the hard coating layer in the above-mentioned conventional coated tool in which the hard coating layer is composed of a composite nitride of Ti and Si ((Ti, Si) N). When the hard coating layer is composed of a composite nitride of Ti, Si, and Mo (hereinafter referred to as (Ti, Si, Mo) N), Si, which is a component of the hard coating layer, is generated due to high heat generation during the cutting process. , Mo is oxidized on the surface of the layer and becomes present on the surface of the layer in the form of silicon oxide and molybdenum oxide, and the silicon oxide and molybdenum oxide have excellent lubricity during cutting. The chip flow is improved, the occurrence of chipping due to chip welding, peeling, etc. is suppressed, and as a result, excellent wear resistance can be exhibited over a long period of use. Drill hard coating layer When formed with a (Ti, Si, Mo) N layer, the chip evacuation property is improved by the flute groove of the drill, etc., so that excellent cutting performance is exhibited not only in wet cutting but also in dry cutting. To become,
Was found.

この発明は、上記の知見に基づいてなされたものであって、
「 超硬合金、サーメットあるいは立方晶窒化ほう素基超高圧焼結体からなる切削工具基体の表面に、
組成式:(Ti1−X−Y SiMo
で表した場合、Xは0.05〜0.3、Yは0.1〜0.5(ただし、X、Yは原子比を示す)を満足するTiとSiとMoの複合窒化物層を、1〜10μmの平均層厚で蒸着形成した表面被覆切削工具(被覆工具)。」
に特徴を有するものである。
This invention has been made based on the above findings,
`` On the surface of the cutting tool base made of cemented carbide, cermet or cubic boron nitride based ultra high pressure sintered body,
Formula: (Ti 1-X-Y Si X Mo Y) N
, X is 0.05 to 0.3, Y is 0.1 to 0.5 (where X and Y indicate atomic ratios), and a composite nitride layer of Ti, Si, and Mo is used. A surface-coated cutting tool (coated tool) formed by vapor deposition with an average layer thickness of 1 to 10 μm. "
It has the characteristics.

この発明の被覆工具の硬質被覆層を構成する(Ti,Si,Mo)N層において、Ti成分は高温強度を向上させ、Si成分は硬さを向上させ、Mo成分は耐熱性を向上させ、また、N成分には層の強度を向上させる作用があり、これらの各成分を共存含有することにより高い硬さとすぐれた強度とすぐれた耐熱性を具備するようになる。
さらに、Si成分は切削加工時の高温により、硬質被覆層の表層において緻密かつ潤滑性にすぐれたシリコン酸化物として存在し、この酸化物の存在によって切屑流れが改善され、切粉の溶着、剥離等を原因とする欠損の発生が抑えられる。
硬質被覆層の構成成分であるSi成分の含有割合(X値)が0.05未満では所望の硬さ向上効果を期待することはできず、一方その含有割合(X値)が0.3を越えると、Si原子による格子ひずみが大きくなりすぎて、所望の高温強度が得られなくなることから、X値を原子比で0.05〜0.3と定めた。また、同じく硬質被覆層の構成成分であるMo成分の含有割合(Y値)が0.1未満では所望の耐熱性向上効果を期待することはできず、一方その含有割合(Y値)が0.5を越えると、相対的なTi成分の含有割合の減少により、所望の高温強度が得られなくなることから、Y値を原子比で0.1〜0.5と定めた。
さらに、切削加工時の高温により、硬質被覆層の表面にはチタン酸化物、モリブデン酸化物、シリコン酸化物が形成され、特に、硬質被覆層の表層に緻密かつ潤滑性にすぐれたシリコン酸化物が形成されるが、所望の潤滑性を得るためには、Si成分の含有割合(X値)及びMo成分の含有割合(Y値)を、それぞれ、0.05〜0.3及び0.1〜0.5とすることが必要であり、この範囲から外れたような場合には、潤滑性、切屑排出性が低下し、高送り、高切込みの重切削加工において、耐折損性、耐摩耗性が低下するようになる。
また、硬質被覆層の平均層厚が1μm未満では、長期の使用に亘って所望の耐摩耗性を確保するのに不十分であり、一方、その平均層厚が10μmを越えると、皮膜の剥離やチッピングが発生し易くなることから、その平均層厚を1〜10μmと定めた。
In the (Ti, Si, Mo) N layer constituting the hard coating layer of the coated tool of the present invention, the Ti component improves the high temperature strength, the Si component improves the hardness, the Mo component improves the heat resistance, Further, the N component has an effect of improving the strength of the layer, and by coexisting these components, the N component has high hardness, excellent strength, and excellent heat resistance.
Furthermore, due to the high temperature during cutting, the Si component exists as a silicon oxide that is dense and excellent in lubricity on the surface of the hard coating layer. The presence of this oxide improves the chip flow, and the welding and peeling of chips. Occurrence of defects due to the above is suppressed.
If the content ratio (X value) of the Si component, which is a constituent component of the hard coating layer, is less than 0.05, the desired hardness improvement effect cannot be expected, while the content ratio (X value) is 0.3. If exceeded, the lattice strain due to Si atoms becomes too large and the desired high-temperature strength cannot be obtained, so the X value was determined to be 0.05 to 0.3 in terms of atomic ratio. Similarly, if the content ratio (Y value) of the Mo component, which is a constituent component of the hard coating layer, is less than 0.1, the desired heat resistance improvement effect cannot be expected, while the content ratio (Y value) is 0. If it exceeds .5, the desired high-temperature strength can no longer be obtained due to the relative decrease in the Ti component content, so the Y value was determined to be 0.1 to 0.5 in terms of atomic ratio.
Furthermore, due to the high temperature during cutting, titanium oxide, molybdenum oxide, and silicon oxide are formed on the surface of the hard coating layer. In particular, silicon oxide that is dense and excellent in lubricity is formed on the surface of the hard coating layer. In order to obtain the desired lubricity, the Si component content (X value) and the Mo component content (Y value) are set to 0.05 to 0.3 and 0.1 to 0.1, respectively. If it falls outside this range, the lubricity and chip evacuation will be reduced, and in heavy feed machining with high feed and high depth of cut, breakage resistance and wear resistance Will fall.
Further, if the average thickness of the hard coating layer is less than 1 μm, it is insufficient to ensure the desired wear resistance over a long period of use, whereas if the average thickness exceeds 10 μm, the film is peeled off. And the average layer thickness was determined to be 1 to 10 μm.

また、上記(Ti,Si,Mo)N層からなる硬質被覆層は、図1に示されるような通常のアークイオンプレーティング装置を用いて、
基体の温度: 450〜600 ℃
バイアス電圧: −30〜−70 V
窒素分圧: 2〜4 Pa
という蒸着条件によって蒸着形成することができる。
Moreover, the hard coating layer which consists of the said (Ti, Si, Mo) N layer uses the normal arc ion plating apparatus as shown in FIG.
Substrate temperature: 450-600 ° C
Bias voltage: -30 to -70 V
Nitrogen partial pressure: 2-4 Pa
It can be formed by vapor deposition under the following vapor deposition conditions.

この発明の被覆工具は、切削加工時に、硬質被覆層を構成する(Ti,Si,Mo)N層の表層に形成されるシリコン酸化物が特にすぐれた潤滑性を備え、切屑排出性を改善するため、ウエット切削、ドライ切削のいずれの重切削加工においても、すぐれた耐欠損性を示し、長期の使用に亘ってすぐれた耐摩耗性を発揮するものである。   In the coated tool of the present invention, the silicon oxide formed on the surface layer of the (Ti, Si, Mo) N layer that constitutes the hard coating layer has a particularly excellent lubricity and improves chip dischargeability during cutting. Therefore, in both heavy cutting and dry cutting, excellent fracture resistance is exhibited, and excellent wear resistance is exhibited over a long period of use.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のインサート形状をもったWC基超硬合金製の工具基体A−1〜A−10を形成した。 As raw material powders, WC powder, TiC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder, all having an average particle diameter of 1 to 3 μm, were prepared. And then wet-mixed with a ball mill for 72 hours, dried, and press-molded into a green compact at a pressure of 100 MPa. The green compact was vacuumed at 6 Pa at a temperature of 1400 ° C. for 1 hour. Sintered under holding conditions, and after sintering, tool edge A-1 made of WC-based cemented carbide with ISO standard and CNMG120408 insert shape by applying a honing process of R: 0.03 to the cutting edge portion. A-10 was formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のインサート形状をもったTiCN基サーメット製の工具基体B−1〜B−6を形成した。 Further, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, mix these raw material powders into the composition shown in Table 2, wet mix for 24 hours with a ball mill, dry, and press-mold into green compact at 100 MPa pressure The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to meet ISO standards / Tool bases B-1 to B-6 made of TiCN-based cermet having an insert shape of CNMG120408 were formed.

ついで、上記の工具基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置に装着し、カソード電極として、所定組成のTi−Si−Mo合金及びボンバード洗浄用金属Ti(図示せず)を装着し、まず、装置内を排気して1×10−2Pa以下の真空に保持しながら、工具基体を500℃に加熱した後、工具基体に−1000Vの直流バイアス電圧を印加し、かつ、ボンバード洗浄用金属Ti(図示せず)とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をTiボンバード洗浄し、ついで、装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、工具基体に−50Vの直流バイアス電圧を印加し、かつ前記Ti−Si−Mo合金からなるカソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記工具基体の表面に、表3に示される目標組成および目標層厚の(Ti,Si,Mo)N層を硬質被覆層として蒸着形成することにより、本発明被覆工具としての本発明表面被覆インサート(以下、本発明被覆インサートと云う)1〜16をそれぞれ製造した。 Next, each of the tool bases A-1 to A-10 and B-1 to B-6 is ultrasonically cleaned in acetone and dried, and then attached to the arc ion plating apparatus shown in FIG. Then, a Ti—Si—Mo alloy having a predetermined composition and a bombard cleaning metal Ti (not shown) are mounted as a cathode electrode, and the apparatus is first evacuated and kept at a vacuum of 1 × 10 −2 Pa or less. However, after heating the tool base to 500 ° C., a DC bias voltage of −1000 V was applied to the tool base, and a current of 100 A was passed between the bombard cleaning metal Ti (not shown) and the anode electrode. An arc discharge is generated, and the surface of the tool base is cleaned with Ti bombardment. Then, nitrogen gas is introduced into the apparatus as a reactive gas to form a reaction atmosphere of 3 Pa, and the tool base is directly connected to −50 V. A current bias voltage was applied, and a current of 100 A was passed between the cathode electrode and the anode electrode made of the Ti—Si—Mo alloy to generate arc discharge. The surface-coated insert of the present invention (hereinafter referred to as the present invention-coated insert) 1 is formed by vapor-depositing a (Ti, Si, Mo) N layer having a target composition and a target layer thickness as a hard coating layer. ~ 16 were produced respectively.

比較の目的で、上記の工具基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置に装着し、カソード電極(蒸発源)として、所定組成のTi−Si合金およびボンバード洗浄用金属Tiを装着し、まず、装置内を排気して1×10−2Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記工具基体に−1000Vの直流バイアス電圧を印加し、かつ前記ボンバード洗浄用金属Tiとアノード電極との間に100Aの電流を流してアーク放電を発生させて、前記工具基体表面をTiボンバード処理し、ついで装置内に反応ガスとして窒素ガスを導入して、2〜4Paの範囲内の所定の雰囲気とすると共に、前記工具基体に印加する直流バイアス電圧を−30〜−70Vの範囲内の所定の電圧とし、前記カソード電極であるTi−Si合金とアノード電極との間に80Aの電流を流してアーク放電を発生させ、もって前記工具基体の表面に、表4に示される目標組成および目標層厚の(Ti,Si)N層を硬質被覆層として蒸着形成することにより、比較被覆工具としての比較被覆インサート1〜16をそれぞれ製造した。 For comparison purposes, each of the tool bases A-1 to A-10 and B-1 to B-6 was ultrasonically cleaned in acetone and dried, and then the arc ion plating shown in FIG. Attached to the apparatus, a Ti—Si alloy having a predetermined composition and a metal Ti for bombard cleaning were attached as a cathode electrode (evaporation source). First, the inside of the apparatus was evacuated and kept at a vacuum of 1 × 10 −2 Pa or less. However, after the inside of the apparatus was heated to 500 ° C. with a heater, a DC bias voltage of −1000 V was applied to the tool base, and a current of 100 A was passed between the bombard cleaning metal Ti and the anode electrode to cause arc discharge. The surface of the tool base is Ti bombarded, and nitrogen gas is introduced as a reaction gas into the apparatus to obtain a predetermined atmosphere within a range of 2 to 4 Pa. The direct current bias voltage applied to the tool substrate is set to a predetermined voltage within a range of −30 to −70 V, and an arc discharge is generated by flowing an electric current of 80 A between the Ti—Si alloy as the cathode electrode and the anode electrode. Thus, the comparative coating inserts 1 to 16 as comparative coating tools were formed by vapor-depositing (Ti, Si) N layers having the target composition and target layer thickness shown in Table 4 on the surface of the tool base as hard coating layers. Were manufactured respectively.

つぎに、上記本発明被覆インサート1〜10および比較被覆インサート1〜10について、これを工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SCM440の丸棒、
切削速度: 240 m/min.、
切り込み: 2.5 mm、
送り: 0.25 mm/rev.、
切削時間: 15 分、
の条件(切削条件Aという)での合金鋼の乾式連続重切削加工試験、
また、上記本発明被覆インサート11〜16および比較被覆インサート11〜16について、これを工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SNCM439の丸棒、
切削速度: 255 m/min.、
切り込み: 2.0 mm、
送り: 0.20 mm/rev.、
切削時間: 20 分、
の条件(切削条件Bという)での合金鋼の乾式連続重切削加工試験
を行い、切刃の逃げ面摩耗幅を測定した。
上記切削条件A,Bによる切削加工試験の測定結果を表5に示した。
Next, for the present invention coated inserts 1-10 and comparative coated inserts 1-10, in a state where this is screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS / SCM440 round bar,
Cutting speed: 240 m / min. ,
Cutting depth: 2.5 mm,
Feed: 0.25 mm / rev. ,
Cutting time: 15 minutes,
Dry continuous heavy cutting test of alloy steel under the conditions (cutting condition A),
Moreover, about the said this invention covering insert 11-16 and the comparison covering inserts 11-16, in the state which this was screwed with the fixing jig to the front-end | tip part of a tool steel tool,
Work material: JIS / SNCM439 round bar,
Cutting speed: 255 m / min. ,
Cutting depth: 2.0 mm,
Feed: 0.20 mm / rev. ,
Cutting time: 20 minutes,
The dry continuous heavy cutting test of the alloy steel was performed under the above conditions (referred to as cutting condition B), and the flank wear width of the cutting edge was measured.
The measurement results of the cutting test under the cutting conditions A and B are shown in Table 5.

Figure 0005234351
Figure 0005234351

Figure 0005234351
Figure 0005234351

Figure 0005234351
Figure 0005234351

Figure 0005234351
Figure 0005234351

Figure 0005234351
Figure 0005234351

また、原料粉末として、いずれも0.5〜4μmの範囲内の平均粒径を有する立方晶窒化硼素(cBN)粉末、窒化チタン(TiN)粉末、Al粉末、酸化アルミニウム(Al)粉末を用意し、これら原料粉末を表6に示される配合組成に配合し、ボールミルで80時間湿式混合し、乾燥した後、120MPaの圧力で直径:50mm×厚さ:1.5mmの寸法をもった圧粉体にプレス成形し、ついでこの圧粉体を、圧力:1Paの真空雰囲気中、900〜1300℃の範囲内の所定温度に60分間保持の条件で焼結して切刃片用予備焼結体とし、この予備焼結体を、別途用意した、Co:8質量%、WC:残りの組成、並びに直径:50mm×厚さ:2mmの寸法をもったWC基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入し、通常の条件である圧力:5GPa、温度:1200〜1400℃の範囲内の所定温度に保持時間:0.8時間の条件で超高圧焼結し、焼結後上下面をダイヤモンド砥石を用いて研磨し、ワイヤー放電加工装置にて一辺3mmの正三角形状に分割し、さらにCo:5質量%、TaC:5質量%、WC:残りの組成およびCIS規格SNGA120412の形状(厚さ:4.76mm×一辺長さ:12.7mmの正方形)をもったWC基超硬合金製インサート本体のろう付け部(コーナー部)に、質量%で、Cu:26%、Ti:5%、Ni:2.5%、Ag:残りからなる組成を有するAg合金のろう材を用いてろう付けし、所定寸法に外周加工した後、切刃部に幅:0.13mm、角度:25°のホーニング加工を施し、さらに仕上げ研摩を施すことによりISO規格SNGA120412のインサート形状をもった工具基体C−1〜C−10をそれぞれ製造した。 Further, as raw material powders, cubic boron nitride (cBN) powder, titanium nitride (TiN) powder, Al powder, aluminum oxide (Al 2 O 3 ) powder each having an average particle diameter in the range of 0.5 to 4 μm. These raw material powders were blended in the blending composition shown in Table 6, wet-mixed with a ball mill for 80 hours, dried, and then had a size of diameter: 50 mm × thickness: 1.5 mm at a pressure of 120 MPa. The green compact is press-molded, and then the green compact is sintered in a vacuum atmosphere at a pressure of 1 Pa at a predetermined temperature within the range of 900 to 1300 ° C. for 60 minutes and pre-baked for cutting edge pieces. A WC-based cemented carbide support piece having a size of Co: 8% by mass, WC: remaining composition, and diameter: 50 mm × thickness: 2 mm was prepared as a sintered body. Normal super-high in a superposed state After charging into the pressure sintering machine, sintering at ultra high pressure at a predetermined temperature within the range of pressure: 5 GPa, temperature: 1200-1400 ° C., holding time: 0.8 hours, after sintering The upper and lower surfaces are polished with a diamond grindstone and divided into 3 mm regular triangles with a wire electric discharge machine, and Co: 5% by mass, TaC: 5% by mass, WC: remaining composition and CIS standard SNGA120412 The brazing part (corner part) of the WC-based cemented carbide insert body having a shape (thickness: 4.76 mm × one side length: 12.7 mm square) is mass%, Cu: 26%, Ti : 5%, Ni: 2.5%, Ag: Brazing using a brazing material of an Ag alloy having the remaining composition, and after processing the outer periphery to a predetermined dimension, the width of the cutting edge is 0.13 mm, angle : 25 ° honing is applied. The tool substrate C-1 through C-10 having the insert shape of ISO standard SNGA120412 by performing finish polishing was produced, respectively.

ついで、上記の工具基体C−1〜C−10をアセトン中で超音波洗浄し、乾燥した状態で、図1に示される蒸着装置に装着し、カソード電極として、所定組成のTi−Si−Mo合金及びボンバード洗浄用金属Ti(図示せず)を装着し、まず、装置内を排気して1×10−2Pa以下の真空に保持しながら、工具基体を500℃に加熱した後、工具基体に−200Vのバイアス電圧を印加し、かつ、Arガスを導入して2Paの雰囲気として、もって工具基体表面をArイオンボンバード洗浄し、ついで、一旦装置内を真空排気した後、反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、工具基体に−20Vの直流バイアス電圧を印加し、かつ前記Ti−Si−Mo合金からなるカソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記工具基体の表面に、表7に示される目標組成および目標層厚の(Ti,Si,Mo)N層を硬質被覆層として蒸着形成することにより、本発明被覆工具としての本発明表面被覆cBN基インサート(以下、本発明被覆インサートと云う)21〜30をそれぞれ製造した。 Next, the tool bases C-1 to C-10 are ultrasonically cleaned in acetone and dried, and then mounted on the vapor deposition apparatus shown in FIG. 1, and Ti—Si—Mo having a predetermined composition is used as a cathode electrode. An alloy and a bombard cleaning metal Ti (not shown) are mounted, and the tool base is first heated to 500 ° C. while the apparatus is evacuated and kept at a vacuum of 1 × 10 −2 Pa or less. A bias voltage of −200 V is applied to the substrate, Ar gas is introduced to form an atmosphere of 2 Pa, the surface of the tool base is cleaned with Ar ion bombardment, and the inside of the apparatus is once evacuated and then nitrogen gas is used as a reaction gas. Is introduced to form a reaction atmosphere of 3 Pa, a DC bias voltage of −20 V is applied to the tool base, and 1 is provided between the cathode electrode and the anode electrode made of the Ti—Si—Mo alloy. A current of 00A is applied to generate an arc discharge, so that a (Ti, Si, Mo) N layer having the target composition and target layer thickness shown in Table 7 is vapor-deposited on the surface of the tool base as a hard coating layer. Thus, the present invention surface-coated cBN-based inserts (hereinafter referred to as the present invention-coated inserts) 21 to 30 as the present invention-coated tools were produced, respectively.

また、比較の目的で、上記の工具基体C−1〜C−10のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示される通常のアークイオンプレーティング装置に装入し、カソード電極として、表4に対応する組成のTi−Si合金及びボンバード洗浄用金属Ti(図示せず)を装着し、まず、装置内を排気して1×10−2Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記工具基体に−200Vの直流バイアス電圧を印加し、かつArガスを装置内に導入して2Paの雰囲気とし、前記工具基体表面をTiボンバード処理し、ついで装置内に反応ガスとして窒素ガスを導入して2〜4Paの範囲内の所定の雰囲気とすると共に、前記工具基体に印加するバイアス電圧を−30〜−70Vの範囲内の所定の電圧とし、前記カソード電極であるTi−Si合金とアノード電極との間に80Aの電流を流してアーク放電を発生させ、もって前記工具基体の表面に、表8に示される目標組成および目標層厚の(Ti,Si)N層からなる硬質被覆層を蒸着形成することにより、比較被覆工具としての比較表面被覆cBN基焼結インサート(以下、比較被覆インサートという)21〜30をそれぞれ製造した。 For comparison purposes, each of the tool bases C-1 to C-10 is ultrasonically cleaned in acetone and dried, and then loaded into the normal arc ion plating apparatus shown in FIG. Then, as a cathode electrode, a Ti—Si alloy having a composition corresponding to Table 4 and a bombard cleaning metal Ti (not shown) are mounted, and the inside of the apparatus is first evacuated to a vacuum of 1 × 10 −2 Pa or less. While holding, the inside of the apparatus was heated to 500 ° C. with a heater, a −200 V DC bias voltage was applied to the tool base, and Ar gas was introduced into the apparatus to create an atmosphere of 2 Pa. Ti bombardment is performed, and then nitrogen gas is introduced into the apparatus as a reaction gas to obtain a predetermined atmosphere within a range of 2 to 4 Pa, and a bias voltage applied to the tool base is within a range of −30 to −70 V. And a current of 80 A is passed between the Ti—Si alloy as the cathode electrode and the anode electrode to generate an arc discharge, and the target composition shown in Table 8 is formed on the surface of the tool base. And a hard coating layer composed of a (Ti, Si) N layer having a target layer thickness is formed by vapor deposition, thereby producing comparative surface-coated cBN-based sintered inserts (hereinafter referred to as comparative coated inserts) 21 to 30 as comparative coating tools, respectively. Manufactured.

つぎに、上記の各種の被覆インサートを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆インサート21〜30および比較被覆インサート21〜30について、以下に示す切削条件Cで切削加工試験を実施した。
[切削条件C]
被削材:JIS・SCr420(浸炭焼入れ材)の丸棒、
切削速度: 250 m/min.、
切り込み: 0.2 mm、
送り: 0.2 mm/rev.、
切削時間: 5 分、
の条件での焼入れ鋼の乾式連続重切削加工試験、
を行い、切刃の逃げ面摩耗幅(mm)を測定した。この測定結果を表9に示した。
Next, the present invention coated inserts 21 to 30 and comparative coated inserts 21 to 30 will be described below in a state where each of the various coated inserts is screwed to the tip of the tool steel tool with a fixing jig. A cutting test was performed under the cutting conditions C shown.
[Cutting conditions C]
Work material: JIS / SCr420 (carburized quenching material) round bar,
Cutting speed: 250 m / min. ,
Cutting depth: 0.2 mm,
Feed: 0.2 mm / rev. ,
Cutting time: 5 minutes,
Dry continuous heavy cutting test of hardened steel under the conditions of
The flank wear width (mm) of the cutting blade was measured. The measurement results are shown in Table 9.

Figure 0005234351
Figure 0005234351

Figure 0005234351
Figure 0005234351

Figure 0005234351
Figure 0005234351

Figure 0005234351
Figure 0005234351

表5、9に示される結果から、本発明被覆インサート1〜16、21〜30は、いずれも硬質被覆層がすぐれた潤滑性、耐欠損性を備えているので、切刃に対して大きな機械的負荷がかかる重切削加工に用いられた場合であっても硬質被覆層に欠損の発生はなく、長期に亘って、すぐれた耐摩耗性を発揮するのに対して、硬質被覆層が(Ti,Si)N層からなる比較被覆インサート1〜16、21〜30は、硬質被覆層に欠損が発生し、また、耐摩耗性に劣り、短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 5 and 9, since the coated inserts 1 to 16 and 21 to 30 of the present invention have excellent lubricity and fracture resistance with a hard coating layer, they are large machines for cutting edges. Even when it is used for heavy cutting with heavy loads, the hard coating layer has no defects and exhibits excellent wear resistance over a long period of time. , Si) The comparative coated inserts 1-16, 21-30 made of the N layer have defects in the hard coated layer, are inferior in wear resistance, and reach the service life in a short time.

原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表10に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表10に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角:30度の4枚刃スクエアの形状をもったエンドミル用超硬基体D−1〜D−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [50/50 by mass ratio] powder, and 1.8 μm Co Prepare powders, mix each of these raw material powders with the composition shown in Table 10, add wax, ball mill mix in acetone for 24 hours, dry under reduced pressure, and then press various pressures of a predetermined shape at a pressure of 100 MPa. The powder compact is press-molded, and these green compacts are heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a heating rate of 7 ° C./min in a vacuum atmosphere of 6 Pa, and this temperature is maintained for 1 hour. After holding, sintering under the condition of furnace cooling, the diameter is 8 m, 13 mm, and 26 mm of three types of cemented carbide substrate-forming round bar sintered bodies were formed, and further, from the above three types of round bar sintered bodies, by grinding, in combinations shown in Table 10, Carbide substrate for end mill D- having a shape of a 4-blade square with a diameter x length of the cutting edge of 6 mm x 13 mm, 10 mm x 22 mm, and 20 mm x 45 mm, respectively, and a twist angle of 30 degrees. 1 to D-8 were produced.

ついで、これらのエンドミル用超硬基体D−1〜D−8および試験片を、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1の本発明被覆インサート1〜16における(Ti,Si,Mo)N層の形成条件と同じ条件で、表11に示される目標組成および目標層厚の(Ti,Si,Mo)N層を硬質被覆層として蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬合金製エンドミル(以下、本発明被覆エンドミルと云う)1〜8をそれぞれ製造した。   Then, these end mill carbide substrates D-1 to D-8 and the test pieces were ultrasonically cleaned in acetone and dried, and charged in the arc ion plating apparatus shown in FIG. The target composition and target layer thickness (Ti, Si, Mo) N shown in Table 11 under the same conditions as the formation conditions of the (Ti, Si, Mo) N layer in the inventive coated inserts 1 to 16 of Example 1 above. The surface-coated cemented carbide end mills (hereinafter referred to as the present invention-coated end mills) 1 to 8 as the present invention-coated tools were produced by vapor-depositing the layers as hard coating layers, respectively.

また、比較の目的で、上記実施例1の比較被覆インサート1〜16における(Ti,Si)N層の形成条件と同じ条件で、(Ti,Si)N層を硬質被覆層として蒸着形成することにより、同じく表11に示される通りの比較被覆工具としての比較表面被覆超硬合金製エンドミル(以下、比較被覆エンドミルと云う)1〜8をそれぞれ製造した。   For comparison purposes, the (Ti, Si) N layer is vapor-deposited as a hard coating layer under the same conditions as the (Ti, Si) N layer formation conditions in the comparative coating inserts 1 to 16 of Example 1 above. Then, comparative surface coated cemented carbide end mills (hereinafter referred to as comparative coated end mills) 1 to 8 as comparative coated tools as shown in Table 11 were produced.

つぎに、上記本発明被覆エンドミル1〜8および比較被覆エンドミル1〜8のうち、
本発明被覆エンドミル1〜3および比較被覆エンドミル1〜3については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SKD11の板材、
切削速度: 113 m/min.、
溝深さ(切り込み): 2 mm、
テーブル送り: 620 mm/min.、
の条件でのダイス鋼の乾式溝切削加工試験、
本発明被覆エンドミル4〜6および比較被覆エンドミル4〜6については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS316の板材、
切削速度: 92 m/min.、
溝深さ(切り込み): 3 mm、
テーブル送り: 550 mm/min.、
の条件でのステンレス鋼の乾式溝切削加工試験、
本発明被覆エンドミル7,8および比較被覆エンドミル7,8については、
被削材:平面寸法:100mm×250mm、厚さ:50mm
のJIS・SCM439の板材、
切削速度: 142 m/min.、
溝深さ(切り込み): 8 mm、
テーブル送り: 600 mm/min.、
の条件での合金鋼の乾式溝切削加工試験、
をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表11にそれぞれ示した。
Next, of the present invention coated end mills 1-8 and comparative coated end mills 1-8,
About this invention coated end mills 1-3 and comparative coated end mills 1-3,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / SKD11 plate material,
Cutting speed: 113 m / min. ,
Groove depth (cut): 2 mm,
Table feed: 620 mm / min. ,
Die steel dry groove cutting test under the conditions of
About this invention coated end mills 4-6 and comparative coated end mills 4-6,
Work material: Plane size: 100 mm × 250 mm, thickness: 50 mm JIS / SUS316 plate material,
Cutting speed: 92 m / min. ,
Groove depth (cut): 3 mm,
Table feed: 550 mm / min. ,
Stainless steel dry grooving test,
For the coated end mills 7 and 8 and the comparative coated end mills 7 and 8 of the present invention,
Work material: Plane dimension: 100 mm x 250 mm, thickness: 50 mm
JIS / SCM439 plate material,
Cutting speed: 142 m / min. ,
Groove depth (cut): 8 mm,
Table feed: 600 mm / min. ,
Dry groove cutting test of alloy steel under the conditions of
In each groove cutting test, the cutting groove length was measured until the flank wear width of the outer peripheral edge of the cutting edge reached 0.1 mm, which is a guide for the service life. The measurement results are shown in Table 11, respectively.

Figure 0005234351
Figure 0005234351

Figure 0005234351
Figure 0005234351

上記の実施例3で製造した直径が8mm(エンドミル用超硬基体D−1〜D−3)、13mm(エンドミル用超硬基体D−4〜D−6)、および26mm(エンドミル用超硬基体D−7、D−8)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(ドリル用超硬基体E−1〜E−3)、8mm×22mm(ドリル用超硬基体E−4〜E−6)、および16mm×45mm(ドリル用超硬基体E−7、E−8)の寸法、並びにいずれもねじれ角:30度の2枚刃形状をもったドリル用超硬基体E−1〜E−8をそれぞれ製造した。   The diameters manufactured in Example 3 above were 8 mm (carbide substrates D-1 to D-3 for end mills), 13 mm (carbide substrates D-4 to D-6 for end mills), and 26 mm (carbide substrates for end mills). D-7 and D-8) were used, and from these three types of round bar sintered bodies, the diameter x length of the groove forming portion was 4 mm x 13 mm (by grinding). Drilling carbide substrates E-1 to E-3), 8 mm × 22 mm (drilling carbide substrates E-4 to E-6), and 16 mm × 45 mm (drilling carbide substrates E-7 and E-8) And the carbide substrates E-1 to E-8 for drills each having a two-blade shape with a twist angle of 30 degrees were manufactured.

ついで、これらのドリル用超硬基体E−1〜E−8の切刃に、ホーニングを施し、上記の試験片と共に、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1の本発明被覆インサート1〜16における(Ti,Si,Mo)N層の形成条件と同じ条件で、かつ表12に示される目標組成および目標層厚の(Ti,Si,Mo)N層を硬質被覆層として蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬合金製ドリル(以下、本発明被覆ドリルと云う)1〜8をそれぞれ製造した。   Next, honing is performed on the cutting blades of these carbide substrates E-1 to E-8 for drilling, ultrasonic cleaning is performed in acetone together with the above test pieces, and the state is also shown in FIG. The target composition and target shown in Table 12 were charged in the arc ion plating apparatus, under the same conditions as the (Ti, Si, Mo) N layer formation conditions in the inventive coated inserts 1 to 16 of Example 1 above. By depositing a (Ti, Si, Mo) N layer having a layer thickness as a hard coating layer, the surface-coated cemented carbide drill of the present invention (hereinafter referred to as the present invention-coated drill) 1 to 1 as the present invention-coated tool. 8 were produced respectively.

また、比較の目的で、上記実施例1の比較被覆インサート1〜16における(Ti,Si)N層の形成条件と同じ条件で、(Ti,Si)N層を硬質被覆層として蒸着形成することにより、表12に示される通りの比較被覆工具としての比較表面被覆超硬合金製ドリル(以下、比較被覆ドリルと云う)1〜8をそれぞれ製造した。   For comparison purposes, the (Ti, Si) N layer is vapor-deposited as a hard coating layer under the same conditions as the (Ti, Si) N layer formation conditions in the comparative coating inserts 1 to 16 of Example 1 above. Thus, comparative surface-coated cemented carbide drills (hereinafter referred to as comparative coated drills) 1 to 8 as comparative coated tools as shown in Table 12 were produced.

つぎに、上記本発明被覆ドリル1〜8および比較被覆ドリル1〜8のうち、本発明被覆ドリル1〜3および比較被覆ドリル1〜3については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SS400の板材、
切削速度: 95 m/min.、
送り: 0.15 mm/rev.、
穴深さ: 5 mm
の条件での軟鋼の湿式穴あけ切削加工試験、
本発明被覆ドリル4〜6および比較被覆ドリル4〜6については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS316の板材、
切削速度: 45 m/min.、
送り: 0.08 mm/rev.、
穴深さ: 8 mm
の条件でのステンレス鋼の湿式穴あけ切削加工試験、
本発明被覆ドリル7,8および比較被覆ドリル7,8については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SCMnH2の板材、
切削速度: 50 m/min.、
送り: 0.12 mm/rev、
穴深さ: 15 mm
の条件での合金鋼の湿式穴あけ切削加工試験、
をそれぞれ行い、いずれの湿式穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表12に示した。
Next, of the present invention coated drills 1-8 and comparative coated drills 1-8, for the present invention coated drills 1-3 and comparative coated drills 1-3,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / SS400 plate material,
Cutting speed: 95 m / min. ,
Feed: 0.15 mm / rev. ,
Hole depth: 5 mm
Wet drilling test of mild steel under the conditions of
About this invention coated drill 4-6 and comparative coated drill 4-6,
Work material: Plane size: 100 mm × 250 mm, thickness: 50 mm JIS / SUS316 plate material,
Cutting speed: 45 m / min. ,
Feed: 0.08 mm / rev. ,
Hole depth: 8 mm
Wet drilling machining test of stainless steel under the conditions of
About this invention covering drills 7 and 8 and comparative covering drills 7 and 8,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / SCMnH2 plate material,
Cutting speed: 50 m / min. ,
Feed: 0.12 mm / rev,
Hole depth: 15 mm
Wet drilling machining test of alloy steel under the conditions of
In each wet drilling cutting test (using water-soluble cutting oil), the number of drilling processes until the flank wear width of the tip cutting edge surface reached 0.3 mm was measured. The measurement results are shown in Table 12.

Figure 0005234351
Figure 0005234351

この結果得られた本発明被覆工具としての本発明被覆インサート1〜16、21〜30、本発明被覆エンドミル1〜8、および本発明被覆ドリル1〜8の(Ti,Si,Mo)N層、並びに比較被覆工具としての比較被覆インサート1〜16、21〜30、比較被覆エンドミル1〜8、および比較被覆ドリル1〜8の(Ti,Si)N層の組成をオージェ分光分析装置を用いて測定したところ、それぞれ目標組成と実質的に同じ組成を示した。
また、これらの本発明被覆工具の(Ti,Si,Mo)N層および比較被覆工具の(Ti,Si)N層の厚さを、走査型電子顕微鏡を用いて断面測定したところ、いずれも目標値と実質的に同じ平均層厚(5点測定の平均値)を示した。
(Ti, Si, Mo) N layer of the present coated inserts 1-16, 21-30, the present coated end mills 1-8, and the present coated drills 1-8 as the present coated tools obtained as a result, In addition, the composition of the (Ti, Si) N layers of the comparative coating inserts 1 to 16, 21 to 30, the comparative coating end mills 1 to 8, and the comparative coating drills 1 to 8 as comparative coating tools were measured using an Auger spectrometer. As a result, each showed substantially the same composition as the target composition.
Further, when the thicknesses of the (Ti, Si, Mo) N layer of these coated tools of the present invention and the (Ti, Si) N layer of the comparative coated tools were measured with a scanning electron microscope, both were measured. The average layer thickness (average value of 5-point measurement) substantially the same as the value was shown.

表5、9、11、12に示される結果から、本発明被覆工具は、いずれも硬質被覆層を構成する(Ti,Si,Mo)N層がすぐれた潤滑性、切屑流れ性、切屑排出性を具備するようになることから、上記各種の重切削加工試験で、すぐれた耐欠損性、耐摩耗性を示すのに対して、比較被覆工具においては、高切り込み、高送りなど大きな機械的負荷がかかる重切削加工では、耐欠損性、耐摩耗性の向上がみられず、比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 5, 9, 11, and 12, the coated tool of the present invention is excellent in lubricity, chip flowability, and chip dischargeability in which the (Ti, Si, Mo) N layer constituting the hard coating layer is excellent. Therefore, the above-mentioned various heavy cutting tests show excellent fracture resistance and wear resistance, whereas the comparative coated tool has a large mechanical load such as high cutting and high feed. In such heavy cutting, it is clear that the chipping resistance and wear resistance are not improved and the service life is reached in a relatively short time.

上述のように、この発明の被覆工具は、各種鋼の連続切削や断続切削ですぐれ工具特性を示すのは勿論のことであり、さらに、高切り込み、高送りなど切刃に大きな機械的負荷がかかる重切削加工条件であっても、(Ti,Si,Mo)N層からなる硬質被覆層がすぐれた潤滑性、切屑流れ性、切屑排出性を備えるため、長期に亘ってすぐれた切削性能を発揮し、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化の要求に十分満足に対応できるものである。   As described above, the coated tool of the present invention naturally exhibits excellent tool characteristics in continuous cutting and intermittent cutting of various steels, and also has a large mechanical load on the cutting blade such as high cutting and high feeding. Even under such heavy cutting conditions, the hard coating layer made of the (Ti, Si, Mo) N layer has excellent lubricity, chip flowability, and chip dischargeability, so that it has excellent cutting performance over a long period of time. It can be fully satisfied to meet the demands of FA for cutting devices, labor saving and energy saving of cutting, and cost reduction.

本発明被覆工具の硬質被覆層を構成する(Ti,Si,Mo)N層及び従来被覆工具の硬質被覆層を構成する(Ti,Si)N層の蒸着形成に用いたアークイオンプレーティング(AIP)装置の概略説明図である。Arc ion plating (AIP) used for vapor deposition formation of the (Ti, Si, Mo) N layer constituting the hard coating layer of the present coated tool and the (Ti, Si) N layer constituting the hard coating layer of the conventional coated tool ) Is a schematic explanatory diagram of the apparatus.

Claims (1)

超硬合金、サーメットあるいは立方晶窒化ほう素基超高圧焼結体からなる切削工具基体の表面に、
組成式:(Ti1−X−Y SiMo
で表した場合、Xは0.05〜0.3、Yは0.1〜0.5(ただし、X、Yは原子比を示す)を満足するTiとSiとMoの複合窒化物層を、1〜10μmの平均層厚で蒸着形成した表面被覆切削工具。
On the surface of the cutting tool base made of cemented carbide, cermet or cubic boron nitride based ultra high pressure sintered body,
Formula: (Ti 1-X-Y Si X Mo Y) N
, X is 0.05 to 0.3, Y is 0.1 to 0.5 (where X and Y indicate atomic ratios), and a composite nitride layer of Ti, Si, and Mo is used. A surface-coated cutting tool formed by vapor deposition with an average layer thickness of 1 to 10 μm.
JP2008308467A 2008-12-03 2008-12-03 Surface coated cutting tool with excellent wear resistance due to hard coating layer Active JP5234351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008308467A JP5234351B2 (en) 2008-12-03 2008-12-03 Surface coated cutting tool with excellent wear resistance due to hard coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008308467A JP5234351B2 (en) 2008-12-03 2008-12-03 Surface coated cutting tool with excellent wear resistance due to hard coating layer

Publications (2)

Publication Number Publication Date
JP2010131690A JP2010131690A (en) 2010-06-17
JP5234351B2 true JP5234351B2 (en) 2013-07-10

Family

ID=42343547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008308467A Active JP5234351B2 (en) 2008-12-03 2008-12-03 Surface coated cutting tool with excellent wear resistance due to hard coating layer

Country Status (1)

Country Link
JP (1) JP5234351B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3248897B2 (en) * 1999-03-19 2002-01-21 日立ツール株式会社 Hard coating tool
JP4018480B2 (en) * 2002-08-20 2007-12-05 住友電工ハードメタル株式会社 Coated hard tool
JP4441494B2 (en) * 2005-03-31 2010-03-31 日立ツール株式会社 Hard coating coated member
JP2007083370A (en) * 2005-09-26 2007-04-05 Hitachi Tool Engineering Ltd Coated member and coating method of coated member

Also Published As

Publication number Publication date
JP2010131690A (en) 2010-06-17

Similar Documents

Publication Publication Date Title
JP5099586B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5036338B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5287125B2 (en) A surface-coated cutting tool with a hard coating layer that provides excellent fracture resistance and wear resistance
JP5035956B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5207109B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5182501B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5207105B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5041222B2 (en) Surface coated cutting tool
JP5239292B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5287123B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5309733B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP4756445B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP4771198B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-hardness coating in high-reactive work materials
JP5099587B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5234515B2 (en) A surface-coated cutting tool with a hard coating layer that provides excellent fracture resistance and wear resistance
JP5239296B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5239392B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5234351B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP4697389B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP5168552B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5234516B2 (en) A surface-coated cutting tool with a hard coating layer that provides excellent fracture resistance and wear resistance
JP5240498B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5287019B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5407432B2 (en) A surface-coated cutting tool with a hard coating layer that provides excellent fracture resistance and wear resistance
JP2010137348A (en) Surface-coated cutting tool with hard coating layer being excellent in chipping resistance and wear resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20130228

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20130313

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3