JP5207105B2 - Surface-coated cutting tool with excellent fracture resistance due to hard coating layer - Google Patents

Surface-coated cutting tool with excellent fracture resistance due to hard coating layer Download PDF

Info

Publication number
JP5207105B2
JP5207105B2 JP2007107494A JP2007107494A JP5207105B2 JP 5207105 B2 JP5207105 B2 JP 5207105B2 JP 2007107494 A JP2007107494 A JP 2007107494A JP 2007107494 A JP2007107494 A JP 2007107494A JP 5207105 B2 JP5207105 B2 JP 5207105B2
Authority
JP
Japan
Prior art keywords
cutting
layer
crystal
coated
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007107494A
Other languages
Japanese (ja)
Other versions
JP2008264890A (en
Inventor
秀充 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007107494A priority Critical patent/JP5207105B2/en
Publication of JP2008264890A publication Critical patent/JP2008264890A/en
Application granted granted Critical
Publication of JP5207105B2 publication Critical patent/JP5207105B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)
  • Drilling Tools (AREA)

Description

この発明は、硬質被覆層が2軸配向性を有することによってすぐれた耐欠損性を示し、したがって、鋼や鋳鉄などの高速重切削加工という厳しい切削条件下で用いられた場合にも、切削工具の長寿命化が可能となる表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention exhibits excellent fracture resistance due to the biaxial orientation of the hard coating layer, and therefore, even when used under severe cutting conditions such as high-speed heavy cutting such as steel and cast iron, the cutting tool The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that can extend the service life.

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工にバイトの先端部に着脱自在に取り付けて用いられるインサートや、前記インサートを着脱自在に取り付けて、面削加工や溝加工、さらに肩加工などに用いられるソリッドタイプのエンドミルと同様に切削加工を行うインサート式エンドミルなどが知られている。   In general, for coated tools, inserts that are detachably attached to the tip of a cutting tool for turning of work materials such as various types of steel and cast iron, and the inserts are detachably attached to be used for chamfering and grooves. An insert type end mill that performs cutting processing in the same manner as a solid type end mill used for processing and shoulder processing is known.

また、被覆工具として、炭化タングステン(以下、WCで示す)基超硬合金、炭窒化チタン(以下、TiCNで示す)基サーメットまたは各種の立方晶窒化ほう素(以下、cBNで示す)基超高圧焼結材料で構成された工具本体の表面に、(Al1−X Ti)N(ただし、原子比で、Xは0.40〜0.60)を満足するAlとTiの複合窒化物[以下、(Al,Ti)Nで示す]層からなる硬質被覆層を物理蒸着してなる被覆工具が提案され、各種の鋼や鋳鉄などの連続切削や断続切削加工に用いられている。
特許第2644710号 特開平7−300649号公報 特開平8−119774号公報
Further, as a coated tool, tungsten carbide (hereinafter referred to as WC) based cemented carbide, titanium carbonitride (hereinafter referred to as TiCN) based cermet, or various types of cubic boron nitride (hereinafter referred to as cBN) based ultra high pressure. A composite nitride of Al and Ti satisfying (Al 1−X Ti X ) N (wherein X is 0.40 to 0.60 in atomic ratio) on the surface of the tool body made of the sintered material [ Hereinafter, a coated tool formed by physically vapor-depositing a hard coating layer composed of (Al, Ti) N] layers has been proposed and used for continuous cutting and intermittent cutting of various steels and cast irons.
Japanese Patent No. 2644710 JP-A-7-300649 JP-A-8-119774

近年の切削加工装置のFA化はめざましく、加えて切削加工に対する省力化、省エネ化、低コスト化さらに効率化の要求も強く、これに伴い、高速で、かつ、高送り、高切り込みなどの高速重切削加工が要求される傾向にあるが、上記の従来被覆工具においては、各種の鋼や鋳鉄を通常条件下で切削加工した場合に特段の問題は生じないが、高い発熱を伴うと共に切刃に対して大きな負荷がかかる高速重切削加工に用いた場合には、切刃部に欠損を生じやすく、これが原因で、比較的短時間で使用寿命に至るのが現状である。   In recent years, FA of cutting devices has been remarkable, and in addition, there are strong demands for labor saving, energy saving, cost reduction and efficiency for cutting, and accordingly, high speed, high feed, high cutting, etc. Although there is a tendency to require heavy cutting, the above-mentioned conventional coated tools do not cause any special problems when cutting various steels and cast irons under normal conditions, but they are accompanied by high heat generation and cutting edges. In the case of high-speed heavy cutting that requires a large load, the cutting edge portion is likely to be damaged, and this causes the service life to be reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、上記の従来被覆工具のさらに一段の使用寿命の延命化を図るべく、これの硬質被覆層である(Al,Ti)N層に着目し、研究を行った結果、
(a)上記の従来被覆工具は、例えば図3に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング(AIP)装置に上記の工具基体を装着し、
装置内加熱温度:300〜500℃、
超硬基体に印加する直流バイアス電圧:−60〜−100V、
カソード電極:Al−Ti合金、
上記カソード電極とアノード電極間のアーク放電電流:60〜100A、
装置内窒素ガス圧力:1〜6Pa、
の条件(以下、通常条件という)で、硬質被覆層として上記の組成式:(Al1−X TiX )N(ただし、原子比で、Xは0.40〜0.60)を満足(Al,Ti)N層[以下、従来(Al,Ti)N層という]を形成することにより製造される。
しかし、前記(Al,Ti)N層の形成を、例えば図2に概略説明図で示される物理蒸着装置の1種である圧力勾配型Arプラズマガを利用したイオンプレーティング装置に上記の工具基体を装着し、
工具基体温度: 350〜500 ℃、
蒸発源:Al−Ti合金、
プラズマガン放電電力: 10〜15 kW、
窒素ガス流量: 20〜40 sccm、
工具基体に印加する直流バイアス電圧: −5〜−20 V
の条件で蒸着を行うと、この結果形成された(Al,Ti)N層[以下、改質(Al,Ti)N層という]は、前記従来(Al,Ti)N層に比して、高速かつ高切り込み、高送りの高速重切削加工条件において、すぐれた耐欠損性を示すこと。
In view of the above, the present inventors pay attention to the (Al, Ti) N layer, which is a hard coating layer, in order to further extend the service life of the conventional coated tool. , As a result of research,
(A) The above-mentioned conventional coated tool is, for example, mounted on the tool base on an arc ion plating (AIP) apparatus which is one type of physical vapor deposition apparatus schematically shown in FIG.
In-apparatus heating temperature: 300-500 ° C
DC bias voltage applied to the carbide substrate: −60 to −100 V,
Cathode electrode: Al-Ti alloy,
Arc discharge current between the cathode electrode and the anode electrode: 60 to 100 A,
Nitrogen gas pressure in the apparatus: 1 to 6 Pa,
Of the above (hereinafter referred to as normal conditions) satisfying the above composition formula: (Al1-XTiX) N (wherein X is 0.40 to 0.60 in atomic ratio) as the hard coating layer (Al, Ti ) N layer [hereinafter referred to as a conventional (Al, Ti) N layer].
However, the (Al, Ti) formed of N layers, for example, an ion plating apparatus in the above tool substrate using a pressure gradient type Ar Purazumaga emissions which is one of physical vapor deposition apparatus shown in schematic illustration in FIG. 2 Wearing
Tool substrate temperature: 350 to 500 ° C.
Evaporation source: Al-Ti alloy
Plasma gun discharge power: 10-15 kW,
Nitrogen gas flow rate: 20-40 sccm,
DC bias voltage applied to tool base: -5 to -20 V
When the deposition is performed under the conditions, the resulting (Al, Ti) N layer [hereinafter referred to as a modified (Al, Ti) N layer] is compared with the conventional (Al, Ti) N layer, Excellent fracture resistance in high-speed, high-cut, high-feed, high-speed heavy cutting conditions.

(b)上記(a)の改質(Al,Ti)N層と上記従来(Al,Ti)N層について、電子線後方散乱回折装置(以下、EBSDという)を用いて個々の結晶粒の結晶方位を解析したところ、図1に概略説明図で示される通り、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶方位<111>がなす傾斜角を測定し、前記測定傾斜角のうち、前記法線方向となす角度が0〜55度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計し、また、各結晶粒界を構成する隣り合う結晶粒同士のなす角θを測定し、集計した時、前記従来(Al,Ti)N層は、表面研磨面の法線に対する結晶粒の結晶方位<111>がなす傾斜角の分布は、法線方向に対して0〜15度の範囲内の傾斜角区分にピークを有することがあったとしても、結晶粒界の角度分布は、小角粒界(0<θ≦15゜)の割合が10%程度と小さいのに対して、前記(a)の改質(Al,Ti)N層の結晶方位<111>の測定傾斜角の分布は、図4に例示される通り、法線方向に対して0〜15度の範囲内の傾斜角区分に結晶方位<111>が存在する結晶粒の面積割合が結晶粒全面積の50%以上である結晶配向を示し、さらに、結晶粒界の角度分布図において、小角粒界(0<θ≦15゜)の割合が50%以上である(図4)こと。
さらに、前記表面研磨面の法線方向に対して0〜15度の範囲内に、結晶方位<111>が存在する結晶粒の面積割合、また、結晶粒界の角度分布における小角粒界の割合は、基体の温度とバイアス電圧と窒素ガス流量によって変化すること。
(B) For the modified (Al, Ti) N layer of (a) and the conventional (Al, Ti) N layer, crystals of individual crystal grains using an electron beam backscattering diffractometer (hereinafter referred to as EBSD) When the orientation was analyzed, as shown in the schematic explanatory diagram of FIG. 1, each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polishing surface was irradiated with an electron beam, and the method of the surface polishing surface was determined. The inclination angle formed by the crystal orientation <111> of the crystal grains with respect to the line is measured, and the measurement inclination angle that is within the range of 0 to 55 degrees of the measurement inclination angle and the normal line direction is measured. When the pitches of 0.25 degrees are divided and the frequencies existing in each section are tabulated, and the angle θ formed between adjacent crystal grains constituting each crystal grain boundary is measured and tabulated, The (Al, Ti) N layer has a crystal grain orientation <11 with respect to the normal of the surface polished surface. Even if the inclination angle distribution formed by> has a peak in the inclination angle section within the range of 0 to 15 degrees with respect to the normal direction, the angle distribution of the crystal grain boundary is small-angle grain boundary (0 The distribution of the measured tilt angle of the crystal orientation <111> of the modified (Al, Ti) N layer of (a) is shown in FIG. 4 while the ratio of <θ ≦ 15 ° is as small as about 10%. As illustrated, the crystal orientation in which the area ratio of the crystal grains in which the crystal orientation <111> exists in the tilt angle section within the range of 0 to 15 degrees with respect to the normal direction is 50% or more of the total area of the crystal grains. Furthermore, in the angle distribution diagram of the crystal grain boundary, the ratio of the small-angle grain boundary (0 <θ ≦ 15 °) is 50% or more (FIG. 4).
Furthermore, the area ratio of crystal grains in which the crystal orientation <111> exists within a range of 0 to 15 degrees with respect to the normal direction of the surface polished surface, and the ratio of small-angle grain boundaries in the angular distribution of crystal grain boundaries Vary depending on substrate temperature, bias voltage, and nitrogen gas flow rate.

(c)多くの試験結果によれば、上記の通り工具基体に改質(Al,Ti)N層をRPD装置によって物理蒸着する条件、例えば、
基体の温度: 350〜500 ℃
バイアス電圧: −5〜−20 V
窒素ガス流量: 20〜40 sccm
のように調整すると、表面研磨面の法線に対して0〜15度の範囲内に結晶方位<111>が存在する結晶粒の面積割合が結晶粒全面積の50%以上を占め、また、結晶粒界の角度分布において、0<θ≦15°の割合が全粒界の50%以上を占めるという結晶配列を示すようになり、このような結晶配列を示す改質(Al,Ti)N層を硬質被覆層として形成してなる被覆工具は、高速重切削加工において長期に亘ってすぐれた耐欠損性、耐摩耗性を発揮するようになること。
以上(a)〜(c)に示される研究結果を得たのである。
(C) According to many test results, as described above, conditions for physical vapor deposition of the modified (Al, Ti) N layer on the tool substrate by the RPD apparatus, for example,
Substrate temperature: 350-500 ° C
Bias voltage: -5 to -20 V
Nitrogen gas flow rate: 20-40 sccm
When adjusted as described above, the area ratio of the crystal grains in which the crystal orientation <111> exists in the range of 0 to 15 degrees with respect to the normal line of the surface polished surface occupies 50% or more of the total area of the crystal grains, In the angular distribution of the crystal grain boundaries, a crystal arrangement in which the ratio of 0 <θ ≦ 15 ° occupies 50% or more of all the grain boundaries is shown. Modified (Al, Ti) N showing such crystal arrangement A coated tool formed by forming a layer as a hard coating layer should exhibit excellent fracture resistance and wear resistance over a long period of time in high-speed heavy cutting.
The research results shown in (a) to (c) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、
「超硬合金、サーメットあるいは立方晶窒化ほう素基超高圧焼結体からなる切削工具基体の表面に、
組成式:(Al1−X Ti)N(ただし、原子比で、Xは0.40〜0.60)
を満足し、平均層厚1〜10μmのAlとTiの複合窒化物層を蒸着形成した表面被覆切削工具において、
上記AlとTiの複合窒化物層について、電子線後方散乱回折(EBSD)装置を用いて個々の結晶粒の結晶方位を解析した場合、
(a)表面研磨面の法線方向に対する前記結晶粒の結晶方位<111>がなす傾斜角を測定し、前記測定傾斜角のうち、法線方向に対して0〜55度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計したとき、0〜15度の範囲内の傾斜角区分に結晶方位<111>が存在する結晶粒の面積割合が結晶粒全面積の50%以上である結晶配向を示し、
(b)結晶粒界を構成する隣り合う結晶粒同士のなす角を測定した場合、前記なす角が0度を超え15度以下である小角粒界の割合が全粒界の50%以上を示し、
上記(a)、(b)を同時に満たすAlとTiの複合窒化物層からなる硬質被覆層を蒸着形成したことを特徴とする高速重切削加工で硬質被覆層がすぐれた耐欠損性を発揮する被覆工具(表面被覆切削工具)」
に特徴を有するものである。
This invention was made based on the above research results,
“On the surface of the cutting tool base made of cemented carbide, cermet or cubic boron nitride based ultra high pressure sintered body,
Composition formula: (Al 1-X Ti X ) N (wherein X is 0.40 to 0.60 in atomic ratio)
In a surface-coated cutting tool in which a composite nitride layer of Al and Ti with an average layer thickness of 1 to 10 μm is formed by vapor deposition,
When the crystal orientation of each crystal grain is analyzed using an electron beam backscatter diffraction (EBSD) device for the above-described composite nitride layer of Al and Ti,
(A) The inclination angle formed by the crystal orientation <111> of the crystal grains with respect to the normal direction of the surface-polished surface is measured, and the measurement inclination angle is in the range of 0 to 55 degrees with respect to the normal direction. When the measured tilt angles are divided into pitches of 0.25 degrees and the frequencies existing in each section are tabulated, the crystal grains having the crystal orientation <111> exist in the tilt angle sections within the range of 0 to 15 degrees. The crystal orientation in which the area ratio is 50% or more of the total area of the crystal grains,
(B) When the angle formed by adjacent crystal grains constituting the crystal grain boundary is measured, the ratio of the small-angle grain boundary in which the angle formed is more than 0 degree and not more than 15 degrees indicates 50% or more of all the grain boundaries. ,
The hard coating layer exhibits excellent fracture resistance in high-speed heavy cutting processing, characterized by vapor-depositing a hard coating layer composed of a composite nitride layer of Al and Ti that simultaneously satisfies the above (a) and (b). Coated tool (surface coated cutting tool) "
It has the characteristics.

この発明の被覆工具の硬質被覆層を構成する改質(Al,Ti)N層において、Ti成分は高温強度を向上させ、一方Al成分は高温硬さおよび耐熱性(高温特性)を向上させる目的で含有するものであり、したがってTi成分の含有割合を示すX値がAl成分との合量に占める割合(原子比)で0.40未満になると、相対的にAlの割合が多くなり過ぎて、層自体の高温強度の低下は避けられず、この結果チッピングなどが発生し易くなり、一方Tiの割合を示すX値が同0.60を越えると、相対的にAlの割合が少なくなり過ぎて、所望のすぐれた高温特性を確保することができず、摩耗促進の原因となることから、X値を0.40〜0.60と定めたものであり、また、硬質被覆層の平均層厚が1μm未満では、所望の耐摩耗性を確保するのに不十分であり、一方その平均層厚が10μmを越えると、皮膜の剥離やチッピングが発生し易くなることから、その平均層厚を1〜10μmと定めた。   In the modified (Al, Ti) N layer constituting the hard coating layer of the coated tool of the present invention, the Ti component improves high temperature strength, while the Al component improves high temperature hardness and heat resistance (high temperature characteristics). Therefore, when the X value indicating the content ratio of the Ti component is less than 0.40 in terms of the total amount with the Al component (atomic ratio), the proportion of Al is relatively increased. In addition, a decrease in the high-temperature strength of the layer itself is inevitable, and as a result, chipping and the like are likely to occur. On the other hand, when the X value indicating the Ti ratio exceeds 0.60, the Al ratio is relatively decreased. The desired excellent high-temperature characteristics cannot be ensured, and this causes acceleration of wear. Therefore, the X value is set to 0.40 to 0.60, and the average layer of the hard coating layer If the thickness is less than 1 μm, the desired wear resistance is achieved. It is insufficient to guarantee, whereas when the average layer thickness exceeds 10 [mu] m, since the peeling or chipping of the film is likely to occur, determined the average layer thickness and 1 to 10 [mu] m.

また、上記の通り、改質(Al,Ti)N層の表面研磨面の法線に対して0〜15度の範囲内に結晶方位<111>が存在する結晶粒の面積割合、法線と直交する任意の方向の特定傾斜角区分に存在する最高ピークを中心とした15度の範囲内に結晶方位<100>が存在する結晶粒の面積割合は、また、最高ピークの現れる傾斜角区分は、RPDによる蒸着条件、例えば、基体の温度、バイアス電圧および窒素ガス流量によって変化するが、多くの試験結果によれば、圧力勾配型Arプラズマガンを利用したイオンプレーティングによる蒸着条件を
基体の温度: 350〜500 ℃
バイアス電圧: −5〜−20 V
窒素ガス流量: 20〜40 sccm
とすることによって、改質(Al,Ti)N層の表面研磨面の法線に対して0〜15度の範囲内に結晶方位<111>が存在する結晶粒の面積割合が結晶粒全面積の50%以上を占め、また、結晶粒界の角度分布において、0°<θ≦15°の割合が全粒界の50%以上を占めるという結晶配列を示す改質(Al,Ti)N層を得られる、という結論に達したものであり、したがって、法線に対して0〜15度の範囲内に結晶方位<111>が存在する結晶粒の面積割合が50%未満、あるいは、結晶粒界の角度分布において、0°<θ≦15°の割合が全粒界の50%未満となった場合には、(Al,Ti)N層に前記の結晶配列を付与することはできず、その結果、被覆工具にすぐれた耐欠損性を期待することはできないものとなる。
In addition, as described above, the area ratio of crystal grains having a crystal orientation <111> in the range of 0 to 15 degrees with respect to the normal line of the surface polished surface of the modified (Al, Ti) N layer, the normal line, and The area ratio of crystal grains having a crystal orientation <100> within a range of 15 degrees centering on the highest peak existing in a specific inclination angle section in an arbitrary direction orthogonal to each other, and the inclination angle section where the highest peak appears is Vapor deposition conditions by RPD, for example, change depending on the substrate temperature, bias voltage and nitrogen gas flow rate, but according to many test results, the deposition conditions by ion plating using a pressure gradient Ar plasma gun : 350-500 ° C
Bias voltage: -5 to -20 V
Nitrogen gas flow rate: 20-40 sccm
As a result, the area ratio of the crystal grains in which the crystal orientation <111> exists in the range of 0 to 15 degrees with respect to the normal line of the surface polished surface of the modified (Al, Ti) N layer is the total crystal grain area (Al, Ti) N layer showing a crystal arrangement in which the ratio of 0 ° <θ ≦ 15 ° occupies 50% or more of all grain boundaries in the angular distribution of the grain boundaries. Therefore, the area ratio of the crystal grains having the crystal orientation <111> in the range of 0 to 15 degrees with respect to the normal is less than 50%, or the crystal grains In the angular distribution of the boundary, when the ratio of 0 ° <θ ≦ 15 ° is less than 50% of the total grain boundary, the above-described crystal arrangement cannot be imparted to the (Al, Ti) N layer, As a result, the coated tool cannot be expected to have excellent fracture resistance.

この発明の被覆工具は、これの硬質被覆層を構成する改質(Al,Ti)N層が特別な結晶配列を示し、鋼や鋳鉄などの高速重切削加工に際して、すぐれた耐欠損性を発揮し、使用寿命の延命化に寄与するものである。   In the coated tool of the present invention, the modified (Al, Ti) N layer constituting the hard coating layer exhibits a special crystal arrangement, and exhibits excellent fracture resistance in high speed heavy cutting such as steel and cast iron. This contributes to the extension of the service life.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のインサート形状をもったWC基超硬合金製の工具基体A−1〜A−10を形成した。 As raw material powders, WC powder, TiC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder, all having an average particle diameter of 1 to 3 μm, were prepared. And then wet-mixed with a ball mill for 72 hours, dried, and press-molded into a green compact at a pressure of 100 MPa. The green compact was vacuumed at 6 Pa at a temperature of 1400 ° C. for 1 hour. Sintered under holding conditions, and after sintering, tool edge A-1 made of WC-based cemented carbide with ISO standard and CNMG120408 insert shape by applying a honing process of R: 0.03 to the cutting edge portion. A-10 was formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のインサート形状をもったTiCN基サーメット製の工具基体B−1〜B−6を形成した。 Further, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, mix these raw material powders into the composition shown in Table 2, wet mix for 24 hours with a ball mill, dry, and press-mold into green compact at 100 MPa pressure The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to meet ISO standards / Tool bases B-1 to B-6 made of TiCN-based cermet having an insert shape of CNMG120408 were formed.

ついで、上記の工具基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図2に示される蒸着装置に装着し、蒸発源として、種々の成分組成をもったAl−Ti合金を装着し、まず、装置内を排気して1×10−2Pa以下の真空に保持しながら、工具基体を400℃に加熱した後、Arガスを導入して2.0Paとしたのち、工具基体に−1000Vのバイアス電圧を印加することによって、前記工具基体を20分間Arボンバード処理し、ついで、装置内を一旦1×10−3Pa程度の真空にした後、圧力勾配型Arプラズマガンの放電電力を12kW、工具基体に−20Vのバイアス電圧を印加し、窒素ガスを30sccm流しながら、炉内の圧力を0.08Paに保ち、蒸発源にプラズマビームを入射しAl−Ti合金の蒸気を発生させるとともにプラズマビームでイオン化して、工具基体表面に、表3に示される目標組成および目標層厚の2軸配向性を有する改質(Al,Ti)N層を硬質被覆層として蒸着形成することにより、本発明被覆工具としての本発明表面被覆インサート(以下、本発明被覆インサートと云う)1〜16をそれぞれ製造した。 Next, each of the tool bases A-1 to A-10 and B-1 to B-6 was ultrasonically cleaned in acetone and dried, and mounted on the vapor deposition apparatus shown in FIG. As a source, an Al—Ti alloy having various component compositions was mounted, and first the tool base was heated to 400 ° C. while evacuating the apparatus and maintaining a vacuum of 1 × 10 −2 Pa or less. After introducing Ar gas to 2.0 Pa, by applying a bias voltage of −1000 V to the tool base, the tool base is subjected to Ar bombardment for 20 minutes, and then the inside of the apparatus is temporarily 1 × 10 −3 Pa. After making the vacuum to a certain degree, the discharge power of the pressure gradient type Ar plasma gun is 12 kW, the bias voltage of -20 V is applied to the tool base, the nitrogen gas is supplied at 30 sccm, the pressure in the furnace is kept at 0.08 Pa, and evaporation source A plasma beam is incident to generate an Al—Ti alloy vapor and ionize with the plasma beam to modify the surface of the tool substrate with the target composition and target layer thickness biaxial orientation shown in Table 3 (Al, By subjecting the Ti) N layer to vapor deposition as a hard coating layer, surface coating inserts of the present invention (hereinafter referred to as the present invention coating inserts) 1 to 16 as the coated tool of the present invention were produced.

比較の目的で、上記の工具基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図3に示されるアークイオンプレーティング装置に装着し、カソード電極(蒸発源)として、種々の成分組成をもったAl−Ti合金および工具基体表面ボンバード洗浄用金属Tiを装着し、まず、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記工具基体に−800Vの直流バイアス電圧を印加し、かつカソード電極の前記金属Tiとアノード電極との間に100Aの電流を流してアーク放電を発生させて、前記工具基体表面を5分間Tiボンバード処理し、ついで装置内に反応ガスとして窒素ガスを導入して、1〜6Paの範囲内の所定の窒素ガス雰囲気とすると共に、前記工具基体に印加する直流バイアス電圧を−60〜−100Vの範囲内の所定の電圧とし、前記カソード電極であるAl−Ti合金とアノード電極との間に80Aの電流を流してアーク放電を発生させ、もって前記工具基体の表面に、表4に示される目標組成および目標層厚の従来(Al,Ti)N層を硬質被覆層として蒸着形成することにより、従来被覆工具としての従来被覆インサート1〜16をそれぞれ製造した。   For comparison purposes, each of the tool bases A-1 to A-10 and B-1 to B-6 was ultrasonically cleaned in acetone and dried, and then the arc ion plating shown in FIG. Attached to the apparatus, as a cathode electrode (evaporation source), an Al—Ti alloy having various component compositions and a tool substrate surface bombardment cleaning metal Ti were attached. First, the inside of the apparatus was evacuated to 0.5 Pa or less. While maintaining the vacuum, the inside of the apparatus was heated to 500 ° C. with a heater, a DC bias voltage of −800 V was applied to the tool base, and a current of 100 A was applied between the metal Ti of the cathode electrode and the anode electrode. The tool substrate surface is treated with Ti bombardment for 5 minutes, and then nitrogen gas is introduced into the apparatus as a reaction gas to generate a predetermined nitrogen gas within a range of 1 to 6 Pa. In addition to the atmosphere, the DC bias voltage applied to the tool base is set to a predetermined voltage in the range of −60 to −100 V, and a current of 80 A is passed between the Al—Ti alloy as the cathode electrode and the anode electrode. As a conventional coated tool, an arc discharge is generated and a conventional (Al, Ti) N layer having a target composition and a target layer thickness shown in Table 4 is vapor-deposited on the surface of the tool base as a hard coating layer. Conventional coated inserts 1 to 16 were produced.

つぎに、上記本発明被覆インサート1〜10および従来被覆インサート1〜10について、これを工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SNCM439の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 220 m/min.、
切り込み: 3.0 mm、
送り: 0.26 mm/rev.、
切削時間: 3 分、
の条件(切削条件A1という)での合金鋼の乾式断続高速重切削加工試験(通常の切削速度、切り込み及び送りは、それぞれ、150m/min.、1.5mm、0.15mm/rev.)、
被削材:JIS・S45Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度: 250 m/min.、
切り込み: 3.2 mm、
送り: 0.32 mm/rev.、
切削時間: 3 分、
の条件(切削条件A2という)での炭素鋼の乾式断続高速重切削加工試験(通常の切削速度、切り込み及び送りは、それぞれ、180m/min.、1.5mm、0.15mm/rev.)、
被削材:JIS・SUS304の丸棒、
切削速度: 240 m/min.、
切り込み: 2.0 mm、
送り: 0.26 mm/rev.、
切削時間: 8 分、
の条件(切削条件A3という)でのステンレス鋼の乾式連続高速重切削加工試験(通常の切削速度、切り込み及び送りは、それぞれ、180m/min.、1.5mm、0.2mm/rev.)、
を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。
Next, for the above-described coated inserts 1 to 10 and the conventional coated inserts 1 to 10, in the state where this is screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS / SNCM439 round direction bar with 4 equal intervals in the length direction,
Cutting speed: 220 m / min. ,
Cutting depth: 3.0 mm,
Feed: 0.26 mm / rev. ,
Cutting time: 3 minutes,
(Continuous cutting speed, cutting and feeding are 150 m / min., 1.5 mm, and 0.15 mm / rev.), Respectively.
Work material: JIS · S45C lengthwise equal 4 round grooved round bars,
Cutting speed: 250 m / min. ,
Infeed: 3.2 mm,
Feed: 0.32 mm / rev. ,
Cutting time: 3 minutes,
(Continuous cutting speed, cutting and feeding are 180 m / min., 1.5 mm, 0.15 mm / rev., Respectively)
Work material: JIS / SUS304 round bar,
Cutting speed: 240 m / min. ,
Cutting depth: 2.0 mm,
Feed: 0.26 mm / rev. ,
Cutting time: 8 minutes,
(Continuous cutting speed, cutting and feeding are 180 m / min., 1.5 mm, 0.2 mm / rev.), Respectively.
In each cutting test, the flank wear width of the cutting edge was measured.

また、上記本発明被覆インサート11〜16および従来被覆インサート11〜16について、これを工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SNCM439の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 250 m/min.、
切り込み: 2.0 mm、
送り: 0.2 mm/rev.、
切削時間: 3 分、
の条件(切削条件A4という)での合金鋼の乾式断続高速重切削加工試験(通常の切削速度、切り込み及び送りは、それぞれ、200m/min.、1.5mm、0.15mm/rev.)、
被削材:JIS・S45Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度: 300 m/min.、
切り込み: 1.5 mm、
送り: 0.2 mm/rev.、
切削時間: 3 分、
の条件(切削条件A5という)での炭素鋼の乾式断続高速重切削加工試験(通常の切削速度、切り込み及び送りは、それぞれ、250m/min.、1.2mm、0.12mm/rev.)、
被削材:JIS・SUS304の丸棒、
切削速度: 280 m/min.、
切り込み: 2.0 mm、
送り: 0.24 mm/rev.、
切削時間: 8 分、
の条件(切削条件A6という)でのステンレス鋼の乾式連続高速重切削加工試験
(通常の切削速度、切り込み及び送りは、それぞれ、200m/min.、1.5mm、0.18mm/rev.)、
を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。
上記切削加工試験A1〜A6の測定結果を表5に示した。
Moreover, about the said invention covering inserts 11-16 and the conventional covering inserts 11-16, in the state which this was screwed to the front-end | tip part of the tool steel tool bit with a fixing jig,
Work material: JIS / SNCM439 round direction bar with 4 equal intervals in the length direction,
Cutting speed: 250 m / min. ,
Cutting depth: 2.0 mm,
Feed: 0.2 mm / rev. ,
Cutting time: 3 minutes,
(Continuous cutting speed, cutting and feeding are 200 m / min., 1.5 mm, and 0.15 mm / rev.), Respectively.
Work material: JIS · S45C lengthwise equal 4 round grooved round bars,
Cutting speed: 300 m / min. ,
Cutting depth: 1.5 mm,
Feed: 0.2 mm / rev. ,
Cutting time: 3 minutes,
(Continuous cutting speed, cutting and feed are 250 m / min, 1.2 mm, and 0.12 mm / rev.), Respectively,
Work material: JIS / SUS304 round bar,
Cutting speed: 280 m / min. ,
Cutting depth: 2.0 mm,
Feed: 0.24 mm / rev. ,
Cutting time: 8 minutes,
(Continuous cutting speed, cutting and feeding are 200 m / min., 1.5 mm, and 0.18 mm / rev.), Respectively.
In each cutting test, the flank wear width of the cutting edge was measured.
Table 5 shows the measurement results of the cutting tests A1 to A6.

Figure 0005207105
Figure 0005207105

Figure 0005207105
Figure 0005207105

Figure 0005207105
Figure 0005207105

Figure 0005207105
Figure 0005207105

Figure 0005207105
Figure 0005207105

また、原料粉末として、いずれも0.5〜4μmの範囲内の平均粒径を有する立方晶窒化硼素(cBN)粉末、窒化チタン(TiN)粉末、Al粉末、酸化アルミニウム(Al)粉末を用意し、これら原料粉末を表6に示される配合組成に配合し、ボールミルで80時間湿式混合し、乾燥した後、120MPaの圧力で直径:50mm×厚さ:1.5mmの寸法をもった圧粉体にプレス成形し、ついでこの圧粉体を、圧力:1Paの真空雰囲気中、900〜1300℃の範囲内の所定温度に60分間保持の条件で焼結して切刃片用予備焼結体とし、この予備焼結体を、別途用意した、Co:8質量%、WC:残りの組成、並びに直径:50mm×厚さ:2mmの寸法をもったWC基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入し、通常の条件である圧力:5GPa、温度:1200〜1400℃の範囲内の所定温度に保持時間:0.8時間の条件で超高圧焼結し、焼結後上下面をダイヤモンド砥石を用いて研磨し、ワイヤー放電加工装置にて一辺3mmの正三角形状に分割し、さらにCo:5質量%、TaC:5質量%、WC:残りの組成およびCIS規格SNGA120412の形状(厚さ:4.76mm×一辺長さ:12.7mmの正方形)をもったWC基超硬合金製インサート本体のろう付け部(コーナー部)に、質量%で、Cu:26%、Ti:5%、Ni:2.5%、Ag:残りからなる組成を有するAg合金のろう材を用いてろう付けし、所定寸法に外周加工した後、切刃部に幅:0.13mm、角度:25°のホーニング加工を施し、さらに仕上げ研摩を施すことによりISO規格SNGA120412のインサート形状をもった工具基体C1〜C10をそれぞれ製造した。 Further, as raw material powders, cubic boron nitride (cBN) powder, titanium nitride (TiN) powder, Al powder, aluminum oxide (Al 2 O 3 ) powder each having an average particle diameter in the range of 0.5 to 4 μm. These raw material powders were blended in the blending composition shown in Table 6, wet-mixed with a ball mill for 80 hours, dried, and then had a size of diameter: 50 mm × thickness: 1.5 mm at a pressure of 120 MPa. The green compact is press-molded, and then the green compact is sintered in a vacuum atmosphere at a pressure of 1 Pa at a predetermined temperature within the range of 900 to 1300 ° C. for 60 minutes and pre-baked for cutting edge pieces. A WC-based cemented carbide support piece having a size of Co: 8% by mass, WC: remaining composition, and diameter: 50 mm × thickness: 2 mm was prepared as a sintered body. Normal super-high in a superposed state After charging into the pressure sintering machine, sintering at ultra high pressure at a predetermined temperature within the range of pressure: 5 GPa, temperature: 1200-1400 ° C., holding time: 0.8 hours, after sintering The upper and lower surfaces are polished with a diamond grindstone and divided into 3 mm regular triangles with a wire electric discharge machine, and Co: 5% by mass, TaC: 5% by mass, WC: remaining composition and CIS standard SNGA120412 The brazing part (corner part) of the WC-based cemented carbide insert body having a shape (thickness: 4.76 mm × one side length: 12.7 mm square) is mass%, Cu: 26%, Ti : 5%, Ni: 2.5%, Ag: Brazing using a brazing material of an Ag alloy having the remaining composition, and after processing the outer periphery to a predetermined dimension, the width of the cutting edge is 0.13 mm, angle : 25 ° honing is applied. The tool substrate C1~C10 having the insert shape of ISO standard SNGA120412 by performing finish polishing was produced, respectively.

ついで、上記の工具基体C−1〜C−10をアセトン中で超音波洗浄し、乾燥した状態で、図2に示される蒸着装置に装着し、蒸発源として、種々の成分組成をもったAl−Ti合金を装着し、まず、装置内を排気して1×10−2Pa以下の真空に保持しながら、工具基体を400℃に加熱した後、Arガスを導入して2.0Paとしたのち、工具基体に−200Vのバイアス電圧を印加することによって、前記工具基体を20分間Arボンバード処理し、ついで、装置内を一旦1×10−3Pa程度の真空にした後、圧力勾配型Arプラズマガンの放電電力を12kWとし、工具基体に−200Vのバイアス電圧を印加し、蒸発源にプラズマビームを入射しAl−Ti合金の蒸気を発生させるとともにプラズマビームでイオン化して、工具基体表面に、表7に示される目標組成および目標層厚の改質(Al,Ti)N層を硬質被覆層として蒸着形成することにより、本発明被覆工具としての本発明表面被覆cBN基インサート(以下、本発明被覆インサートと云う)21〜30をそれぞれ製造した。 Next, the above tool bases C-1 to C-10 were ultrasonically cleaned in acetone and mounted in the vapor deposition apparatus shown in FIG. 2 in a dried state, and Al having various composition as an evaporation source. -Ti alloy is mounted, and first the tool base is heated to 400 ° C. while evacuating the apparatus and maintaining a vacuum of 1 × 10 −2 Pa or less, and then Ar gas is introduced to 2.0 Pa. After that, by applying a bias voltage of −200 V to the tool base, the tool base is subjected to Ar bombardment for 20 minutes, and then the inside of the apparatus is once evacuated to about 1 × 10 −3 Pa, and then the pressure gradient type Ar The discharge power of the plasma gun is 12 kW, a bias voltage of −200 V is applied to the tool base, a plasma beam is incident on the evaporation source to generate an Al—Ti alloy vapor, and the plasma beam is ionized. The surface-coated cBN-based insert of the present invention as a coated tool of the present invention is formed by vapor-depositing a modified composition (Al, Ti) N layer shown in Table 7 on the surface of the tool substrate as a hard coating layer. 21 to 30 (hereinafter referred to as the present invention coated inserts) were produced.

また、比較の目的で、上記の工具基体C−1〜C−10のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図3に示される通常のアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として、それぞれ表3に示される目標組成に対応した成分組成をもったTi−Al合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、Arガスを導入して、0.7Paの雰囲気とすると共に、前記テーブル上で自転しながら回転する工具基体に−200Vの直流バイアス電圧を印加し、もって工具基体表面をアルゴンイオンによってボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記工具基体に印加するバイアス電圧を−30Vに下げて、前記Ti−Al合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記工具基体A〜Jのそれぞれの表面に、表3に示される目標組成および目標層厚の(Ti,Al)N層からなる硬質被覆層を蒸着形成することにより、従来被覆工具としての従来表面被覆cBN基焼結インサート(以下、従来被覆インサートという)21〜30をそれぞれ製造した。   For comparison purposes, each of the tool bases C-1 to C-10 is ultrasonically cleaned in acetone and dried, and then loaded into the ordinary arc ion plating apparatus shown in FIG. As the cathode electrode (evaporation source), a Ti—Al alloy having a component composition corresponding to the target composition shown in Table 3 is mounted, and the apparatus is first evacuated and kept at a vacuum of 0.1 Pa or less. However, after heating the inside of the apparatus to 500 ° C. with a heater, Ar gas was introduced to create an atmosphere of 0.7 Pa, and a DC bias voltage of −200 V was applied to the rotating tool base while rotating on the table. Then, the surface of the tool base is bombarded with argon ions, and then nitrogen gas is introduced into the apparatus as a reaction gas to form a reaction atmosphere of 3 Pa and applied to the tool base. The bias voltage is reduced to -30V to generate an arc discharge between the cathode electrode and the anode electrode of the Ti-Al alloy, so that the target shown in Table 3 is formed on each surface of the tool bases A to J. Conventional surface-coated cBN-based sintered inserts (hereinafter referred to as conventional coated inserts) 21 to 30 as conventional coated tools are formed by vapor-depositing a hard coating layer composed of a (Ti, Al) N layer having a composition and a target layer thickness. Each was manufactured.

つぎに、上記の各種の被覆インサートを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆インサート21〜30および従来被覆インサート21〜30のうち、本発明被覆インサート21〜25および従来被覆インサート21〜25については、以下に示す切削条件B1〜B3で切削加工試験を行い、また、本発明被覆インサート26〜30および従来被覆インサート26〜30については、同じく以下に示す切削条件C1〜C3で切削加工試験を実施した。
[切削条件B1]
被削材:JIS・ SCr420H(HRC60)の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 250 m/min.、
切り込み: 0.22 mm、
送り: 0.18 mm/rev.、
切削時間: 5 分、
の条件でのクロム鋼の焼入れ材の乾式断続高速重切削加工試験(通常の切削速度、切り込み及び送りは、それぞれ、180m/min.、0.15mm、0.15mm/rev.)、
[切削条件B2]
被削材:JIS・SUJ2の焼入れ材(HRC60)の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 180 m/min.、
切り込み: 0.2 mm、
送り: 0.15 mm/rev.、
切削時間: 4 分、
の条件での軸受鋼の焼入れ材の乾式断続高速重切削加工試験(通常の切削速度、切り込み及び送りは、それぞれ、120m/min.、0.1mm、0.1mm/rev.)、
[切削条件B3]
被削材:JIS・SKD61(HRC61)の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 230 m/min.、
切り込み: 0.16 mm、
送り: 0.2 mm/rev.、
切削時間: 4 分、
の条件でのダイス鋼の焼入れ材の乾式断続高速重切削加工試験(通常の切削速度、切り込み及び送りは、それぞれ、150m/min.、0.12mm、0.12mm/rev.)、
[切削条件C1]
被削材:JIS・SCr420H(HRC60)の丸棒、
切削速度: 250 m/min.、
切り込み: 0.3 mm、
送り: 0.25 mm/rev.、
切削時間: 6 分、
の条件でのクロム鋼の焼入れ材の乾式連続高速重切削加工試験(通常の切削速度、切り込み及び送りは、それぞれ、200m/min.、0.15mm、0.1mm/rev.)、
[切削条件C2]
被削材:JIS・SUJ2の焼入れ材(HRC60)の丸棒、
切削速度: 190 m/min.、
切り込み: 0.3 mm、
送り: 0.26 mm/rev.、
切削時間: 8 分、
の条件での軸受鋼の焼入れ材の乾式連続高速重切削加工試験(通常の切削速度、切り込み及び送りは、それぞれ、120m/min.、0.15mm、0.10mm/rev.)、
[切削条件C3]
被削材:JIS・SKD61(HRC61)の丸棒、
切削速度: 230 m/min.、
切り込み: 0.25 mm、
送り: 0.25 mm/rev.、
切削時間: 6 分、
の条件でのダイス鋼の焼入れ材の乾式連続高速重切削加工試験(通常の切削速度、切り込み及び送りは、それぞれ、150m/min.、0.15mm、0.1mm/rev.)、
を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅(mm)を測定した。この測定結果を表9に示した。
Next, of the various coated inserts described above, the present coated inserts 21 to 30 and the conventional coated inserts 21 to 30 of the present invention with the fixing tool fixed to the tip of the tool steel tool. For the inventive coated inserts 21 to 25 and the conventional coated inserts 21 to 25, a cutting test is performed under the following cutting conditions B1 to B3, and for the present coated inserts 26 to 30 and the conventional coated inserts 26 to 30, Similarly, a cutting test was performed under the following cutting conditions C1 to C3.
[Cutting conditions B1]
Work material: JIS · SCr420H (HRC60) lengthwise equidistant four round grooved round bars,
Cutting speed: 250 m / min. ,
Cutting depth: 0.22 mm,
Feed: 0.18 mm / rev. ,
Cutting time: 5 minutes,
Dry interrupted high-speed heavy cutting test of chrome steel quenching material under the conditions of (normal cutting speed, cutting and feeding are 180 m / min., 0.15 mm, 0.15 mm / rev., Respectively),
[Cutting conditions B2]
Work material: JIS / SUJ2 quenching material (HRC60), 4 longitudinally spaced round bars with equal intervals in the length direction,
Cutting speed: 180 m / min. ,
Cutting depth: 0.2 mm,
Feed: 0.15 mm / rev. ,
Cutting time: 4 minutes,
Dry interrupted high-speed heavy cutting test of the quenching material of bearing steel under the conditions of (normal cutting speed, cutting and feeding are 120 m / min, 0.1 mm, 0.1 mm / rev., Respectively),
[Cutting conditions B3]
Work material: JIS · SKD61 (HRC61) lengthwise equidistant four round grooved round bars,
Cutting speed: 230 m / min. ,
Cutting depth: 0.16 mm,
Feed: 0.2 mm / rev. ,
Cutting time: 4 minutes,
Dry interrupted high speed heavy cutting test of die steel hardened material under the following conditions (normal cutting speed, cutting and feeding are 150 m / min, 0.12 mm, 0.12 mm / rev., Respectively),
[Cutting conditions C1]
Work material: JIS / SCr420H (HRC60) round bar,
Cutting speed: 250 m / min. ,
Cutting depth: 0.3 mm,
Feed: 0.25 mm / rev. ,
Cutting time: 6 minutes,
Dry continuous high-speed heavy cutting test of chrome steel quenching material under the conditions of (normal cutting speed, cutting and feeding are 200 m / min, 0.15 mm, 0.1 mm / rev., Respectively),
[Cutting conditions C2]
Work material: JIS / SUJ2 hardened material (HRC60) round bar,
Cutting speed: 190 m / min. ,
Cutting depth: 0.3 mm,
Feed: 0.26 mm / rev. ,
Cutting time: 8 minutes,
Dry continuous high speed heavy cutting test of hardened material of bearing steel under the conditions of (normal cutting speed, cutting and feeding are 120 m / min, 0.15 mm, 0.10 mm / rev., Respectively),
[Cutting conditions C3]
Work material: JIS SKD61 (HRC61) round bar,
Cutting speed: 230 m / min. ,
Cutting depth: 0.25 mm,
Feed: 0.25 mm / rev. ,
Cutting time: 6 minutes,
A dry continuous high speed heavy cutting test of a die steel hardened material under the conditions of (normal cutting speed, cutting and feeding are 150 m / min, 0.15 mm, 0.1 mm / rev., Respectively),
In each cutting test, the flank wear width (mm) of the cutting edge was measured. The measurement results are shown in Table 9.

Figure 0005207105
Figure 0005207105

Figure 0005207105
Figure 0005207105

Figure 0005207105
Figure 0005207105

Figure 0005207105
Figure 0005207105

表5、9に示される結果から、本発明被覆インサート1〜16、21〜30は、いずれも硬質被覆層がすぐれた耐欠損性を備えているので、高速重切削加工に用いられた場合であっても硬質被覆層に欠損の発生はなく、長期に亘って、すぐれた耐摩耗性を発揮するのに対して、硬質被覆層が従来(Ti,Al)N層からなる従来被覆インサート1〜16、21〜30は、硬質被覆層に欠損が発生し、短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 5 and 9, according to the present invention coated inserts 1-16, 21-30, all of them have a chipping resistance with excellent hard coating layers, so when used for high-speed heavy cutting. Even if there is no defect in the hard coating layer, it exhibits excellent wear resistance over a long period of time, whereas the hard coating layer is made of a conventional (Ti, Al) N layer. It is apparent that Nos. 16 and 21 to 30 have defects in the hard coating layer and reach the service life in a short time.

原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表10に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表6に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角:30度の4枚刃スクエアの形状をもったエンドミル用超硬基体D−1〜D−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [50/50 by mass ratio] powder, and 1.8 μm Co Prepare powders, mix each of these raw material powders with the composition shown in Table 10, add wax, ball mill mix in acetone for 24 hours, dry under reduced pressure, and then press various pressures of a predetermined shape at a pressure of 100 MPa. The powder compact is press-molded, and these green compacts are heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a heating rate of 7 ° C./min in a vacuum atmosphere of 6 Pa, and this temperature is maintained for 1 hour. After holding, sintering under the condition of furnace cooling, the diameter is 8 m, 13 mm, and 26 mm round bar sintered bodies for forming a carbide substrate were formed, and further, from the above three kinds of round bar sintered bodies, by grinding, in combinations shown in Table 6, Carbide substrate for end mill D- having a shape of a 4-blade square with a diameter x length of the cutting edge of 6 mm x 13 mm, 10 mm x 22 mm, and 20 mm x 45 mm, respectively, and a twist angle of 30 degrees. 1 to D-8 were produced.

ついで、これらのエンドミル用超硬基体D−1〜D−8および試験片を、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される蒸着装置に装入し、上記実施例1の本発明被覆インサート1〜16における改質(Al,Ti)N層の形成条件と同じ条件で、表11に示される目標組成および目標層厚の改質(Al,Ti)N層を硬質被覆層として蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬合金製エンドミル(以下、本発明被覆エンドミルと云う)1〜8をそれぞれ製造した。   Then, these end mill carbide substrates D-1 to D-8 and the test pieces were ultrasonically cleaned in acetone and dried, and charged in the vapor deposition apparatus shown in FIG. 1. The modified (Al, Ti) N layer having the target composition and the target layer thickness shown in Table 11 is hard under the same conditions as the conditions for forming the modified (Al, Ti) N layer in the present invention coated inserts 1-16. The surface-coated cemented carbide end mills (hereinafter referred to as the present invention-coated end mills) 1 to 8 as the present invention-coated tools were produced by vapor deposition as the coating layer.

また、比較の目的で、上記実施例1の従来被覆インサート1〜16における従来(Al,Ti)N層の形成条件と同じ条件で、従来(Al,Ti)N層を硬質被覆層として蒸着形成することにより、同じく表11に示される通りの従来被覆工具としての従来表面被覆超硬合金製エンドミル(以下、従来被覆エンドミルと云う)1〜8をそれぞれ製造した。   For comparison purposes, the conventional (Al, Ti) N layer is deposited as a hard coating layer under the same conditions as the conventional (Al, Ti) N layer formation conditions in the conventional coated inserts 1 to 16 of Example 1 above. Thus, conventional surface-coated cemented carbide end mills (hereinafter referred to as conventional coated end mills) 1 to 8 as conventional coated tools as shown in Table 11 were produced.

つぎに、上記本発明被覆エンドミル1〜8および従来被覆エンドミル1〜8のうち、
本発明被覆エンドミル1〜3および従来被覆エンドミル1〜3については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SKD61の板材、
切削速度: 122 m/min.、
溝深さ(切り込み): 2.5 mm、
テーブル送り: 1360 mm/min.、
の条件での工具鋼の乾式高速高送り溝切削加工試験(通常の切削速度、切り込みおよび送りは、それぞれ、30m/min.、1.2mm、150mm/min.)、
本発明被覆エンドミル4〜6および従来被覆エンドミル4〜6については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS304の板材、
切削速度: 110 m/min.、
溝深さ(切り込み): 7.5 mm、
テーブル送り: 1000 mm/min.、
の条件でのステンレス鋼の乾式高速高送り溝切削加工試験(通常の切削速度、切り込みおよび送りは、それぞれ、60m/min.、5.0mm、300mm/min.)、
本発明被覆エンドミル7,8および従来被覆エンドミル7,8については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SNCM439の板材、
切削速度: 200 m/min.、
溝深さ(切り込み): 12 mm、
テーブル送り: 1200 mm/min.、
の条件での合金鋼(生材)の乾式高速高送り溝切削加工試験(通常の切削速度、切り込みおよび送りは、それぞれ、100m/min.、12mm、540mm/min.)、
をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表11にそれぞれ示した。
Next, of the present invention coated end mills 1-8 and the conventional coated end mills 1-8,
About this invention coated end mills 1-3 and conventional coated end mills 1-3,
Work material: Plane dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SKD61 plate material,
Cutting speed: 122 m / min. ,
Groove depth (cut): 2.5 mm,
Table feed: 1360 mm / min. ,
A dry high-speed high-feed groove cutting test of tool steel under the conditions of (normal cutting speed, cutting and feed are 30 m / min, 1.2 mm, and 150 mm / min, respectively),
About this invention coated end mills 4-6 and conventional coated end mills 4-6,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / SUS304 plate,
Cutting speed: 110 m / min. ,
Groove depth (cut): 7.5 mm,
Table feed: 1000 mm / min. ,
Stainless steel dry high-speed high-feed groove cutting test (normal cutting speed, cutting and feed are 60 m / min, 5.0 mm, and 300 mm / min, respectively),
For the coated end mills 7 and 8 of the present invention and the conventional coated end mills 7 and 8,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / SNCM439 plate material,
Cutting speed: 200 m / min. ,
Groove depth (cut): 12 mm,
Table feed: 1200 mm / min. ,
Dry high-speed high-feed groove cutting test of alloy steel (raw material) under the conditions of (normal cutting speed, cutting and feed are 100 m / min., 12 mm, and 540 mm / min., Respectively)
In each groove cutting test, the cutting groove length was measured until the flank wear width of the outer peripheral edge of the cutting edge reached 0.1 mm, which is a guide for the service life. The measurement results are shown in Table 11, respectively.

Figure 0005207105
Figure 0005207105

Figure 0005207105
Figure 0005207105

上記の実施例3で製造した直径が8mm(エンドミル用超硬基体D−1〜D−3)、13mm(エンドミル用超硬基体D−4〜D−6)、および26mm(エンドミル用超硬基体D−7、D−8)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(ドリル用超硬基体E−1〜E−3)、8mm×22mm(ドリル用超硬基体E−4〜E−6)、および16mm×45mm(ドリル用超硬基体E−7、E−8)の寸法、並びにいずれもねじれ角:30度の2枚刃形状をもったドリル用超硬基体E−1〜E−8をそれぞれ製造した。   The diameters manufactured in Example 3 above were 8 mm (carbide substrates D-1 to D-3 for end mills), 13 mm (carbide substrates D-4 to D-6 for end mills), and 26 mm (carbide substrates for end mills). D-7 and D-8) were used, and from these three types of round bar sintered bodies, the diameter x length of the groove forming portion was 4 mm x 13 mm (by grinding). Drilling carbide substrates E-1 to E-3), 8 mm × 22 mm (drilling carbide substrates E-4 to E-6), and 16 mm × 45 mm (drilling carbide substrates E-7 and E-8) And the carbide substrates E-1 to E-8 for drills each having a two-blade shape with a twist angle of 30 degrees were manufactured.

ついで、これらのドリル用超硬基体E−1〜E−8の切刃に、ホーニングを施し、上記の試験片と共に、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される蒸着装置に装入し、上記実施例1の本発明被覆インサート1〜16における改質(Al,Ti)N層の形成条件と同じ条件で、かつ表12に示される目標組成および目標層厚の改質(Al,Ti)N層を硬質被覆層として蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬合金製ドリル(以下、本発明被覆ドリルと云う)1〜8をそれぞれ製造した。   Next, honing is performed on the cutting blades of these carbide substrates E-1 to E-8 for drilling, and ultrasonic cleaning is performed in acetone together with the above test pieces, and the state is also shown in FIG. The vapor deposition apparatus was charged, and the target composition and target layer thickness shown in Table 12 were the same as the conditions for forming the modified (Al, Ti) N layer in the inventive coated inserts 1 to 16 of Example 1 above. By forming the modified (Al, Ti) N layer as a hard coating layer, drills made of the surface coated cemented carbide of the present invention (hereinafter referred to as the present coated drill) 1 to 8 as the coated tool of the present invention are respectively provided. Manufactured.

また、比較の目的で、上記実施例1の従来被覆インサート1〜16における従来(Al,Ti)N層の形成条件と同じ条件で、従来(Al,Ti)N層を硬質被覆層として蒸着形成することにより、表12に示される通りの従来被覆工具としての従来表面被覆超硬合金製ドリル(以下、従来被覆ドリルと云う)1〜8をそれぞれ製造した。   For comparison purposes, the conventional (Al, Ti) N layer is deposited as a hard coating layer under the same conditions as the conventional (Al, Ti) N layer formation conditions in the conventional coated inserts 1 to 16 of Example 1 above. Thus, conventional surface-coated cemented carbide drills (hereinafter referred to as conventional coated drills) 1 to 8 as conventional coated tools as shown in Table 12 were produced.

つぎに、上記本発明被覆ドリル1〜8および従来被覆ドリル1〜8のうち、本発明被覆ドリル1〜3および従来被覆ドリル1〜3については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SKD61の板材、
切削速度: 80 m/min.、
送り: 0.26 mm/rev.、
穴深さ: 15 mm
の条件での工具鋼の湿式高速高送り穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、40m/min.、0.12mm/rev.)、
本発明被覆ドリル4〜6および従来被覆ドリル4〜6については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・FCD400の板材、
切削速度: 120 m/min.、
送り: 0.35 mm/rev.、
穴深さ: 20 mm
の条件でのダクタイル鋳鉄の湿式高速高送り穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、70m/min.、0.25mm/rev.)、
本発明被覆ドリル7,8および従来被覆ドリル7,8については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・S50Cの板材、
切削速度: 150 m/min.、
送り: 0.65 mm/rev、
穴深さ: 40 mm
の条件での炭素鋼の湿式高速高送り穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、70m/min.、0.25mm/rev.)、
をそれぞれ行い、いずれの湿式穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表12に示した。
Next, of the present invention coated drills 1 to 8 and the conventional coated drills 1 to 8, the present invention coated drills 1 to 3 and the conventional coated drills 1 to 3 are:
Work material: Plane dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SKD61 plate material,
Cutting speed: 80 m / min. ,
Feed: 0.26 mm / rev. ,
Hole depth: 15 mm
Wet high-speed high-feed drilling test of tool steel under the following conditions (normal cutting speed and feed are 40 m / min. And 0.12 mm / rev., Respectively),
About this invention coated drill 4-6 and conventional coated drills 4-6,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / FCD400 plate material,
Cutting speed: 120 m / min. ,
Feed: 0.35 mm / rev. ,
Hole depth: 20 mm
Wet high-speed high-feed drilling test of ductile cast iron under the following conditions (normal cutting speed and feed are 70 m / min. And 0.25 mm / rev., Respectively),
About this invention covering drills 7 and 8 and conventional covering drills 7 and 8,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / S50C plate material,
Cutting speed: 150 m / min. ,
Feed: 0.65 mm / rev,
Hole depth: 40 mm
Wet high-speed high-feed drilling test of carbon steel under the following conditions (normal cutting speed and feed are 70 m / min. And 0.25 mm / rev., Respectively),
In each wet drilling cutting test (using water-soluble cutting oil), the number of drilling processes until the flank wear width of the tip cutting edge surface reached 0.3 mm was measured. The measurement results are shown in Table 12.

Figure 0005207105
Figure 0005207105

この結果得られた本発明被覆工具としての本発明被覆インサート1〜16、21〜30、本発明被覆エンドミル1〜8、および本発明被覆ドリル1〜8の改質(Al,Ti)N層、並びに従来被覆工具としての従来被覆インサート1〜16、21〜30、従来被覆エンドミル1〜8、および従来被覆ドリル1〜8の従来(Al,Ti)N層の組成をオージェ分光分析装置を用いて測定したところ、それぞれ目標組成と実質的に同じ組成を示した。
また、これらの本発明被覆工具および従来被覆工具の改質(Al,Ti)N層および従来(Al,Ti)N層の厚さを、走査型電子顕微鏡を用いて断面測定したところ、いずれも目標値と実質的に同じ平均層厚(5点測定の平均値)を示した。
The present invention coated inserts 1-16, 21-30, the present coated end mills 1-8, and the modified (Al, Ti) N layers of the present coated drills 1-8 as the present coated tools obtained as a result, In addition, the composition of the conventional (Al, Ti) N layers of the conventional coated inserts 1 to 16, 21 to 30, the conventional coated end mills 1 to 8 and the conventional coated drills 1 to 8 as a conventional coated tool using an Auger spectroscopic analyzer. When measured, each showed substantially the same composition as the target composition.
Further, when the thicknesses of the modified (Al, Ti) N layer and the conventional (Al, Ti) N layer of the present coated tool and the conventional coated tool were measured with a scanning electron microscope, both were measured. The average layer thickness (average value of 5-point measurement) substantially the same as the target value was shown.

さらに、上記の本発明被覆工具の改質(Al,Ti)N層と従来被覆工具の従来(Al,Ti)N層について、上記の両(Al,Ti)N層の表面を研磨面とした状態で、電子線後方散乱回折装置(EBSD)を用いて個々の結晶粒の結晶方位を解析した(すなわち、30×50μmの領域を、0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜55度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより、傾斜角度数分布グラフを作成し、また、同様の領域において、すべての結晶粒界について、それを構成する隣り合う結晶粒のなす角を測定し、該なす角とそれぞれの割合を示すグラフを作成したところ、前記従来(Al,Ti)N層は、表面研磨面の法線に対する結晶粒の結晶方位<111>がなす傾斜角の分布は、法線方向に対して0〜15度の範囲内の傾斜角区分にピークを有することがあったとしても、結晶粒界の角度分布は小角粒界(0°<θ≦15°)の割合が10%程度と小さい(図5)のに対して、前記(a)の改質(Al,Ti)N層の結晶方位<111>の測定傾斜角の分布は、図4に例示される通り、法線方向に対して0〜15度の範囲内の傾斜角区分に結晶方位<111>が存在する結晶粒の面積割合が結晶粒全面積の50%以上である結晶配向を示し、さらに、結晶粒界の角度分布において、0°<θ≦15°の割合が全粒界の50%以上である結晶配向を示し(図4)、改質(Al,Ti)N層は上記のとおりの結晶配列を有するものであった。   Furthermore, with respect to the modified (Al, Ti) N layer of the above-described coated tool of the present invention and the conventional (Al, Ti) N layer of the conventional coated tool, the surfaces of both (Al, Ti) N layers described above were polished surfaces. In the state, the crystal orientation of each crystal grain was analyzed using an electron beam backscatter diffractometer (EBSD) (i.e., the method of the surface polished surface in a 30 × 50 μm region at an interval of 0.1 μm / step). The inclination angle formed by the normal of the {111} plane, which is the crystal plane of the crystal grain, is measured with respect to the line. Based on the measurement result, the inclination angle is within the range of 0 to 55 degrees. A certain tilt angle is divided into pitches of 0.25 degrees and the frequency existing in each zone is totaled to create a tilt angle number distribution graph. In the same region, all crystal grains The angle between adjacent grains that make up the boundary Measurement and creation of a graph showing the angles formed and the respective ratios show that the conventional (Al, Ti) N layer has an inclination angle distribution formed by the crystal orientation <111> of the crystal grains with respect to the normal of the surface polished surface. Even if there is a peak in the tilt angle section within the range of 0 to 15 degrees with respect to the normal direction, the angle distribution of the grain boundaries is small-angle grain boundaries (0 ° <θ ≦ 15 °). The distribution of the measured tilt angle of the crystal orientation <111> of the modified (Al, Ti) N layer of (a) is illustrated in FIG. 4 while the ratio is as small as about 10% (FIG. 5). As shown, the crystal orientation in which the area ratio of the crystal grains having the crystal orientation <111> in the tilt angle section within the range of 0 to 15 degrees with respect to the normal direction is 50% or more of the total area of the crystal grains, In the angular distribution of crystal grain boundaries, a crystal orientation in which the ratio of 0 ° <θ ≦ 15 ° is 50% or more of all grain boundaries. The modified (Al, Ti) N layer had a crystal arrangement as described above.

図4に、本発明被覆工具3の改質(Al,Ti)N層の表面研磨面の法線方向に対する結晶方位<111>の測定傾斜角分布と、結晶粒界の角度分布を示す。
また、図5には、従来被覆工具2の従来(Al,Ti)N層の結晶粒界の角度分布を示す。
上記図4と図5との比較からも明らかなように、改質(Al,Ti)N層では(111)面の高配向性と小角粒界比率の高い結晶組織を示すのに対して、従来(Al,Ti)N層では、結晶粒界性格において、特段の特徴あるものとなっていない結晶組織を有していることが明らかである。
FIG. 4 shows the measured tilt angle distribution of the crystal orientation <111> with respect to the normal direction of the surface polished surface of the modified (Al, Ti) N layer of the coated tool 3 of the present invention, and the angular distribution of the crystal grain boundaries.
FIG. 5 shows the angular distribution of the crystal grain boundaries of the conventional (Al, Ti) N layer of the conventional coated tool 2.
As is clear from the comparison between FIG. 4 and FIG. 5, the modified (Al, Ti) N layer shows a crystal structure with a high (111) orientation and a high small-angle grain boundary ratio, It is apparent that the conventional (Al, Ti) N layer has a crystal structure that does not have a particular characteristic in the grain boundary character.

表3、4、7、8、11、12に示される結果から、本発明被覆工具は、いずれも硬質被覆層を構成する改質(Al,Ti)N層が(111)面高配向かつ小角粒界比率高比率な結晶組織を示し、これによりすぐれた耐欠損性を具備するようになることから、上記各種の高速重切削加工試験で、すぐれた耐摩耗性を示すのに対して、従来被覆工具においては、硬質被覆層の小角粒界の割合が低く、その結果として耐欠損性の向上が見られないことから、高熱発生を伴うとともに高切り込み、高送りなど大きな機械的負荷がかかる高速重切削加工では、比較的短時間で欠損を発生し使用寿命に至ることが明らかである。   From the results shown in Tables 3, 4, 7, 8, 11, and 12, all of the coated tools of the present invention have a (111) plane highly oriented and small angle in the modified (Al, Ti) N layer constituting the hard coating layer. It shows a crystal structure with a high grain boundary ratio and thereby has excellent fracture resistance, so in the above various high-speed heavy cutting processing tests, it exhibits excellent wear resistance, whereas In coated tools, the ratio of small-angle grain boundaries in the hard coating layer is low, and as a result no improvement in fracture resistance is observed, resulting in high heat generation and high mechanical load such as high cutting and high feed. It is clear that in heavy cutting, defects are generated in a relatively short time and the service life is reached.

上述のように、この発明の被覆工具は、各種鋼や鋳鉄などの連続切削や断続切削ですぐれ工具特性を示すのは勿論のことであり、さらに、高熱発生を伴い、かつ、高切り込み、高送りなど切刃に大きな機械的負荷がかかる高速重切削加工条件であっても、改質(Al,Ti)N層からなる硬質被覆層がすぐれた耐欠損性を備えるため、長期に亘ってすぐれた切削性能を発揮し、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化の要求に十分満足に対応できるものである。   As described above, the coated tool of the present invention naturally exhibits excellent tool characteristics in continuous cutting and intermittent cutting of various steels and cast irons, and is accompanied by high heat generation, high cutting depth, Even under high-speed heavy cutting conditions where a large mechanical load is applied to the cutting edge, such as feeding, the hard coating layer made of the modified (Al, Ti) N layer has excellent fracture resistance, so it is excellent over a long period of time. The cutting performance can be fully demonstrated, and it is possible to satisfactorily meet the demands for the FA of the cutting processing device, the labor saving and energy saving of the cutting processing, and the cost reduction.

硬質被覆層を構成する各種(Al,Ti)N層における結晶粒の結晶面である{111}面の法線が表面研磨面の法線に対する傾斜角の測定範囲を示す概略説明図である。It is a schematic explanatory drawing which shows the measurement range of the inclination angle with respect to the normal line of the surface polished surface, where the normal line of the {111} plane which is the crystal plane of the crystal grains in the various (Al, Ti) N layers constituting the hard coating layer. 本発明被覆工具の硬質被覆層を構成する得意な結晶配列を有する改質(Al,Ti)N層の蒸着形成に用いたプラズマを利用したイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of the ion plating apparatus using the plasma used for vapor deposition formation of the modification | reformation (Al, Ti) N layer which has the favorable crystal arrangement which comprises the hard coating layer of this invention coating tool. 従来被覆工具の硬質被覆層を構成する従来(Al,Ti)N層の蒸着形成に用いたアークイオンプレーティング(AIP)装置の概略説明図である。It is a schematic explanatory drawing of the arc ion plating (AIP) apparatus used for vapor deposition formation of the conventional (Al, Ti) N layer which comprises the hard coating layer of the conventional coating tool. 本発明被覆インサート1の硬質被覆層を構成する改質(Al,Ti)N層をEBSDで測定し、表面研磨面の法線方向に対する結晶粒の結晶方位<111>がなす測定傾斜角と、結晶粒界の角度分布グラフである。The modified (Al, Ti) N layer constituting the hard coating layer of the coated insert 1 of the present invention is measured by EBSD, and the measurement inclination angle formed by the crystal orientation <111> of the crystal grains with respect to the normal direction of the surface polished surface; It is an angle distribution graph of a grain boundary. 従来被覆インサート1の硬質被覆層を構成する従来(Al,Ti)N層をEBSDで測定し、表面研磨面の法線方向に対する結晶粒の結晶方位<111>がなす測定傾斜角と、結晶粒界の角度分布グラフである。The conventional (Al, Ti) N layer constituting the hard coating layer of the conventional coated insert 1 is measured by EBSD, and the measured inclination angle formed by the crystal orientation <111> of the crystal grain with respect to the normal direction of the surface polished surface, and the crystal grain It is an angle distribution graph of a field.

Claims (1)

超硬合金、サーメットあるいは立方晶窒化ほう素基超高圧焼結体からなる切削工具基体の表面に、
組成式:(Al1−X Ti)N(ただし、原子比で、Xは0.40〜0.60)
を満足し、平均層厚1〜10μmのAlとTiの複合窒化物層を蒸着形成した表面被覆切削工具において、
上記AlとTiの複合窒化物層について、電子線後方散乱回折装置を用いて個々の結晶粒の結晶方位を解析した場合、
(a)表面研磨面の法線方向に対する前記結晶粒の結晶方位<111>がなす傾斜角を測定し、前記測定傾斜角のうち、法線方向に対して0〜55度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計したとき、0〜15度の範囲内の傾斜角区分に結晶方位<111>が存在する結晶粒の面積割合が結晶粒全面積の50%以上である結晶配向を示し、
(b)結晶粒界を構成する隣り合う結晶粒同士のなす角を測定した場合、前記なす角が0度を超え15度以下である小角粒界の割合が全粒界の50%以上を示し、
上記(a)、(b)を同時に満たすAlとTiの複合窒化物層からなる硬質被覆層を蒸着形成したことを特徴とする高速重切削加工で硬質被覆層がすぐれた耐欠損性を発揮する表面被覆切削工具。
On the surface of the cutting tool base made of cemented carbide, cermet or cubic boron nitride based ultra high pressure sintered body,
Composition formula: (Al 1-X Ti X ) N (wherein X is 0.40 to 0.60 in atomic ratio)
In a surface-coated cutting tool in which a composite nitride layer of Al and Ti with an average layer thickness of 1 to 10 μm is formed by vapor deposition,
For the Al and Ti composite nitride layer, when analyzing the crystal orientation of individual crystal grains using an electron beam backscattering diffractometer,
(A) The inclination angle formed by the crystal orientation <111> of the crystal grains with respect to the normal direction of the surface-polished surface is measured, and the measurement inclination angle is in the range of 0 to 55 degrees with respect to the normal direction. When the measured tilt angles are divided into pitches of 0.25 degrees and the frequencies existing in each section are tabulated, the crystal grains having the crystal orientation <111> exist in the tilt angle sections within the range of 0 to 15 degrees. The crystal orientation in which the area ratio is 50% or more of the total area of the crystal grains,
(B) When the angle formed by adjacent crystal grains constituting the crystal grain boundary is measured, the ratio of the small-angle grain boundary in which the angle formed is more than 0 degree and not more than 15 degrees indicates 50% or more of all the grain boundaries. ,
The hard coating layer exhibits excellent fracture resistance in high-speed heavy cutting processing, characterized by vapor-depositing a hard coating layer composed of a composite nitride layer of Al and Ti that simultaneously satisfies the above (a) and (b). Surface coated cutting tool.
JP2007107494A 2007-04-16 2007-04-16 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer Expired - Fee Related JP5207105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007107494A JP5207105B2 (en) 2007-04-16 2007-04-16 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007107494A JP5207105B2 (en) 2007-04-16 2007-04-16 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer

Publications (2)

Publication Number Publication Date
JP2008264890A JP2008264890A (en) 2008-11-06
JP5207105B2 true JP5207105B2 (en) 2013-06-12

Family

ID=40045127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007107494A Expired - Fee Related JP5207105B2 (en) 2007-04-16 2007-04-16 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer

Country Status (1)

Country Link
JP (1) JP5207105B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101353453B1 (en) * 2011-12-28 2014-01-21 재단법인 포항산업과학연구원 Hardness coating layer and method for manufacturing the same
JP5939508B2 (en) * 2012-07-25 2016-06-22 三菱マテリアル株式会社 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6394898B2 (en) * 2014-01-31 2018-09-26 三菱マテリアル株式会社 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
CN106604796B (en) * 2014-09-03 2018-12-04 三菱综合材料株式会社 Surface-coated cutting tool and its manufacturing method
KR20240005993A (en) * 2015-07-27 2024-01-12 발터 악티엔게젤샤프트 TOOL WITH TiAlN COATING
TWI640422B (en) * 2016-02-09 2018-11-11 Jx金屬股份有限公司 Laminate for printed wiring board, manufacturing method of printed wiring board, and manufacturing method of electronic equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4725773B2 (en) * 2004-12-27 2011-07-13 三菱マテリアル株式会社 Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in intermittent heavy cutting
JP4725774B2 (en) * 2004-12-27 2011-07-13 三菱マテリアル株式会社 Cutting tool made of surface-coated cubic boron nitride based sintered material whose hard coating layer exhibits excellent chipping resistance in intermittent heavy cutting of high hardness steel
JP4747268B2 (en) * 2005-05-25 2011-08-17 三菱マテリアル株式会社 Surface coated cemented carbide cutting tool with high temperature strength with excellent hard coating layer

Also Published As

Publication number Publication date
JP2008264890A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
JP5099586B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5036338B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5035956B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5287125B2 (en) A surface-coated cutting tool with a hard coating layer that provides excellent fracture resistance and wear resistance
JP5207109B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2010094744A (en) Surface-coated cutting tool with hard coating layer exhibiting excellent wear resistance
JP5207105B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5182501B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2009090395A (en) Surface-coated cutting tool having hard coated layer exhibiting excellent chipping resistance in heavy cutting
JP5239292B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5287123B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5287126B2 (en) A surface-coated cutting tool with a hard coating layer that provides excellent fracture resistance and wear resistance
JP5287124B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2009220239A (en) Surface coated cutting tool having hard coating layer exerting superior chipping resistance
JP2009214196A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent resistance to defect
JP5309733B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5239392B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5239296B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5099587B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2009090396A (en) Surface-coated cutting tool having hard coated layer exhibiting excellent chipping resistance in heavy cutting
JP5240498B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5168552B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5287019B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5239324B2 (en) Surface coated cutting tool with excellent chipping resistance with hard coating layer in heavy cutting
JP5207110B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5207105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees