JP5233568B2 - Aluminum alloy plate excellent in heat resistance and formability and manufacturing method thereof - Google Patents

Aluminum alloy plate excellent in heat resistance and formability and manufacturing method thereof Download PDF

Info

Publication number
JP5233568B2
JP5233568B2 JP2008265657A JP2008265657A JP5233568B2 JP 5233568 B2 JP5233568 B2 JP 5233568B2 JP 2008265657 A JP2008265657 A JP 2008265657A JP 2008265657 A JP2008265657 A JP 2008265657A JP 5233568 B2 JP5233568 B2 JP 5233568B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
annealing
slab
heat resistance
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008265657A
Other languages
Japanese (ja)
Other versions
JP2010095739A (en
Inventor
丕植 趙
敏也 穴見
智将 平山
清美 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2008265657A priority Critical patent/JP5233568B2/en
Publication of JP2010095739A publication Critical patent/JP2010095739A/en
Application granted granted Critical
Publication of JP5233568B2 publication Critical patent/JP5233568B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Continuous Casting (AREA)
  • Metal Rolling (AREA)

Description

本発明は、耐熱性(高温強度)および成形性に優れたアルミニウム合金板およびその製造方法に関する。   The present invention relates to an aluminum alloy plate excellent in heat resistance (high temperature strength) and formability and a method for producing the same.

Al−Mn−Mg系アルミニウム合金板は、成形性および耐食性に優れ、塗装焼付け後の耐力の低下が少ないという性質を有するため、アルミニウム缶、電気・機械機器など成形加工用の板として広く用いられてきた。   Al-Mn-Mg-based aluminum alloy plates are widely used as plates for molding such as aluminum cans and electrical / mechanical equipment because they have excellent formability and corrosion resistance, and have little property of lowering the proof stress after baking. I came.

成形性に関して、特許文献1では、Al−Mn−Mg系アルミニウム合金板の製造条件、特に熱間圧延の条件、およびその後の焼鈍条件を適切に設定し、最終板におけるMn固溶量0.16%を超え、DI成形性に優れるとともに、DI成形、塗装焼付処理後の缶胴縁部の成形性にも優れたアルミニウム合金板が提唱されている。   Regarding the formability, in Patent Document 1, the production conditions of the Al—Mn—Mg-based aluminum alloy sheet, particularly the conditions for hot rolling, and the subsequent annealing conditions are appropriately set, and the Mn solid solution amount in the final sheet is 0.16. An aluminum alloy plate that is excellent in DI formability and excellent in formability of the can body edge after DI molding and paint baking treatment has been proposed.

具体的には、Al−Mn−Mg系合金をDC鋳造法で鋳造し、530〜600℃で均質化処理、さらに熱間圧延の終了温度を250〜320℃、上がり板厚2.5mmを超え3.5mm以下として熱間圧延を行ない、第1段焼鈍を加熱速度100℃/hr以下、330〜400℃×1〜10時間で行ない、続いて第2段焼鈍を450〜600℃×10分以内行ない、その後85%以上の冷間圧延を施して、Mn固溶量0.16%を超えるアルミニウム合金板を得るものである。   Specifically, an Al—Mn—Mg based alloy is cast by a DC casting method, homogenized at 530 to 600 ° C., the end temperature of hot rolling is 250 to 320 ° C., and the plate thickness exceeds 2.5 mm. Hot rolling is performed at 3.5 mm or less, the first stage annealing is performed at a heating rate of 100 ° C./hr or less, 330 to 400 ° C. × 1 to 10 hours, and then the second stage annealing is performed to 450 to 600 ° C. × 10 minutes. Then, cold rolling of 85% or more is performed to obtain an aluminum alloy plate having an Mn solid solution amount exceeding 0.16%.

しかしながら、更に高い耐熱性(高温強度)および成形性を備え、より安価なアルミニウム合金板が求められていた。   However, there has been a demand for a cheaper aluminum alloy plate having higher heat resistance (high temperature strength) and formability.

特許文献2では、質量%で、Mg:2〜5%、Fe:0.05を超え1.5%以下、Mn:0.05〜1.5%および結晶粒微細化剤を含有し、残部Alおよび不可避的不純物からなり、不可避的不純物のうちSi:0.20%未満とし、Fe+Mn>0.3%であり、Feの固溶量が50ppm以上で、円相当径で1〜6μmの金属間化合物が5000個/mm以上存在し、しかも再結晶粒径の平均値が20μm以下であることを特徴とする耐焼付軟化性に優れたアルミニウム合金板が開示されている。 In Patent Document 2, Mg: 2 to 5%, Fe: more than 0.05 and 1.5% or less, Mn: 0.05 to 1.5% and a grain refiner, and the balance A metal composed of Al and unavoidable impurities, Si of less than 0.20% of unavoidable impurities, Fe + Mn> 0.3%, Fe solid solution amount of 50 ppm or more, and equivalent circle diameter of 1 to 6 μm An aluminum alloy plate excellent in bake resistance and softening properties is disclosed, characterized in that there are 5,000 / mm 2 or more intermetallic compounds and an average recrystallized grain size is 20 μm or less.

しかしながら、ここで検討されている合金組成はMg:2〜5%であり、Si含有量について0.2%未満と規定しているものの、1〜3mm程度の比較的厚めの例えば自動車用部品などを対象としている。換言すると強度が高すぎるため、箔圧延のように厚さ100μm程度まで圧延するためには、圧延パス数を多く取らざるを得ず、途中で中間焼鈍も必要とされることから、コストアップを招く要因となっていた。   However, although the alloy composition studied here is Mg: 2 to 5% and the Si content is specified to be less than 0.2%, relatively thick parts such as automobile parts of about 1 to 3 mm are used. Is targeted. In other words, since the strength is too high, in order to roll to a thickness of about 100 μm like foil rolling, it is necessary to take a large number of rolling passes, and intermediate annealing is also required in the middle, increasing the cost. It was an inviting factor.

特許文献3では、100質量%中に、93質量%以上のAlと、2〜5質量%のMgと、0.2〜1.0質量%のCrと、0.01〜3.0質量%のMnと、0.005〜0.6質量%のTiと、0.005質量%以下のCuと、0.1質量%以下のSiと、0.2質量%以下のFeとを含有し、電気比抵抗値が5〜10μΩcmであるアルミニウム合金からアルミニウム箔を形成し、このアルミニウム箔をプレス成形して、アルミニウム箔成形容器を得る発明が紹介されている。   In patent document 3, in 100 mass%, 93 mass% or more of Al, 2-5 mass% Mg, 0.2-1.0 mass% Cr, and 0.01-3.0 mass% Mn, 0.005-0.6% by mass of Ti, 0.005% by mass or less of Cu, 0.1% by mass or less of Si, and 0.2% by mass or less of Fe, An invention has been introduced in which an aluminum foil is formed from an aluminum alloy having an electrical specific resistance of 5 to 10 μΩcm, and the aluminum foil is press-molded to obtain an aluminum foil molded container.

ここではアルミニウム箔の用途とその要求特性について詳しく紹介されている。しかしながら、製造方法については、公知の方法に従って製造され、例えば、所定の組成を有する溶湯を調製し、これを鋳造して得られたアルミニウム合金の鋳塊を、450〜660℃、好ましくは450〜550℃で均質化処理した後、熱間圧延及び冷間圧延を施すことにより得ることができる、などの記載があるのみで、特定の合金組成のアルミニウム箔によって所望の電磁調理器用鍋が得られるとされている。   Here, the use of aluminum foil and its required characteristics are introduced in detail. However, as for the production method, it is produced according to a known method. For example, an ingot of an aluminum alloy obtained by preparing a molten metal having a predetermined composition and casting it is 450 to 660 ° C., preferably 450 to 650 ° C. A desired pan for an electromagnetic cooker can be obtained with an aluminum foil having a specific alloy composition only by the description that it can be obtained by performing hot rolling and cold rolling after homogenizing at 550 ° C. It is said that.

特開平8−13109号公報JP-A-8-13109 特開2004−76155号公報JP 2004-76155 A 特開2007−270351号公報JP 2007-270351 A

本発明の目的は、電池ケース用アルミニウム板、ソーラーパネル用裏板、電磁調理器用鍋など耐熱性が要求され、しかも焼鈍状態において高い成形性をも有するAl−Mn−Mg系合金板を安価に提供することである。   The object of the present invention is to reduce the cost of an Al-Mn-Mg alloy plate that requires heat resistance such as an aluminum plate for a battery case, a back plate for a solar panel, a pan for an electromagnetic cooker, and also has high formability in an annealed state. Is to provide.

上記の目的は、本願第1発明によれば、質量%で、Si:0.05〜0.3%、Fe:0.05〜0.5%、Mn:0.6〜2.5%、Mg:0.1〜2.0%を含有し、残部実質的に不可避的不純物とAlからなり、冷延されたままの状態であり、マトリックスのMn固溶量はMn含有量の70%以上で、200℃における引張強さが200MPa以上であることを特徴とする耐熱性に優れたアルミニウム合金板によって達成される。   According to the first invention of the present application, the above object is in mass%, Si: 0.05 to 0.3%, Fe: 0.05 to 0.5%, Mn: 0.6 to 2.5%, Mg: 0.1 to 2.0%, the balance is substantially inevitable impurities and Al, and is in a cold-rolled state, and the Mn solid solution amount of the matrix is 70% or more of the Mn content. Thus, this is achieved by an aluminum alloy plate excellent in heat resistance, characterized in that the tensile strength at 200 ° C. is 200 MPa or more.

更に、本願第2発明によれば、上記第1発明による冷間圧延されたままのアルミニウム合金板に焼鈍を施した状態の合金板であり、マトリックスのMn固溶量はMn含有量の50%以上で、200℃における引張強さが100MPa以上、球頭張出高さ27mm以上であることを特徴とする耐熱性および成形性に優れたアルミニウム合金板が提供される。   Furthermore, according to the second invention of the present application, the cold-rolled aluminum alloy plate according to the first invention is an alloy plate in an annealed state, and the Mn solid solution amount of the matrix is 50% of the Mn content. Thus, an aluminum alloy plate excellent in heat resistance and formability, characterized in that the tensile strength at 200 ° C. is 100 MPa or more and the ball head overhang height is 27 mm or more is provided.

本願第1発明のアルミニウム合金板は、上記組成のアルミニウム合金溶湯を薄スラブ連続鋳造機にて、スラブ厚み1/4箇所における凝固冷却速度20〜200℃/secで厚み5〜15mmのスラブに鋳造し、冷間圧延を施すことによって、耐熱性に優れたアルミニウム合金板を得られる。   The aluminum alloy sheet of the first invention of the present application is a cast slab having a thickness of 5 to 15 mm at a solidification cooling rate of 20 to 200 ° C./sec at a slab thickness of 1/4 with a thin slab continuous casting machine. By performing cold rolling, an aluminum alloy plate having excellent heat resistance can be obtained.

また、本願第2発明のアルミニウム合金板は、上記第1発明のアルミニウム合金板に、350〜500℃でバッチ焼鈍を施すか、または、450〜550℃で連続焼鈍を施すことにより得られる。   The aluminum alloy plate of the second invention of the present application can be obtained by subjecting the aluminum alloy plate of the first invention to batch annealing at 350 to 500 ° C. or continuous annealing at 450 to 550 ° C.

本発明の製造方法によると、従来のDC鋳造機によるスラブ鋳造、両面面削、均質化処理、熱間圧延、その後の中間焼鈍などのプロセスが不要となるため、大幅にコストを低減することができる。   According to the manufacturing method of the present invention, processes such as slab casting, double-sided face milling, homogenization treatment, hot rolling, and subsequent intermediate annealing using a conventional DC casting machine are not required, which can greatly reduce costs. it can.

本発明によると、上記規定組成のアルミニウム合金溶湯を双ベルト式鋳造機によって厚み5〜15mmのスラブに鋳造する際に、スラブ厚み1/4箇所における凝固冷却速度を20〜200℃/secと比較的速くすることができるため、マトリックス中のMn固溶量を高くすることができる。   According to the present invention, when the molten aluminum alloy having the prescribed composition is cast into a slab having a thickness of 5 to 15 mm by a twin belt type casting machine, the solidification cooling rate at a slab thickness of 1/4 is compared with 20 to 200 ° C./sec. Therefore, the amount of Mn solid solution in the matrix can be increased.

このスラブを直接コイルに巻き取り、中間焼鈍を施すことなく、最終ゲージまで冷間圧延を施すことにより、耐熱性に優れたAl−Mn−Mg系アルミニウム合金板とすることができる。さらに、最終焼鈍処理として、焼鈍炉にて350〜500℃でバッチ焼鈍、または連続焼鈍炉にて450〜550℃で連続焼鈍を施して調質を行うことにより、耐熱性および成形性に優れたAl−Mn−Mg系アルミニウム合金板とすることができる。   By winding this slab directly on a coil and subjecting it to cold rolling to the final gauge without intermediate annealing, an Al—Mn—Mg based aluminum alloy plate having excellent heat resistance can be obtained. Furthermore, as the final annealing treatment, it was excellent in heat resistance and moldability by performing tempering by performing batch annealing at 350 to 500 ° C in an annealing furnace or continuous annealing at 450 to 550 ° C in a continuous annealing furnace. It can be set as an Al-Mn-Mg type aluminum alloy plate.

次に本発明の合金成分の意義および限定理由について説明する。本願においては、特に断りのない限り、合金の化学組成に関する「%」は「質量%」のことを意味する。   Next, the significance and reasons for limitation of the alloy components of the present invention will be described. In the present application, “%” relating to the chemical composition of the alloy means “% by mass” unless otherwise specified.

〔Si:0.05〜0.3%〕
必須元素であるSiは、Fe、Mnとともに鋳造時にAl-(Fe・Mn)-Si系金属間化合物を均一かつ微細に晶出させる。これら微細な金属間化合物は最終焼鈍後も金属組織中に残存するが非常に微細であるため、高温強度が高まる。
Si含有量の範囲は、0.05〜0.3%に限定する。Si含有量が0.05%未満では最終板の強度が低くなりすぎ、0.3%を越えると5μmを超えるサイズのAl-(Fe・Mn)-Si系金属間化合物が晶出し、成形性を劣化させる可能性があり好ましくないからである。Si含有量の好ましい範囲は、0.05〜0.2%である。
[Si: 0.05-0.3%]
Si, which is an essential element, causes Al— (Fe · Mn) —Si intermetallic compounds to crystallize uniformly and finely during casting together with Fe and Mn. Although these fine intermetallic compounds remain in the metal structure after the final annealing, they are very fine, so that the high-temperature strength is increased.
The range of Si content is limited to 0.05 to 0.3%. When the Si content is less than 0.05%, the strength of the final plate becomes too low, and when it exceeds 0.3%, an Al— (Fe · Mn) —Si intermetallic compound having a size exceeding 5 μm crystallizes and formability. This is because there is a possibility that it may deteriorate. A preferable range of the Si content is 0.05 to 0.2%.

〔Fe:0.05〜0.5%〕
必須元素であるFeは、Mn、Siと共存させることにより、薄スラブ中にAl-Fe、Al-(Fe・Mn)-Si系化合物などを均一かつ微細に晶出させる。これら微細な金属間化合物は最終焼鈍後も金属組織中に残存するが非常に微細であるため、高温強度が高まる。
Fe含有量の範囲は、0.05%〜0.5%に限定する。Fe含有量が0.05%未満では最終板の強度が低くなりすぎ、0.5%を越えると鋳造時に粗大な金属間化合物を生じやすく、成形性を劣化させる可能性があり好ましくないからである。Fe含有量の好ましい範囲は、0.05〜0.3%である。
〔Mn:0.6〜2.5%〕
必須元素であるMnは、Fe、Siとともに鋳造時にAl-(Fe・Mn)-Si系金属間化合物を均一かつ微細に晶出させ、分散強化による強度アップに寄与する。これら微細な金属間化合物は最終焼鈍時に再結晶粒の核となるが、マトリックス中のMnの固溶量が高く、再結晶阻止作用が強く、高温引張特性に優れた板となる。
[Fe: 0.05 to 0.5%]
Fe, which is an essential element, coexists with Mn and Si to crystallize Al—Fe, Al— (Fe · Mn) —Si based compounds in a thin slab uniformly and finely. Although these fine intermetallic compounds remain in the metal structure after the final annealing, they are very fine, so that the high-temperature strength is increased.
The range of Fe content is limited to 0.05% to 0.5%. If the Fe content is less than 0.05%, the strength of the final plate will be too low, and if it exceeds 0.5%, a coarse intermetallic compound is likely to be produced at the time of casting, and formability may be deteriorated. is there. A preferable range of the Fe content is 0.05 to 0.3%.
[Mn: 0.6 to 2.5%]
Mn, which is an essential element, causes Al— (Fe · Mn) —Si intermetallic compound to crystallize uniformly and finely during casting together with Fe and Si, and contributes to an increase in strength by dispersion strengthening. These fine intermetallic compounds become the cores of recrystallized grains during the final annealing, but the amount of Mn in the matrix is high, the recrystallization inhibiting action is strong, and the plate has excellent high-temperature tensile properties.

また、薄スラブ連続鋳造機では、溶湯の凝固冷却速度が速いため、Mnが過飽和に固溶する傾向が大きくなり、均質化処理、中間焼鈍を施さない本発明においては、最終板におけるマトリックス中のMn固溶量がMn含有量の70%以上となる。マトリックスに固溶されたMnは、最終焼鈍後もMn含有量の50%以上が固溶された状態を維持しており、圧延集合組織を残存させ、成形性に優れた板となる。しかも、高温保持による強度は、従来法によるDC材に比較して高くなり、耐熱性にも優れた板となる。
Mn含有量の範囲は、0.6〜2.5%に限定する。Mn含有量が0.6%未満ではその効果が十分でなく、耐熱性が低下する。2.5%を超えると鋳造時に粗大な金属間化合物を生じやすく、板切れなどを起こし圧延が困難となる場合がある。さらに好ましいMn含有量の範囲は、0.6〜2.0%である。
Further, in the thin slab continuous casting machine, since the solidification cooling rate of the molten metal is fast, the tendency of Mn to dissolve in supersaturation increases, and in the present invention in which homogenization treatment and intermediate annealing are not performed, in the matrix in the final plate The Mn solid solution amount is 70% or more of the Mn content. Mn solid-dissolved in the matrix maintains a state in which 50% or more of the Mn content is solid-dissolved even after the final annealing, leaving the rolling texture and forming a plate with excellent formability. Moreover, the strength by holding at a high temperature is higher than that of the DC material by the conventional method, and the plate has excellent heat resistance.
The range of Mn content is limited to 0.6 to 2.5%. If the Mn content is less than 0.6%, the effect is not sufficient and the heat resistance is lowered. If it exceeds 2.5%, a coarse intermetallic compound is likely to be produced at the time of casting, which may cause sheet breakage and make rolling difficult. A more preferable range of the Mn content is 0.6 to 2.0%.

〔Mg:0.1〜2.0%〕
必須元素であるMgは、マトリックス中に固溶して固溶体強化元素として作用し、強度と成形性を付与する。Mg含有量を0.1〜2.0%と限定したのは、0.1%未満ではその効果が小さく、2.0%を超えると塑性変形による加工硬化が進み、冷間圧延時に耳割れが生じやすいためである。好ましいMg含有量の範囲は、0.5〜1.8%である。
[Mg: 0.1 to 2.0%]
Mg, which is an essential element, dissolves in the matrix and acts as a solid solution strengthening element to impart strength and formability. The reason why the Mg content is limited to 0.1 to 2.0% is that the effect is small when the content is less than 0.1%, and when the content exceeds 2.0%, work hardening due to plastic deformation proceeds, and ear cracks occur during cold rolling. It is because it is easy to occur. The range of preferable Mg content is 0.5 to 1.8%.

〔任意元素〕
任意元素であるTiは0.10%以下ならば含有しても本発明の効果を阻害することはなく、薄スラブの結晶粒微細化剤として作用し、スラブ割れ等の鋳造欠陥を確実に防止することができる。Ti含有量が0.005%未満では、その効果が十分でなく、Ti含有量が0.10%を超える場合には、鋳造時にTiAl等の粗大な金属間化合物が生成するため、成形性を著しく低下する。したがって、Ti含有量の好ましい範囲は0.005〜0.10%とする。Ti含有量の更に好ましい範囲は、0.005〜0.05%である。
[Arbitrary elements]
Even if Ti, which is an optional element, is contained in an amount of 0.10% or less, the effect of the present invention is not hindered, it acts as a grain refiner for thin slabs, and casting defects such as slab cracks are reliably prevented. can do. When the Ti content is less than 0.005%, the effect is not sufficient, and when the Ti content exceeds 0.10%, a coarse intermetallic compound such as TiAl 3 is generated at the time of casting. Is significantly reduced. Therefore, the preferable range of Ti content is 0.005 to 0.10%. A more preferable range of the Ti content is 0.005 to 0.05%.

任意元素であるBは、Tiと混在することで、鋳塊の結晶粒微細化効果が飛躍的に向上する。B含有量が0.0005%未満の場合には、結晶粒微細化効果が十分でなく、スラブ割れ等の鋳造欠陥を確実に防止することが困難である。B含有量が0.01%を超える場合には、鋳塊の結晶粒微細化効果が飽和するだけではなく、最終焼鈍板において、余剰のTiBの凝集体が介在物として作用する場合があり、金型などでプレス加工する際、板表面キズを発生させるなど成形性を低下させる虞がある。したがって、B含有量の好ましい範囲は、0.0005〜0.01%である。 When B, which is an optional element, is mixed with Ti, the crystal grain refinement effect of the ingot is greatly improved. When the B content is less than 0.0005%, the crystal grain refining effect is not sufficient, and it is difficult to reliably prevent casting defects such as slab cracks. When the B content exceeds 0.01%, not only the crystal grain refining effect of the ingot is saturated, but excess TiB 2 aggregates may act as inclusions in the final annealed plate. When press-working with a mold or the like, there is a concern that moldability may be deteriorated such as generation of scratches on the plate surface. Therefore, the preferable range of the B content is 0.0005 to 0.01%.

〔不可避的不純物〕
不可避的不純物は、アルミニウム地金、返り材、フラックスなどに含まれる不純物元素、溶製治具と溶湯との反応などが原因で混入する。本発明においてCu、Ni、Zn、Ga、V、Ca、Naなどが代表的な不可避的不純物元素である。
[Inevitable impurities]
Inevitable impurities are mixed due to an impurity element contained in an aluminum metal, a return material, a flux or the like, a reaction between a melting jig and a molten metal, or the like. In the present invention, Cu, Ni, Zn, Ga, V, Ca, Na and the like are typical inevitable impurity elements.

本発明の製造方法の諸条件を限定した理由を説明する。
〔双ベルト鋳造機にて鋳造した厚さ5〜15mmのスラブを巻き取り〕
本発明の耐熱性及び成形性に優れたAl−Mg−Mn系合金板の製造に用いるスラブは双ベルト鋳造機により鋳造する。
双ベルト式連続鋳造機では、上下に対面し水冷されている一対の回転ベルト間に溶湯を注湯してベルト面からの冷却で溶湯を凝固させてスラブとし、ベルトの反注湯側より該スラブを連続して引き出してコイル状に巻き取る方式が採用される。
The reason why the conditions of the production method of the present invention are limited will be described.
[Take up a 5-15mm thick slab cast with a twin belt casting machine]
The slab used for producing the Al—Mg—Mn alloy plate having excellent heat resistance and formability according to the present invention is cast by a twin belt casting machine.
In the twin belt type continuous casting machine, the molten metal is poured between a pair of rotating belts that face each other vertically and cooled by water, and the molten metal is solidified by cooling from the belt surface to form a slab. A method is adopted in which the slab is continuously drawn out and wound into a coil.

〔スラブ厚み1/4における凝固冷却速度が20〜200℃/sec〕
〔厚み5〜15mmのスラブに鋳造し〕
本発明においては、鋳造するスラブの厚さは5〜15mmとする。この範囲の厚さであれば、スラブ厚み1/4において20〜200℃/sec程度の凝固冷却速度を確保できるので、均一な鋳造組織を形成し易く、マトリックス中へのMnの固溶量を確保することができる。また、鋳造凝固時に生成される金属間化合物が微細になり、耐熱性および成形性に優れたアルミニウム合金板を製造することができる。
[Solidification cooling rate at slab thickness 1/4 is 20 to 200 ° C./sec]
[Casted into a slab with a thickness of 5 to 15 mm]
In the present invention, the slab to be cast has a thickness of 5 to 15 mm. If the thickness is within this range, a solidification cooling rate of about 20 to 200 ° C./sec can be secured at a slab thickness of ¼, so that a uniform cast structure can be easily formed, and the solid solution amount of Mn in the matrix can be reduced. Can be secured. Moreover, the intermetallic compound produced | generated at the time of casting solidification becomes fine, and the aluminum alloy plate excellent in heat resistance and a moldability can be manufactured.

上記のスラブ厚さ範囲は、ベルト鋳造機による鋳造実行面からも適当である。すなわち、スラブ厚さが5mm未満であると、単位時間当りに鋳造機を通過するアルミニウム合金量が少なくなり過ぎて、鋳造自体が困難になる。スラブ厚さが15mmを超えると、コイルとして巻き取ることが困難になる。   The above slab thickness range is also appropriate from the casting execution surface by the belt casting machine. That is, when the slab thickness is less than 5 mm, the amount of aluminum alloy passing through the casting machine per unit time becomes too small, and casting itself becomes difficult. When the slab thickness exceeds 15 mm, it becomes difficult to wind it as a coil.

〔均質化処理、中間焼鈍を施すことなく〕
本発明においては、コイルに巻き取った薄スラブに均質化処理、中間焼鈍を施すことなく最終板厚まで冷間圧延する。均質化処理、中間焼鈍を施さないため、マトリックス中に過飽和に固溶されたMnは、そのまま維持され、耐熱性に優れた板を製造できる。さらに、これらマトリックス中に固溶されたMnなどの遷移金属元素は転位の動きを妨げて最終焼鈍での再結晶に必要な歪エネルギーを十分に蓄えることができる。このような理由から、冷間圧延における圧下率は、80〜96%程度が好ましい。
また、この製造方法では、従来法による複雑な工程のうち、両面面削、均質化処理、熱間圧延、中間焼鈍などの工程が省略されるため、製造コストを低く抑えることが可能である。
[Without homogenization and intermediate annealing]
In the present invention, the thin slab wound around the coil is cold-rolled to the final thickness without being subjected to homogenization or intermediate annealing. Since the homogenization and intermediate annealing are not performed, Mn dissolved in supersaturation in the matrix is maintained as it is, and a plate having excellent heat resistance can be manufactured. Furthermore, transition metal elements such as Mn dissolved in the matrix can prevent the movement of dislocations and can sufficiently store the strain energy necessary for recrystallization in the final annealing. For these reasons, the rolling reduction in cold rolling is preferably about 80 to 96%.
Moreover, in this manufacturing method, steps such as double-sided chamfering, homogenization treatment, hot rolling, and intermediate annealing among the complicated steps according to the conventional method are omitted, so that the manufacturing cost can be kept low.

〔連続焼鈍炉にて450〜550℃で連続焼鈍を施す〕
本願第2発明においては、冷間圧延後に最終焼鈍を行う。この最終焼鈍は、バッチ焼鈍炉で実施してもよいが、連続焼鈍炉(CAL)で実施する方が好ましい。連続焼鈍炉(CAL)とは、コイルを連続的に溶体化処理等するための設備であり、熱処理を施すための誘導加熱装置や水冷するための水槽および空冷するためのエアノズル等を備えたことを特徴としている。最終焼鈍の焼鈍温度は450〜550℃の範囲とする。450℃未満であると、再結晶が十分ではないため、成形性が低下する。550℃を超えると、再結晶粒が粗大化し最終焼鈍板の強度が低下して好ましくない。
[Continuous annealing is performed at 450 to 550 ° C. in a continuous annealing furnace]
In the second invention of the present application, final annealing is performed after cold rolling. This final annealing may be performed in a batch annealing furnace, but is preferably performed in a continuous annealing furnace (CAL). Continuous annealing furnace (CAL) is equipment for continuously solution treatment of coils, etc., equipped with induction heating device for heat treatment, water tank for water cooling, air nozzle for air cooling, etc. It is characterized by. The annealing temperature of the final annealing is in the range of 450 to 550 ° C. If it is less than 450 ° C., recrystallization is not sufficient, so that moldability is lowered. If it exceeds 550 ° C., the recrystallized grains become coarse and the strength of the final annealed sheet is lowered, which is not preferable.

連続焼鈍炉における焼鈍温度での保持時間は40秒以内とする。40秒以上の保持時間の場合、ライン速度を下げる必要があり、生産性を低下させるため好ましくない。   The holding time at the annealing temperature in the continuous annealing furnace is 40 seconds or less. In the case of holding time of 40 seconds or more, it is necessary to reduce the line speed, which is not preferable because productivity is lowered.

〔焼鈍炉にて350〜500℃でバッチ焼鈍を施す〕
本願第2発明における最終焼鈍は、焼鈍炉でバッチ焼鈍を実施してもよい。バッチ焼鈍の焼鈍温度は350〜500℃の範囲とする。350℃未満であると、再結晶が十分ではないため、成形性が低下する。400℃を超えると、再結晶粒が粗大化し最終焼鈍板の強度が低下して好ましくない。
[Batch annealing at 350 to 500 ° C in an annealing furnace]
The final annealing in the second invention of the present application may be performed by batch annealing in an annealing furnace. The annealing temperature for batch annealing is in the range of 350 to 500 ° C. If it is lower than 350 ° C., recrystallization is not sufficient, so that moldability is lowered. If the temperature exceeds 400 ° C., the recrystallized grains are coarsened and the strength of the final annealed sheet is lowered, which is not preferable.

焼鈍温度での保持時間は1〜10時間の範囲とする。保持時間1時間未満の場合、昇温速度にもよるが、コイル全体が均一に加熱されないため、均一で微細な再結晶組織が得られず成形性が劣る。保持時間10時間を超える場合、生産コストが掛かりすぎるため好ましくない。   The holding time at the annealing temperature is in the range of 1 to 10 hours. When the holding time is less than 1 hour, although depending on the heating rate, the entire coil is not heated uniformly, so that a uniform and fine recrystallized structure cannot be obtained and the formability is poor. If the holding time exceeds 10 hours, the production cost is too high, which is not preferable.

下記の手順および条件にて双ベルト鋳造およびDC鋳造によりアルミニウム合金板を作製した。
双ベルト鋳造材については、表1に示す合金組成のアルミニウム合金溶湯を溶解炉で溶製し、セラミックスフィルターを通して濾過し、双ベルト式連続鋳造機で10mmの厚みのスラブを鋳造してコイルに巻き取った。鋳造したスラブはその後、均質化処理、中間焼鈍を施すことなく、最終板厚1mmまで冷間圧延し、H18材とした。
An aluminum alloy plate was produced by twin belt casting and DC casting under the following procedure and conditions.
For twin belt castings, melt aluminum alloy with the alloy composition shown in Table 1 in a melting furnace, filter through a ceramic filter, cast a 10mm thick slab with a twin belt continuous casting machine, and wind it around a coil I took it. Thereafter, the cast slab was cold-rolled to a final thickness of 1 mm without being homogenized and subjected to intermediate annealing to obtain an H18 material.

DC材については、表1に示す合金組成のアルミニウム合金溶湯を溶解炉で溶製し、セラミックスフィルターを通して濾過し、DC鋳造機にて幅1200mm×厚み500mm×長さ3800mmのスラブに鋳造し、両面面削した後、熱処理炉にて550℃×12hrsの均質化処理を行い、引き続き熱間圧延機にて、熱延を行って、6mm厚さの熱間圧延板をコイルに巻き取った。その後、中間焼鈍することなく、最終板厚1mmまで冷間圧延しH18材とした。   For the DC material, a molten aluminum alloy having the alloy composition shown in Table 1 is melted in a melting furnace, filtered through a ceramic filter, cast into a slab having a width of 1200 mm, a thickness of 500 mm, and a length of 3800 mm with a DC casting machine. After chamfering, homogenization at 550 ° C. × 12 hrs was performed in a heat treatment furnace, followed by hot rolling with a hot rolling mill, and a 6 mm thick hot rolled plate was wound around the coil. Then, it cold-rolled to 1 mm of final plate thickness without intermediate annealing, and was set as H18 material.

双ベルト鋳造材(H18)およびDC材(H18)について、500℃のソルトバスにて15秒保持の焼鈍を行った。この最終焼鈍板の調質は、Oである。   The twin belt cast material (H18) and the DC material (H18) were annealed in a salt bath at 500 ° C. for 15 seconds. The tempering of this final annealed plate is O.

その後、双ベルト鋳造材(H18材、O材)、DC材(H18材、O材)について、マトリックス中のMnの固溶量は、熱フェノール法で測定した。具体的に記載すると、板を熱フェノールで分解し、フィルター濾過した溶液をクエン酸で抽出した後、ICP発光分光分析法で測定した。   Then, about the twin belt cast material (H18 material, O material) and DC material (H18 material, O material), the solid solution amount of Mn in the matrix was measured by the hot phenol method. Specifically, the plate was decomposed with hot phenol, and the filtered solution was extracted with citric acid, and then measured by ICP emission spectroscopic analysis.

さらに各板材から、圧延方向に平行な引張試験片を切り出し加工して、200℃において温間引張試験を行って、耐力、引張強さを測定した。   Further, a tensile test piece parallel to the rolling direction was cut out from each plate material, and a warm tensile test was performed at 200 ° C. to measure the yield strength and the tensile strength.

O材について、以下の条件で球頭張出し試験を行って、破断時の限界高さを球頭張出し高さとした。
ポンチ:100mmφ(半球形)、肩R:50mm
ダイ:105mmφ、肩R:4mm
With respect to the O material, a ball head overhang test was performed under the following conditions, and the limit height at break was defined as the ball head overhang height.
Punch: 100mmφ (hemisphere), shoulder R: 50mm
Die: 105mmφ, shoulder R: 4mm

表2はH18材の結果を示す。本発明組成範囲に入る双ベルト鋳造材1〜4におけるMn固溶量とMn含有量との比率は70%以上で、200℃における引張強さは200MPa以上で高いことが判明した。
これに対して、比較例は下記の結果であった。
本発明組成よりMg含有量の少ない双ベルト鋳造材6、およびMn含有量の少ない双ベルト鋳造材7は、200℃における引張強さが低い。本発明組成よりMg含有量の高い双ベルト鋳造材5は、圧延中に耳われが発生したため冷延板を採取することができなかった。またMn含有量が高い双ベルト鋳造材8は圧延時板きりが発生したため、製板が困難であった。DC材9におけるMn固溶量とMn含有量との比率は10%で低く、Mn固溶量は少ないため、200℃における引張強さは低かった。
Table 2 shows the results for the H18 material. It was found that the ratio of the Mn solid solution amount to the Mn content in the twin belt cast materials 1 to 4 falling within the composition range of the present invention was 70% or higher, and the tensile strength at 200 ° C. was 200 MPa or higher.
In contrast, the comparative example had the following results.
The twin belt cast material 6 having a lower Mg content than the composition of the present invention and the twin belt cast material 7 having a lower Mn content have a low tensile strength at 200 ° C. The twin-belt cast material 5 having a higher Mg content than the composition of the present invention could not collect cold-rolled sheets because of the occurrence of cracks during rolling. Further, the twin-belt cast material 8 having a high Mn content was difficult to plate due to the occurrence of sheet cutting during rolling. The ratio of the Mn solid solution amount to the Mn content in the DC material 9 was as low as 10% and the Mn solid solution amount was small, so the tensile strength at 200 ° C. was low.

表3はO材の結果を示す。本発明組成範囲に入る双ベルト鋳造材10〜12におけるMn固溶量とMn含有量との比率は50%以上で、200℃における引張強さは100MPa以上でが高く、球頭張出し高さは27mm以上で成形性に優れるいことが判明した。DC材13におけるMn固溶量とMn含有量との比率は9%で低く、Mn固溶量が少ないため、200℃における引張強さは低く、球頭張出し高さは25mmで成形性が劣っていた。   Table 3 shows the results for the O material. The ratio of the Mn solid solution amount and the Mn content in the twin belt cast materials 10 to 12 that fall within the composition range of the present invention is 50% or more, the tensile strength at 200 ° C. is high at 100 MPa or more, and the ball head overhang height is It was found that the moldability was excellent at 27 mm or more. The ratio of the Mn solid solution amount to the Mn content in the DC material 13 is as low as 9%, and since the Mn solid solution amount is small, the tensile strength at 200 ° C. is low, the ball head overhang height is 25 mm, and the moldability is poor. It was.

Figure 0005233568
Figure 0005233568

Figure 0005233568
Figure 0005233568

Figure 0005233568
Figure 0005233568

本発明によれば、電池ケース用アルミニウム板、ソーラーパネル用裏板、電磁調理器用鍋など耐熱性が要求され、しかも焼鈍状態において高い成形性をも有するAl−Mn−Mg系合金板が安価に提供される。   According to the present invention, an Al-Mn-Mg-based alloy plate that requires heat resistance such as an aluminum plate for a battery case, a back plate for a solar panel, a pan for an electromagnetic cooker, and also has high formability in an annealed state is inexpensive. Provided.

Claims (2)

質量%で、Si:0.05〜0.3%、Fe:0.05〜0.5%、Mn:1.5〜2.5%、Mg:0.1〜1.0%を含有し、残部不可避的不純物とAlからなり、冷延後に焼鈍された状態であり、金属組織は再結晶組織となっており、マトリックスのMn固溶量はMn含有量の50%以上で、200℃における引張強さが100MPa以上、球頭張出高さ27mm以上である耐熱性および成形性に優れたアルミニウム合金板。 By mass%, Si: 0.05~0.3%, Fe : 0.05~0.5%, Mn: 1.5 ~2.5%, Mg: it contains 0.1 to 1.0% consists remaining portion not avoidable impurities and Al, a state of being annealed after cold rolling, the metal structure is a recrystallized structure, Mn solid solution amount of the matrix is more than 50% of the Mn content, An aluminum alloy plate excellent in heat resistance and formability having a tensile strength at 200 ° C. of 100 MPa or more and a ball head protrusion height of 27 mm or more. 請求項1に記載のアルミニウム合金板の製造方法であって、
上記組成の溶湯を薄スラブ連続鋳造機にて、スラブ厚み1/4箇所における凝固冷却速度20〜200℃/secで厚み5〜15mmのスラブに鋳造し、均質化処理、中間焼鈍を施すことなく、冷延率80〜96%の冷間圧延を施した後、350〜500℃で最終バッチ焼鈍を施すか、または、450〜550℃で最終連続焼鈍を施すことを特徴とする耐熱性および成形性に優れたアルミニウム合金板の製造方法。
It is a manufacturing method of the aluminum alloy plate according to claim 1,
Casting the molten metal having the above composition into a slab having a thickness of 5 to 15 mm at a solidification cooling rate of 20 to 200 ° C./sec at a slab thickness of 1/4 with a thin slab continuous casting machine, without performing homogenization and intermediate annealing. Heat resistance and molding characterized by performing cold rolling at a cold rolling rate of 80 to 96% and then performing final batch annealing at 350 to 500 ° C. or final continuous annealing at 450 to 550 ° C. A method for producing an aluminum alloy sheet having excellent properties.
JP2008265657A 2008-10-14 2008-10-14 Aluminum alloy plate excellent in heat resistance and formability and manufacturing method thereof Expired - Fee Related JP5233568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008265657A JP5233568B2 (en) 2008-10-14 2008-10-14 Aluminum alloy plate excellent in heat resistance and formability and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008265657A JP5233568B2 (en) 2008-10-14 2008-10-14 Aluminum alloy plate excellent in heat resistance and formability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010095739A JP2010095739A (en) 2010-04-30
JP5233568B2 true JP5233568B2 (en) 2013-07-10

Family

ID=42257624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008265657A Expired - Fee Related JP5233568B2 (en) 2008-10-14 2008-10-14 Aluminum alloy plate excellent in heat resistance and formability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5233568B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5814834B2 (en) 2012-03-07 2015-11-17 株式会社神戸製鋼所 Aluminum alloy plate for automobile hood inner panel
JP6657116B2 (en) 2014-04-30 2020-03-04 アルコア ユーエスエイ コーポレイション Method for producing aluminum container from aluminum sheet with improved formability
CN111809082A (en) * 2020-05-28 2020-10-23 大力神铝业股份有限公司 Aluminum alloy material processing technology for hollow glass parting bead
CN113416860A (en) * 2021-05-19 2021-09-21 江苏国鑫铝业有限公司 Mg-alloyed high-strength high-punching-performance aluminum alloy and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362836A (en) * 1986-09-03 1988-03-19 Sky Alum Co Ltd Aluminum-alloy rolled sheet combining high strength with heat resistance and production thereof
JP3161141B2 (en) * 1993-03-02 2001-04-25 日本軽金属株式会社 Manufacturing method of aluminum alloy sheet
JP3843368B2 (en) * 2000-10-23 2006-11-08 古河スカイ株式会社 Aluminum alloy plate for battery case with excellent resistance to high temperature blistering and method for producing the same

Also Published As

Publication number Publication date
JP2010095739A (en) 2010-04-30

Similar Documents

Publication Publication Date Title
US8016958B2 (en) High strength aluminum alloy sheet and method of production of same
JP4577218B2 (en) Method for producing Al-Mg-Si alloy sheet excellent in bake hardness and hemmability
WO2019111970A1 (en) Aluminum alloy sheet for battery lids for molding integrated explosion-prevention valve, and method for producing same
JP5870791B2 (en) Aluminum alloy plate excellent in press formability and shape freezing property and manufacturing method thereof
JP6176393B2 (en) High-strength aluminum alloy plate with excellent bending workability and shape freezing property
WO2009098732A1 (en) Aluminum alloy sheet for motor vehicle and process for producing the same
CA2551599A1 (en) Manufacturing method for al-mg-si aluminum alloy sheets with excellent bake hardenability
TW202012648A (en) Aluminum alloy sheet for battery lid for forming integrated explosion prevention valve, and method for producing same
KR20150047246A (en) Method for manufacturing of Al-Zn-Mg-Cu alloy sheet with refined crystal grains
JP5233568B2 (en) Aluminum alloy plate excellent in heat resistance and formability and manufacturing method thereof
WO2019111422A1 (en) Aluminum alloy plate for battery cover for forming integrated round explosion-proof valve and method for manufacturing same
JP2007186741A (en) Aluminum alloy sheet having excellent high-temperature and high-speed formability, and its production method
JP4701998B2 (en) Aluminum alloy foil excellent in strength and rough skin resistance and method for producing the same
JP5050577B2 (en) Aluminum alloy plate for forming process excellent in deep drawability and bake-proof softening property and method for producing the same
JP5412714B2 (en) Manufacturing method of aluminum alloy plate excellent in heat resistance, manufacturing method of aluminum alloy plate excellent in heat resistance and deep drawability
JP2004332106A (en) Aluminum alloy sheet with excellent press formability and continuous resistance spot weldability, and its manufacturing method
JP6719219B2 (en) High strength aluminum alloy sheet excellent in formability and method for producing the same
JP5220310B2 (en) Aluminum alloy plate for automobile and manufacturing method thereof
JP6614307B1 (en) Aluminum alloy plate for battery lid for integral explosion-proof valve molding and manufacturing method thereof
WO2008078399A1 (en) Method of producing aluminum alloy sheet
TW202014530A (en) Aluminum alloy plate for battery lid for use in molding of integral explosion-proof valve, and method for producing same
KR101757733B1 (en) Method for manufacturing of Al-Zn-Mg-Cu alloy sheet with refined crystal grains
JP2012107339A (en) Aluminum alloy sheet for automobile and manufacturing method therefor
TWI696705B (en) Aluminum alloy plate for forming battery cover of integral explosion-proof valve and manufacturing method thereof
JP5423822B2 (en) Aluminum alloy plate excellent in high-temperature high-speed formability and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130311

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5233568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees