JP5232361B2 - CO2 recovery device and CO2 recovery method - Google Patents

CO2 recovery device and CO2 recovery method Download PDF

Info

Publication number
JP5232361B2
JP5232361B2 JP2006111302A JP2006111302A JP5232361B2 JP 5232361 B2 JP5232361 B2 JP 5232361B2 JP 2006111302 A JP2006111302 A JP 2006111302A JP 2006111302 A JP2006111302 A JP 2006111302A JP 5232361 B2 JP5232361 B2 JP 5232361B2
Authority
JP
Japan
Prior art keywords
condensed water
solution
water
condensed
recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006111302A
Other languages
Japanese (ja)
Other versions
JP2007284272A (en
Inventor
裕士 田中
徹 高品
琢也 平田
正樹 飯嶋
富雄 三村
靖幸 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2006111302A priority Critical patent/JP5232361B2/en
Publication of JP2007284272A publication Critical patent/JP2007284272A/en
Application granted granted Critical
Publication of JP5232361B2 publication Critical patent/JP5232361B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は、CO2除去排ガスに同伴するCO2吸収液の放出量を軽減しCO2吸収液の回収効率の向上を図ったCO2回収装置及びCO2回収方法に関する。 The present invention relates to a CO 2 recovery apparatus and a CO 2 recovery method that reduce the amount of CO 2 absorption liquid that accompanies CO 2 removal exhaust gas and improve the recovery efficiency of the CO 2 absorption liquid.

近年、地球の温暖化現象の原因の一つとして、CO2による温室効果が指摘され、地球環境を守る上で国際的にもその対策が急務となってきた。CO2の発生源としては化石燃料を燃焼させるあらゆる人間の活動分野に及び、その排出抑制への要求が一層強まる傾向にある。これに伴い大量の化石燃料を使用する火力発電所などの動力発生設備を対象に、ボイラの燃焼排ガスをアミン系CO2吸収液と接触させ、燃焼排ガス中のCO2を除去、回収する方法及び回収されたCO2を大気へ放出することなく貯蔵する方法が精力的に研究されている。 In recent years, the greenhouse effect due to CO 2 has been pointed out as one of the causes of global warming, and countermeasures have become urgent internationally to protect the global environment. The source of CO 2 extends to all human activity fields that burn fossil fuels, and there is a tendency for the demand for emission control to become stronger. Along with this, for a power generation facility such as a thermal power plant that uses a large amount of fossil fuel, a method for removing the CO 2 in the combustion exhaust gas by bringing the combustion exhaust gas of the boiler into contact with the amine-based CO 2 absorbent and recovering it, and A method of storing the recovered CO 2 without releasing it to the atmosphere has been energetically studied.

また前記のようなCO2吸収液を用い、燃焼排ガスからCO2を除去・回収する工程としては、吸収塔において燃焼排ガスとCO2吸収液とを接触させる工程、CO2を吸収した吸収液を再生塔において加熱し、CO2を遊離させると共に吸収液を再生して再び吸収塔に循環して再使用するものが採用されている(特許文献1)。 Further, as a step of removing and recovering CO 2 from the combustion exhaust gas using the above-mentioned CO 2 absorption liquid, a step of bringing the combustion exhaust gas and the CO 2 absorption liquid into contact with each other in an absorption tower, an absorption liquid that has absorbed CO 2 is used. Heating is performed in a regeneration tower to liberate CO 2 and regenerate the absorption liquid, which is then recycled to the absorption tower and reused (Patent Document 1).

前記従来のCO2回収装置は、図5に示すように、例えばボイラやガスタービン等の産業設備から排出されたCO2を含有するCO2含有排ガス1Aを冷却水2aによって冷却する冷却塔2と、冷却されたCO2含有排ガス1AとCO2を吸収するCO2吸収液24とを接触させてCO2含有排ガス1AからCO2を除去する吸収塔3と、CO2を吸収したCO2吸収液24からCO2を放出させてCO2吸収液24を再生する再生塔9とを有する。
ここで、この装置で用いられるCO2吸収液24は、CO2を吸収したCO2吸収液24を「リッチ溶液24A」と呼称し、またリッチ溶液24Aから再生塔9でほぼ全てのCO2が除去され再生されたCO2吸収液24を「リーン溶液24B」と呼称する。このように、CO2吸収液24は吸収塔3と再生塔9の間を循環しており、吸収塔3から再生塔9にはリッチ溶液24Aが送給され、再生塔9から吸収塔3にはリーン溶液24Bが送給されている。
As shown in FIG. 5, the conventional CO 2 recovery apparatus includes a cooling tower 2 that cools CO 2 -containing exhaust gas 1A containing CO 2 discharged from industrial equipment such as a boiler and a gas turbine with cooling water 2a. , and the absorption tower 3 for removing CO 2 from contacting the CO 2 absorbing liquid 24 to absorb the cooled CO 2 containing exhaust gas 1A and CO 2 and CO 2 containing exhaust gas 1A, CO 2 absorbent having absorbed CO 2 And a regeneration tower 9 for regenerating the CO 2 absorbent 24 by releasing CO 2 from the fluid 24.
Here, the CO 2 absorbing liquid 24 used in this apparatus, the CO 2 absorbing liquid 24 that has absorbed CO 2 is called "rich solution 24A", also almost all CO 2 in the regeneration tower 9 from the rich solution 24A is The CO 2 absorbent 24 removed and regenerated is referred to as “lean solution 24B”. Thus, the CO 2 absorbent 24 circulates between the absorption tower 3 and the regeneration tower 9, and the rich solution 24 A is fed from the absorption tower 3 to the regeneration tower 9, and from the regeneration tower 9 to the absorption tower 3. Is supplied with a lean solution 24B.

この従来のCO2回収装置を用いたCO2回収方法では、まずCO2含有排ガス1Aは、図示しない排ガス送風機により昇圧された後、冷却塔2に送られ、ここで冷却水2aにより冷却され、吸収塔3に送られる。 In the CO 2 recovery method using this conventional CO 2 recovery device, the CO 2 -containing exhaust gas 1A is first pressurized by an exhaust gas blower (not shown) and then sent to the cooling tower 2, where it is cooled by the cooling water 2a, It is sent to the absorption tower 3.

前記吸収塔3において、CO2含有排ガス1Aは、吸収塔3の下部側に設けられたCO2回収部4において、例えばアルカノールアミンをベースとするCO2吸収液24と対向流接触し、CO2含有排ガス1A中のCO2は、化学反応(R−NH2+H2O+CO2→R−NH3HCO3)によりCO2吸収液24に吸収される。
そしてCO2除去後のCO2除去排ガス1Bは水洗部5を上昇し、水洗部5の頂部から供給される水(水貯槽6からの供給水)又はCO2吸収液回収用水22と気液接触して、CO2除去排ガス1Bに同伴するCO2吸収液24を水(水貯槽6からの供給水)又はCO2吸収液回収用水22に回収する。その後、吸収塔3の頂部からCO2吸収液24の除去されたCO2吸収液除去排ガス1Cが排出される。リッチ溶液24Aは、図示しないリッチソルベントポンプにより昇圧され、リッチ・リーン溶液熱交換器8において、再生塔9で再生されたリーン溶液24Bにより加熱され、再生塔9に供給される。
In the absorption tower 3, CO 2 containing exhaust gas. 1A, in the CO 2 recovery unit 4 provided on the lower side of the absorption tower 3, for example an alkanolamine contact the CO 2 absorbing liquid 24 and a counter-flow based, CO 2 CO 2 in the contained exhaust gas 1A is absorbed in the CO 2 absorbent 24 by a chemical reaction (R—NH 2 + H 2 O + CO 2 → R—NH 3 HCO 3 ).
The CO 2 flue gas 1B after CO 2 removal increased the washing unit 5, (supply water from the water reservoir 6) water supplied from the top of the washing unit 5 or CO 2 absorbing solution recovered water 22 and gas-liquid contact Then, the CO 2 absorption liquid 24 accompanying the CO 2 removal exhaust gas 1B is recovered in water (supply water from the water storage tank 6) or CO 2 absorption liquid recovery water 22. Thereafter, the CO 2 absorbent-removed exhaust gas 1C from which the CO 2 absorbent 24 has been removed is discharged from the top of the absorption tower 3. The rich solution 24A is pressurized by a rich solvent pump (not shown), heated by the lean solution 24B regenerated in the regeneration tower 9 in the rich / lean solution heat exchanger 8, and supplied to the regeneration tower 9.

前記再生塔9の上部から再生塔9内部に放出されたリッチ溶液24Aは、吸熱により、大部分のCO2を放出する。再生塔9内で一部または大部分のCO2を放出したCO2吸収液24は「セミリーン溶液」と呼称される。この図示しないセミリーン溶液は、再生塔9底部に至る頃には、ほぼ全てのCO2が除去されたリーン溶液24Bとなる。このリーン溶液24Bは図示しない再生加熱器で図示しない飽和スチームにより加熱される。 The rich solution 24A released from the top of the regeneration tower 9 into the regeneration tower 9 releases most of the CO 2 by endotherm. The CO 2 absorbent 24 that has released a part or most of the CO 2 in the regeneration tower 9 is referred to as a “semi-lean solution”. This semi-lean solution (not shown) becomes a lean solution 24B from which almost all of the CO 2 has been removed by the time it reaches the bottom of the regeneration tower 9. This lean solution 24B is heated by saturated steam (not shown) by a regenerative heater (not shown).

一方、再生塔9の塔頂部からは塔内においてリッチ溶液24A及び図示しないセミリーン溶液から水蒸気を伴ったCO2ガス26が放出される。そして、水蒸気を伴ったCO2ガス26が導出され、コンデンサ10により水蒸気が凝縮され、分離ドラム11にて水が分離され、CO2ガス28が系外に放出されて回収される。分離ドラム11にて分離された水は図示しない凝縮水循環ポンプにて再生塔9の上部に供給される。また残りの水はCO2吸収液回収用水22として水洗部5の頂部に供給され、CO2除去排ガス1Bに同伴するCO2吸収液24を吸収する。 On the other hand, from the top of the regeneration tower 9, CO 2 gas 26 accompanied by water vapor is released from the rich solution 24A and a semi-lean solution (not shown) in the tower. Then, the CO 2 gas 26 accompanied with the water vapor is led out, the water vapor is condensed by the condenser 10, the water is separated by the separation drum 11, and the CO 2 gas 28 is discharged out of the system and collected. The water separated by the separation drum 11 is supplied to the upper part of the regeneration tower 9 by a condensed water circulation pump (not shown). The remaining water is fed to the top of the washing unit 5 as the CO 2 absorbing liquid recovery water 22, to absorb the CO 2 absorbing liquid 24 accompanying the CO 2 flue gas 1B.

水貯槽6に貯蔵された水の一部は流量計16により流量を測定し、調節弁17により所定量の水がCO2回収部4へ供給され、残りの水は水洗部5の頂部へ供給される。 A part of the water stored in the water storage tank 6 is measured by a flow meter 16, and a predetermined amount of water is supplied to the CO 2 recovery unit 4 by the control valve 17, and the remaining water is supplied to the top of the flush unit 5. Is done.

なお、図5中、前記CO2回収装置は、既設の排ガス源からCO2を回収するために後付で設けられる場合と、新設排ガス源に同時付設される場合とがある。 In FIG. 5, the CO 2 recovery device may be provided later in order to recover CO 2 from an existing exhaust gas source, or may be provided at the same time as a new exhaust gas source.

特開平10−202054号公報Japanese Patent Laid-Open No. 10-202054

ここで、例えば吸収塔3内に供給される導入されるCO2含有排ガス1Aは、冷却塔2を通過することにより40℃前後に冷却される。そしてCO2回収部4を通過したCO2除去排ガス1Bは60℃を超えるような高い温度となり、水洗部5においてCO2除去排ガス1Bに同伴するCO2吸収液24が水に回収されて冷却される。そして、CO2除去排ガス1Bに同伴するCO2吸収液24が回収されたCO2吸収液除去排ガス1Cは40℃前後となる。 Here, for example, the introduced CO 2 -containing exhaust gas 1 </ b > A supplied into the absorption tower 3 is cooled to around 40 ° C. by passing through the cooling tower 2. The CO 2 flue gas 1B having passed through the CO 2 recovery unit 4 becomes a high temperature exceeding 60 ° C., CO 2 absorbing liquid 24 accompanying the CO 2 flue gas 1B is cooled is recovered in water at washing unit 5 The Then, the CO 2 absorbing liquid removing gas 1C to the CO 2 absorbing liquid 24 accompanying the CO 2 flue gas 1B was recovered becomes longitudinal 40 ° C..

しかしながら、通常40℃程度で吸収塔3に供給されるCO2含有排ガス1Aが、冷却塔2で十分に冷却されずCO2含有排ガス1Aの温度が45〜55℃に上昇する場合があるが、前記CO2回収装置では、水貯槽6が吸収塔3の外に配置されており、液保有量が多いため、吸収塔3に供給されるCO2含有排ガス1Aの温度が変化して急激に上昇した場合等には、吸収塔3から排出されるCO2吸収液除去排ガス1Cに同伴するCO2吸収液24の外効への放出量が増大する、という問題がある。 However, the CO 2 -containing exhaust gas 1A normally supplied to the absorption tower 3 at about 40 ° C. may not be sufficiently cooled by the cooling tower 2 and the temperature of the CO 2 -containing exhaust gas 1A may rise to 45 to 55 ° C., In the CO 2 recovery device, the water storage tank 6 is disposed outside the absorption tower 3 and has a large amount of liquid, so the temperature of the CO 2 -containing exhaust gas 1A supplied to the absorption tower 3 changes and rises rapidly. the like when you, the amount of emitted out effect of the CO 2 absorbing liquid 24 to be entrained in the CO 2 absorbing solution removed exhaust gas 1C discharged from the absorption tower 3 increases, there is a problem that.

本発明は、前記問題に鑑み、CO2除去排ガスに同伴するCO2吸収液の放出量を軽減しCO2吸収液の回収効率を一層向上させたCO2回収装置及びCO2回収方法を提供することを課題とする。 In view of the above problems, the present invention provides a CO 2 recovery device and a CO 2 recovery method that reduce the amount of CO 2 absorption liquid that accompanies CO 2 removal exhaust gas and further improve the recovery efficiency of the CO 2 absorption liquid. This is the issue.

上述した課題を解決するための本発明の第1の発明は、CO2を含有する排ガスとCO2吸収液とを接触させてCO2を除去する吸収塔と、CO2を吸収したリッチ溶液を再生する再生塔と、前記再生塔でCO2が除去されたリーン溶液を吸収塔で再利用するCO2回収装置であって、前記吸収塔が、CO2吸収液で排ガス中のCO2を吸収するCO2回収部と、前記CO2回収部の上部側に設けられ、CO2を除去したCO 2 除去排ガスを冷却すると共に、同伴するCO2吸収液を凝縮水で回収する凝縮水受部を有する水洗部と、前記水洗部で凝縮されたCO2吸収液を含む凝縮水を、前記水洗部の頂部から直接循環する循環ラインと、前記再生塔から前記吸収塔へ前記リーン溶液を供給するリーン溶液供給管に、前記CO2吸収液を含む凝縮水の余剰分を供給する余剰凝縮水供給ラインと、前記水洗部内の凝縮水を回収する凝縮水受部に、前記CO 2 吸収液を含む凝縮水の液面を測定する液面計測部とを具備することを特徴とするCO2回収装置にある。 The first aspect of the present invention to solve the above problems, an absorption tower for removing CO 2 by contacting the exhaust gas and the CO 2 absorbing solution containing CO 2, the rich solution that has absorbed CO 2 A regeneration tower for regenerating and a CO 2 recovery device for reusing the lean solution from which CO 2 has been removed in the regeneration tower in an absorption tower, wherein the absorption tower absorbs CO 2 in exhaust gas with a CO 2 absorbent. and the CO 2 recovery unit for the provided on the upper side of the CO 2 recovery unit, to cool the CO 2 removal exhaust gas to remove CO 2, the condensed-water receiver for collecting the entrained CO 2 absorbing solution in the condensed water supplying a washing section, the condensed water containing CO 2 absorbing liquid that has been condensed in the water-washing section, a circulation line that circulates directly from the top of the washing section, the lean solution to the absorption tower from the regeneration tower having the lean-solution supply pipe, over the condensed water containing the CO 2 absorbing solution Min and the surplus condensed water supplying line for supplying, to the condensed-water receiver for collecting the condensed water in the washing unit, be provided with a liquid level measuring portion for measuring the liquid level of the condensed water containing the CO 2 absorbing solution It is in the CO 2 recovery device characterized by this.

第2の発明は、第1の発明において、前記余剰凝縮水供給ラインが、前記循環ラインの一部から分岐していることを特徴とするCO2回収装置にある。 A second invention is the CO 2 recovery apparatus according to the first invention, wherein the surplus condensed water supply line is branched from a part of the circulation line.

第3の発明は、CO2を含有するガスとCO2吸収液とを接触させてCO2を除去する吸収塔と、CO2を吸収したリッチ溶液を再生する再生塔と、前記再生塔でCO2が除去されたリーン溶液を吸収塔で再利用するCO2回収方法であって、排ガス中のCO2を吸収するCO2回収部の上部側に設けられた水洗部において、CO2を除去したガスから回収されたCO2吸収液を含む凝縮水を循環ラインに直接供給し、前記CO2吸収液を含む凝縮水を用いてCO2が除去されたガスの冷却と同伴するCO2吸収液の回収とを行うと共に、前記CO2吸収液を含む凝縮水を前記水洗部内の凝縮水受部で液面計測し、その余剰分を余剰凝縮水供給ラインにより、前記再生塔から前記吸収塔へ供給するリーン溶液へ供給することを特徴とするCO2回収方法にある。 A third invention is an absorption tower for removing CO 2 by contacting the gas with CO 2 absorbing liquid containing CO 2, and regeneration tower for reproducing rich solution that has absorbed CO 2, CO in the regenerator A CO 2 recovery method in which the lean solution from which 2 has been removed is reused in an absorption tower, wherein CO 2 is removed in a water washing section provided on the upper side of the CO 2 recovery section that absorbs CO 2 in exhaust gas. the condensed water containing CO 2 absorbing liquid that has been recovered from the gas was supplied directly to the circulation line, the CO 2 absorbing liquid CO 2 is accompanied by cooling of the gas which is removed with the condensed water containing the CO 2 absorbing solution In addition to performing recovery, the liquid level of the condensed water containing the CO 2 absorption liquid is measured at the condensed water receiving section in the washing section, and the surplus is supplied from the regeneration tower to the absorption tower through an excess condensed water supply line. CO 2 recovery method, characterized by supplying to the lean solution A.

本発明によれば、水洗部で凝縮されたCO 2 吸収液を含む凝縮水を水洗部の頂部から直接循環する循環ラインと、リーン溶液供給管に前記CO 2 吸収液を含む凝縮水の余剰分を直接供給する余剰凝縮水供給ラインとを具備している。これにより、CO 2 吸収液を含む凝縮水を直接循環ラインに供給し、常時循環させることができるため、吸収塔に供給されるCO 2 含有排ガスの温度が変化して急激に上昇した場合等でもCO 2 除去排ガスに同伴するCO 2 吸収液を回収することができる。また水洗部の凝縮水受部において凝縮されたCO 2 吸収液を含む凝縮水の余剰分は余剰凝縮水供給ラインを介してリーン溶液供給管に供給して、リーン溶液と共にCO 2 吸収液としても用いることができる。その結果前記CO 2 吸収液のロスを低減することができる。 According to the present invention, the circulation line that circulates the condensed water containing the CO 2 absorbing liquid condensed in the washing part directly from the top of the washing part, and the excess of the condensed water containing the CO 2 absorbing liquid in the lean solution supply pipe And a surplus condensed water supply line for directly supplying water. As a result, the condensed water containing the CO 2 absorption liquid can be directly supplied to the circulation line and constantly circulated . Therefore, even when the temperature of the CO 2 -containing exhaust gas supplied to the absorption tower changes and rises rapidly, etc. the CO 2 absorbing solution accompanying the CO 2 flue gas can be recovered. Moreover, the excess of the condensed water containing the CO 2 absorption liquid condensed in the condensed water receiving part of the water washing part is supplied to the lean solution supply pipe through the excess condensed water supply line, and can be used as the CO 2 absorption liquid together with the lean solution. Can be used. As a result, the loss of the CO 2 absorbent can be reduced.

以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。   Hereinafter, the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. In addition, constituent elements in the following embodiments include those that can be easily assumed by those skilled in the art or those that are substantially the same.

本発明による実施例1に係るCO2回収装置について、図1を参照して説明する。
図1は、本発明にかかるCO2回収装置の実施例1の概略図である。図中、前記図5に示した装置と同一構成には同一符号を付して重複した説明は省略する。
A CO 2 recovery apparatus according to Embodiment 1 of the present invention will be described with reference to FIG.
FIG. 1 is a schematic view of Example 1 of a CO 2 recovery apparatus according to the present invention. In the figure, the same components as those shown in FIG.

図1に示すように、本実施例にかかるCO2回収装置100Aは、CO2を含有するCO2含有排ガス1AとCO2吸収液(リーン溶液24B)とを接触させてCO2を除去する吸収塔3と、CO2を吸収したCO2吸収液(リッチ溶液24A)を再生する再生塔9と、前記再生塔9でCO2が除去されたリーン溶液24Bを吸収塔3で再利用するCO2回収装置であって、前記吸収塔3が、CO2吸収液24(リーン溶液24B)でCO2含有排ガス1A中のCO2を吸収するCO2回収部4と、前記CO2回収部4の上部側に設けられ、CO2除去排ガス1Bを冷却すると共に、同伴するCO2吸収液24を回収する水洗部5と、前記水洗部5で凝縮されたCO2吸収液24を含む凝縮水33を前記水洗部5の頂部から直接循環する循環ラインL1と、前記再生塔9から前記吸収塔3へ前記リーン溶液24Bを供給するリーン溶液供給管L0に、前記CO2吸収液24を含む凝縮水33の余剰分34を供給する余剰凝縮水供給ラインL2とを具備してなるものである。 As shown in FIG. 1, CO 2 recovery apparatus 100A according to this embodiment, CO 2 containing exhaust gas 1A and CO 2 absorbing solution containing CO 2 with (lean solution 24B) and contacting the CO 2 removal absorption a tower 3, a regeneration tower 9 for reproducing CO 2 absorbent having absorbed CO 2 (the rich solution 24A), to reuse the lean solution 24B which CO 2 has been removed by the regeneration tower 9 in the absorption tower 3 CO 2 a recovery device, the absorption tower 3, and CO 2 absorbing liquid 24 CO 2 recovery unit 4 that absorbs CO 2 in the CO 2 containing exhaust gas 1A in (lean solution 24B), the upper portion of the CO 2 recovery unit 4 provided on the side, to cool the CO 2 flue gas 1B, the water-washing section 5 for collecting the CO 2 absorbing liquid 24 entrained, the condensed water 33 containing the CO 2 absorbing liquid 24 that has been condensed in the water-washing section 5 a circulation line L 1 which circulates directly from the top of the washing unit 5 The regeneration tower to the lean-solution supply pipe L 0 supplies the lean solution 24B to the absorption tower 3 through 9, the CO 2 absorbing solution surplus condensed water supplying line L 2 supplies the surplus 34 of the condensed water 33 containing 24 It comprises.

また、本実施例では、水洗部5の下部側には前記CO2吸収液24を含む凝縮水33を回収する凝縮水受部40と前記CO2吸収液24を含む凝縮水33の液面を測定する液面計測部50とが具備されている。これにより水洗部5においては前記CO2吸収液24を含む凝縮水33がオーバーフローしないように水洗部5内の凝縮水受部40における前記CO2吸収液を含む凝縮水33の液面を測定している。 Further, in this embodiment, the liquid level of the condensate 33 in the lower side including the CO 2 absorbing liquid 24 and condensed water receiving portion 40 for collecting the condensed water 33 containing the CO 2 absorbing solution 24 in the washing unit 5 A liquid level measuring unit 50 for measurement is provided. Thereby, the liquid level of the condensed water 33 containing the CO 2 absorbing solution in the condensed water receiving unit 40 in the washing unit 5 is measured so that the condensed water 33 containing the CO 2 absorbing solution 24 does not overflow in the washing unit 5. ing.

また、リーン溶液24Bは再生塔9から吸収塔3にリーン溶液供給管L0により供給されている。そして、前記リッチ溶液供給管35には、前記リーン溶液24Bの余熱によりリッチ溶液24Aを加熱するリッチ・リーン溶液熱交換器8が設けられている。 Further, the lean solution 24B is supplied by the lean-solution supply pipe L 0 into the absorber 3 from the regeneration tower 9. The rich solution supply pipe 35 is provided with a rich / lean solution heat exchanger 8 for heating the rich solution 24A by the residual heat of the lean solution 24B.

本実施例においては、水洗部5で凝縮されたCO2吸収液を含む凝縮水33を水洗部5の頂部から直接循環する循環ラインL1と、リーン溶液供給管L0に前記CO2吸収液24を含む凝縮水33の余剰分34を直接供給する余剰凝縮水供給ラインL2を具備している。これにより、CO2吸収液24を含む凝縮水33を直接循環ラインL1に供給し、常時循環させることができるため、吸収塔3に供給されるCO2含有排ガス1Aの温度が変化して急激に上昇した場合等でもCO2除去排ガス1Bに同伴するCO2吸収液24を回収することができる。また水洗部5の凝縮水受部40において凝縮されたCO2吸収液24を含む凝縮水33の余剰分34は余剰凝縮水供給ラインL2を介してリーン溶液供給管L0に供給して、リーン溶液24Bと共にCO2吸収液24としても用いることができる。その結果前記CO2吸収液24のロスを低減することができる。 In the present embodiment, a circulation line L 1 which circulates directly condensed water 33 containing the CO 2 absorbing liquid that has been condensed from the top of the washing unit 5 in the washing unit 5, the CO 2 absorbing solution to the lean-solution supply pipe L 0 The surplus condensate supply line L 2 for directly supplying the surplus 34 of the condensate 33 including 24 is provided. As a result, the condensed water 33 containing the CO 2 absorbent 24 can be directly supplied to the circulation line L 1 and constantly circulated, so that the temperature of the CO 2 -containing exhaust gas 1A supplied to the absorption tower 3 changes rapidly. it can also be recovered CO 2 absorbing liquid 24 accompanying the CO 2 flue gas 1B in such case rose to. Further, the surplus portion 34 of the condensed water 33 containing the CO 2 absorbent 24 condensed in the condensed water receiving portion 40 of the water washing section 5 is supplied to the lean solution supply pipe L 0 via the excess condensed water supply line L 2 . It can be used as the CO 2 absorbent 24 together with the lean solution 24B. As a result, the loss of the CO 2 absorbent 24 can be reduced.

この結果、本実施例によれば、吸収塔3に供給されるCO2含有排ガス1Aの温度が変化して急激に上昇した場合などにおいても、水洗部5内でCO2除去排ガス1Bに同伴するCO2吸収液24を回収することができる。更に吸収塔3内で使用するCO2吸収液24のロスも低減することができる。 As a result, according to the present embodiment, even when the temperature of the CO 2 -containing exhaust gas 1A supplied to the absorption tower 3 changes and rapidly increases, the CO 2 removal exhaust gas 1B is accompanied in the water washing section 5. The CO 2 absorbent 24 can be recovered. Furthermore, the loss of the CO 2 absorbent 24 used in the absorption tower 3 can be reduced.

また、本実施例においては、循環ラインL1よってCO2吸収液24を含む凝縮水33を水洗部5内で直接循環するようにすると共に、余剰凝縮水供給ラインL2によって吸収塔3内だけでCO2吸収液24を含む凝縮水33を直接循環するようにしている。その結果、前記効果に加え吸収塔3内の凝縮水33をリッチ溶液24Aと共に再生塔9に供給する必要がなくなる。そのため再生塔9においてリッチ溶液24Aの加熱及びスチーム供給量をも低減することもでき、コストを低減することができる。更には、再生塔9のコンデンサーで必要な冷却水量の低減をも図ることができる。 In the present embodiment, the condensed water 33 containing the CO 2 absorbent 24 is directly circulated in the water washing section 5 by the circulation line L 1 and only in the absorption tower 3 by the surplus condensed water supply line L 2 . The condensed water 33 containing the CO 2 absorbent 24 is circulated directly. As a result, in addition to the above effects, it is not necessary to supply the condensed water 33 in the absorption tower 3 to the regeneration tower 9 together with the rich solution 24A. Therefore, the heating of the rich solution 24A and the steam supply amount can be reduced in the regeneration tower 9, and the cost can be reduced. Furthermore, the amount of cooling water required by the condenser of the regeneration tower 9 can be reduced.

本実施例で用いる熱交換器の種類は特に限定されるものではなく、例えばプレート熱交換器、シュエル&チューブ熱交換器等の公知の熱交換器を用いればよい。   The kind of heat exchanger used in the present embodiment is not particularly limited, and for example, a known heat exchanger such as a plate heat exchanger or a shell & tube heat exchanger may be used.

また、本発明で使用できるCO2 吸収液24としては特に限定されるものではないが、アルカノールアミンやアルコール性水酸基を有するヒンダードアミン類を例示することができる。このようなアルカノールアミンとしてはモノエタノールアミン、ジエタノールアミン、トリエタノールアミン、メチルジエタノールアミン、ジイソプロパノールアミン、ジグリコールアミンなどを例示することができるが、通常モノエタノールアミン(MEA)が好んで用いられる。またアルコール性水酸基を有するヒンダードアミンとしては2−アミノ−2−メチル−1−プロパノール(AMP)、2−(エチルアミノ)−エタノール(EAE)、2−(メチルアミノ)−エタノール(MAE)、2−(ジエチルアミノ)−エタノール(DEAE)などを例示できる。 Further, the CO 2 absorbent 24 that can be used in the present invention is not particularly limited, and examples thereof include alkanolamines and hindered amines having an alcoholic hydroxyl group. Examples of such alkanolamines include monoethanolamine, diethanolamine, triethanolamine, methyldiethanolamine, diisopropanolamine, and diglycolamine, but monoethanolamine (MEA) is usually preferred. Examples of the hindered amine having an alcoholic hydroxyl group include 2-amino-2-methyl-1-propanol (AMP), 2- (ethylamino) -ethanol (EAE), 2- (methylamino) -ethanol (MAE), 2- (Diethylamino) -ethanol (DEAE) etc. can be illustrated.

[試験例1]
次に、冷却塔2の出口のガス温度が変化した場合に冷却塔2の出口のガス温度が通常の状態に落ち着くまでの間に吸収塔3からCO2吸収液除去排ガス1Cに同伴して放出されてしまうCO2吸収液24であるアミン量の試験結果について説明する。
[Test Example 1]
Next, when the gas temperature at the outlet of the cooling tower 2 is changed, the gas at the outlet of the cooling tower 2 is discharged from the absorption tower 3 along with the CO 2 absorbent-removed exhaust gas 1C until it settles to a normal state. The test result of the amount of amine that is the CO 2 absorbent 24 that will be performed will be described.

[試験例1の反応条件]
試験例1は、水洗部5で凝縮されたCO2吸収液24を含む凝縮水33を水洗部5の頂部から直接循環する循環ラインL1と、CO2吸収液を含む凝縮水33の余剰水をリーン溶液供給管L0に供給する余剰凝縮水供給ラインL2とを具備してなるものである。
また、比較例1は、水洗部5で凝縮されたCO2吸収液24を含む凝縮水33を水洗部5の頂部から直接循環する循環ラインL1を有しない従来型の図5に対応するものである。
[Reaction conditions of Test Example 1]
Test Example 1 is a circulation line L 1 for directly circulating the condensed water 33 containing the CO 2 absorbing solution 24 condensed in the washing unit 5 from the top of the washing unit 5, and surplus water of the condensed water 33 containing the CO 2 absorbing solution. Is provided with a surplus condensed water supply line L 2 for supplying to the lean solution supply pipe L 0 .
In Comparative Example 1, which corresponds to a conventional 5 having no circulation line L 1 which circulates directly condensed water 33 containing the CO 2 absorbing liquid 24 that has been condensed in the washing unit 5 from the top of the washing unit 5 It is.

CO2吸収液を含む凝縮水33の液面を計測する液面計測部50は、試験例1では吸収塔3内の水洗部5を設け、比較例1では吸収塔3外の図5に示す水貯槽6を設けた。
また、水洗部5内のCO2吸収液24を含む凝縮水33の保存される液量については、水洗部5で凝縮されたCO2吸収液24を含む凝縮水33を水洗部5の頂部から直接循環する循環ラインL1を有しない比較例1において水洗部5のCO2吸収液24を含む凝縮水33の保存される液量を基準値として1としたとき、循環ラインL1と余剰凝縮水供給ラインL2とを有する試験例1における水洗部5のCO2吸収液24を含む凝縮水33の保液量を0.1とした。
試験例1と比較例1のCO2吸収液24を含む凝縮水33の液面を計測する液面計測部50を設けた位置と水洗部5内のCO2吸収液24を含む凝縮水33の保存される液量とを、下記表1に示す。
尚、表1では、試験例1及び比較例1とのCO2吸収液除去排ガス1Cに同伴して放出されたロス分のアミン量の比についても併せて示す。
The liquid level measuring unit 50 for measuring the liquid level of the condensed water 33 containing the CO 2 absorbing liquid is provided with the water washing unit 5 in the absorption tower 3 in Test Example 1 and shown in FIG. 5 outside the absorption tower 3 in Comparative Example 1. A water storage tank 6 was provided.
Also, the conserved liquid amount of the condensed water 33 containing the CO 2 absorbing liquid 24 in the washing section 5, the condensed water 33 containing the CO 2 absorbing liquid 24 that has been condensed in the washing unit 5 from the top of the washing unit 5 In Comparative Example 1 that does not have a circulation line L 1 that circulates directly, when the amount of the condensate 33 that contains the CO 2 absorbent 24 of the water washing section 5 is 1 as a reference value, the circulation line L 1 and the excess condensation The liquid retention amount of the condensed water 33 containing the CO 2 absorbent 24 of the water washing section 5 in Test Example 1 having the water supply line L 2 was set to 0.1.
Test Example 1 and Comparative Example 1 of the CO 2 absorbing liquid 24 condensed water 33 containing the CO 2 absorbing liquid 24 of the liquid level of the condensed water 33 and a position in which a liquid level measuring unit 50 for measuring the water washing unit 5 comprising The amount of liquid to be stored is shown in Table 1 below.
Table 1 also shows the ratio of the amine amount of the loss released along with the CO 2 absorbing liquid-removed exhaust gas 1C in Test Example 1 and Comparative Example 1.

Figure 0005232361
Figure 0005232361

[試験例1でのCO2吸収液回収性能]
CO2吸収液回収性能として、冷却塔2の出口温度を55℃から35℃とした時点から冷却塔2の出口のガス温度が35℃程度の通常状態のときにCO2吸収液除去排ガス1Cに同伴して放出されるアミン量(定常値)の状態に落ち着くまでの間にCO2吸収液除去排ガス1Cに同伴して排出されてしまうアミン量について検討した。
[CO 2 absorbent recovery performance in Test Example 1]
As the CO 2 absorbing liquid recovery performance, the CO 2 absorbing liquid removing exhaust gas 1C is used when the gas temperature at the outlet of the cooling tower 2 is in a normal state of about 35 ° C. from the time when the outlet temperature of the cooling tower 2 is changed from 55 ° C. to 35 ° C. The amount of amine discharged along with the CO 2 absorbent-removed exhaust gas 1C until the state of the amount of amine released along with it (steady value) settled was examined.

洗部5から排出されるCO2吸収液除去排ガス1Cの温度は、冷却塔2の出口ガス温度に依存する。
そして冷却塔2の出口ガス温度が55℃のときの運転条件に対し、冷却塔2の出口ガス温度が35℃のときではCO2除去排ガス1B中の水分の凝縮量が多いため、水洗部5に供給されるCO 2 除去排ガス1Bに同伴される水中のCO2吸収液の濃度は低くなる。
洗部5に供給されるCO 2 除去排ガス1Bに同伴される水中のCO2吸収液の濃度が低くなれば、水洗部5から排出されるCO2吸収液除去排ガス1C中のCO2吸収液の濃度も低くなる。
Temperature of the CO 2 absorbing liquid removing gas 1C discharged from the water washing section 5 depends on the outlet gas temperature of the cold却塔2.
And when the outlet gas temperature of the cooling tower 2 is 55 ° C., when the outlet gas temperature of the cooling tower 2 is 35 ° C., the amount of condensed water in the CO 2 removal exhaust gas 1B is large. The concentration of the CO 2 absorbing solution in water accompanying the CO 2 removal exhaust gas 1B supplied to the water becomes low.
The lower the concentration of CO 2 absorbing solution in water entrained in the CO 2 reducing gas 1B to be supplied to the water washing section 5, the CO 2 absorbing solution in a CO 2 absorbing solution removed exhaust gas 1C discharged from the washing unit 5 The concentration of is also lowered.

図2は冷却塔2の出口温度を55℃から35℃とした時点からのCO2吸収液除去排ガス1C中のアミン濃度と運転時間との変化について示す。
即ち、冷却塔2の出口温度を55℃から35℃とした時点から冷却塔2の出口温度が35℃程度のときにCO2吸収液除去排ガス1Cに同伴して排出されるCO2吸収液濃度(定常値)に到達するまでのCO2吸収液除去排ガス1C中のCO2吸収液濃度の時間変化を示すものである。
FIG. 2 shows changes in amine concentration and operating time in the CO 2 absorbent-removed exhaust gas 1C when the outlet temperature of the cooling tower 2 is changed from 55 ° C. to 35 ° C.
That, CO 2 absorbing solution concentration discharged by accompanying the CO 2 absorbing solution removed exhaust gas 1C at about 35 ° C. outlet temperature of the cooling tower 2 outlet temperature of the cooling tower 2 from the time of the 35 ° C. from 55 ° C. It shows the time variation of the CO 2 absorbing solution concentration in the CO 2 absorbing liquid removing gas 1C to reach (steady value).

図2に示すように、水洗部5で凝縮されたCO2吸収液24を含む凝縮水33を水洗部5の頂部から直接循環する循環ラインL1とリーン溶液供給管L0に前記CO2吸収液24を含む凝縮水33の余剰分34を直接供給する余剰凝縮水供給ラインL2とを有する試験例1は、冷却塔2の出口温度を55℃から35℃に戻した時点から5時間以内には吸収塔3のCO2吸収液除去排ガス1C中のアミン濃度が低くなり安定していた。 As shown in FIG. 2, the condensed water 33 containing the CO 2 absorbent 24 condensed in the water washing section 5 is directly circulated from the top of the water washing section 5 to the circulation line L 1 and the lean solution supply pipe L 0 to absorb the CO 2. Test Example 1 having an excess condensed water supply line L 2 for directly supplying an excess 34 of the condensed water 33 containing the liquid 24 is within 5 hours from the time when the outlet temperature of the cooling tower 2 is returned from 55 ° C. to 35 ° C. The amine concentration in the exhaust gas 1C for removing the CO 2 absorbent from the absorption tower 3 was low and stable.

これに対し、水洗部5で凝縮されたCO2吸収液24を含む凝縮水33を水洗部5の頂部から直接循環する循環ラインL1を有しない比較例1は、冷却塔2の出口温度を55℃から35℃とした時点から徐々に吸収塔3のCO2吸収液除去排ガス1C中のアミン濃度が低くなり、冷却塔2の出口温度を55℃から35℃とした時点から30時間後に循環ラインL1と余剰凝縮水供給ラインL2とを有する試験例1とほぼ同じくらいにまでCO2吸収液除去排ガス1C中のアミン濃度が低くなった。 In contrast, Comparative Example 1 having no circulation line L 1 which circulates directly from the top of the washing section 5 the condensed water 33 containing the CO 2 absorbing liquid 24 that has been condensed in the washing section 5, the outlet temperature of the cooling tower 2 The amine concentration in the CO 2 absorption liquid removal exhaust gas 1C of the absorption tower 3 gradually decreases from 55 ° C. to 35 ° C., and circulates 30 hours after the cooling tower 2 outlet temperature is changed from 55 ° C. to 35 ° C. The amine concentration in the CO 2 absorbent-removed exhaust gas 1C was lowered to about the same as in Test Example 1 having the line L 1 and the surplus condensed water supply line L 2 .

また、水洗部5で凝縮されたCO2吸収液を含む凝縮水33を水洗部5の頂部から直接循環する循環ラインL1とリーン溶液供給管L0に前記CO2吸収液24を含む凝縮水33の余剰分34を直接供給する余剰凝縮水供給ラインL2とを有する試験例1及び水洗部5で凝縮されたCO2吸収液24を含む凝縮水33を水洗部5の頂部から直接循環する循環ラインL1を有しない比較例1について、冷却塔2の出口のガス温度が通常の状態に落ち着くまでの間に吸収塔3からCO2吸収液除去排ガス1Cに同伴して放出されたアミン量の比を表した関係についての結果を前記表1及び図3に示す。 Further, the condensed water containing the CO 2 absorbing liquid 24 condensed water 33 containing the CO 2 absorbing liquid that has been condensed in the washing unit 5 into the circulation line L 1 and the lean-solution supply pipe L 0 circulating directly from the top of the washing unit 5 The condensed water 33 containing the CO 2 absorbent 24 condensed in the test example 1 and the water washing section 5 having the surplus condensed water supply line L 2 for directly supplying the surplus portion 34 of 33 is directly circulated from the top of the water washing section 5. Comparative example 1 having no circulation line L 1, the amine amount released by entrained from the absorption tower 3 to CO 2 absorbing solution removed exhaust gas 1C between the gas temperature to settle to the normal state at the outlet of the cooling tower 2 The results of the relationship representing the ratio are shown in Table 1 and FIG.

図3に示すように、水洗部5で凝縮されたCO2吸収液24を含む凝縮水33を水洗部5の頂部から直接循環する循環ラインL1を有しない比較例1において、冷却塔2の出口のガス温度が35℃の通常の状態に落ち着くまでの間に吸収塔3からCO2吸収液除去排ガス1Cに同伴して放出されたロス分のアミン量を基準値として1とすると、水洗部5で凝縮されたCO2吸収液24を含む凝縮水33を水洗部5の頂部から直接循環する循環ラインL1とリーン溶液供給管L0に前記CO2吸収液24を含む凝縮水33の余剰分34を直接供給する余剰凝縮水供給ラインL2とを有する試験例1において、冷却塔2の出口のガス温度が35℃の通常の状態に落ち着くまでの間に吸収塔3からCO2吸収液除去排ガス1Cに同伴して放出されたロス分のアミン量は、0.87となった。 As shown in FIG. 3, in the circulation line L 1 Comparative Example 1 having no circulating directly from the top of the washing section 5 the condensed water 33 containing the CO 2 absorbing liquid 24 that has been condensed in the washing section 5, a cooling tower 2 If the amount of amine released from the absorption tower 3 along with the CO 2 absorbent removal exhaust gas 1C until the gas temperature at the outlet settles to a normal state of 35 ° C. is set to 1 as a reference value, the water washing section The excess of the condensed water 33 containing the CO 2 absorbent 24 in the circulation line L 1 and the lean solution supply pipe L 0 for circulating the condensed water 33 containing the CO 2 absorbent 24 condensed in 5 directly from the top of the washing section 5 In Test Example 1 having the surplus condensed water supply line L 2 for directly supplying the fraction 34, the CO 2 absorption liquid from the absorption tower 3 until the gas temperature at the outlet of the cooling tower 2 settles to a normal state of 35 ° C. Loss released along with the removed exhaust gas 1C Amine amount became 0.87.

このように水洗部5における水中のアミン濃度の変化は、液保有量の多い比較例1に対し、循環ラインL1と余剰凝縮水供給ラインL2とを有する試験例1では、液保有量が凝縮水受部40のみであって残りは余剰分34としているため液保有量が少ない。そのため、水洗部5における水中のアミン濃度が短時間で通常冷却塔2の出口温度が40℃程度のときの水洗部5における水中のアミン濃度に達することができるため、通常冷却塔2の出口温度が40℃程度のときのCO2吸収液除去排ガス1Cに同伴して排出されるアミン量に達することができる。 As described above, the change in the amine concentration in the water in the water washing section 5 shows that the liquid holding amount is higher in the test example 1 having the circulation line L 1 and the surplus condensed water supply line L 2 than in the comparative example 1 in which the liquid holding amount is large. Since only the condensate receiver 40 is used and the remainder is the surplus 34, the amount of liquid retained is small. Therefore, since the amine concentration in the water in the water washing part 5 can reach the amine concentration in the water in the water washing part 5 when the outlet temperature of the normal cooling tower 2 is about 40 ° C. in a short time, the outlet temperature of the normal cooling tower 2 It is possible to reach the amount of amine discharged accompanying the CO 2 absorbing liquid-removed exhaust gas 1C when is about 40 ° C.

よって、本試験例によれば、水洗部5で凝縮されたCO2吸収液24を含む凝縮水33を循環ラインL1を用いて循環させることにより、水洗部5で凝縮されたCO2吸収液24を含む凝縮水33を水洗部5の頂部から直接循環する循環ラインL1を有しない比較例1に比べて、吸収塔3に供給されるCO2含有排ガス1Aの温度が55℃から35℃とした時点から早い段階で吸収塔3の出口ガス中のアミン濃度を低くし、安定させることができ、アミン放出ロス量を低減することができることが確認された。 Therefore, according to the present test example, the condensed water 33 containing the CO 2 absorbing liquid 24 condensed in the rinsing section 5 is circulated using the circulation line L 1 , whereby the CO 2 absorbing liquid condensed in the rinsing section 5. 24 as compared to having no Comparative example 1 the circulation line L 1 which circulates directly condensed water 33 from the top of the washing unit 5 comprising, 35 ° C. temperature of the CO 2 containing exhaust gas 1A supplied to the absorption tower 3 from 55 ° C. It was confirmed that the amine concentration in the outlet gas of the absorption tower 3 can be lowered and stabilized at an early stage from the point of time, and the amount of amine release loss can be reduced.

本発明による実施例2に係るCO2回収装置について、図4を参照して説明する。
図4は、実施例2に係るCO2回収装置を示す概念図である。なお、実施例1と同様の部材については、同一符号を付してその説明は省略する。
図4に示すように、本実施例にかかるCO2回収装置100Bは、余剰凝縮水供給ラインL2が、循環ラインL1の一部から分岐して構成されるものである。そのため、水洗部5の凝縮水受部40において凝縮されたCO2吸収液24を含む凝縮水33の余剰分34は余剰凝縮水供給ラインL2のライン上に設けられているバルブ36を開放して、余剰凝縮水供給ラインL2を介してリーン溶液供給管L0に供給して、リーン溶液24Bと共にCO2吸収液24としても用いることができる。
A CO 2 recovery apparatus according to Embodiment 2 of the present invention will be described with reference to FIG.
FIG. 4 is a conceptual diagram illustrating a CO 2 recovery apparatus according to the second embodiment. In addition, about the member similar to Example 1, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
As shown in FIG. 4, the CO 2 recovery apparatus 100B according to the present embodiment is configured such that the surplus condensed water supply line L 2 is branched from a part of the circulation line L 1 . Therefore, the excess 34 of the condensed water 33 containing the CO 2 absorbing liquid 24 condensed in the condensed water receiving unit 40 of the water washing unit 5 opens the valve 36 provided on the excessive condensed water supply line L 2. Then, it can be supplied to the lean solution supply pipe L 0 via the surplus condensed water supply line L 2 and used as the CO 2 absorbent 24 together with the lean solution 24B.

このように、循環ラインL1を介してCO2吸収液24を含む凝縮水33を直接循環ラインL1に供給し、水洗部5内を循環させるようにすることができるため、吸収塔3に供給されるCO2含有排ガス1Aの温度が変化して急激に上昇した場合等においても、安定して水洗部5内でCO2除去された排ガス1Bに同伴するCO2吸収液24を回収することができる。
更に循環ラインL1の一部から分岐するように余剰凝縮水供給ラインL2を設けることにより、前記CO2吸収液24を含む凝縮水33の余剰分34を余剰凝縮水供給ラインL2を介してリーン溶液供給管L0に供給してリーン溶液24Bと共にCO2吸収液24としても用いることができる。このため吸収塔3内で使用する前記CO2吸収液24のロスを低減することができる。
Since the condensed water 33 containing the CO 2 absorbing liquid 24 through the circulation line L 1 fed directly into the circulation line L 1, can be made to circulate through the washing unit 5, the absorption tower 3 Even when the temperature of the supplied CO 2 -containing exhaust gas 1A changes and rises rapidly, the CO 2 absorbent 24 that accompanies the exhaust gas 1B from which CO 2 has been stably removed in the water washing section 5 is recovered. Can do.
Further, by providing the surplus condensed water supply line L 2 so as to branch from a part of the circulation line L 1 , the surplus portion 34 of the condensed water 33 containing the CO 2 absorbent 24 is passed through the surplus condensed water supply line L 2 . It can be supplied to the lean solution supply pipe L 0 and used as the CO 2 absorbent 24 together with the lean solution 24B. For this reason, the loss of the CO 2 absorbent 24 used in the absorption tower 3 can be reduced.

以上のように、本発明にかかるCO2回収装置は、CO2吸収液を含む凝縮水を水洗部内で直接循環させる循環ラインと前記CO2吸収液を含む凝縮水の余剰分を余剰凝縮水供給ラインを用いることで、CO2除去排ガスに同伴するCO2吸収液の放出量を軽減しCO2吸収液の回収効率を向上させると共に、前記CO2吸収液のロスを低減することに用いて適している。 As described above, CO 2 recovery apparatus according to the present invention, the excess condensed water supply circulation line for circulating directly the surplus condensed water containing the CO 2 absorbing solution condensed water containing CO 2 absorbing solution in the washing portion by using the line, to reduce the emission of CO 2 absorbing solution accompanying the CO 2 removing gas thereby improving the recovery efficiency of the CO 2 absorbing solution, using to reduce the loss of the CO 2 absorbing solution suitable ing.

実施例1におけるCO2回収装置の概略図である。1 is a schematic view of a CO 2 recovery device in Example 1. FIG. 冷却塔の出口温度を55℃から35℃とした時点からのCO2吸収液除去排ガス中のアミン濃度と運転時間との変化について示す図である。The outlet temperature of the cooling tower is a diagram showing a change in the CO 2 absorbing solution removing amine concentration and the operating time of the exhaust gas from the time of the 35 ° C. from 55 ° C.. 試験例1及び比較例1における冷却塔の出口のガス温度が通常の状態に落ち着くまでの間に吸収塔からCO2吸収液除去排ガスに同伴して放出されたアミン量の比を表した関係についての結果を示す図である。About the relationship that represents the ratio of the amount of amine released along with the CO 2 absorbent removal exhaust gas from the absorption tower until the gas temperature at the outlet of the cooling tower in Test Example 1 and Comparative Example 1 settles to the normal state. It is a figure which shows the result. 実施例2に係るCO2回収装置を示す概念図である。FIG. 5 is a conceptual diagram showing a CO 2 recovery device according to a second embodiment. 従来のCO2回収装置の概略図である。It is a schematic view of a conventional CO 2 recovery apparatus.

100A、100B CO2回収装置
1A CO2含有排ガス
1B CO2除去排ガス
1C CO2吸収液除去排ガス
3 吸収塔
4 CO2回収部
5 水洗部
6 水貯槽
8 リッチ・リーン溶液熱交換器
9 再生塔
10 コンデンサ
24 CO2吸収液
24A リッチ溶液
24B リーン溶液
33 CO2吸収液を含む凝縮水
34 余剰分
35 リッチ溶液供給管
36 バルブ
40 凝縮水受部
50 液面計測部
0 リーン溶液供給管
1 循環ライン
2 余剰凝縮水供給ライン
100A, 100B CO 2 recovery device 1A CO 2 containing exhaust gas 1B CO 2 removal exhaust gas 1C CO 2 absorbent removal exhaust gas 3 Absorption tower 4 CO 2 recovery section 5 Water washing section 6 Water storage tank 8 Rich / lean solution heat exchanger 9 Regeneration tower 10 Capacitor 24 CO 2 absorbent 24A Rich solution 24B Lean solution 33 Condensed water containing CO 2 absorbent 34 Excess 35 Rich solution supply pipe 36 Valve 40 Condensed water receiving part 50 Liquid level measuring part L 0 Lean solution supply pipe L 1 Circulation Line L 2 surplus condensed water supply line

Claims (3)

CO2を含有する排ガスとCO2吸収液とを接触させてCO2を除去する吸収塔と、CO2を吸収したリッチ溶液を再生する再生塔と、前記再生塔でCO2が除去されたリーン溶液を吸収塔で再利用するCO2回収装置であって、
前記吸収塔が、CO2吸収液で排ガス中のCO2を吸収するCO2回収部と、
前記CO2回収部の上部側に設けられ、CO2を除去したCO 2 除去排ガスを冷却すると共に、同伴するCO2吸収液を凝縮水で回収する凝縮水受部を有する水洗部と、
前記水洗部で凝縮されたCO2吸収液を含む凝縮水を、前記水洗部の頂部から直接循環する循環ラインと、
前記再生塔から前記吸収塔へ前記リーン溶液を供給するリーン溶液供給管に、前記CO2吸収液を含む凝縮水の余剰分を供給する余剰凝縮水供給ラインと、
前記水洗部内の凝縮水を回収する凝縮水受部に、前記CO 2 吸収液を含む凝縮水の液面を測定する液面計測部と
を具備することを特徴とするCO2回収装置。
An absorption tower for removing CO 2 by contacting the exhaust gas and the CO 2 absorbing solution containing CO 2, and regeneration tower for reproducing rich solution that has absorbed CO 2, lean which CO 2 has been removed by the regeneration tower A CO 2 recovery device for reusing a solution in an absorption tower,
A CO 2 recovery section in which the absorption tower absorbs CO 2 in the exhaust gas with a CO 2 absorbent;
Provided on the upper side of the CO 2 recovery unit, to cool the CO 2 removal exhaust gas to remove CO 2, and water washing unit having a condensed-water receiver for collecting the entrained CO 2 absorbing solution in the condensed water,
A circulation line that circulates the condensed water containing the CO 2 absorbent condensed in the water washing section directly from the top of the water washing section;
An excess condensed water supply line for supplying an excess of condensed water containing the CO 2 absorbent to a lean solution supply pipe for supplying the lean solution from the regeneration tower to the absorption tower;
Wherein the condensed-water receiver for collecting the condensed water in the washing section, the CO 2 absorbing solution CO 2 recovery, characterized by comprising a liquid level measurement unit for measuring the liquid level of the condensate water <br/> comprising apparatus.
請求項1において、
前記余剰凝縮水供給ラインが、前記循環ラインの一部から分岐していることを特徴とするCO2回収装置。
In claim 1,
The CO 2 recovery apparatus, wherein the surplus condensed water supply line branches off from a part of the circulation line.
CO2を含有するガスとCO2吸収液とを接触させてCO2を除去する吸収塔と、CO2を吸収したリッチ溶液を再生する再生塔と、前記再生塔でCO2が除去されたリーン溶液を吸収塔で再利用するCO2回収方法であって、
排ガス中のCO2を吸収するCO2回収部の上部側に設けられた水洗部において、CO2を除去したガスから回収されたCO2吸収液を含む凝縮水を循環ラインに直接供給し、前記CO2吸収液を含む凝縮水を用いてCO2が除去されたガスの冷却と同伴するCO2吸収液の回収とを行うと共に、前記CO2吸収液を含む凝縮水を前記水洗部内の凝縮水受部で液面計測し、その余剰分を余剰凝縮水供給ラインにより、前記再生塔から前記吸収塔へ供給するリーン溶液へ供給することを特徴とするCO2回収方法。
An absorption tower for removing CO 2 by contacting the gas with CO 2 absorbing liquid containing CO 2, and regeneration tower for reproducing rich solution that has absorbed CO 2, lean which CO 2 has been removed by the regeneration tower A CO 2 recovery method for reusing a solution in an absorption tower,
In the water washing section provided on the upper side of the CO 2 recovery section that absorbs CO 2 in the exhaust gas, the condensed water containing the CO 2 absorbing liquid recovered from the gas from which CO 2 has been removed is directly supplied to the circulation line, The condensed water containing the CO 2 absorbing liquid is used to cool the gas from which CO 2 has been removed and to recover the accompanying CO 2 absorbing liquid, and the condensed water containing the CO 2 absorbing liquid is condensed into the condensed water in the washing section. A CO 2 recovery method, characterized in that the liquid level is measured at a receiving part, and the excess is supplied to a lean solution supplied from the regeneration tower to the absorption tower through an excess condensed water supply line.
JP2006111302A 2006-04-13 2006-04-13 CO2 recovery device and CO2 recovery method Active JP5232361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006111302A JP5232361B2 (en) 2006-04-13 2006-04-13 CO2 recovery device and CO2 recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006111302A JP5232361B2 (en) 2006-04-13 2006-04-13 CO2 recovery device and CO2 recovery method

Publications (2)

Publication Number Publication Date
JP2007284272A JP2007284272A (en) 2007-11-01
JP5232361B2 true JP5232361B2 (en) 2013-07-10

Family

ID=38756399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006111302A Active JP5232361B2 (en) 2006-04-13 2006-04-13 CO2 recovery device and CO2 recovery method

Country Status (1)

Country Link
JP (1) JP5232361B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5072627B2 (en) * 2008-02-01 2012-11-14 三菱重工業株式会社 CO2 recovery device and filtration membrane device cleaning method
EP2327467B1 (en) * 2008-02-22 2015-06-17 Mitsubishi Heavy Industries, Ltd. Apparatus for recovering co2 and method of recovering co2
JP4929227B2 (en) * 2008-04-30 2012-05-09 株式会社日立製作所 Gas turbine system using high humidity air
JP6004821B2 (en) * 2012-08-08 2016-10-12 三菱重工業株式会社 CO2 recovery apparatus and CO2 recovery method
JP5968159B2 (en) * 2012-08-20 2016-08-10 三菱重工業株式会社 CO2 recovery apparatus and CO2 recovery method
CN103143248A (en) * 2013-02-08 2013-06-12 珠海共同机械设备有限公司 System for absorbing and desorbing low-content CO2 in industrial exhaust gas
CN111747411B (en) * 2020-07-15 2021-07-20 广州市华达石化有限公司 Low-pressure low-temperature treatment method for industrial carbon dioxide gas

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3364103B2 (en) * 1997-01-27 2003-01-08 三菱重工業株式会社 Control method of absorption liquid in decarbonation equipment
JP3969949B2 (en) * 2000-10-25 2007-09-05 関西電力株式会社 Amine recovery method and apparatus, and decarbonation gas apparatus provided with the same

Also Published As

Publication number Publication date
JP2007284272A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
EP2578290B1 (en) CO2 recovery system and method
JP5230088B2 (en) CO2 recovery apparatus and method
JP5777751B2 (en) CO2 recovery device and CO2 recovery method
RU2389534C2 (en) Device to extract co2 and method of wastes removal
JP5021917B2 (en) CO2 recovery apparatus and method
JP5507584B2 (en) Method and plant for amine emissions control
KR950006512B1 (en) Carbon dioxide of exhaust gas removing apparatus and method
JP5215595B2 (en) Absorbing liquid, CO2 or H2S removing apparatus and method using absorbing liquid
JP5232361B2 (en) CO2 recovery device and CO2 recovery method
JP5134578B2 (en) CO2 recovery apparatus and method
RU2558361C2 (en) Water flushing method and system for carbon dioxide trapping method
JP2895325B2 (en) Method for removing carbon dioxide in flue gas
JP5383339B2 (en) Concentration management method for CO2 absorbent used in CO2 recovery equipment
JP3197183B2 (en) Method for removing carbon dioxide in flue gas
JP5968159B2 (en) CO2 recovery apparatus and CO2 recovery method
CN103379951A (en) Systems and processes for removing volatile degradation products produced in gas purification
JP2010253370A (en) Co2 recovery device and co2 recovery method
WO2013161574A1 (en) Co2 recovery device, and co2 recovery method
JP2015199007A (en) Carbon dioxide recovery device and amine recovery method
JP6726039B2 (en) Acid gas recovery device and acid gas recovery method
JP6581768B2 (en) CO2 recovery apparatus and CO2 recovery method
JP2012110805A (en) Method and apparatus of recovering carbon dioxide
JP5237204B2 (en) CO2 recovery apparatus and method
JPH05184866A (en) Equipment for removing carbon dioxide in combustion exhaust gas and method therefor
JP6004821B2 (en) CO2 recovery apparatus and CO2 recovery method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130325

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5232361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250