JP5229031B2 - air conditioner - Google Patents

air conditioner Download PDF

Info

Publication number
JP5229031B2
JP5229031B2 JP2009066768A JP2009066768A JP5229031B2 JP 5229031 B2 JP5229031 B2 JP 5229031B2 JP 2009066768 A JP2009066768 A JP 2009066768A JP 2009066768 A JP2009066768 A JP 2009066768A JP 5229031 B2 JP5229031 B2 JP 5229031B2
Authority
JP
Japan
Prior art keywords
heat exchanger
valve
radiant heat
refrigerant
panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009066768A
Other languages
Japanese (ja)
Other versions
JP2010216767A (en
Inventor
敏浩 木澤
淳一 中西
健二郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2009066768A priority Critical patent/JP5229031B2/en
Priority to AU2010225998A priority patent/AU2010225998B2/en
Priority to CN2010800118323A priority patent/CN102348936A/en
Priority to PCT/JP2010/001812 priority patent/WO2010106771A1/en
Priority to EP10753268A priority patent/EP2410250A1/en
Priority to US13/256,034 priority patent/US20120000224A1/en
Publication of JP2010216767A publication Critical patent/JP2010216767A/en
Application granted granted Critical
Publication of JP5229031B2 publication Critical patent/JP5229031B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0089Systems using radiation from walls or panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • F25B2313/02334Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements during heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/08Exceeding a certain temperature value in a refrigeration component or cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2515Flow valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Description

本発明は、蒸気圧縮式冷凍サイクルを行う冷媒回路を備えた空調機に関する。   The present invention relates to an air conditioner including a refrigerant circuit that performs a vapor compression refrigeration cycle.

高圧冷媒を利用して暖房運転を行う空調機として、例えば、高圧冷媒を輻射熱交換器に流す空調機が特許文献1(特開平7−55234号公報)に開示されている。特許文献1(特開平7−55234号公報)に記載の空調機では、暖房運転時に輻射熱交換器への高圧冷媒の流入を調節する弁が、輻射熱交換器の下流側に配置されており、輻射熱交換器の温度が上限値に達したとき、弁は流路を閉じて高圧冷媒が輻射熱交換器に流れないようにする。   As an air conditioner that performs a heating operation using a high-pressure refrigerant, for example, an air conditioner that causes a high-pressure refrigerant to flow through a radiant heat exchanger is disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 7-55234). In the air conditioner described in Patent Document 1 (Japanese Patent Laid-Open No. 7-55234), a valve that adjusts the flow of high-pressure refrigerant into the radiant heat exchanger during heating operation is disposed on the downstream side of the radiant heat exchanger. When the exchanger temperature reaches an upper limit, the valve closes the flow path to prevent high pressure refrigerant from flowing into the radiant heat exchanger.

しかしながら、上記の構成では、圧縮機の圧力によって高圧冷媒が輻射熱交換器に押し込まれる状態になり、冷媒および圧縮機油などが輻射熱交換器に滞留する。そのため、冷媒温度が下がり難く、輻射熱交換器の温度が下がって欲しいときに下がらないという状態が発生する。また、圧縮機への油戻りが減るので、圧縮機の信頼性を損なう可能性が高くなる。   However, in the above configuration, the high pressure refrigerant is pushed into the radiant heat exchanger by the pressure of the compressor, and the refrigerant, compressor oil, and the like stay in the radiant heat exchanger. For this reason, it is difficult for the refrigerant temperature to decrease, and a state occurs in which the refrigerant temperature does not decrease when the temperature of the radiant heat exchanger is desired to decrease. Further, since the return of oil to the compressor is reduced, there is a high possibility that the reliability of the compressor is impaired.

そこで、出願人は、輻射熱交換器の上流側に、輻射熱交換器に向う高圧冷媒の流通路を遮断する開閉弁を設けて、高圧冷媒が輻射熱交換器に押し込まれることを防止した。但し、それだけでは、暖房運転中、輻射熱交換器で液化した冷媒が輻射熱交換器および開閉弁近傍に溜まるので、この状態で液冷媒が自然蒸発して内部圧力が上昇した場合、開閉弁が圧力に押されて開と閉を繰り返す現象、いわゆるチャタリングが発生する。   Therefore, the applicant provided an on-off valve for blocking the flow path of the high-pressure refrigerant toward the radiant heat exchanger on the upstream side of the radiant heat exchanger to prevent the high-pressure refrigerant from being pushed into the radiant heat exchanger. However, that alone will cause the refrigerant liquefied by the radiant heat exchanger to accumulate in the vicinity of the radiant heat exchanger and the on-off valve during heating operation.If the liquid refrigerant naturally evaporates and the internal pressure rises in this state, the on-off valve A phenomenon that repeats opening and closing when pressed, so-called chattering, occurs.

本発明の課題は、暖房運転中、輻射熱交換器で液化した冷媒が輻射熱交換器および開閉弁近傍に溜まっても開閉弁にチャタリングが発生しない空調機を提供することにある。   An object of the present invention is to provide an air conditioner in which chattering does not occur in an on-off valve even when refrigerant liquefied by a radiant heat exchanger accumulates in the vicinity of the radiant heat exchanger and the on-off valve during heating operation.

第1発明に係る空調機は、蒸気圧縮式冷凍サイクルを行う冷媒回路を備え、少なくとも高圧冷媒を利用して暖房運転を行う空調機であって、冷媒回路が、対流熱交換器と、輻射熱交換器と、開閉弁と、逆止弁とを有している。対流熱交換器は、内側を流通する高圧冷媒と外側を対流する空気との間で熱交換を行わせる。輻射熱交換器は、内側を流通する高圧冷媒に所定部材を加熱させてその所定部材から輻射熱を発生させる。開閉弁は、暖房運転時の輻射熱交換器の上流側に設けられ、輻射熱交換器に向う高圧冷媒の流通路を遮断する。逆止弁は、輻射熱交換器と開閉弁との間に設けられる。   An air conditioner according to a first aspect of the present invention is an air conditioner that includes a refrigerant circuit that performs a vapor compression refrigeration cycle and performs a heating operation using at least a high-pressure refrigerant, and the refrigerant circuit includes a convection heat exchanger and a radiant heat exchange. And a check valve. The convection heat exchanger exchanges heat between the high-pressure refrigerant flowing inside and the air convection outside. A radiant heat exchanger heats a predetermined member to the high-pressure refrigerant circulating inside, and generates radiant heat from the predetermined member. The on-off valve is provided on the upstream side of the radiant heat exchanger during heating operation, and blocks the high-pressure refrigerant flow path toward the radiant heat exchanger. The check valve is provided between the radiant heat exchanger and the on-off valve.

この空調機では、輻射熱交換器と開閉弁との間に逆止弁があり、開閉弁が閉じられているとき、開閉弁と逆止弁との間に存在する液冷媒は少なく、仮に、液冷媒が自然蒸発して内部圧力が上昇した場合でも、開閉弁を押し開けるほどの圧力に至らないので、チャタリングの発生は防止される。   In this air conditioner, there is a check valve between the radiant heat exchanger and the on-off valve, and when the on-off valve is closed, there is little liquid refrigerant present between the on-off valve and the check valve. Even when the refrigerant spontaneously evaporates and the internal pressure rises, the pressure does not reach a level that pushes the open / close valve open, so chattering is prevented.

第2発明に係る空調機は、第1発明に係る空調機であって、開閉弁が、流通路を遮断する機能と流通路の開度を調整する機能とを有する開度調整弁である。   An air conditioner according to a second aspect of the present invention is the air conditioner according to the first aspect of the present invention, wherein the on-off valve is an opening adjustment valve having a function of blocking the flow passage and a function of adjusting the opening of the flow passage.

この空調機では、輻射熱交換器の能力は冷媒の流通路の開度調整で増減され、輻射熱交換器の能力が設定値に達したとき、冷媒の流通路が遮断されるので、利便性および安全性が高い。   In this air conditioner, the capacity of the radiant heat exchanger is increased or decreased by adjusting the opening of the refrigerant flow path, and when the capacity of the radiant heat exchanger reaches the set value, the flow path of the refrigerant is blocked. High nature.

第3発明に係る空調機は、第1発明または第2発明に係る空調機であって、開閉弁が、所定部材の温度が許容温度の上限に達したときに流通路を遮断する。   An air conditioner according to a third aspect is the air conditioner according to the first aspect or the second aspect, wherein the on-off valve blocks the flow passage when the temperature of the predetermined member reaches the upper limit of the allowable temperature.

この空調機では、輻射熱交換器を用いた暖房運転を実行中に、輻射熱交換器の所定部材の温度が許容温度の上限に達したとき、高圧冷媒が輻射熱交換器に流れなくなるので、輻射熱交換器内の冷媒の温度低下が速まる。その結果、所定部材の温度低下が速まり、空調機は、再び輻射熱交換器を用いた暖房運転に復帰することができる。   In this air conditioner, when the temperature of the predetermined member of the radiant heat exchanger reaches the upper limit of the allowable temperature during the heating operation using the radiant heat exchanger, the high-pressure refrigerant does not flow to the radiant heat exchanger. The temperature drop of the refrigerant in the inside is accelerated. As a result, the temperature drop of the predetermined member is accelerated, and the air conditioner can return to the heating operation using the radiant heat exchanger again.

第1発明に係る空調機では、輻射熱交換器と逆止弁との間に存在する液冷媒が少なく、仮に、その液冷媒が自然蒸発して内部圧力が上昇した場合でも、開閉弁を開けるほどの圧力に至らないので、チャタリングの発生は防止される。   In the air conditioner according to the first aspect of the invention, there is little liquid refrigerant present between the radiant heat exchanger and the check valve, and even if the liquid refrigerant spontaneously evaporates and the internal pressure rises, the open / close valve is opened. Therefore, chattering is prevented from occurring.

第2発明に係る空調機では、輻射熱交換器の能力は冷媒の流通路の開度調整で増減され、輻射熱交換器の能力が設定値に達したとき、冷媒の流通路が遮断されるので、利便性および安全性が高い。   In the air conditioner according to the second invention, the capacity of the radiant heat exchanger is increased or decreased by adjusting the opening degree of the refrigerant flow path, and when the capacity of the radiant heat exchanger reaches a set value, the refrigerant flow path is blocked. Convenience and safety are high.

第3発明に係る空調機では、輻射熱交換器を用いた暖房運転を実行中に、輻射熱交換器の所定部材の温度が許容温度の上限に達したとき、高圧冷媒が輻射熱交換器に流れなくなるので、輻射熱交換器内の冷媒の温度低下が速まる。その結果、所定部材の温度低下が速まり、空調機は、再び輻射熱交換器を用いた暖房運転に復帰することができる。   In the air conditioner according to the third invention, when the temperature of the predetermined member of the radiant heat exchanger reaches the upper limit of the allowable temperature during the heating operation using the radiant heat exchanger, the high-pressure refrigerant does not flow to the radiant heat exchanger. The temperature drop of the refrigerant in the radiant heat exchanger is accelerated. As a result, the temperature drop of the predetermined member is accelerated, and the air conditioner can return to the heating operation using the radiant heat exchanger again.

本発明の一実施形態に係る空調機の冷媒回路図。The refrigerant circuit diagram of the air conditioner which concerns on one Embodiment of this invention. 室内ユニットの内部構造を示す分解斜視図。The disassembled perspective view which shows the internal structure of an indoor unit. 熱交換器組立体の側面図。The side view of a heat exchanger assembly. 輻射熱交換器のパネルと伝熱管との取付構造を示す断面図。Sectional drawing which shows the attachment structure of the panel of a radiant heat exchanger, and a heat exchanger tube. 暖房運転における第2温度センサの検出温度と開閉弁の動作との関係を示すグラフ。The graph which shows the relationship between the detection temperature of the 2nd temperature sensor in heating operation, and operation | movement of an on-off valve. パネルと伝熱管との第2の取付構造を示す輻射熱交換器の断面図。Sectional drawing of a radiant heat exchanger which shows the 2nd attachment structure of a panel and a heat exchanger tube. パネルと伝熱管との第3の取付構造を示す輻射熱交換器の断面図。Sectional drawing of a radiant heat exchanger which shows the 3rd attachment structure of a panel and a heat exchanger tube. パネルと伝熱管との第4の取付構造を示す輻射熱交換器の断面図。Sectional drawing of a radiant heat exchanger which shows the 4th attachment structure of a panel and a heat exchanger tube. パネルと伝熱管との第5の取付構造を示す輻射熱交換器の断面図。Sectional drawing of a radiant heat exchanger which shows the 5th attachment structure of a panel and a heat exchanger tube. パネルと伝熱管との第6の取付構造を示す輻射熱交換器の断面図。Sectional drawing of a radiant heat exchanger which shows the 6th attachment structure of a panel and a heat exchanger tube.

以下図面を参照しながら、本発明の実施形態について説明する。なお、以下の実施形態は、本発明の具体例であって、本発明の技術的範囲を限定するものではない。   Embodiments of the present invention will be described below with reference to the drawings. The following embodiments are specific examples of the present invention and do not limit the technical scope of the present invention.

<空調機1の冷媒回路10>
図1は、本発明の一実施形態に係る空調機の冷媒回路図である。図1において、空調機1は、主に室内に配置される室内ユニット2と、主に室外に配置される室外ユニット3とが冷媒連絡配管によって接続され、蒸気圧縮式冷凍サイクルを行う冷媒回路10が形成されている。
<Refrigerant circuit 10 of air conditioner 1>
FIG. 1 is a refrigerant circuit diagram of an air conditioner according to an embodiment of the present invention. In FIG. 1, an air conditioner 1 includes a refrigerant circuit 10 that performs a vapor compression refrigeration cycle in which an indoor unit 2 that is mainly disposed indoors and an outdoor unit 3 that is primarily disposed outdoor are connected by a refrigerant communication pipe. Is formed.

冷媒回路10では、圧縮機11、四路切換弁12、対流熱交換器13、膨張弁15、室外熱交換器16が順に接続されている。さらに、対流熱交換器13と並列に分岐管40が設けられている。分岐管40には、圧縮機11に近い側から順に、開閉弁41、第1逆止弁42、輻射熱交換器14及び第2逆止弁43が直列に接続されている。また、アキュームレータ20が四路切換弁12と圧縮機11の吸入口との間に接続されている。   In the refrigerant circuit 10, a compressor 11, a four-way switching valve 12, a convection heat exchanger 13, an expansion valve 15, and an outdoor heat exchanger 16 are connected in order. Further, a branch pipe 40 is provided in parallel with the convection heat exchanger 13. The branch pipe 40 is connected in series with an on-off valve 41, a first check valve 42, a radiant heat exchanger 14, and a second check valve 43 in order from the side closer to the compressor 11. An accumulator 20 is connected between the four-way switching valve 12 and the suction port of the compressor 11.

四路切換弁12は、圧縮機11から出た冷媒を対流熱交換器13側又は室外熱交換器16側のいずれか一方に流す。たとえば、暖房運転時、制御部は四路切換弁12に図1の実線で示した流路を選択させて冷媒を対流熱交換器13側へ流す。一方、冷房運転時には、制御部は四路切換弁12に図1の点線で示した流路を選択させて冷媒を室外熱交換器16側へ流す。   The four-way switching valve 12 allows the refrigerant that has come out of the compressor 11 to flow to either the convection heat exchanger 13 side or the outdoor heat exchanger 16 side. For example, during the heating operation, the control unit causes the four-way switching valve 12 to select the flow path shown by the solid line in FIG. On the other hand, during the cooling operation, the control unit causes the four-way switching valve 12 to select the flow path indicated by the dotted line in FIG. 1 and causes the refrigerant to flow to the outdoor heat exchanger 16 side.

対流熱交換器13は、複数のフィンと、それらフィンと直交する複数の伝熱管とからなる熱交換器であり、伝熱管内を流通する冷媒とフィン表面上を対流する空気との間で熱交換を行わせる。対流熱交換器13の近傍には、フィン表面に送風するファン23が配置されている。   The convection heat exchanger 13 is a heat exchanger including a plurality of fins and a plurality of heat transfer tubes orthogonal to the fins, and heat is generated between the refrigerant circulating in the heat transfer tubes and the air convection on the fin surface. Let the exchange take place. In the vicinity of the convective heat exchanger 13, a fan 23 for blowing air to the fin surface is disposed.

輻射熱交換器14は、アルミ製の板(以下、パネルという)とそのパネルに固定される伝熱管とからなる熱交換器であり、伝熱管内を流通する高圧冷媒にパネルを加熱させてそのパネルから輻射熱を発生させる。   The radiant heat exchanger 14 is a heat exchanger composed of an aluminum plate (hereinafter referred to as a panel) and a heat transfer tube fixed to the panel, and the panel is heated by a high-pressure refrigerant circulating in the heat transfer tube. Generate radiant heat from

膨張弁15は、減圧機構としての電動膨脹弁であり、対流熱交換器13と室外熱交換器16との間に接続され、冷媒の流路を絞って冷媒を減圧する。室外熱交換器16は、複数のフィンと、それらフィンと直交する複数の伝熱管とからなる熱交換器であり、伝熱管内を流通する冷媒とフィン表面上を対流する空気との間で熱交換を行わせる。室外熱交換器16の近傍には、フィン表面に送風する室外ファン33が配置されている。アキュームレータ20は、余分な液冷媒を溜めて圧縮機11にガス冷媒だけを戻す。   The expansion valve 15 is an electric expansion valve as a decompression mechanism, and is connected between the convection heat exchanger 13 and the outdoor heat exchanger 16 and depressurizes the refrigerant by narrowing the refrigerant flow path. The outdoor heat exchanger 16 is a heat exchanger including a plurality of fins and a plurality of heat transfer tubes orthogonal to the fins, and heat is generated between the refrigerant circulating in the heat transfer tubes and the air convection on the fin surface. Let the exchange take place. In the vicinity of the outdoor heat exchanger 16, an outdoor fan 33 for blowing air to the fin surface is disposed. The accumulator 20 accumulates excess liquid refrigerant and returns only the gas refrigerant to the compressor 11.

圧縮機11の吐出口と四路切換弁12とを接続する吐出管には、吐出温度センサ111が取り付けられている。吐出温度センサ111は、圧縮機11から吐出される高圧冷媒の温度を検知する。   A discharge temperature sensor 111 is attached to a discharge pipe connecting the discharge port of the compressor 11 and the four-way switching valve 12. The discharge temperature sensor 111 detects the temperature of the high-pressure refrigerant discharged from the compressor 11.

制御部は、輻射熱交換器14のパネルの温度を、吐出温度センサ111が検出する温度に基づいて制御する。しかし、開閉弁41と輻射熱交換器14とを接続する配管が長く、圧力損失によって吐出温度センサ111が検出する温度とパネルの温度とが異なる場合は、輻射熱交換器14の高圧冷媒入口の近傍に他の温度センサ(以下、第2温度センサ114という)が取り付けられる。本実施形態では、吐出温度センサ111および第2温度センサ114の両方が採用されている。   The control unit controls the temperature of the panel of the radiant heat exchanger 14 based on the temperature detected by the discharge temperature sensor 111. However, when the piping connecting the on-off valve 41 and the radiant heat exchanger 14 is long and the temperature detected by the discharge temperature sensor 111 is different from the temperature of the panel due to pressure loss, near the high-pressure refrigerant inlet of the radiant heat exchanger 14. Another temperature sensor (hereinafter referred to as second temperature sensor 114) is attached. In the present embodiment, both the discharge temperature sensor 111 and the second temperature sensor 114 are employed.

<室内ユニット2の内部構造>
図2は、室内ユニットの内部構造を示す分解斜視図である。図2において、室内ユニット2は、フレーム210とグリル240とによって外殻が形成されている。フレーム210は、四角形の開口部211の左端に左板212、右端に右板213、上端に上板214が固定される。フレーム210は、ファン室210aと電装品室210bとを有している。
<Internal structure of indoor unit 2>
FIG. 2 is an exploded perspective view showing the internal structure of the indoor unit. In FIG. 2, the indoor unit 2 has an outer shell formed by a frame 210 and a grill 240. In the frame 210, a left plate 212 is fixed to the left end of the rectangular opening 211, a right plate 213 is fixed to the right end, and an upper plate 214 is fixed to the upper end. The frame 210 has a fan chamber 210a and an electrical component chamber 210b.

グリル240は、上吹出口240a、下吹出口240b、開口部240c、左側吸込口240d、および右側吸込口240eを有している。上吹出口240aはグリル240の上部に位置し、下吹出口240bはグリル240の下部に位置する。開口部240cは、パネル14aを室内空間に露出させる。左側吸込口240dはグリル240の左側面に位置し、右側吸込口240eはグリル240の右側面に位置する。   The grill 240 has an upper outlet 240a, a lower outlet 240b, an opening 240c, a left inlet 240d, and a right inlet 240e. The upper air outlet 240 a is located at the upper part of the grill 240, and the lower air outlet 240 b is located at the lower part of the grill 240. The opening 240c exposes the panel 14a to the indoor space. The left suction port 240 d is located on the left side surface of the grill 240, and the right suction port 240 e is located on the right side surface of the grill 240.

空気は、ファン23の稼動によって左側吸込口240d及び右側吸込口240eから吸い込まれ、パネル14aの断熱された背面と吸込通路形成板115,116の間を通り、対流熱交換器13の上流に配置されたフィルタ218を通過する。フィルタ218を通過した空気は、対流熱交換器13に導かれ対流熱交換器13で熱交換をした後、ベルマウス216の円穴216aを通過してファン23に入る。ファン23から吹き出された空気は、上吹出口240aおよび下吹出口240bに向ってファン室210a内に進み、上吹出口240aおよび下吹出口240bから吹き出される。   The air is sucked in from the left suction port 240d and the right suction port 240e by the operation of the fan 23, passes between the heat-insulated back surface of the panel 14a and the suction passage forming plates 115 and 116, and is arranged upstream of the convection heat exchanger 13. Pass through the filtered filter 218. The air that has passed through the filter 218 is guided to the convection heat exchanger 13, exchanges heat with the convection heat exchanger 13, passes through the circular hole 216 a of the bell mouth 216, and enters the fan 23. The air blown out from the fan 23 proceeds into the fan chamber 210a toward the upper outlet 240a and the lower outlet 240b, and is blown out from the upper outlet 240a and the lower outlet 240b.

ベルマウス216の円穴216aは、ファン23の羽根内径より少し小さめで、円穴216aを通過した空気はファン23の羽根の内側に入り、羽根で昇圧されてファン23の外周方向に吹き出される。   The circular hole 216 a of the bell mouth 216 is slightly smaller than the inner diameter of the fan 23, and the air that has passed through the circular hole 216 a enters the inside of the fan 23, is pressurized by the vane, and is blown out toward the outer periphery of the fan 23. .

モータ支持板215は、ファン室210aの上部と下部との間に固定され、ファン23の駆動モータ23aを支える。駆動モータ23aは、ネジ23bによってモータ支持板215にネジ止めされる。そして、ベルマウス216がファン室210aを閉じる。電装品箱24は、電装品室210bに保持される。電装品箱24の中には、CPUやメモリなどが搭載された制御部が収納されている。   The motor support plate 215 is fixed between the upper part and the lower part of the fan chamber 210 a and supports the drive motor 23 a of the fan 23. The drive motor 23a is screwed to the motor support plate 215 by screws 23b. Then, the bell mouth 216 closes the fan chamber 210a. The electrical component box 24 is held in the electrical component chamber 210b. In the electrical component box 24, a control unit on which a CPU, a memory, and the like are mounted is accommodated.

熱交換器組立体220は、対流熱交換器13と輻射熱交換器14とが合体した構造である。対流熱交換器13の下方には、ドレンパン組立体217が配置されている。例えば、冷房運転時に、空気が対流熱交換器13を通過するとき、空気中に含まれる水分が対流熱交換器13表面で結露する。ドレンパン組立体217は、対流熱交換器13から落下してくる結露水を受ける。   The heat exchanger assembly 220 has a structure in which the convective heat exchanger 13 and the radiant heat exchanger 14 are combined. A drain pan assembly 217 is disposed below the convection heat exchanger 13. For example, when air passes through the convection heat exchanger 13 during cooling operation, moisture contained in the air is condensed on the surface of the convection heat exchanger 13. The drain pan assembly 217 receives condensed water falling from the convection heat exchanger 13.

なお、上吹出口240aには、吹出口組立体250が取り付けられている。吹出口組立体250は、空気の吹出方向を変えるルーバーを有している。グリル240の開口部240cの左端、右端および上端それぞれには、左枠241、右枠242および上枠243が取り付けられる。   A blower outlet assembly 250 is attached to the upper blower outlet 240a. The blower outlet assembly 250 has a louver that changes the blowing direction of air. A left frame 241, a right frame 242, and an upper frame 243 are attached to the left end, the right end, and the upper end of the opening 240c of the grill 240, respectively.

図3は、熱交換器組立体の側面図である。図3において、熱交換器組立体220では、対流熱交換器13と輻射熱交換器14とが取付板221によって固定されている。取付板221は、輻射熱交換器14の枠14cからパネル14aと反対の方向に延びる板金部材であり、貫通穴221aが形成されている。   FIG. 3 is a side view of the heat exchanger assembly. In FIG. 3, in the heat exchanger assembly 220, the convection heat exchanger 13 and the radiant heat exchanger 14 are fixed by a mounting plate 221. The mounting plate 221 is a sheet metal member that extends in a direction opposite to the panel 14a from the frame 14c of the radiant heat exchanger 14, and has a through hole 221a.

対流熱交換器13は、各伝熱管13bの両端近傍に管板13cを有している。管板13cには、取付板221の貫通穴221aに対応するネジ穴が形成されている。対流熱交換器13と取付板221とは、貫通穴221aを介してネジ止めされる。   The convective heat exchanger 13 has tube plates 13c in the vicinity of both ends of each heat transfer tube 13b. A screw hole corresponding to the through hole 221a of the mounting plate 221 is formed in the tube plate 13c. The convective heat exchanger 13 and the mounting plate 221 are screwed through the through hole 221a.

図4は、輻射熱交換器のパネルと伝熱管との取付構造を示す断面図である。図4において、取付金具14eは、伝熱管14bを挟んでパネル14aと対向し、予めパネル14aに固定されている取付部14dに、取付ネジ14fによってネジ止めされる。取付部14dは、取付ネジ14fが螺合するネジ穴14daを有している。取付金具14eは、平板部14eaと***部14ebとフランジ部14ecとを有している。平板部14eaは、パネル14aの輻射面の裏面に密着する。***部14ebは、平板部14eaから***し、伝熱管14bが嵌まり込むU字溝が形成されている。フランジ部14ecは、平板部14eaの端から***し取付部14dに固定される。フランジ部14ecには、取付部14dのネジ穴14daに対応する貫通穴14edが形成されている。   FIG. 4 is a cross-sectional view showing a mounting structure between a panel of a radiant heat exchanger and a heat transfer tube. In FIG. 4, the mounting bracket 14e faces the panel 14a with the heat transfer tube 14b interposed therebetween, and is screwed to the mounting portion 14d fixed to the panel 14a in advance by mounting screws 14f. The attachment portion 14d has a screw hole 14da into which the attachment screw 14f is screwed. The mounting bracket 14e has a flat plate portion 14ea, a raised portion 14eb, and a flange portion 14ec. The flat plate portion 14ea is in close contact with the rear surface of the radiation surface of the panel 14a. The raised portion 14eb is raised from the flat plate portion 14ea, and a U-shaped groove into which the heat transfer tube 14b is fitted is formed. The flange portion 14ec rises from the end of the flat plate portion 14ea and is fixed to the attachment portion 14d. A through hole 14ed corresponding to the screw hole 14da of the mounting portion 14d is formed in the flange portion 14ec.

伝熱管14bがパネル14aの裏面に配置されたのち、取付金具14eの貫通穴14edが取付部14dのネジ穴14daに対向するように配置され、取付ネジ14fによってフランジ部14ecが取付部14dにネジ止めされる。その結果、取付金具14eと伝熱管14bとはパネル14aに押付けられ、取付金具14eと伝熱管14bとからパネル14aへの伝熱性が確保される。   After the heat transfer tube 14b is disposed on the back surface of the panel 14a, the through hole 14ed of the mounting bracket 14e is disposed so as to face the screw hole 14da of the mounting portion 14d, and the flange portion 14ec is screwed to the mounting portion 14d by the mounting screw 14f. Stopped. As a result, the mounting bracket 14e and the heat transfer tube 14b are pressed against the panel 14a, and heat transfer from the mounting bracket 14e and the heat transfer tube 14b to the panel 14a is ensured.

<空調機1の動作>
空調機1は、四路切換弁12で冷媒の流路を変更し、冷房運転と暖房運転とを切り替える。先ず、冷媒回路が暖房運転用の回路になっている場合について説明する。
<Operation of air conditioner 1>
The air conditioner 1 changes the refrigerant flow path by the four-way switching valve 12 to switch between the cooling operation and the heating operation. First, the case where the refrigerant circuit is a circuit for heating operation will be described.

(暖房運転)
暖房運転時、四路切換弁12では図1の実線で示す流路が選択され、圧縮機11から吐出された高圧のガス冷媒が分岐管40及び対流熱交換器13へ分かれて流れる。その分岐点をA点とよぶ。A点から分岐管40に入ったガス冷媒は、開閉弁41、第1逆止弁42、輻射熱交換器14および第2逆止弁43の順に流れ、対流熱交換器13側から流れてくる冷媒と合流する。その合流点をB点とよぶ。
(Heating operation)
During the heating operation, the flow path indicated by the solid line in FIG. 1 is selected in the four-way switching valve 12, and the high-pressure gas refrigerant discharged from the compressor 11 flows separately to the branch pipe 40 and the convection heat exchanger 13. The branch point is called A point. The gas refrigerant entering the branch pipe 40 from the point A flows in the order of the on-off valve 41, the first check valve 42, the radiant heat exchanger 14 and the second check valve 43, and flows from the convective heat exchanger 13 side. To join. The junction is called point B.

取付金具14eと伝熱管14bとはパネル14aに密着しているので(図4参照)、ガス冷媒の熱が伝熱管14bを介してパネル14aに伝導し、パネル14aの温度が上昇する。温度上昇したパネル14aからは輻射熱が発せられるので、パネル14a前方の空気や物体が暖められる。輻射熱交換器14では、ガス冷媒はパネル14aとの熱交換によって一部が凝縮し、液冷媒とガス冷媒が混合した状態となる。   Since the mounting bracket 14e and the heat transfer tube 14b are in close contact with the panel 14a (see FIG. 4), the heat of the gas refrigerant is conducted to the panel 14a through the heat transfer tube 14b, and the temperature of the panel 14a rises. Since the radiant heat is emitted from the panel 14a whose temperature has increased, the air and objects in front of the panel 14a are warmed. In the radiant heat exchanger 14, a part of the gas refrigerant is condensed by heat exchange with the panel 14a, and the liquid refrigerant and the gas refrigerant are mixed.

A点から対流熱交換器13に入ったガス冷媒は、対流熱交換器13の外側を対流する空気と熱交換して凝縮する。対流熱交換器13で温度上昇した空気は、室内へ吹き出され室内を暖める。   The gas refrigerant that has entered the convection heat exchanger 13 from the point A is condensed by exchanging heat with the convection air outside the convection heat exchanger 13. The air whose temperature has increased in the convection heat exchanger 13 is blown out into the room and warms the room.

対流熱交換器13を出た液冷媒は、B点で輻射熱交換器14を出た冷媒と合流し室外熱交換器16に向い、途中、膨張弁15で減圧されて室外熱交換器16に入る。冷媒は、室外熱交換器16の外側を対流する空気と熱交換して蒸発しガス冷媒となる。   The liquid refrigerant that has exited the convection heat exchanger 13 joins with the refrigerant that has exited the radiant heat exchanger 14 at point B, and is directed to the outdoor heat exchanger 16, and is decompressed by the expansion valve 15 and enters the outdoor heat exchanger 16. . The refrigerant exchanges heat with air convection outside the outdoor heat exchanger 16 and evaporates to become a gas refrigerant.

室外熱交換器16を出たガス冷媒は、四路切換弁12、アキュームレータ20を通って圧縮機11に戻る。以上のように、空調機1では、輻射熱交換器14と対流熱交換器13とによる暖房運転が行われる。   The gas refrigerant exiting the outdoor heat exchanger 16 returns to the compressor 11 through the four-way switching valve 12 and the accumulator 20. As described above, in the air conditioner 1, the heating operation by the radiant heat exchanger 14 and the convective heat exchanger 13 is performed.

図5は、暖房運転における第2温度センサの検出温度と開閉弁の動作との関係を示すグラフである。図5において、第2温度センサ114の検出温度が所定温度(この場合は70℃)を超えた時点で、開閉弁41は、流路を開から閉に切り換える。つまり、開閉弁41は、輻射熱交換器14に冷媒が流れている状態から、冷媒が輻射熱交換器14に流れず対流熱交換器14のみに流れる状態に切り換える。   FIG. 5 is a graph showing the relationship between the temperature detected by the second temperature sensor and the operation of the on-off valve in the heating operation. In FIG. 5, when the temperature detected by the second temperature sensor 114 exceeds a predetermined temperature (70 ° C. in this case), the on-off valve 41 switches the flow path from open to closed. That is, the on-off valve 41 switches from a state in which the refrigerant flows to the radiant heat exchanger 14 to a state in which the refrigerant flows only to the convective heat exchanger 14 without flowing to the radiant heat exchanger 14.

そして、予め設定されている切り換え時間T1が経過したとき、開閉弁41は流路を再び閉から開に切り換え、それによって、輻射熱交換器14による暖房運転が復帰する。   When the preset switching time T1 has elapsed, the on-off valve 41 switches the flow path from closed to open again, whereby the heating operation by the radiant heat exchanger 14 is restored.

対流熱交換器13だけによる暖房運転が行われている間、開閉弁41とB点との間に液冷媒とガス冷媒が滞留したままとなる。その状態で、液冷媒が自然蒸発した場合、開閉弁41とB点との間の内部圧力が上昇する。しかし、本実施形態では、輻射熱交換器14と開閉弁41との間に第1逆止弁42があるので、仮に、液冷媒が自然蒸発して内部圧力が上昇した場合でも、輻射熱交換器14内の圧力は開閉弁41には及ばない。また、開閉弁41と第1逆止弁42との間に存在する液冷媒が少ないので、それが自然蒸発して内部圧力が上昇した場合でも、開閉弁41を押し開けるほどの圧力に至らず、チャタリングの発生は防止される。   While the heating operation using only the convection heat exchanger 13 is performed, the liquid refrigerant and the gas refrigerant remain between the on-off valve 41 and the point B. In this state, when the liquid refrigerant spontaneously evaporates, the internal pressure between the on-off valve 41 and the point B increases. However, in the present embodiment, since the first check valve 42 is provided between the radiant heat exchanger 14 and the on-off valve 41, even if the liquid refrigerant spontaneously evaporates and the internal pressure rises, the radiant heat exchanger 14 The internal pressure does not reach the on-off valve 41. In addition, since there is little liquid refrigerant present between the on-off valve 41 and the first check valve 42, even when it spontaneously evaporates and the internal pressure rises, the pressure does not reach the level that opens the on-off valve 41. The occurrence of chattering is prevented.

対流熱交換器13だけによる暖房運転が行われている間に、輻射熱交換器14のパネル14aの温度が十分に低下したとき、分岐管40が開閉弁41によって開けられ、再び輻射熱交換器14と対流熱交換器13とによる暖房運転が行われる。   When the temperature of the panel 14a of the radiant heat exchanger 14 is sufficiently lowered during the heating operation only by the convective heat exchanger 13, the branch pipe 40 is opened by the on-off valve 41, and again with the radiant heat exchanger 14 Heating operation by the convection heat exchanger 13 is performed.

(冷房運転)
次に、冷媒回路が冷房運転用の回路になった場合について説明する。冷房運転時、四路切換弁12では図1の点線で示す流路が選択され、圧縮機11から吐出された高圧のガス冷媒が室外熱交換器16に向う。ガス冷媒は、室外熱交換器16の外側を対流する空気と熱交換して凝縮する。室外熱交換器16から出た液冷媒は、対流熱交換器13へ向う途中、膨張弁15で減圧され対流熱交換器13に入る。なお、液ガス冷媒は対流熱交換器13に入る前にB点で分岐管40へ流れようとするが、第2逆止弁43に阻まれる。
(Cooling operation)
Next, the case where the refrigerant circuit is a circuit for cooling operation will be described. During the cooling operation, the flow path indicated by the dotted line in FIG. 1 is selected in the four-way switching valve 12, and the high-pressure gas refrigerant discharged from the compressor 11 goes to the outdoor heat exchanger 16. The gas refrigerant is condensed by exchanging heat with air that convects outside the outdoor heat exchanger 16. The liquid refrigerant from the outdoor heat exchanger 16 is depressurized by the expansion valve 15 and enters the convection heat exchanger 13 on the way to the convection heat exchanger 13. Note that the liquid gas refrigerant tends to flow to the branch pipe 40 at the point B before entering the convection heat exchanger 13, but is blocked by the second check valve 43.

対流熱交換器13に入った液冷媒は、対流熱交換器13の外側を対流する空気と熱交換して蒸発しガス冷媒となる。対流熱交換器13で温度低下した空気は、室内へ吹き出され室内を冷却する。対流熱交換器13から出たガス冷媒は、A点を通過して四路切換弁12に向い、四路切換弁12、アキュームレータ20を通過して圧縮機11に戻る。   The liquid refrigerant that has entered the convection heat exchanger 13 exchanges heat with convection air outside the convection heat exchanger 13 and evaporates to become a gas refrigerant. The air whose temperature has decreased in the convection heat exchanger 13 is blown out into the room and cools the room. The gas refrigerant discharged from the convection heat exchanger 13 passes through the point A, goes to the four-way switching valve 12, passes through the four-way switching valve 12, and the accumulator 20, and returns to the compressor 11.

<特徴>
以上のように、空調機1では、輻射熱交換器14を用いた暖房運転を実行中に、輻射熱交換器14のパネル14aの温度が許容温度の上限に達したとき、開閉弁41が分岐管40を閉じて高圧冷媒は輻射熱交換器14に流れなくなる。その結果、輻射熱交換器14内の冷媒の温度低下が速まり、パネル14aの温度低下が速まるので、空調機1は、再び輻射熱交換器14を用いた暖房運転に復帰することができる。
<Features>
As described above, in the air conditioner 1, when the temperature of the panel 14a of the radiant heat exchanger 14 reaches the upper limit of the allowable temperature during the heating operation using the radiant heat exchanger 14, the on-off valve 41 is connected to the branch pipe 40. The high pressure refrigerant stops flowing to the radiant heat exchanger 14. As a result, the temperature drop of the refrigerant in the radiant heat exchanger 14 is accelerated and the temperature drop of the panel 14a is accelerated, so that the air conditioner 1 can return to the heating operation using the radiant heat exchanger 14 again.

さらに、輻射熱交換器14と開閉弁41との間に第1逆止弁42があるので、開閉弁41が閉じられているとき開閉弁41と第1逆止弁42との間に存在する液冷媒が少なく、仮に、液冷媒が自然蒸発して内部圧力が上昇した場合でも、開閉弁41を押し開けるほどの圧力に至らず、チャタリングの発生が防止される。   Furthermore, since there is the first check valve 42 between the radiant heat exchanger 14 and the on-off valve 41, the liquid that exists between the on-off valve 41 and the first check valve 42 when the on-off valve 41 is closed. Even if the amount of refrigerant is small and the liquid refrigerant spontaneously evaporates and the internal pressure rises, the pressure does not reach the level that pushes the open / close valve 41 open, and chattering is prevented.

<変形例>
上記実施形態では、分岐管40を開閉するために開閉弁41が採用されているが、開閉弁41に替えて、分岐管40の流通路を遮断する機能と分岐管40の流通路の開度を調整する機能とを有する開度調整弁が採用されてもよい。
<Modification>
In the above embodiment, the on-off valve 41 is employed to open and close the branch pipe 40. However, instead of the on-off valve 41, the function of blocking the flow path of the branch pipe 40 and the opening degree of the flow path of the branch pipe 40 are used. An opening adjustment valve having a function of adjusting the angle may be employed.

なぜなら、輻射熱交換器14のパネル14aの温度が流通路の開度調整で増減され、パネル14aの温度が上限値に達したとき冷媒の流通路が遮断されるので、利便性および安全性が高くなる。   This is because the temperature of the panel 14a of the radiant heat exchanger 14 is increased or decreased by adjusting the opening degree of the flow passage, and the refrigerant flow passage is blocked when the temperature of the panel 14a reaches the upper limit value. Therefore, convenience and safety are high. Become.

<その他の変形例>
輻射熱交換器14のパネル14aと伝熱管14bとの取付構造は、図4に示す形態に限定されるものではない。以下、図6から図10を用いて他の取付構造について説明する。なお、説明の便宜上、パネル14aの輻射面と反対側の面を裏面という。
<Other variations>
The attachment structure of the panel 14a and the heat transfer tube 14b of the radiant heat exchanger 14 is not limited to the form shown in FIG. Hereinafter, another mounting structure will be described with reference to FIGS. For convenience of explanation, the surface opposite to the radiation surface of the panel 14a is referred to as the back surface.

図6は、パネルと伝熱管との第2の取付構造を示す輻射熱交換器の断面図である。図6において、取付パネル141は、パネル14aの裏面に接合される平板部141aと、平板部141aから***する***部141bとを有している。***部141bは、伝熱管14bの直径より高く***し、伝熱管14bが嵌まり込むU字溝141cが形成されている。伝熱管14bがU字溝141cに嵌め込まれた後、U字溝141cの開口端が伝熱管14bの外周面を押えるようにカシメ加工される。   FIG. 6 is a cross-sectional view of the radiant heat exchanger showing a second mounting structure between the panel and the heat transfer tube. In FIG. 6, the mounting panel 141 has a flat plate portion 141a joined to the back surface of the panel 14a and a raised portion 141b raised from the flat plate portion 141a. The raised portion 141b is raised higher than the diameter of the heat transfer tube 14b, and a U-shaped groove 141c into which the heat transfer tube 14b is fitted is formed. After the heat transfer tube 14b is fitted into the U-shaped groove 141c, crimping is performed so that the open end of the U-shaped groove 141c presses the outer peripheral surface of the heat transfer tube 14b.

図7は、パネルと伝熱管との第3の取付構造を示す輻射熱交換器の断面図である。図7において、パネル14aと伝熱管14bとがロウ付けによって接合される。パネル14aと伝熱管14bとの接触部に形成されるコーナーにロウ140が行き渡るので、伝熱管14bからパネル14aへの熱伝導性が高い。   FIG. 7 is a cross-sectional view of the radiant heat exchanger showing a third mounting structure of the panel and the heat transfer tube. In FIG. 7, the panel 14a and the heat transfer tube 14b are joined by brazing. Since the solder 140 spreads around the corner formed at the contact portion between the panel 14a and the heat transfer tube 14b, the thermal conductivity from the heat transfer tube 14b to the panel 14a is high.

図8は、パネルと伝熱管との第4の取付構造を示す輻射熱交換器の断面図である。図8において、第1取付金具341は、パネル14aの裏面に接合される平板部341aと、平板部341aから***する***部341bとを有している。平板部341aは、スポット溶接あるいはロウ付け溶接によってパネル14aの裏面に密着するように接合される。***部341bは、伝熱管14bの直径寸法程度に***し、伝熱管14bが嵌まり込むU字溝341cが形成されている。また、U字溝341cの両側にネジ穴341dが形成されている。   FIG. 8 is a cross-sectional view of the radiant heat exchanger showing a fourth mounting structure of the panel and the heat transfer tube. In FIG. 8, the first mounting bracket 341 has a flat plate portion 341a joined to the back surface of the panel 14a and a raised portion 341b raised from the flat plate portion 341a. The flat plate portion 341a is joined so as to be in close contact with the back surface of the panel 14a by spot welding or brazing welding. The raised portion 341b is raised to a diameter of the heat transfer tube 14b, and a U-shaped groove 341c into which the heat transfer tube 14b is fitted is formed. Further, screw holes 341d are formed on both sides of the U-shaped groove 341c.

第2取付金具342は、第1取付金具341のネジ穴341dに対応する貫通穴342aを有している。第2取付金具342は、U字溝341cに嵌め込まれた伝熱管14bを覆うように、第1取付金具341にネジ343によってネジ止めされる。伝熱管14bはU字溝341cから僅かに突出しているので、第2取付金具342が第1取付金具341にネジ止めされたとき、伝熱管14bは圧迫されU字溝341cに密着する。   The second mounting bracket 342 has a through hole 342 a corresponding to the screw hole 341 d of the first mounting bracket 341. The second mounting bracket 342 is screwed to the first mounting bracket 341 with a screw 343 so as to cover the heat transfer tube 14b fitted in the U-shaped groove 341c. Since the heat transfer tube 14b slightly protrudes from the U-shaped groove 341c, when the second mounting bracket 342 is screwed to the first mounting bracket 341, the heat transfer tube 14b is compressed and closely contacts the U-shaped groove 341c.

図9は、パネルと伝熱管との第5の取付構造を示す輻射熱交換器の断面図である。図9において、押え金具441は、パネル14aの裏面に接合される平板部441aと、パネル14aの裏面とによって伝熱管14bを挟み込むU字溝441bとを有している。伝熱管14bがパネル14aの裏面に配置された後、押え金具441のU字溝441bが伝熱管14bを覆う。その状態で、平板部441aとパネル14aの裏面とがスポット溶接、或はロウ付け溶接によって接合される。   FIG. 9 is a cross-sectional view of the radiant heat exchanger showing a fifth mounting structure of the panel and the heat transfer tube. In FIG. 9, the presser fitting 441 has a flat plate portion 441a joined to the back surface of the panel 14a and a U-shaped groove 441b that sandwiches the heat transfer tube 14b by the back surface of the panel 14a. After the heat transfer tube 14b is disposed on the back surface of the panel 14a, the U-shaped groove 441b of the presser fitting 441 covers the heat transfer tube 14b. In this state, the flat plate portion 441a and the back surface of the panel 14a are joined by spot welding or brazing welding.

図10は、パネルと伝熱管との第6の取付構造を示す輻射熱交換器の断面図である。図10において、パネル14aは、裏面の伝熱管14bの配置位置と対応する部分に***部541を有している。***部541には、伝熱管14bが嵌まり込むU字溝541aが形成されている。U字溝541aは、伝熱管14bが嵌まり込んだとき、伝熱管14bの外周面が僅かに突出する程度の深さである。U字溝541aの両側にはネジ穴541bが形成されている。   FIG. 10 is a cross-sectional view of a radiant heat exchanger showing a sixth mounting structure of the panel and the heat transfer tube. In FIG. 10, the panel 14a has a raised portion 541 at a portion corresponding to the arrangement position of the heat transfer tube 14b on the back surface. The raised portion 541 is formed with a U-shaped groove 541 a into which the heat transfer tube 14 b is fitted. The U-shaped groove 541a has such a depth that the outer peripheral surface of the heat transfer tube 14b slightly protrudes when the heat transfer tube 14b is fitted. Screw holes 541b are formed on both sides of the U-shaped groove 541a.

押え金具542は、***部541のネジ穴541bに対応する貫通穴542aを有している。押え金具542は、***部541から僅かに突出した伝熱管14bの外周面を覆うように、ネジ543によって***部541にネジ止めされる。   The presser fitting 542 has a through hole 542 a corresponding to the screw hole 541 b of the raised portion 541. The presser fitting 542 is screwed to the raised portion 541 with a screw 543 so as to cover the outer peripheral surface of the heat transfer tube 14 b slightly protruding from the raised portion 541.

以上のように、本発明によれば、輻射熱交換器を用いた暖房機器に有用である。   As mentioned above, according to this invention, it is useful for the heating equipment using a radiant heat exchanger.

1 空調機
10 冷媒回路
13 対流熱交換器
14 輻射熱交換器
41 開閉弁
42 第1逆止弁
DESCRIPTION OF SYMBOLS 1 Air conditioner 10 Refrigerant circuit 13 Convective heat exchanger 14 Radiant heat exchanger 41 On-off valve 42 First check valve

特開平7−55234号公報JP-A-7-55234

Claims (3)

蒸気圧縮式冷凍サイクルを行う冷媒回路(10)を備え、少なくとも高圧冷媒を利用して暖房運転を行う空調機であって、
前記冷媒回路(10)が、
内側を流通する前記高圧冷媒と外側を対流する空気との間で熱交換を行わせる対流熱交換器(13)と、
内側を流通する前記高圧冷媒に所定部材を加熱させて前記所定部材から輻射熱を発生させる輻射熱交換器(14)と、
前記暖房運転時の前記輻射熱交換器(14)の上流側に設けられ、前記輻射熱交換器(14)に向う前記高圧冷媒の流通路を遮断する開閉弁(41)と、
前記輻射熱交換器(14)と前記開閉弁(41)との間に設けられる逆止弁(42)と、
を有している、
空調機(1)。
An air conditioner comprising a refrigerant circuit (10) for performing a vapor compression refrigeration cycle and performing a heating operation using at least a high-pressure refrigerant,
The refrigerant circuit (10)
A convection heat exchanger (13) for exchanging heat between the high-pressure refrigerant circulating inside and the air convection outside;
A radiant heat exchanger (14) for generating a radiant heat from the predetermined member by heating the predetermined member to the high-pressure refrigerant circulating inside;
An on-off valve (41) provided on the upstream side of the radiant heat exchanger (14) during the heating operation and blocking a flow path of the high-pressure refrigerant toward the radiant heat exchanger (14);
A check valve (42) provided between the radiant heat exchanger (14) and the on-off valve (41);
have,
Air conditioner (1).
前記開閉弁(41)は、前記流通路を遮断する機能と前記流通路の開度を調整する機能とを有する開度調整弁である、
請求項1に記載の空調機(1)。
The on-off valve (41) is an opening adjustment valve having a function of blocking the flow passage and a function of adjusting the opening of the flow passage.
The air conditioner (1) according to claim 1.
前記開閉弁(41)は、前記所定部材の温度が許容温度の上限に達したとき前記流通路を遮断する、
請求項1又は請求項2に記載の空調機(1)。
The on-off valve (41) shuts off the flow passage when the temperature of the predetermined member reaches an upper limit of an allowable temperature;
The air conditioner (1) according to claim 1 or 2.
JP2009066768A 2009-03-18 2009-03-18 air conditioner Expired - Fee Related JP5229031B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2009066768A JP5229031B2 (en) 2009-03-18 2009-03-18 air conditioner
AU2010225998A AU2010225998B2 (en) 2009-03-18 2010-03-15 Air conditioner
CN2010800118323A CN102348936A (en) 2009-03-18 2010-03-15 Air conditioner
PCT/JP2010/001812 WO2010106771A1 (en) 2009-03-18 2010-03-15 Air conditioner
EP10753268A EP2410250A1 (en) 2009-03-18 2010-03-15 Air conditioner
US13/256,034 US20120000224A1 (en) 2009-03-18 2010-03-15 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009066768A JP5229031B2 (en) 2009-03-18 2009-03-18 air conditioner

Publications (2)

Publication Number Publication Date
JP2010216767A JP2010216767A (en) 2010-09-30
JP5229031B2 true JP5229031B2 (en) 2013-07-03

Family

ID=42739438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009066768A Expired - Fee Related JP5229031B2 (en) 2009-03-18 2009-03-18 air conditioner

Country Status (6)

Country Link
US (1) US20120000224A1 (en)
EP (1) EP2410250A1 (en)
JP (1) JP5229031B2 (en)
CN (1) CN102348936A (en)
AU (1) AU2010225998B2 (en)
WO (1) WO2010106771A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012083011A (en) * 2010-10-08 2012-04-26 Daikin Industries Ltd Air conditioner
JP5187373B2 (en) * 2010-10-20 2013-04-24 ダイキン工業株式会社 Air conditioner
JP5088520B2 (en) * 2010-11-05 2012-12-05 ダイキン工業株式会社 Air conditioner
EP2468947B1 (en) * 2010-12-27 2018-10-03 Electrolux Home Products Corporation N.V. A heat pump system for a laundry dryer and a method for operating a heat pump system of a laundry dryer
JP5115667B2 (en) * 2011-01-17 2013-01-09 ダイキン工業株式会社 Air conditioner
JP5152351B2 (en) * 2011-01-18 2013-02-27 ダイキン工業株式会社 Air conditioner
JP5131359B2 (en) * 2011-01-19 2013-01-30 ダイキン工業株式会社 Air conditioner
JP5003829B2 (en) * 2011-01-19 2012-08-15 ダイキン工業株式会社 Air conditioner
JP2014034301A (en) * 2012-08-09 2014-02-24 Denso Corp Refrigeration cycle device
TWI493144B (en) 2012-09-07 2015-07-21 Ind Tech Res Inst Heat exchange circulatory system
CN102853595A (en) * 2012-10-12 2013-01-02 天津商业大学 Refrigeration system
JP2013076565A (en) * 2013-01-23 2013-04-25 Daikin Industries Ltd Air conditioner
WO2015132966A1 (en) * 2014-03-07 2015-09-11 三菱電機株式会社 Refrigeration cycle device
CN106895597A (en) * 2017-03-08 2017-06-27 江西清华泰豪三波电机有限公司 Air-cooled temperature adjustment pump type heat dehumidifier group
WO2019159721A1 (en) * 2018-02-19 2019-08-22 ダイキン工業株式会社 Air-conditioning apparatus
US20200282808A1 (en) * 2019-03-04 2020-09-10 Denso International America, Inc. Unidirectional Heat Exchanger

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0448140A (en) * 1990-06-18 1992-02-18 Toshiba Corp Air conditioner
JP2508528Y2 (en) * 1990-07-16 1996-08-28 三菱重工業株式会社 Air conditioner
JPH04369327A (en) * 1991-06-17 1992-12-22 Sharp Corp Air conditioner
JPH0533968A (en) * 1991-07-26 1993-02-09 Sharp Corp Air conditioner
JPH05280762A (en) * 1992-03-30 1993-10-26 Toshiba Corp Indoor unit with radiation panel
JPH06307727A (en) * 1993-04-27 1994-11-01 Matsushita Electric Ind Co Ltd Heat accumulation-type heating device and control method thereof
JPH0755234A (en) 1993-08-16 1995-03-03 Toshiba Corp Air conditioner
CN2249373Y (en) * 1995-12-05 1997-03-12 马惠民 Cooling-heating air conditioner capable of providing hot water
CN2293019Y (en) * 1997-03-10 1998-09-30 广东美的集团股份有限公司 Two-driven-by-one split air conditioner
JP2005016919A (en) * 2003-06-30 2005-01-20 Daikin Ind Ltd Air conditioner
JP2007178058A (en) * 2005-12-28 2007-07-12 Daikin Ind Ltd Air conditioner
US20080307819A1 (en) * 2007-06-12 2008-12-18 Pham Hung M Refrigeration monitoring system and method

Also Published As

Publication number Publication date
JP2010216767A (en) 2010-09-30
US20120000224A1 (en) 2012-01-05
CN102348936A (en) 2012-02-08
AU2010225998B2 (en) 2012-12-13
AU2010225998A1 (en) 2011-11-03
WO2010106771A1 (en) 2010-09-23
EP2410250A1 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
JP5229031B2 (en) air conditioner
US11199349B2 (en) Heat source unit and air conditioner having the heat source unit
JP5125355B2 (en) Air conditioner
JP5974960B2 (en) Battery temperature control device
JP5869955B2 (en) Radiant air conditioner
US11530827B2 (en) Heat source unit and air conditioner having the heat source unit
WO2010106776A1 (en) Air conditioning device
JP2015068610A (en) Air conditioner
JP5028927B2 (en) Air conditioner
JP2011112254A (en) Refrigeration device
JP6310077B2 (en) Heat source system
JP2008304115A (en) Heat pump unit and heat pump type water heater
JP2010085054A (en) Outdoor unit for air-conditioning apparatus
KR100930762B1 (en) air conditioner
EP3361168B1 (en) Heat source unit and air conditioner having the heat source unit
JP2009270732A (en) Outdoor unit of air conditioning device
JP5387523B2 (en) Cooling system
JP4605725B2 (en) Additional condensing device and refrigeration cycle device with additional condensing system using the same
JP5030933B2 (en) Water heat exchanger
EP3361166A1 (en) Heat source unit and air conditioner having the heat source unit
JP2011033216A (en) Air conditioner
JP2013200095A (en) Grille of air conditioning device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees