JP5228308B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP5228308B2
JP5228308B2 JP2006285309A JP2006285309A JP5228308B2 JP 5228308 B2 JP5228308 B2 JP 5228308B2 JP 2006285309 A JP2006285309 A JP 2006285309A JP 2006285309 A JP2006285309 A JP 2006285309A JP 5228308 B2 JP5228308 B2 JP 5228308B2
Authority
JP
Japan
Prior art keywords
oxide film
forming
diffusion layer
manufacturing
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006285309A
Other languages
Japanese (ja)
Other versions
JP2008103562A (en
Inventor
尚 吉村
匠 高地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2006285309A priority Critical patent/JP5228308B2/en
Publication of JP2008103562A publication Critical patent/JP2008103562A/en
Application granted granted Critical
Publication of JP5228308B2 publication Critical patent/JP5228308B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Description

本発明は半導体装置の製造方法に関する。さらに詳しくは、半導体基板の表面側に不純物拡散層を形成後、裏面側をバックグラインドし、さらに裏面に不純物拡散層を形成する工程を有する絶縁ゲートバイポーラトランジスタ(以降IGBT)、MOSFET、フリーホイーリングダイオード(以降FWD)などの半導体装置の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor device. More specifically, an insulated gate bipolar transistor (hereinafter referred to as IGBT), MOSFET, and free wheeling including a step of forming an impurity diffusion layer on the front surface side of the semiconductor substrate, back grinding the back surface side, and further forming an impurity diffusion layer on the back surface. The present invention relates to a method for manufacturing a semiconductor device such as a diode (hereinafter FWD).

IGBT(Insulated Gate Bipolor Transistor)は、MOSFETの高速スイッチング、電圧駆動特性とバイポーラトランジスタの低オン電圧特性をワンチップに構成したパワー素子である。IGBTは、FWDなどと共に用いられることも多く、汎用および電気自動車用インバータ、ACサーボや無停電電源(UPS)、スイッチング電源などをはじめ、電子レンジ、炊飯器、ストロボなどの民生機器分野へも拡大している。さらに次世代型へ改良された素子の開発も進んでおり、新しいチップ構造を用いた、より低オン電圧のものが開発され、応用装置の低損失化や高効率化が図られてきている。   An IGBT (Insulated Gate Bipolar Transistor) is a power element in which high-speed switching and voltage driving characteristics of a MOSFET and low on-voltage characteristics of a bipolar transistor are configured on a single chip. IGBTs are often used together with FWD, etc., and expanded to consumer devices such as microwave ovens, rice cookers, and strobes, including inverters for general purpose and electric vehicles, AC servos, uninterruptible power supplies (UPS), and switching power supplies. doing. Furthermore, development of devices improved to the next generation type is also progressing, and a device with a lower on-voltage using a new chip structure has been developed, and reduction in loss and high efficiency of application devices have been attempted.

IGBTの構造には、図2で示されるp半導体基板20上にエピタキシャル成長により形成されるn型バッファ層22とn型ドリフト層21を備えるパンチスルー型、図2からn型バッファ層22を無くし、n型ドリフト層31を広くしたノンパンチスルー型(NPT型)(図3)等がある。これらのように、従来、IGBT構造には、低抵抗半導体基板20上にエピタキシャル層21、22、31などを形成した高価な半導体基板が多く用いられた。最近は、そのような高価なエピタキシャル基板を用いずに、安価なFZ―Si基板41を用い、低ドーズ量の浅いpコレクタ層42を採用したNPT型IGBT(図4)、さらに、オン電圧の低減を図るためにpコレクタ層52の内部側にフィールドストップ(FS)層53を設けることによりウエハ厚を薄くしても耐圧を低下させないようにしたFS型IGBT(図5)が主流になっている。 The IGBT structure includes a punch-through type including an n + -type buffer layer 22 and an n -type drift layer 21 formed by epitaxial growth on the p + semiconductor substrate 20 shown in FIG. 2, and the n + -type buffer layer shown in FIG. There is a non-punch through type (NPT type) (FIG. 3) in which 22 is eliminated and the n type drift layer 31 is widened. As described above, conventionally, an expensive semiconductor substrate in which the epitaxial layers 21, 22, 31 and the like are formed on the low-resistance semiconductor substrate 20 is often used for the IGBT structure. Recently, an NPT type IGBT (FIG. 4) employing a low-dose shallow p + collector layer 42 using an inexpensive FZ-Si substrate 41 without using such an expensive epitaxial substrate, and an on-voltage FS-type IGBTs (FIG. 5) that do not lower the breakdown voltage even if the wafer thickness is reduced by providing a field stop (FS) layer 53 on the inner side of the p + collector layer 52 in order to reduce the above-mentioned are mainly used. It has become.

図4は、FZ−Si基板41を用い、低ドーズ量の浅いpコレクタ層42を採用したNPT型IGBTの断面構造である。pコレクタ層(低注入pコレクタ)42を採用したNPT型は、FZ−n型Si基板を使うので、裏面側にpコレクタ層42を作りこむ工程が必要になる。このpコレクタ層42は、正孔の注入効率の制御および裏面電極とのコンタクト抵抗の低減(オーミック性接触にすること)という両機能を両立させなければならない。但し、前述のように高価なpエピタキシャル基板20を用いずに、安価なFZ基板41を用いているため、ウエハコストの低減が可能である。 FIG. 4 shows a cross-sectional structure of an NPT type IGBT using a FZ-Si substrate 41 and employing a low dose shallow p + collector layer 42. Since the NPT type employing the p + collector layer (low injection p + collector) 42 uses an FZ-n type Si substrate, a process of forming the p + collector layer 42 on the back side is necessary. The p + collector layer 42 must satisfy both the functions of controlling the hole injection efficiency and reducing the contact resistance with the back electrode (making it ohmic contact). However, since the inexpensive FZ substrate 41 is used without using the expensive p + epitaxial substrate 20 as described above, the wafer cost can be reduced.

図5は、FZ−Si基板51を用い、pコレクタ層52とこの層の内部側にフィールドストップ(FS)層53を有するIGBTの断面構造である。基本構造は、図2のパンチスルー型IGBTと同じであるが、FZ−Si基板51を用いることによりウエハコストを低減させ、FS層53を設けることにより基板の総厚さを、耐圧に応じて変るが約70μm〜200μmと、ノンパンチスルー型よりは薄くされている。また、コレクタ側は、低ドーズ量の浅いp拡散層52を低注入コレクタとして用いるので、低注入コレクタを有するノンパンチスルー型の場合(図4)と同様に電子線照射などのライフタイム制御は不要である。また、図6に示すように、さらなるオン電圧の低減を目的として、チップ表面に狭く深いトレンチ61を形成し、その側面にMOSゲート構造62を形成したトレンチIGBTの構造を前記フィールドストップ(FS)型IGBTと組み合わせた構造とすることもできる。 FIG. 5 shows a cross-sectional structure of an IGBT using an FZ-Si substrate 51 and having a p + collector layer 52 and a field stop (FS) layer 53 on the inner side of this layer. The basic structure is the same as the punch-through IGBT of FIG. 2, but the wafer cost is reduced by using the FZ-Si substrate 51, and the total thickness of the substrate is set according to the withstand voltage by providing the FS layer 53. Although it changes, it is made thinner than the non-punch through type, about 70 μm to 200 μm. On the collector side, the shallow p + diffusion layer 52 with a low dose is used as the low injection collector, so that lifetime control such as electron beam irradiation is performed as in the non-punch through type having a low injection collector (FIG. 4). Is unnecessary. Further, as shown in FIG. 6, the trench IGBT structure in which a narrow and deep trench 61 is formed on the chip surface and a MOS gate structure 62 is formed on the side surface is formed for the purpose of further reducing the on-voltage, and the field stop (FS). A structure combined with a type IGBT can also be used.

そのようなFZ−Si基板51を用いたFS型IGBT(図5)の従来の製造方法について説明する。
厚さ550μmで、たとえば、比抵抗30ΩcmのFZ−n型Si基板51にゲート酸化膜54の形成後、その上にポリシリコン膜55を堆積し、パターニング後にセルフアライメントによりボロンをイオン注入し、温度1150℃の熱処理を加えてpベース領域52を形成する。さらにこのpベース領域52内に砒素をイオン注入してnエミッタ領域53を形成し、その後、BPSG(Boron Phospho Silicate Glass)などの層間絶縁膜56を形成し、この膜56に、前記pベース領域52表面と前記nエミッタ領域53表面とに跨る、コンタクトホールを形成する。このコンタクトホールを介してn型エミッタ層53に接するようにAl−Si膜からなるエミッタ電極57を形成する。Al−Si膜は、安定した接合性を低抵抗配線を実現するために500℃以下の熱処理が加えられる。さらに、図示しないが、エミッタ電極57を覆うようにポリイミド膜などの絶縁性保護膜が形成されることが多い。
A conventional manufacturing method of the FS type IGBT (FIG. 5) using such an FZ-Si substrate 51 will be described.
After forming the gate oxide film 54 on the FZ-n type Si substrate 51 having a thickness of 550 μm and having a specific resistance of 30 Ωcm, for example, a polysilicon film 55 is deposited thereon, and boron is ion-implanted by self-alignment after patterning. A p base region 52 is formed by performing heat treatment at 1150 ° C. Further, arsenic is ion-implanted into the p base region 52 to form an n + emitter region 53, and then an interlayer insulating film 56 such as BPSG (Boron Phospho Silicate Glass) is formed. A contact hole is formed across the surface of the region 52 and the surface of the n + emitter region 53. An emitter electrode 57 made of an Al—Si film is formed so as to be in contact with the n + -type emitter layer 53 through this contact hole. The Al—Si film is subjected to a heat treatment at 500 ° C. or lower in order to realize stable bonding and low resistance wiring. Further, although not shown, an insulating protective film such as a polyimide film is often formed so as to cover the emitter electrode 57.

次に、基板の裏面側から、所望の厚さ、たとえば、60〜150μm程度に、研削、研磨、エッチングなどを組み合わせたバックグラインド技術により削って薄くする。このFZ−n基板1の裏面に、室温イオン注入で、n型フィールドストップ層53を形成するために、リンのイオン注入層を形成し、その後、冷却イオン注入でp型コレクタ層52となるボロンのイオン注入層を形成し、さらに、Al−Si電極膜57を劣化させないように、500℃の電気炉中でのアニール処理により、n型フィールドストップ層53とp型コレクタ層52を形成する。   Next, the substrate is thinned from the back side of the substrate to a desired thickness, for example, about 60 to 150 μm by a back grinding technique that combines grinding, polishing, etching, and the like. A boron ion-implanted layer is formed on the back surface of the FZ-n substrate 1 by room-temperature ion implantation to form an n-type field stop layer 53, and then boron which becomes a p-type collector layer 52 by cooling ion implantation. Then, an n-type field stop layer 53 and a p-type collector layer 52 are formed by annealing in an electric furnace at 500 ° C. so as not to deteriorate the Al—Si electrode film 57.

このように表面側にMOSゲート構造と500℃以下の低温熱処理が必須のAl電極膜およびポリイミド保護膜形成とを先に形成し、バックグラインドによる基板の薄板化後、裏面側拡散層をイオン注入と500℃以下の熱処理で形成する製造方法により、図5に示すn型フィールドストップ層を有するFS−IGBTを作製する製法が既に知られている(特許文献1)。   In this way, the MOS gate structure and the formation of the Al electrode film and polyimide protective film, which must be heat-treated at 500 ° C or lower, are first formed on the front side, and after the substrate is thinned by back grinding, the back side diffusion layer is ion-implanted. A manufacturing method for manufacturing an FS-IGBT having an n-type field stop layer shown in FIG. 5 is already known (Patent Document 1).

また、拡散速度の大きいn型不純物としてセレン、イオウなどを用いることにより、拡散層の形成温度、時間を短縮する技術に関する公知文献がある(特許文献2)。
また、関連する公知文献として、IGBTではないが、基板の裏面側を削って薄くする工程を有するトランジスタについて、半導体基板の表面側にpベース領域を形成した後、裏面をエッチングして基板を薄くした後、表面側にリンを拡散してnエミッタ層を形成する際に、回りこみ拡散を利用して裏面にリンの高濃度拡散層を形成し、表面側のAl電極形成後、裏面のリンの高濃度拡散層の形成の際に形成された裏面酸化膜を除去して裏面に金属電極を形成する文献が公開されている(特許文献3)。
特開2002−299346号公報 特開2002−520885号公報 特開平9−251965号公報
Further, there is a publicly known document relating to a technique for reducing the formation temperature and time of the diffusion layer by using selenium, sulfur or the like as an n-type impurity having a high diffusion rate (Patent Document 2).
Further, as a related public document, for a transistor that is not an IGBT but has a step of thinning the back side of the substrate, a p base region is formed on the front side of the semiconductor substrate, and then the back side is etched to thin the substrate. After that, when the n emitter layer is formed by diffusing phosphorus on the front surface side, a high concentration diffusion layer of phosphorus is formed on the back surface using wraparound diffusion, and after forming the Al electrode on the front surface side, phosphorus on the back surface is formed. A document is disclosed that removes the back oxide film formed during the formation of the high concentration diffusion layer and forms a metal electrode on the back surface (Patent Document 3).
JP 2002-299346 A JP 2002-52085A JP-A-9-251965

しかしながら、裏面にn型のFS層を形成する不純物元素としてセレンを用い、そのイオン注入後、製品完成時のシリコン厚さにしてから、700℃〜950℃の熱処理を加えて電気特性を測定したところ、オン電圧が大きくなるという問題が発生した。この原因を調べたところ、半導体基板表面側の拡散層の形成に用いられた不純物、またはBPSG中の不純物などが、この場合は特にリンが裏面に廻り込み高濃度に拡散されて汚染するということが判明した。すなわち、裏面がリン不純物によって汚染されると、次工程のpコレクタ層の形成の際、pコレクタ層の不純物濃度を低下させ、コレクタ電極とのコンタクト性、オーミック性を悪くして接触抵抗を増加させるのである。もっとも、廻り込み拡散といっても、同じ半導体基板の表面から裏面へ回り込むという意味だけでなく、実際には、複数枚を一バッチ処理として熱処理される際に、各基板は一基板の表面と他基板の裏面が隣接するように並べられるので、異なる基板間の廻り込み拡散を含む意味とする。 However, selenium is used as an impurity element for forming an n + -type FS layer on the back surface. After the ion implantation, the silicon thickness is set to the product completion, and then heat treatment at 700 ° C. to 950 ° C. is applied to measure the electrical characteristics. As a result, there was a problem that the on-voltage increased. As a result of investigating the cause, impurities used to form the diffusion layer on the semiconductor substrate surface side, or impurities in the BPSG, in this case, in particular, phosphorous goes around the back surface and diffuses and is contaminated by high concentration. There was found. That is, if the back surface is contaminated with phosphorous impurities, the impurity concentration of the p + collector layer is lowered during the formation of the p + collector layer in the next process, and the contact property and ohmic property with the collector electrode are deteriorated to reduce the contact resistance. Is increased. However, wraparound diffusion does not only mean that the semiconductor substrate wraps around from the front surface to the back surface, but in fact, when multiple substrates are heat treated as a batch process, Since the back surfaces of the other substrates are arranged adjacent to each other, it is meant to include wraparound diffusion between different substrates.

また、本発明にかかる半導体装置の製造方法では、オン電圧を向上させるために、半導体基板の裏面を削って耐圧に必要なぎりぎりの厚さにまで研削、研磨、エッチングなどにより薄くされる工程(バックグラインド工程)を伴うことを必須とするので、半導体基板がプロセス中に物理的に、機械的に割れやすいという問題を避けることができない。そのため、割れを少なくする目的で、前記バックグラインド工程以降の工程をできる限り少なくすることが求められる。   Further, in the method for manufacturing a semiconductor device according to the present invention, in order to improve the on-voltage, the back surface of the semiconductor substrate is shaved and thinned by grinding, polishing, etching, etc. to the barely necessary thickness required for withstand voltage ( Therefore, the problem that the semiconductor substrate is easily broken physically and mechanically during the process cannot be avoided. Therefore, for the purpose of reducing cracks, it is required to reduce the number of steps after the back grinding process as much as possible.

従って、前述の裏面へのリン不純物の廻り込み拡散による裏面汚染については、裏面の汚染層をエッチングなどで、削れば解消されるはずであるが、割れ不良の増加の観点から、汚染層をエッチング除去する工程を追加することが困難である。
本発明は、以上説明した問題点に鑑みてなされたものであり、本発明の目的は、半導体基板の表面に不純物拡散層を形成後、裏面を削って半導体基板を薄くする工程を有し、この裏面側に少なくとも700℃〜950℃の範囲の熱処理を必要とする拡散層形成工程を有する場合でも、複雑な工程とすることなく、表面側からの廻り込み拡散による裏面側の汚染を防ぎ、良好なオーミック接触が得られる半導体装置の製造方法を提供することである。
Therefore, the contamination of the back surface due to the diffusion of phosphorus impurities to the back surface described above should be eliminated if the back surface contamination layer is removed by etching or the like, but the contamination layer is etched from the viewpoint of increasing crack defects. It is difficult to add a process to be removed.
The present invention has been made in view of the above-described problems, and an object of the present invention is to form a semiconductor substrate by thinning the back surface after forming an impurity diffusion layer on the surface of the semiconductor substrate, Even if it has a diffusion layer forming step that requires a heat treatment in the range of at least 700 ° C. to 950 ° C. on this back side, it prevents contamination on the back side due to wraparound diffusion from the front side, without making it a complicated process. It is an object of the present invention to provide a method for manufacturing a semiconductor device capable of obtaining good ohmic contact.

特許請求の範囲の請求項1記載の発明によれば、半導体基板の一方の表面に少なくとも一導電型の不純物拡散層を形成後、裏面を削って前記半導体基板を薄くする工程を施し、その後、この裏面側にイオン注入と700℃乃至950℃の温度プロフィールの熱処理を加える拡散層形成工程を含む他導電型の不純物拡散層を形成する工程を行う半導体装置の製造方法において、裏面側に前記他導電型の不純物拡散層の形成工程前に、表面側からの廻り込み拡散による一導電型の不純物濃度分布のピークが少なくとも貫通しない厚さを有する酸化膜を半導体基板の両面に形成する工程を加える半導体装置の製造方法とすることにより、前記本発明の目的は達成される。   According to the invention of claim 1, after forming at least one conductivity type impurity diffusion layer on one surface of the semiconductor substrate, the back surface is shaved and the semiconductor substrate is thinned, In the method of manufacturing a semiconductor device, including a step of forming an impurity diffusion layer of another conductivity type including a diffusion layer formation step of performing ion implantation and heat treatment with a temperature profile of 700 ° C. to 950 ° C. on the back surface side, Before the step of forming the conductivity type impurity diffusion layer, a step of forming oxide films on both sides of the semiconductor substrate having a thickness that does not penetrate at least the peak of one conductivity type impurity concentration distribution due to wraparound diffusion from the surface side is added. The object of the present invention is achieved by employing a method for manufacturing a semiconductor device.

前記酸化膜を、前記他導電型の不純物拡散層の形成工程におけるイオン注入後に形成すればよく、前記酸化膜は、前記他導電型の不純物拡散層の形成工程におけるイオン注入時のスクリーン酸化膜であればよく、前記酸化膜の厚さが50nm以下であることがより好ましい。
The oxide film may be formed after ion implantation in the step of forming the other conductivity type impurity diffusion layer, and the oxide film is a screen oxide film at the time of ion implantation in the step of forming the other conductivity type impurity diffusion layer. sufficient if the thickness of the oxide film is more preferably a 50nm or less der Turkey.

前記酸化膜を裏面金属電極形成前に除去することが望ましい。
And Turkey to remove the oxide film before back metal electrode formation is desirable.

本発明によれば、半導体基板の表面に不純物拡散層を形成後、裏面を削って半導体基板を薄くする工程を有し、この裏面側に少なくとも700℃以上の高温熱処理を加える工程を有する場合でも、複雑な工程とすることなく、廻り込み拡散による裏面側の汚染を防ぎ、良好なオーミック接触が得られる半導体装置の製造方法を提供することができる。   According to the present invention, even when an impurity diffusion layer is formed on the surface of a semiconductor substrate, the back surface is shaved to thin the semiconductor substrate, and the back surface side is subjected to a high-temperature heat treatment of at least 700 ° C. Thus, it is possible to provide a method for manufacturing a semiconductor device that can prevent contamination on the back surface side due to wraparound diffusion and achieve good ohmic contact without using a complicated process.

以下、本発明にかかるFS−IGBTの製造方法について、図面を用いて詳細に説明する。図1−1〜図1−3は、それぞれ、本発明にかかる半導体装置の製造方法を示す半導体基板の要部断面図である。本発明はその要旨を超えない限り、以下に説明する実施例の記載に限定されるものではない。
図1−1の半導体基板の要部断面図に示すように、厚さ550μmで、たとえば、比抵抗30ΩcmのFZ−n型Si基板1にゲート酸化膜4の形成後、その上にポリシリコン膜5を堆積し、パターニング後にセルフアライメントによりドーズ量4×1014cm−2のボロンをイオン注入し、温度1150℃の熱処理を加えて深さ約2μmのpベース領域2を形成する。さらにこのpベース領域2内に砒素をイオン注入してnエミッタ領域3を形成し、その後、BPSG(Boron Phospho Silicate Glass)などの層間絶縁膜6を形成し、この膜6に、前記pベース領域2表面と前記nエミッタ領域3表面とに跨るようなエミッタ電極用のコンタクトホールを形成する。
Hereinafter, the manufacturing method of FS-IGBT concerning the present invention is explained in detail using a drawing. FIGS. 1-1 to 1-3 are cross-sectional views of main parts of a semiconductor substrate showing a method for manufacturing a semiconductor device according to the present invention. The present invention is not limited to the description of the examples described below unless it exceeds the gist.
1-1, after forming a gate oxide film 4 on an FZ-n type Si substrate 1 having a thickness of 550 μm and a specific resistance of 30 Ωcm, for example, a polysilicon film is then formed thereon. 5 is deposited and boron is ion-implanted at a dose of 4 × 10 14 cm −2 by self-alignment after patterning, and a heat treatment at a temperature of 1150 ° C. is applied to form a p-base region 2 having a depth of about 2 μm. Further, arsenic ions are implanted into the p base region 2 to form an n + emitter region 3, and then an interlayer insulating film 6 such as BPSG (Boron Phospho Silicate Glass) is formed. A contact hole for the emitter electrode is formed so as to straddle the surface of region 2 and the surface of n + emitter region 3.

半導体基板の裏面を研削、研磨、エッチングなどを組み合わせたバックグラインド技術により、基板厚さを所望の厚さ、たとえば、70μmから100μm程度に薄くする。
次に、図1−2に示す半導体基板の要部断面図に示すように、裏面にフィールドストップ(FS)層7を形成するため、セレン(またはイオウ)をイオン注入する。その後、厚さ50nmのCVD酸化膜(図示せず)を半導体基板の両面に形成する。イオンの活性化およびドライブ拡散のために、700℃〜950℃の温度範囲の温度プロフィールによる熱処理を加える。この際、前述のように両面に50nmの厚さの酸化膜が形成されているので、表面側からリンイオンの飛び出しを防ぎ、また、表面側からの廻り込み拡散があったとしても、裏面側のリン汚染を防ぐことができる。この酸化膜の厚さは、表面から回り込んできたリンが裏面の酸化膜に拡散した場合にそのリンの酸化膜中における不純物濃度分布のピークが少なくとも酸化膜中に存在する厚さ以上の厚さを必要とする。700℃〜950℃の温度範囲の温度プロフィールの場合では、前述のように50nmの酸化膜厚さがあれば、リンの廻り込み拡散があっても酸化膜中にリンの不純物濃度のピークがあるので、実質的なリン汚染の問題は生じない。また、前述の記載では、この酸化膜はセレンのイオン注入工程の後に形成されたが、セレンのイオン注入時のスクリーン酸化膜として用いられる酸化膜であってもよい。
The substrate thickness is reduced to a desired thickness, for example, from about 70 μm to about 100 μm by a back grinding technique in which the back surface of the semiconductor substrate is combined with grinding, polishing, etching, and the like.
Next, selenium (or sulfur) is ion-implanted in order to form a field stop (FS) layer 7 on the back surface as shown in the cross-sectional view of the main part of the semiconductor substrate shown in FIG. Thereafter, a CVD oxide film (not shown) having a thickness of 50 nm is formed on both surfaces of the semiconductor substrate. A heat treatment with a temperature profile in the temperature range of 700 ° C. to 950 ° C. is applied for ion activation and drive diffusion. At this time, since the oxide films having a thickness of 50 nm are formed on both surfaces as described above, the phosphorus ions are prevented from jumping out from the front surface side, and even if there is wraparound diffusion from the front surface side, Phosphorus contamination can be prevented. The thickness of this oxide film is such that when phosphorus that has entered from the front surface diffuses into the oxide film on the back surface, the peak of the impurity concentration distribution in the oxide film of the phosphorus is at least greater than the thickness that exists in the oxide film. Need In the case of a temperature profile in the temperature range of 700 ° C. to 950 ° C., if there is an oxide film thickness of 50 nm as described above, there is a peak of the impurity concentration of phosphorus in the oxide film even if there is a wraparound diffusion of phosphorus. Therefore, the problem of substantial phosphorus contamination does not occur. In the above description, the oxide film is formed after the selenium ion implantation step, but may be an oxide film used as a screen oxide film at the time of selenium ion implantation.

次に、表面側に形成した50nmの前記酸化膜を除去して、nエミッタ領域3とpベース領域2を露出させる前記コンタクトホールを再度開ける。表面にAl―Si金属膜を被着することによりエミッタ電極8をエミッタ領域3にコンタクトさせ、ポリシリコンゲート電極部5にAlゲート電極(図示せず)をコンタクトさせるように、それぞれパターニングする。パターニングされたAl−Siエミッタ電極膜5およびAl−Siゲート電極膜(図示せず)とSi基板1とのそれぞれの接合性や電気抵抗を小さくするために350℃〜500℃の熱処理を加える。裏面にボロンのイオン注入を行い、活性化処理として350℃〜500℃の熱処理を加えてpコレクタ層9を形成する。その後、ポリイミド膜等の表面保護膜(図示せず)を被着する。裏面側の前記酸化膜を除去する。このpコレクタ層9の表面にAl、Ti、Ni、Auなどの金属膜の積層からなるコレクタ電極10を形成する。このウエハを各チップ状にIGBTにダイシングカットしてIGBTチップを完成させる。このIGBTチップは表面側のエミッタ、ゲートの各Al−Si電極にはAlワイヤが超音波ボンディングによりそれぞれ固着されて外部接続端子に接続され、裏面側のコレクタ電極はんだ付けにより銅基板などの放熱基板に固着された上、パッケージされてIGBTの半導体装置が完成する。 Next, the 50 nm oxide film formed on the surface side is removed, and the contact hole exposing the n + emitter region 3 and the p base region 2 is opened again. By patterning the Al—Si metal film on the surface, the emitter electrode 8 is brought into contact with the emitter region 3 and the polysilicon gate electrode portion 5 is brought into contact with an Al gate electrode (not shown). A heat treatment at 350 ° C. to 500 ° C. is performed in order to reduce the bondability and electrical resistance between the patterned Al—Si emitter electrode film 5 and Al—Si gate electrode film (not shown) and the Si substrate 1. Boron ions are implanted into the back surface, and a heat treatment at 350 ° C. to 500 ° C. is applied as an activation treatment to form the p + collector layer 9. Thereafter, a surface protective film (not shown) such as a polyimide film is applied. The oxide film on the back side is removed. On the surface of the p + collector layer 9, a collector electrode 10 made of a laminate of metal films such as Al, Ti, Ni and Au is formed. The wafer is diced into IGBTs to complete the IGBT chip. In this IGBT chip, Al wire is fixed to each Al-Si electrode of the front side emitter and gate by ultrasonic bonding and connected to an external connection terminal, and a heat dissipation board such as a copper board is soldered to the collector electrode on the back side. In addition, the semiconductor device of IGBT is completed after being packaged.

本発明は、上記の実施の形態の他、トレンチMOSゲート型IGBTや、NPT型IGBT、n型のダイオード、MOSFETについても、同様な方法によって、適用することができる。   The present invention can be applied to trench MOS gate type IGBTs, NPT type IGBTs, n-type diodes, and MOSFETs in the same manner as described above.

本発明にかかる半導体装置の製造方法を示す半導体基板の要部断面図である(その1)。It is principal part sectional drawing of the semiconductor substrate which shows the manufacturing method of the semiconductor device concerning this invention (the 1). 本発明にかかる半導体装置の製造方法を示す半導体基板の要部断面図である(その2)。It is principal part sectional drawing of the semiconductor substrate which shows the manufacturing method of the semiconductor device concerning this invention (the 2). 本発明にかかる半導体装置の製造方法を示す半導体基板の要部断面図である(その3)。It is principal part sectional drawing of the semiconductor substrate which shows the manufacturing method of the semiconductor device concerning this invention (the 3). 従来のパンチスルー型IGBTを示す半導体基板の要部断面図である。It is principal part sectional drawing of the semiconductor substrate which shows the conventional punch through type IGBT. 従来のノンパンチスルー型IGBTを示す半導体基板の要部断面図である。It is principal part sectional drawing of the semiconductor substrate which shows the conventional non punch through type IGBT. 従来のIGBTを示す半導体基板の要部断面図である。It is principal part sectional drawing of the semiconductor substrate which shows the conventional IGBT. FS型IGBTを示す半導体基板の要部断面図である。It is principal part sectional drawing of the semiconductor substrate which shows FS type IGBT. トレンチMOSゲート構造のFS型IGBTを示す半導体基板の要部断面図である。It is principal part sectional drawing of the semiconductor substrate which shows FS type IGBT of a trench MOS gate structure.

符号の説明Explanation of symbols

1、… FZ−Si半導体基板
2、… pベース領域
3、… nエミッタ領域
4、… ゲート酸化膜
5、… ポリシリコンゲート電極
6、… BPSG膜
7、… フィールドストップ(FS)膜
8、… Al−Siエミッタ電極
9、… pコレクタ層
10、… コレクタ電極。
DESCRIPTION OF SYMBOLS 1, ... FZ-Si semiconductor substrate 2, ... p base region 3, ... n + emitter region 4, ... Gate oxide film 5, ... Polysilicon gate electrode 6, ... BPSG film 7, ... Field stop (FS) film 8, ... Al-Si emitter electrode 9, ... p + collector layer 10, ... collector electrode.

Claims (5)

半導体基板の一方の表面に少なくとも一導電型の不純物拡散層を形成後、該一導電型の不純物拡散層上に層間絶縁膜を形成し、その後、裏面を削って前記半導体基板を薄くする工程を施し、その後、この裏面側にイオン注入と700℃乃至950℃の温度プロフィールの第1の熱処理を加える拡散層形成工程を含む他導電型の不純物拡散層を形成する工程を行う半導体装置の製造方法において、
前記他導電型の不純物拡散層の形成工程における前記第1の熱処理前に、表面側からの廻り込み拡散による一導電型の不純物濃度分布のピークが少なくとも貫通しない厚さを有する酸化膜を半導体基板の両面に形成し、前記第1の熱処理ののち、前記半導体基板の表面側の酸化膜を除去し、続いて、前記裏面側にイオン注入と350℃乃至500℃の第2の熱処理を加えて一導電型の不純物拡散層を形成し、前記半導体基板の裏面側の酸化膜を除去することを特徴とする半導体装置の製造方法。
Forming at least one conductivity type impurity diffusion layer on one surface of the semiconductor substrate, forming an interlayer insulating film on the one conductivity type impurity diffusion layer, and then scraping the back surface to thin the semiconductor substrate; A method of manufacturing a semiconductor device, including a step of forming an impurity diffusion layer of another conductivity type, including a diffusion layer formation step of applying ion implantation and a first heat treatment having a temperature profile of 700 ° C. to 950 ° C. In
Before the first heat treatment in the step of forming the other-conductivity-type impurity diffusion layer, an oxide film having a thickness that does not penetrate at least the peak of one-conductivity-type impurity concentration distribution due to wrap-around diffusion from the surface side is formed on the semiconductor substrate. After the first heat treatment, the oxide film on the front surface side of the semiconductor substrate is removed, and then ion implantation and a second heat treatment at 350 ° C. to 500 ° C. are performed on the back surface side. A method of manufacturing a semiconductor device , comprising forming an impurity diffusion layer of one conductivity type and removing an oxide film on a back surface side of the semiconductor substrate .
前記酸化膜を、前記他導電型の不純物拡散層の形成工程におけるイオン注入後に形成することを特徴とする請求項1記載の半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1, wherein the oxide film is formed after ion implantation in the step of forming the impurity diffusion layer of the other conductivity type. 前記酸化膜は、前記他導電型の不純物拡散層の形成工程におけるイオン注入時のスクリーン酸化膜であることを特徴とする請求項1記載の半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1, wherein the oxide film is a screen oxide film at the time of ion implantation in the step of forming the impurity diffusion layer of the other conductivity type. 前記酸化膜の厚さが50nm以下であることを特徴とする請求項1乃至3のいずれか一項に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 1, wherein the oxide film has a thickness of 50 nm or less. 前記酸化膜を裏面金属電極形成前に除去することを特徴とする請求項1乃至4のいずれか一項に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 1, wherein the oxide film is removed before forming the back surface metal electrode.
JP2006285309A 2006-10-19 2006-10-19 Manufacturing method of semiconductor device Active JP5228308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006285309A JP5228308B2 (en) 2006-10-19 2006-10-19 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006285309A JP5228308B2 (en) 2006-10-19 2006-10-19 Manufacturing method of semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012275428A Division JP5626325B2 (en) 2012-12-18 2012-12-18 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2008103562A JP2008103562A (en) 2008-05-01
JP5228308B2 true JP5228308B2 (en) 2013-07-03

Family

ID=39437666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006285309A Active JP5228308B2 (en) 2006-10-19 2006-10-19 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP5228308B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103534811B (en) 2011-05-18 2016-09-21 富士电机株式会社 Semiconductor device and the manufacture method of semiconductor device
KR20150016667A (en) * 2013-08-05 2015-02-13 서울반도체 주식회사 Nitnide based field effect transistor and method of fabricating the same
JP6272799B2 (en) 2015-06-17 2018-01-31 富士電機株式会社 Semiconductor device and manufacturing method of semiconductor device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6467910A (en) * 1987-09-08 1989-03-14 Mitsubishi Electric Corp Manufacture of semiconductor device
JP2716914B2 (en) * 1992-09-24 1998-02-18 ローム株式会社 Semiconductor device
JP4078831B2 (en) * 2001-11-30 2008-04-23 株式会社Sumco Epitaxial wafer manufacturing method
JP4039153B2 (en) * 2002-07-15 2008-01-30 富士電機デバイステクノロジー株式会社 Manufacturing method of semiconductor device
JP4768231B2 (en) * 2004-03-18 2011-09-07 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device
JP2006040947A (en) * 2004-07-22 2006-02-09 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP4710724B2 (en) * 2006-06-07 2011-06-29 株式会社デンソー Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JP2008103562A (en) 2008-05-01

Similar Documents

Publication Publication Date Title
JP6233484B2 (en) Power semiconductor device
US9911733B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP5606529B2 (en) Power semiconductor device
JP5543364B2 (en) Reverse conductive semiconductor device and method for manufacturing such reverse conductive semiconductor device
JP5679073B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP5321377B2 (en) Power semiconductor device
JP2008109028A (en) Semiconductor device and manufacturing method therefor
US9385196B2 (en) Fast switching IGBT with embedded emitter shorting contacts and method for making same
WO2013058191A1 (en) Semiconductor device and manufacturing method therefor
JP2009194197A (en) Semiconductor device and its manufacturing method
WO2012068777A1 (en) Method of fabricating semiconductor substrate for fabricating high power device
JP5160001B2 (en) Manufacturing method of semiconductor device
JP5228308B2 (en) Manufacturing method of semiconductor device
JP5168765B2 (en) Manufacturing method of vertical Zener diode and vertical Zener diode
JP2003197633A (en) Manufacturing method for semiconductor device
JP4892825B2 (en) Manufacturing method of semiconductor device
JP5626325B2 (en) Manufacturing method of semiconductor device
JP2022136627A (en) Semiconductor device and manufacturing method thereof
KR101910975B1 (en) Power metal-oxide-semiconductor field effect transistor having trench gate and method of manufacturing the same
JP2008053610A (en) Insulated-gate bipolar transistor
JP2008053611A (en) Method of manufacturing semiconductor device
JP2006086414A (en) Reverse blocking insulated gate semiconductor device and its manufacturing method
KR101490350B1 (en) Apparatus and method for manufacturing a power semiconductor device
JP5445563B2 (en) Manufacturing method of semiconductor device
US10784109B2 (en) Semiconductor device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090817

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5228308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250