JP5225528B2 - Method for producing silicon-containing polymer - Google Patents

Method for producing silicon-containing polymer Download PDF

Info

Publication number
JP5225528B2
JP5225528B2 JP2001163189A JP2001163189A JP5225528B2 JP 5225528 B2 JP5225528 B2 JP 5225528B2 JP 2001163189 A JP2001163189 A JP 2001163189A JP 2001163189 A JP2001163189 A JP 2001163189A JP 5225528 B2 JP5225528 B2 JP 5225528B2
Authority
JP
Japan
Prior art keywords
group
silicon
containing polymer
parts
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001163189A
Other languages
Japanese (ja)
Other versions
JP2002356617A (en
Inventor
清 武捨
和生文 藤上
孝 末吉
隆史 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Original Assignee
Adeka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adeka Corp filed Critical Adeka Corp
Priority to JP2001163189A priority Critical patent/JP5225528B2/en
Publication of JP2002356617A publication Critical patent/JP2002356617A/en
Application granted granted Critical
Publication of JP5225528B2 publication Critical patent/JP5225528B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)

Description

本発明は、硬化性組成物に関する。詳しくは、安定性、透明性、硬化性能に優れ、更に、その硬化物が耐熱性、耐溶剤性、耐アルカリ性、耐候性、光学特性、電気特性などの諸物性に優れた硬化性組成物に関する。  The present invention relates to a curable composition. Specifically, the present invention relates to a curable composition having excellent stability, transparency, and curing performance, and further, the cured product having various physical properties such as heat resistance, solvent resistance, alkali resistance, weather resistance, optical properties, and electrical properties. .

有機性素材と無機性素材を組み合わせた複合材料は、さまざまな研究がなされており、工業的にも有機高分子に無機充填剤を複合したり、金属表面を有機高分子で修飾するコーティングの手法等が利用されている。これらの複合材料では、それを構成している素材がミクロンメートルオーダー以上の大きさを持っているため、一部の物性を向上することはできるものの、多くの性能は単純に両者の加成則から予想される値を示すに過ぎない。  Various research has been conducted on composite materials combining organic and inorganic materials, and industrially, coating methods that combine inorganic fillers with organic polymers or modify metal surfaces with organic polymers Etc. are used. In these composite materials, the material constituting them has a size of the order of micron or more, so although some physical properties can be improved, many performances are simply additive rules of both. It shows only the expected value.

一方、近年、各素材のドメインの大きさがナノメートルオーダー、更には、分子レベルで組み合わされた有機・無機複合材料が盛んに研究されている。このような材料では、各素材としての特性を併せ持つのみならず、加成則では予想ができない両者の長所を兼ね備えた、それぞれの素材とは全く異なる新しい機能性材料となることが期待される。  On the other hand, in recent years, organic and inorganic composite materials in which the domain size of each material is in the order of nanometers and combined at the molecular level have been actively studied. Such materials are expected not only to have the characteristics of each material, but also to be a new functional material that is completely different from each material and has the advantages of both that cannot be predicted by the Additive Law.

このような有機・無機複合材料は、共有結合を介して一方の素材と他方の素材が分子レベルで混合された化学結合型と、一方の素材をマトリックスとして、他方の素材をその中に微細に分散、複合化された混合型がある。この単なる分散・複合化された混合型は、両素材間の強い結合がないために、分離が生じたり、例えば硬化材料として使用した場合、耐熱性、耐溶剤性等の諸物性の向上が不十分な場合がある。  Such an organic / inorganic composite material has a chemical bond type in which one material and the other material are mixed at the molecular level via a covalent bond, and one material is used as a matrix and the other material is finely contained therein. There are mixed and mixed types. This simple dispersion / combination mixed type does not have strong bonds between the two materials, so that separation occurs or, for example, when used as a cured material, various physical properties such as heat resistance and solvent resistance are not improved. It may be enough.

一方、無機性素材を合成する手法としてゾル・ゲル法がよく利用される。ゾル・ゲル法とは、前駆体分子の加水分解とそれに続く重縮合反応により、架橋した無機酸化物が低温で得られる反応である。
このゾル・ゲル法で得られる無機性素材は、短期間でゲル化するなど、保存安定性が悪いという問題がある。日本化学会誌、1998(No.9)、571(1998)には、トリアルコキシアルキルシランのアルキル基の鎖長による縮合速度の相違に着目し、メチルトリメトキシシランの重縮合後に縮合速度の遅いトリアルコキシ長鎖アルキルシランを添加してポリシロキサン中のシラノール基を封止すること、更には、アルミニウム触媒を用いてメチルトリメトキシシランの縮合反応を行い所定の分子量に到達した時点でアセチルアセトンを添加して、反応系中で配位子交換を行い保存安定性の改良を試みている。しかしこれらの方法では保存安定性の改善は不充分であった。
On the other hand, the sol-gel method is often used as a method for synthesizing inorganic materials. The sol-gel method is a reaction in which a crosslinked inorganic oxide is obtained at a low temperature by hydrolysis of precursor molecules and subsequent polycondensation reaction.
The inorganic material obtained by this sol-gel method has a problem of poor storage stability, such as gelation in a short period of time. The Journal of Chemical Society of Japan, 1998 (No. 9), 571 (1998) pays attention to the difference in condensation rate due to the chain length of the alkyl group of trialkoxyalkylsilane. Add alkoxy long-chain alkyl silane to seal silanol groups in polysiloxane, and then add acetylacetone when a predetermined molecular weight is reached by condensation reaction of methyltrimethoxysilane using an aluminum catalyst. Attempts to improve storage stability through ligand exchange in the reaction system. However, these methods have been insufficient in improving storage stability.

発明が解決しようとする課題Problems to be solved by the invention

本発明の目的は、安定性、透明性、硬化性能に優れ、更にその硬化物が、耐熱性、耐溶剤性、耐アルカリ性、耐候性、光学特性、電気特性などの諸物性に優れた、ケイ素含有重合体を含有することを特徴とする硬化性組成物を提供することにある。  The object of the present invention is excellent in stability, transparency and curing performance, and the cured product is excellent in various physical properties such as heat resistance, solvent resistance, alkali resistance, weather resistance, optical properties, electrical properties, etc. It is in providing the curable composition characterized by containing a containing polymer.

課題を解決するための手段Means for solving the problem

本発明者らは、ケイ素含有重合体について、その保存安定性等を中心に鋭意検討した結果、必須の構成成分として、特定の反応基を有し、シラノール基を有さず、Si−O−Si結合による橋かけ構造を一箇所以上有し、分子量500〜100万のケイ素含有重合体に着目した。  As a result of diligent investigation focusing on the storage stability and the like of the silicon-containing polymer, the present inventors have a specific reactive group as an essential component, no silanol group, Si—O—. Attention was focused on silicon-containing polymers having one or more cross-linked structures with Si bonds and having a molecular weight of 500 to 1,000,000.

すなわち本発明は、Si−OR 1 、Si−CH=CH 2 、Si−R 2 −CH=CH 2 、Si−H、Si−R 2 −NH 2 、Si−R 2 −OCOC(R 3 )=CH 2 およびSi−R 2 −OH基[式中、R 1 は炭素数1〜5のアルキル基、R 2 は炭素数1〜9のアルキレン基またはフェニレン基、R 3 は水素またはメチル基である]からなる群から選ばれる反応基Aを一種または二種以上有し、Si−OH基は有さず、Si−O−Si結合による橋かけ構造を一箇所以上有し、分子量500〜100万のケイ素含有重合体の製造方法であって、
反応基Aを有するアルコキシシランまたはクロロシランを加水分解・縮合反応させて重合体を得た後、この重合体に、オルト蟻酸エステル、オルト酢酸エステル、テトラアルコキシメタンおよび炭酸エステルからなる群から選ばれる一種または二種以上の加水分解性エステル化合物を加え、撹拌および加熱することにより重合体のSi−OH基を封止することを特徴とするケイ素含有重合体の製造方法を提供するものである。
That is, the present invention relates to Si—OR 1 , Si—CH═CH 2 , Si—R 2 —CH═CH 2 , Si—H, Si—R 2 —NH 2 , Si—R 2 —OCOC (R 3 ) = CH 2 and Si—R 2 —OH group [wherein R 1 is an alkyl group having 1 to 5 carbon atoms, R 2 is an alkylene group or phenylene group having 1 to 9 carbon atoms, and R 3 is hydrogen or a methyl group. ] One or two or more reactive groups A selected from the group consisting of: No Si-OH group, one or more cross-linked structures with Si-O-Si bonds, and a molecular weight of 500 to 1,000,000 A method for producing a silicon-containing polymer of
After obtaining a polymer by hydrolyzing / condensing alkoxysilane or chlorosilane having a reactive group A, the polymer is a kind selected from the group consisting of orthoformate ester, orthoacetate ester, tetraalkoxymethane and carbonate ester Alternatively, the present invention provides a method for producing a silicon-containing polymer, wherein two or more hydrolyzable ester compounds are added, and the Si—OH group of the polymer is sealed by stirring and heating .

【発明の実施の形態】
本発明では、Si−OR1、Si−CH=CH2、Si−R2−CH=CH2、Si−H、Si−R2−NH2、Si−R2−OCOC(R3)=CH 2 よびSi−R2−OH基[式中、R1は炭素数1〜5のアルキル基、R2は炭素数1〜9のアルキレン基またはフェニレン基、3は水素またはメチル基である]からなる群から選ばれる反応基Aを一種または二種以上有し、Si−OH基は有さず、Si−O−Si結合による橋かけ構造を一箇所以上有し、分子量500〜100万のケイ素含有重合体が用いられる。この反応基Aは、反応基A同士あるいは他の化合物の反応基(例えば後述する反応基B)と、化学結合を形成する反応をすることができる。ケイ素含有重合体中の、Si−O−Si結合による橋かけは、本発明で用いられるケイ素含有重合体中、一箇所以上あればよく、これら橋かけを有する構造としては、具体的には、Si−O−Si結合によって形成される、はしご状(ラダー状)、かご状、環状等の構造を有していることが挙げられ、それらはしご状、かご状、環状等の構造の全てがSi−O−Si結合で構成されていてもよく、一部をSi−O−Si結合で形成していてもよい。もちろんSi−O−Si結合は複数個繰り返してもよい。
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, Si—OR 1 , Si—CH═CH 2 , Si—R 2 —CH═CH 2 , Si—H, Si—R 2 —NH 2 , Si—R 2 —OCOC (R 3 ) ═CH 2 Contact and Si-R 2 -OH group [wherein, R 1 represents an alkyl group having 1 to 5 carbon atoms, R 2 is an alkylene group or a phenylene group having 1 to 9 carbon atoms, R 3 is hydrogen or a methyl group ] One or two or more reactive groups A selected from the group consisting of: No Si-OH group, one or more cross-linked structures with Si-O-Si bonds, and a molecular weight of 500 to 1,000,000 These silicon-containing polymers are used. The reactive group A may be a reactive group of anti応基A or between other compounds (e.g., later-described reactive group B), a reaction to form a chemical bond. In the silicon-containing polymer, the crosslinking by the Si—O—Si bond may be at least one place in the silicon-containing polymer used in the present invention. Specifically, as the structure having these crosslinking, It is mentioned that it has a ladder-like (ladder-like), cage-like, annular, etc. structure formed by Si—O—Si bonds, and all of the ladder-like, cage-like, annular, etc. structures are Si. You may be comprised by the -O-Si bond and one part may be formed by the Si-O-Si bond. Of course, a plurality of Si-O-Si bonds may be repeated.

本発明で用いられるケイ素含有重合体は、Si−OR1基[式中、R1は炭素数1〜5のアルキル基である]を有する場合は、Si−OR1基[式中、R1は炭素数1〜5のアルキル基である]を有するアルコキシシラン、またはクロロシランの加水分解・縮合反応により得られ、それらアルコキシシランまたはクロロシランと、Si−OR1基以外の反応基Aを有するアルコキシシランやクロロシランとの混合物を適宜選択し、加水分解・縮合反応することによっても得られる。さらに必要に応じて、アルコール溶媒中で反応させたり、加水分解性エステル化合物で処理してもよい。その他ケイ酸ナトリウムからナトリウムをイオン交換等で除去後二酸化ケイ素の縮合物を利用することによっても得ることができる。When the silicon-containing polymer used in the present invention has a Si—OR 1 group [wherein R 1 is an alkyl group having 1 to 5 carbon atoms], the Si—OR 1 group [wherein R 1 is Is an alkyl group having 1 to 5 carbon atoms] or an alkoxysilane obtained by hydrolysis / condensation reaction of chlorosilane and having a reactive group A other than Si-OR 1 group. It can also be obtained by appropriately selecting a mixture with chlorosilane and subjecting it to hydrolysis / condensation reaction. Furthermore, you may make it react in an alcohol solvent as needed, and you may process with a hydrolysable ester compound. It can also be obtained by using a silicon dioxide condensate after removing sodium from sodium silicate by ion exchange or the like.

Si−OR1基以外の反応基Aである、Si−CH=CH2、Si−R2−CH=CH2、Si−H、Si−R2−NH2、Si−R2−OCOC(R3)=CH2 、Si−R2−OH基を有する本発明のケイ素含有重合体の場合は、Si−OR1基以外の反応基Aを有するアルコキシシランやクロロシラン、またはSi−OR1基以外の反応基Aを有するアルコキシシランやクロロシランとSi−OR1基以外の反応基Aを有さないアルコキシシランやクロロシランの混合物を適宜選択し、加水分解・縮合反応することにより得られる。 Is a reactive group A other than Si-OR 1 group, Si-CH = CH 2, Si-R 2 -CH = CH 2, Si-H, Si-R 2 -NH 2, Si-R 2 -OCOC (R 3) = CH 2, S i -R 2 -OH case of silicon-containing polymer of the present invention having a group, alkoxysilane or chlorosilane or Si-oR 1 group, with a reactive group a other than Si-oR 1 group It is obtained by appropriately selecting a mixture of alkoxysilane or chlorosilane having a reactive group A other than chlorosilane and an alkoxysilane or chlorosilane having no reactive group A other than Si-OR 1 group, and subjecting it to hydrolysis / condensation reaction.

上記Si−OR1基以外の反応基Aを有するアルコキシシランやクロロシランを用いる反応においては、生成するケイ素含有重合体の無機性を考慮して、Si−OR1基以外の反応基Aを有するアルコキシシランと、Si−OR1基以外の反応基Aを有さないアルコキシシランやクロロシランを混合して加水分解・縮合反応を行うのが好ましい。In the reaction using an alkoxysilane and chlorosilane having a reactive group A other than 1 group the Si-OR, in consideration of the inorganic nature resulting silicon-containing polymer, alkoxy having reactive groups A other than Si-OR 1 group It is preferable to carry out a hydrolysis / condensation reaction by mixing silane with alkoxysilane or chlorosilane having no reactive group A other than Si-OR 1 group.

本発明に用いられるSi−OR1基以外の反応基Aを有するアルコキシシランやクロロシランの例を挙げると、分子中にSi−OR1基以外の反応基Aを持っていればよく、例えば、(3−アクリロキシプロピル)メチルジメトキシシラン、(3−アクリロキシプロピル)トリメトキシシラン、アリルジメトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、アミノフェニルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、ブテニルトリエトキシシラン、2−シアノエチルトリエトキシシラン、2−シアノエチルトリメトキシシラン、3−シアノプロピルメチルジメトキシシラン、3−アミノプロピルメチルジメトキシシラン、3−シアノプロピルトリエトキシシラン、ヒドロキシメチルトリエトキシシラン、メタクリロキシメチルトリエトキシシラン、メタクリロキシメチルトリメトキシシラン、メタクリロキプロピルトリエトキシシラン、メタクリロキプロピルトリメトキシシラン、メチルジエトキシシラン、メチルジメトキシシラン、フェニルジエトキシシラン、トリエトキシシラン、ビニルメチルジエトキシシラン、ビニルメチルジメトキシシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、およびこれらの各アルコキシの代わりにクロル化物、更には、これらアルコキシシランやクロロシランの水素原子の全部または一部が重水素となっている重水素化物あるいはフッ素原子となっているフッ素化物、等が挙げられ、これらの1種または2種以上を用いることができる。また、Si−OR1基以外の反応基Aを有するケイ素含有重合体の場合は、反応基A中のケイ素原子に結合している他の少なくとも2つの置換基が、酸素原子であるものを含むことが好ましい。Examples of the alkoxysilane and chlorosilane having a reactive group A other than Si-OR 1 group used in the present invention, it is sufficient with a reactive group A other than Si-OR 1 group in the molecule, for example, ( 3-acryloxypropyl) methyldimethoxysilane, (3-acryloxypropyl) trimethoxysilane, allyldimethoxysilane, allyltrimethoxysilane, allyltriethoxysilane, aminophenyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3 -Aminopropyltriethoxysilane, butenyltriethoxysilane, 2-cyanoethyltriethoxysilane, 2-cyanoethyltrimethoxysilane, 3-cyanopropylmethyldimethoxysilane, 3-aminopropylmethyldimethoxysilane, 3-cyanopropyltriethoxysilane Hydroxymethyltriethoxysilane, methacryloxymethyltriethoxysilane, methacryloxymethyltrimethoxysilane, methacryloxypropyltriethoxysilane, methacryloxypropyltrimethoxysilane, methyldiethoxysilane, methyldimethoxysilane, phenyldiethoxysilane, Instead of triethoxysilane, vinylmethyldiethoxysilane, vinylmethyldimethoxysilane, vinyltriethoxysilane, vinyltrimethoxysilane, and each of these alkoxy compounds, all of the hydrogen atoms of these alkoxysilanes and chlorosilanes or Examples thereof include a deuteride partially deuterium or a fluorinated fluoride atom, and one or more of these can be used. Further, in the case of a silicon-containing polymer having a reactive group A other than the Si-OR 1 group, it includes those in which at least two other substituents bonded to the silicon atom in the reactive group A are oxygen atoms. It is preferable.

また、本発明に用いられる、Si−OR1基以外の反応基Aを有さないアルコキシシランやクロロシランの例としては、アセトキシメチルトリメトキシシラン、ベンジルトリエトキシシラン、ビス(トリエトキシシリル)メタン、ビス(トリエトキシシリル)エタン、ビス(トリエトキシシリル)ヘキサン、3−ブロモプロピルトリメトキシシラン、ブチルトリメトキシシラン、クロロメチルトリエトキシシラン、クロロフェニルトリエトキシシラン、3−クロロプロピルトリメトキシシラン、ジエチルジエトキシシラン、ジメチルジエトキシシラン、ジメチルジメトキシラン、ドデシルトリメトキシシラン、エチルトリエトキシシラン、エチルトリメトキシシラン、ブチルトリメトキシシラン、メトキシプロピルトリメトキシシラン、メチルトリエトキシシラン、メチルトリメトキシシラン、オクチルトリメトキシシラン、フェニルメチルジエトキシシラン、フェニルメチルジメトキシシラン、フェニルトリエトキシシラン、フェニルトリメトキシシラン、テトラエトキシシラン、テトラメトキシシラン、トリルトリメトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、トリメチルメトキシシラン、トリメチルエトキシシラン、トリエチルエトキシシラン、トリフェニルエトキシシラン、およびこれらの各アルコキシの代わりにクロル化物、更には、これらアルコキシシランやクロロシランの水素原子の全部または一部が重水素となっている重水素化物あるいはフッ素原子となっているフッ素化物、等が挙げられ、これらの1種または2種以上を用いることができる。また、反応基AがSi−OR1基のケイ素含有重合体の場合は、Si−OR1基以外の反応基Aを有さないアルコキシシランはアルコキシ基の結合しているケイ素原子に結合している他の少なくとも2つの置換基が、酸素原子であるものを含むことが好ましい。Examples of alkoxysilanes and chlorosilanes that do not have a reactive group A other than Si-OR 1 groups used in the present invention include acetoxymethyltrimethoxysilane, benzyltriethoxysilane, bis (triethoxysilyl) methane, Bis (triethoxysilyl) ethane, bis (triethoxysilyl) hexane, 3-bromopropyltrimethoxysilane, butyltrimethoxysilane, chloromethyltriethoxysilane, chlorophenyltriethoxysilane, 3-chloropropyltrimethoxysilane, diethyldi Ethoxysilane, dimethyldiethoxysilane, dimethyldimethoxylane, dodecyltrimethoxysilane, ethyltriethoxysilane, ethyltrimethoxysilane, butyltrimethoxysilane, methoxypropyltrimethoxysilane, methyl Triethoxysilane, methyltrimethoxysilane, octyltrimethoxysilane, phenylmethyldiethoxysilane, phenylmethyldimethoxysilane, phenyltriethoxysilane, phenyltrimethoxysilane, tetraethoxysilane, tetramethoxysilane, tolyltrimethoxysilane, diphenyldimethoxy Instead of silane, diphenyldiethoxysilane, trimethylmethoxysilane, trimethylethoxysilane, triethylethoxysilane, triphenylethoxysilane, and their respective alkoxy compounds, all or one of the hydrogen atoms of these alkoxysilanes and chlorosilanes are used. Examples include deuterated compounds whose parts are deuterium or fluorinated compounds having fluorine atoms, and one or more of these may be used. You can. When the reactive group A is a Si-OR 1 silicon-containing polymer, the alkoxysilane having no reactive group A other than the Si-OR 1 group is bonded to the silicon atom to which the alkoxy group is bonded. Preferably, the other at least two substituents are oxygen atoms.

Si−OR1基以外の反応基Aを有するアルコキシシランとSi−OR1基以外の反応基Aを有さないアルコキシシランの配合比は、モル比で0:100〜100:0が好ましい。より好ましくは、5:95〜95:5である。Compounding ratio of the alkoxysilane having no reactive group A other than alkoxysilane and Si-OR 1 group having a reactive group A other than Si-OR 1 group is a molar ratio of 0: 100 to 100: 0 is preferred. More preferably, it is 5: 95-95: 5.

また本発明のケイ素含有重合体の、反応基A中のケイ素原子に結合している他の少なくとも2つの置換基が、酸素原子であるのが好ましい。  In the silicon-containing polymer of the present invention, the other at least two substituents bonded to the silicon atom in the reactive group A are preferably oxygen atoms.

上記、Si−OR1基以外の反応基Aを有するアルコキシシラン、Si−OR1基以外の反応基Aを有さないアルコキシシランは、所望により他の金属のアルコラートや錯体で処理したり、あるいはそれらと併用して加水分解・縮合反応を行い、ケイ素含有重合体にケイ素以外の金属、例えばホウ素、マグネシウム、アルミニウム、リン、チタン、鉄、亜鉛、ジルコニウム、ニオブ、スズ、テルル、タンタルなどを組み入れることも可能である。The alkoxysilane having a reactive group A other than the Si-OR 1 group and the alkoxysilane having no reactive group A other than the Si-OR 1 group may be treated with an alcoholate or complex of another metal, if desired. In combination with them, hydrolysis and condensation reactions are performed, and metals other than silicon, such as boron, magnesium, aluminum, phosphorus, titanium, iron, zinc, zirconium, niobium, tin, tellurium, tantalum, etc., are incorporated into the silicon-containing polymer. It is also possible.

本発明において、アルコキシシランやクロロシランの加水分解・縮合反応は、いわゆるゾル・ゲル反応を行えばよく、そのようなゾル・ゲル反応として、無溶媒もしくは溶媒中で、酸または塩基等の触媒で加水分解・縮合反応を行う方法が挙げられる。この時用いられる溶媒は、特に限定されず、具体的には、水、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、イソブタノール、t−ブタノール、アセトン、メチルエチルケトン、ジオキサン、テトラヒドロフラン等が挙げられ、これらの1種を用いることも、2種以上を混合して用いることもできる。  In the present invention, the hydrolysis / condensation reaction of alkoxysilane or chlorosilane may be carried out by so-called sol-gel reaction. As such sol-gel reaction, hydrolysis with acid or base or other catalyst is carried out without solvent or solvent. Examples include a method of performing a decomposition / condensation reaction. The solvent used at this time is not particularly limited, and specific examples include water, methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, t-butanol, acetone, methyl ethyl ketone, dioxane, tetrahydrofuran and the like. 1 type of these can be used, and 2 or more types can also be mixed and used.

上記アルコキシシランやクロルシランの加水分解・縮合反応は、アルコキシシランやクロロシランが、水による加水分解により、シラノール基(SiOH基)を生成し、この生成したシラノール基同士が、またはシラノール基とアルコキシ基が縮合することにより進む。この反応を進ませるためには、適量の水を加えることが好ましく、水は溶媒中に加えてもよく、触媒を水に溶解して加えてもよい。また、空気中の水分あるいは、溶媒中に含まれる微量の水分によっても加水分解反応は進む。  In the hydrolysis / condensation reaction of the alkoxysilane or chlorosilane, the alkoxysilane or chlorosilane generates a silanol group (SiOH group) by hydrolysis with water, and the generated silanol groups, or the silanol group and the alkoxy group Proceed by condensation. In order to advance this reaction, it is preferable to add an appropriate amount of water. Water may be added to the solvent, or the catalyst may be added after dissolving in water. In addition, the hydrolysis reaction also proceeds due to moisture in the air or a small amount of moisture contained in the solvent.

上記加水分解・縮合反応で用いられる酸、塩基等の触媒は、加水分解・縮合反応を促進するものであれば、特に限定されず、具体的には、塩酸、リン酸、硫酸等の無機酸類;酢酸、p−トルエンスルホン酸、リン酸モノイソプロピル等の有機酸類;水酸化ナトリウム、水酸化カリウム、水酸化リチウム、アンモニア等の無機塩基類;トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン等のアミン化合物類;テトライソプロピルチタネート、テトラブチルチタネート等のチタンエステル類;ジブチル錫ラウレート、オクチル錫酸等の錫カルボン酸塩類;トリフルオロボロン等のホウ素化合物類;鉄、コバルト、マンガン、亜鉛等の金属の塩化物やナフテン酸塩あるいはオクチル酸塩等の金属カルボン酸塩類;アルミニウムトリスアセチルアセテート等のアルミニウム化合物等が挙げられ、これらの1種を用いることも、2種以上を併用することもできる。酸触媒を加えて、酸性下(pH7以下)で反応を進ませた後、塩基触媒を加えて中和ないし塩基性下で反応を行う方法が好ましい例として挙げられる。  The catalyst such as acid or base used in the hydrolysis / condensation reaction is not particularly limited as long as it promotes the hydrolysis / condensation reaction. Specifically, inorganic acids such as hydrochloric acid, phosphoric acid, sulfuric acid and the like are used. Organic acids such as acetic acid, p-toluenesulfonic acid and monoisopropyl phosphate; inorganic bases such as sodium hydroxide, potassium hydroxide, lithium hydroxide and ammonia; amine compounds such as trimethylamine, triethylamine, monoethanolamine and diethanolamine Titanium esters such as tetraisopropyl titanate and tetrabutyl titanate; Tin carboxylates such as dibutyltin laurate and octylstannic acid; Boron compounds such as trifluoroboron; Chlorination of metals such as iron, cobalt, manganese and zinc And metal carboxylates such as naphthenates or octylates; Mini um aluminum compound tris acetyl acetate, etc., and the like, also the use of these one may be used in combination of two or more. A preferred example is a method in which an acid catalyst is added and the reaction is allowed to proceed under acidic conditions (pH 7 or lower), and then a base catalyst is added to carry out the reaction under neutralization or basicity.

加水分解・縮合反応の順序は特に限定されず、Si−OR1基以外の反応基Aを有するケイ素含有重合体の場合は、Si−OR1基以外の反応基Aを有するアルコキシシランとSi−OR1基以外の反応基Aを有さないアルコキシシランを両者混合して、加水分解・縮合反応を行ってもよく、またSi−OR1基以外の反応基Aを有さないアルコキシシラン単独で、ある程度加水分解・縮合反応を行った後、Si−OR1基以外の反応基Aを有するアルコキシシランを加えてさらに加水分解・縮合反応を行ってもよく、その逆にSi−OR1基以外の反応基Aを有するアルコキシシラン単独で、ある程度加水分解・縮合反応を行った後、Si−OR1基以外の反応基Aを有さないアルコキシシランを加えて加水分解・縮合反応を行ってもよい。もちろんSi−OR1基以外の反応基Aを有するアルコキシシランやクロロシランの一種または二種以上の混合物を加水分解・縮合反応してもよい。またSi−OR1基以外の反応基Aを有さないケイ素含有重合体を得る場合は、Si−OR1基以外の反応基Aを有さないアルコキシシランやクロロシランの一種または二種以上の混合物を加水分解・縮合反応を行えばよい。The order of the hydrolysis-condensation reaction is not particularly limited, in the case of silicon-containing polymer having a reactive group A other than Si-OR 1 group, and an alkoxysilane having a reactive group A other than Si-OR 1 group Si- An alkoxysilane having no reactive group A other than the OR 1 group may be mixed to perform a hydrolysis / condensation reaction, or an alkoxysilane having no reactive group A other than the Si-OR 1 group alone. Further, after some hydrolysis / condensation reaction, an alkoxysilane having a reactive group A other than Si-OR 1 group may be added to perform further hydrolysis / condensation reaction, and conversely, other than Si-OR 1 group Even if alkoxysilane having a reactive group A alone is subjected to hydrolysis / condensation reaction to some extent, alkoxysilane having no reactive group A other than Si-OR 1 group is added to perform hydrolysis / condensation reaction. Good. Of course, one or a mixture of two or more alkoxysilanes and chlorosilanes having a reactive group A other than the Si-OR1 group may be subjected to a hydrolysis / condensation reaction. In the case of obtaining the silicon-containing polymer having no reactive group A other than Si-OR 1 group has no reactive group A other than Si-OR 1 group alkoxysilane and one or two or more mixtures of chlorosilanes May be subjected to hydrolysis / condensation reaction.

上記加水分解・縮合反応で生成したケイ素含有重合体を得るためには、反応溶媒、水、触媒を除去すればよく、例えば、ブタノール等の溶媒を加えて溶媒抽出後、抽出溶媒を窒素気流下で減圧留去すればよい。また、加水分解・縮合反応後の溶液を、そのままあるいは脱触媒処理を行ってから、加水分解性エステルによる処理さらに硬化性組成物を得るための処理を行ってもよい。  In order to obtain the silicon-containing polymer produced by the hydrolysis / condensation reaction, the reaction solvent, water, and catalyst may be removed. For example, after adding a solvent such as butanol to extract the solvent, the extraction solvent is placed under a nitrogen stream. Can be distilled off under reduced pressure. In addition, the solution after the hydrolysis / condensation reaction may be subjected to a treatment with a hydrolyzable ester and a treatment for obtaining a curable composition as it is or after a catalyst removal treatment.

本発明で用いられるケイ素含有重合体の分子量は、ポリスチレン換算で、重量平均分子量が500から100万であり、好ましくは1000から10万である。500より小さいと望ましい物性が得られず、100万より大きいと、ナノメートルレベル、分子レベルでの複合化ができず、生成物が不均一になったり不透明になったり、充分な物性が得られない。  The molecular weight of the silicon-containing polymer used in the present invention is, in terms of polystyrene, a weight average molecular weight of 500 to 1,000,000, preferably 1,000 to 100,000. If it is smaller than 500, desirable physical properties cannot be obtained, and if it is larger than 1,000,000, it cannot be combined at the nanometer level and molecular level, and the product becomes non-uniform or opaque and sufficient physical properties are obtained. Absent.

本発明で用いられるケイ素含有重合体中の反応基Aの数は、得られるケイ素含有重合体の分子量にもより、特に限定されるものではないが、ケイ素含有重合体1分子当たり1個以上、最高ケイ素原子1個当たり1個必要である。これより少ないと反応性官能基Bを有する線状化合物との化学結合が行われず、これより多いとケイ素含有重合体中の反応基により、いわゆる無機性(無機的物性)が少なくなる。  The number of reactive groups A in the silicon-containing polymer used in the present invention is not particularly limited depending on the molecular weight of the resulting silicon-containing polymer, but one or more per molecule of silicon-containing polymer, One per highest silicon atom is required. If it is less than this, chemical bonding with the linear compound having the reactive functional group B is not performed, and if it is more than this, so-called inorganicity (inorganic physical properties) decreases due to the reactive group in the silicon-containing polymer.

本発明の必須構成成分の反応基Aを有するケイ素含有重合体は、Si−OH基(シラノール基)を有しないものであるが、特に加水分解性エステル化合物で処理することで、シラノール基を封止でき、保存安定性を著しく改善することができる。加水分解性エステル化合物としては、オルト蟻酸エステル、オルト酢酸エステル、テトラアルコキシメタン、炭酸エステル等を用いることができ、とりわけオルト蟻酸トリアルキルエステル、テトラアルコキシメタン等が好ましい。
また加水分解・縮合反応の触媒、温度、反応時間、仕込み量等反応条件を調節することで、Si−OH基を有しないケイ素含有重合体を得ることも可能である。
The silicon-containing polymer having the reactive group A, which is an essential constituent component of the present invention, does not have a Si—OH group (silanol group). However, the silanol group is blocked by treating with a hydrolyzable ester compound. Storage stability can be significantly improved. As the hydrolyzable ester compound, orthoformate ester, orthoacetate ester, tetraalkoxymethane, carbonate ester and the like can be used, and orthoformate trialkyl ester, tetraalkoxymethane and the like are particularly preferable.
It is also possible to obtain a silicon-containing polymer having no Si—OH group by adjusting the reaction conditions such as the catalyst for hydrolysis / condensation reaction, temperature, reaction time, and charging amount.

加水分解性エステルでの処理方法は、構成成分であるケイ素含有重合体に、またはケイ素含有重合体と溶媒を混合させた状態で、またはケイ素含有重合体と反応性官能基Bを有する線状化合物と混合させた状態で、またはケイ素含有重合体と反応性官能基Bを有する線状化合物と硬化触媒を混合させた状態で、過剰量の加水分解性エステルを加えればよく、その時攪拌、加熱をすることが好ましい。処理後、窒素気流下、加熱減圧して、未反応の加水分解性エステルを除去すればよい。この処理によって、シラノール基がなくなり、保存安定性がよくなる。もちろんケイ素含有重合体中の反応基の量は、処理することによって影響を受けないようにすることが重要である。  The treatment method with a hydrolyzable ester is a linear compound having a silicon-containing polymer as a constituent component, a state in which a silicon-containing polymer and a solvent are mixed, or a silicon-containing polymer and a reactive functional group B. Or a mixture of a silicon-containing polymer and a linear compound having a reactive functional group B and a curing catalyst, an excess amount of a hydrolyzable ester may be added, and stirring and heating are performed at that time. It is preferable to do. After the treatment, unreacted hydrolysable ester may be removed by heating and decompressing under a nitrogen stream. This treatment eliminates silanol groups and improves storage stability. Of course, it is important that the amount of reactive groups in the silicon-containing polymer be unaffected by processing.

本発明に用いられる反応基Bを有する線状化合物は制限はないが、ケイ素含有重合体の反応基Aと反応する官能基を有する必要があり、反応基を分子中に1ケ以上有する低分子化合物、高分子化合物が利用できる。また高分子化合物に適宜、反応基を化学結合させてもよい。反応基Bの例をあげると、H−Si−基、HO−Si−基、R1O−Si−基、CH2=C(R3)−基、CH2=C(R3)−R2−基、CH2=C(R3)−COO−(R2)−基、水酸基、エポキシ基、脂環式エポキシ基等が挙げられる[式中、R1は炭素数1〜5のアルキル基、R2は炭素数1〜9のアルキレン基またはフェニレン基、3は水素またはメチル基である]。高分子化合物としては、ジメチルポリシロキサン、ジフェニルポリシロキサン、ジメチルシロキサン・ジフェニルシロキサンコポリマー、ポリイミド樹脂、ポリエチレングリコールやポリプロピレングリコールなどのポリアルキレングリコール、ポリウレタン樹脂、エポキシ樹脂、フェノール樹脂、ポリエステル、メラミン樹脂、ポリアミド樹脂、などがその例として挙げられる。 The linear compound having the reactive group B used in the present invention is not limited, but it must have a functional group that reacts with the reactive group A of the silicon-containing polymer, and has a low molecular weight having one or more reactive groups in the molecule. Compounds and polymer compounds can be used. In addition, a reactive group may be chemically bonded to the polymer compound as appropriate. Examples of reactive groups B are H—Si— group, HO—Si— group, R 1 O—Si— group, CH 2 ═C (R 3 ) — group, CH 2 ═C (R 3 ) —R. 2 -groups, CH 2 ═C (R 3 ) —COO— (R 2 ) — groups, hydroxyl groups, epoxy groups, alicyclic epoxy groups, etc. [wherein R 1 is alkyl having 1 to 5 carbon atoms. Group, R 2 is an alkylene group having 1 to 9 carbon atoms or a phenylene group, and R 3 is hydrogen or a methyl group]. Polymer compounds include dimethylpolysiloxane, diphenylpolysiloxane, dimethylsiloxane / diphenylsiloxane copolymer, polyimide resin, polyalkylene glycol such as polyethylene glycol and polypropylene glycol, polyurethane resin, epoxy resin, phenol resin, polyester, melamine resin, polyamide Examples thereof include resins.

本発明で用いられる硬化触媒は、反応基の種類や硬化方法により限定されない。例えば、Si−OR縮合反応用触媒としては、ビス(2−エチルヘキサノエート)スズ、ビス(ネオデカノエート)スズ、ジ−n−ブチルブトキシクロロスズ、ジ−n−ブチルジアセトキシスズ、ジ−n−ブチルジラウリル酸スズ、ジオクチルジラウリル酸スズなどが挙げられる。また、例えばSi−H付加反応用触媒としては、白金-カルボニルビニルメチル錯体、白金-ジビニルテトラメチルジシロキサン錯体、白金-シクロビニルメチルシロキサン錯体、白金-オクチルアルデヒド錯体などが挙げられる。これら硬化触媒は2種以上を併用することもできる。  The curing catalyst used in the present invention is not limited by the type of reactive group or the curing method. For example, as a catalyst for the Si-OR condensation reaction, bis (2-ethylhexanoate) tin, bis (neodecanoate) tin, di-n-butylbutoxychlorotin, di-n-butyldiacetoxytin, di-n -Tin butyl dilaurate, tin dioctyl dilaurate, etc. are mentioned. Examples of the Si—H addition reaction catalyst include a platinum-carbonylvinylmethyl complex, a platinum-divinyltetramethyldisiloxane complex, a platinum-cyclovinylmethylsiloxane complex, and a platinum-octylaldehyde complex. Two or more of these curing catalysts can be used in combination.

本発明の硬化性組成物を得るためには、ケイ素含有重合体と、必要に応じて反応基Bを有する線状化合物および/または硬化触媒を混合し、用いた硬化触媒等により加熱等の処理を行う。
混合の方法には特に制限はなく、例えばケイ素含有重合体と反応基Bを有する線状化合物を、使用直前に混合する方法、あらかじめ混合しておき硬化反応を行いたい時に硬化触媒を加えて加熱等の処理により硬化させる方法、あらかじめ全部混合しておき硬化反応を行いたいときに加熱等により硬化させる方法などが挙げられる。
In order to obtain the curable composition of the present invention, a silicon-containing polymer and, if necessary, a linear compound having a reactive group B and / or a curing catalyst are mixed, and a treatment such as heating with the used curing catalyst or the like. I do.
There is no particular limitation on the mixing method, for example, a method of mixing a silicon-containing polymer and a linear compound having a reactive group B immediately before use, or adding a curing catalyst and heating when mixing and performing a curing reaction in advance. The method of making it harden | cure by process etc., the method of making it harden | cure by heating etc. when mixing all beforehand and performing hardening reaction etc. are mentioned.

本発明のケイ素含有重合体は、保存中の変性や分子量増加がなく、保存安定性に優れている。特に加水分解性エステル化合物で処理したケイ素含有重合体の保存安定性は特に優れている。  The silicon-containing polymer of the present invention does not undergo modification during storage or increase in molecular weight, and is excellent in storage stability. In particular, the storage stability of a silicon-containing polymer treated with a hydrolyzable ester compound is particularly excellent.

本発明の硬化性組成物の配合比は、得ようとする硬化物の物性に応じて適宜調節すればよいが、ケイ素含有重合体と反応性基Bを有する線状化合物の両方の特性を併せ持った優れた複合材料とするためには、重量比で、ケイ素含有重合体:線状化合物=100:0〜1:99が好ましい。  The blending ratio of the curable composition of the present invention may be appropriately adjusted according to the physical properties of the cured product to be obtained, but has the characteristics of both a silicon-containing polymer and a linear compound having a reactive group B. In order to obtain an excellent composite material, the weight ratio of silicon-containing polymer: linear compound = 100: 0 to 1:99 is preferable.

本発明の硬化性組成物は、硬化させることにより、無機性素材であるケイ素含有重合体と有機性素材である線状化合物が、共有結合で結合することにより、ナノメートルオーダー更には分子レベルで混合した化学結合型複合材料となる。得られた硬化物は、有機性素材と無機性素材の両方の性質を併せ持ち、特に耐熱性、耐溶剤性、耐アルカリ性に優れている。さらに本発明の化学結合型硬化性組成物は、均一で透明なため紫外線等光の透過性がよく、光硬化も可能である。
更にまた、耐候性、硬度、耐汚染性、難燃性、耐湿性、ガスバリヤ性、可撓性、伸びや強度、電気絶縁性、低誘電率性等の力学特性、光学特性、電気特性等に優れた複合材料を得ることができる。
When the curable composition of the present invention is cured, a silicon-containing polymer that is an inorganic material and a linear compound that is an organic material are bonded by a covalent bond. It becomes a mixed chemical bond type composite material. The obtained cured product has properties of both an organic material and an inorganic material, and is particularly excellent in heat resistance, solvent resistance, and alkali resistance. Furthermore, since the chemical bond type curable composition of the present invention is uniform and transparent, it has good light transmittance such as ultraviolet rays and can be photocured.
Furthermore, for weather resistance, hardness, stain resistance, flame resistance, moisture resistance, gas barrier properties, flexibility, elongation and strength, electrical insulation, low dielectric constant, and other mechanical properties, optical properties, electrical properties, etc. An excellent composite material can be obtained.

また、本発明の硬化性成分には、前記必須成分の他に、任意成分として、本発明の目的とする性能を損なわない範囲で、その他の公知の添加剤、充填剤、各種樹脂等も配合することができる。
反応基を有するケイ素含有重合体に、各種の有機官能基を結合させ機能付与をすることができる。また、本発明の硬化性組成物またはその硬化物をマトリックスとし、他の有用な化合物を分散させた高機能複合材料を作成することができる。
In addition to the above essential components, the curable component of the present invention is blended with other known additives, fillers, various resins, etc., as optional components, as long as the target performance of the present invention is not impaired. can do.
Various organic functional groups can be bonded to the silicon-containing polymer having a reactive group to give a function. In addition, a highly functional composite material in which other useful compounds are dispersed using the curable composition of the present invention or a cured product thereof as a matrix can be prepared.

【実施例】
以下、実施例により本発明を更に説明するが、本発明はこれら実施例によって限定されるものではない。尚、実施例中の「部」や「%」は重量によるものである
実施例1:ケイ素含有重合体Aの合成
メチルトリエトキシシラン72部に溶媒として1−ブタノール72部を混合し、70℃まで加温後、0.12%リン酸水溶液22部を滴下した。滴下後、80℃にて1時間反応した。次いで水酸化ナトリウム水溶液を添加して反応液を中和後、80℃にて1時間反応した。得られた反応液のうち165部に1−ブタノール660部を加えた。これにイオン交換水800部を加えて3回水洗を行った後、窒素気流下、40℃、1330Pa(10mmHg)にて溶媒を留去し、ケイ素含有重合体aを得た。得られたケイ素含有重合体a 40部に、オルトギ酸トリエチル200部を加え、130℃で1時間処理後、窒素気流下、70〜90℃、1330Pa(10mmHg)にて、未反応オルトギ酸トリエチル等の揮発性成分を留去し、ケイ素含有重合体Aを得た。GPCによる分析の結果、重量平均分子量3700であり、DMSO−d6を溶媒とする1H−NMRによる分析の結果、シラノール基(SiOH基)は検出されなかった。ケイ素重合体Aは40℃保存で30日後の重量平均分子量は3700であり、変化がなかった。
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further, this invention is not limited by these Examples. In the examples, “parts” and “%” are based on weight .
Example 1: 72 parts as a solvent of 1-butanol synthesis 72 parts of methyl triethoxysilane silicon-containing polymer A was mixed, after warming to 70 ° C., was added dropwise 22 parts of an aqueous solution 0.12% phosphoric acid. After dripping, it reacted at 80 degreeC for 1 hour. Next, an aqueous sodium hydroxide solution was added to neutralize the reaction solution, followed by reaction at 80 ° C. for 1 hour. 660 parts of 1-butanol was added to 165 parts of the obtained reaction liquid. After adding 800 parts of ion-exchanged water and washing with water three times, the solvent was distilled off at 40 ° C. and 1330 Pa (10 mmHg) under a nitrogen stream to obtain a silicon-containing polymer a. After adding 200 parts of triethyl orthoformate to 40 parts of the resulting silicon-containing polymer a and treating at 130 ° C. for 1 hour, unreacted triethyl orthoformate and the like at 70 to 90 ° C. and 1330 Pa (10 mmHg) under a nitrogen stream. The volatile component was distilled off to obtain a silicon-containing polymer A. As a result of analysis by GPC, the weight average molecular weight was 3700. As a result of analysis by 1 H-NMR using DMSO-d 6 as a solvent, silanol groups (SiOH groups) were not detected. Silicon polymer A was stored at 40 ° C. and its weight average molecular weight after 3 days was 3700, which was not changed.

実施例2:ケイ素含有重合体Bの合成
メチルトリエトキシシラン(10部)、フェニルトリメトキシシラン(11部)、および0.032%リン酸水溶液(9.7部)を混合し、10℃にて3時間反応した。更に、エタノール(24部)を加え、水酸化ナトリウム水溶液を添加して反応液を中和後、30℃にて15分間反応した。次いで、オルトギ酸トリエチル(130部)を加え、130℃にて1時間攪拌した。その後、吸着剤(協和化学工業製キョワード600S、以下同様)を(0.5部)を加え、100℃にて処理してから吸着剤を濾過して除去後、150℃、10mmHgにて揮発成分を留去し、ケイ素含有重合体Bを得た。GPCによる分析の結果、重量平均分子量は3300であった。アセトン−d6を溶媒とする1H−NMRによる分析の結果、シラノール基(SiOH基)は検出されなかった。
Example 2: Synthesis of methyltriethoxysilane silicon-containing polymer B (10 parts), phenyltrimethoxysilane (11 parts), and 0.032% phosphoric acid aqueous solution (9.7 parts) were mixed, 3 hours at 10 ° C. did. Further, ethanol (24 parts) was added, an aqueous sodium hydroxide solution was added to neutralize the reaction solution, and the mixture was reacted at 30 ° C. for 15 minutes. Subsequently, triethyl orthoformate (130 parts) was added, and the mixture was stirred at 130 ° C. for 1 hour. Then, add (0.5 parts) of the adsorbent (Kyowa Chemical Industry Kyoward 600S, the same applies below), treat it at 100 ° C, remove the adsorbent by filtration, and then remove the volatile components at 150 ° C and 10 mmHg. To obtain a silicon-containing polymer B. As a result of analysis by GPC, the weight average molecular weight was 3,300. As a result of analysis by 1 H-NMR using acetone-d 6 as a solvent, silanol groups (SiOH groups) were not detected.

実施例3:ケイ素含有重合体Cの合成
メチルトリエトキシシラン(32部)と0.032%リン酸水溶液(18部)を混合し、10℃にて30分間反応後、ビニルトリメトキシシラン(3部)を加えてから10℃にて30分間反応した。更に、水酸化ナトリウム水溶液を添加して反応を中和後、30℃にて15分間反応した。次いで、オルトギ酸トリエチル(245部)を加え、130℃にて1時間攪拌した。その後、吸着剤(0.2部)を加え、100℃にて処理してから吸着剤を濾過して除去後、80℃、10mmHgにて揮発成分を留去し、ケイ素含有重合体Cを得た。GPCによる分析の結果、重量平均分子量は8400であった。DMSO−d6を溶媒とする1H−NMRによる分析の結果、シラノール基(SiOH基)は検出されなかった。
Example 3: Synthesis of methyltriethoxysilane silicon-containing polymer C (32 parts) 0.032% phosphoric acid aqueous solution (18 parts) were mixed, after 30 minutes reaction at 10 ° C., vinyltrimethoxysilane (3 parts) The mixture was reacted at 10 ° C. for 30 minutes. Further, an aqueous sodium hydroxide solution was added to neutralize the reaction, and the mixture was reacted at 30 ° C. for 15 minutes. Subsequently, triethyl orthoformate (245 parts) was added and stirred at 130 ° C. for 1 hour. Thereafter, an adsorbent (0.2 parts) was added and the mixture was treated at 100 ° C., and the adsorbent was filtered and removed. Then, the volatile component was distilled off at 80 ° C. and 10 mmHg to obtain silicon-containing polymer C. As a result of analysis by GPC, the weight average molecular weight was 8,400. As a result of analysis by 1 H-NMR using DMSO-d 6 as a solvent, silanol groups (SiOH groups) were not detected.

実施例4:ケイ素含有重合体Dの合成
フェニルトリメトキシシラン(40部)、メチルトリエトキシシラン(29部)、および0.032%リン酸水溶液(35部)を混合し、10℃にて90分間反応後、ビニルトリメトキシシラン(5.9部)を加えてから10℃にて30分間反応した。更に、エタノール(58部)を加え攪拌後、水酸化ナトリウム水溶液を添加して反応液を中和後、10℃にて60分間反応した。次いで、オルトギ酸トリエチル(490部)を加え、130℃にて1時間攪拌した。その後、吸着剤(0.4部)を加え、100℃にて1時間処理してから吸着剤を濾過して除去後、80℃、10mmHgにて揮発成分を留去し、ケイ素含有重合体Dを得た。GPCによる分析の結果、重量平均分子量は4200であった。アセトン−d6およびCDCl3を溶媒とする1H−NMRによる分析の結果、シラノール基(SiOH基)は検出されなかった。
Example 4: Synthesis of phenyltrimethoxysilane silicon-containing polymer D (40 parts), methyl triethoxysilane (29 parts), and 0.032% phosphoric acid aqueous solution (35 parts), 90 minutes reaction at 10 ° C. Thereafter, vinyltrimethoxysilane (5.9 parts) was added and reacted at 10 ° C. for 30 minutes. Further, ethanol (58 parts) was added and stirred, and then a sodium hydroxide aqueous solution was added to neutralize the reaction solution, followed by reaction at 10 ° C. for 60 minutes. Subsequently, triethyl orthoformate (490 parts) was added, and the mixture was stirred at 130 ° C. for 1 hour. Then, adsorbent (0.4 parts) was added, treated at 100 ° C. for 1 hour, filtered to remove the adsorbent, and then volatile components were distilled off at 80 ° C. and 10 mmHg to obtain a silicon-containing polymer D. It was. As a result of analysis by GPC, the weight average molecular weight was 4,200. As a result of analysis by 1 H-NMR using acetone-d 6 and CDCl 3 as solvents, silanol groups (SiOH groups) were not detected.

実施例5:ケイ素含有重合体Eの合成
メチルトリエトキシシラン(16部)と0.032%リン酸水溶液(8.8部)を混合し、10℃にて1時間反応後、トリエトキシシラン(1.6部)を加えてから10℃にて2時間反応した。更に、水酸化ナトリウム水溶液を添加して反応液を中和後、60℃にて15分間反応した。次いで、オルトギ酸トリエチル(123部)を加え、130℃にて1時間攪拌した。その後、吸着剤(0.1部)を加え、100℃にて処理してから吸着剤を濾過して除去後、150℃、10mmHgにて揮発成分を留去し、ケイ素含有重合体Eを得た。GPCによる分析の結果、重量平均分子量は3300であった。DMSO−d6を溶媒とする1H−NMRによる分析の結果、シラノール基(SiOH基)は検出されなかった。
Example 5: Silicon Synthesis methyltriethoxysilane (16 parts) containing polymer E 0.032% phosphoric acid aqueous solution (8.8 parts) were mixed, after 1 hour reaction at 10 ° C., triethoxysilane (1.6 parts) After the addition, the mixture was reacted at 10 ° C. for 2 hours. Further, an aqueous sodium hydroxide solution was added to neutralize the reaction solution, and then reacted at 60 ° C. for 15 minutes. Subsequently, triethyl orthoformate (123 parts) was added, and the mixture was stirred at 130 ° C. for 1 hour. Thereafter, an adsorbent (0.1 part) was added and the mixture was treated at 100 ° C., and the adsorbent was filtered and removed, and then the volatile component was distilled off at 150 ° C. and 10 mmHg to obtain silicon-containing polymer E. As a result of analysis by GPC, the weight average molecular weight was 3,300. As a result of analysis by 1 H-NMR using DMSO-d 6 as a solvent, silanol groups (SiOH groups) were not detected.

実施例6:ケイ素含有重合体Fの合成
メチルトリエトキシシラン(7.1部)とフェニルトリメトキシシラン(4部)、および0.032%リン酸水溶液(8.8部)を混合し、10℃にて1時間反応後、トリエトキシシラン(1.6部)を加えてから10℃にて2時間反応した。更に、水酸化ナトリウム水溶液を添加して反応液を中和後、30℃にて1時間反応した。次いで、オルトギ酸トリエチル(123部)を加え、130℃にて1時間攪拌した。その後、吸着剤(0.1部)を加え、100℃にて処理してから吸着剤を濾過して除去後、150℃、10mmHgにて揮発成分を留去し、ケイ素含有重合体Fを得た。GPCによる分析の結果、重量平均分子量は4900であった。アセトン−d6を溶媒とする1H−NMRによる分析の結果、シラノール基(SiOH基)は検出されなかった。
Example 6: silicon-containing polymer synthesized methyltriethoxysilane (7.1 parts) of F and phenyltrimethoxysilane (4 parts), and 0.032% phosphoric acid aqueous solution (8.8 parts) were mixed, 1 hour reaction at 10 ° C. Thereafter, triethoxysilane (1.6 parts) was added and reacted at 10 ° C. for 2 hours. Further, an aqueous solution of sodium hydroxide was added to neutralize the reaction solution, and then reacted at 30 ° C. for 1 hour. Subsequently, triethyl orthoformate (123 parts) was added, and the mixture was stirred at 130 ° C. for 1 hour. Thereafter, an adsorbent (0.1 part) was added and the mixture was treated at 100 ° C., and the adsorbent was filtered and removed. Then, the volatile component was distilled off at 150 ° C. and 10 mmHg to obtain silicon-containing polymer F. As a result of analysis by GPC, the weight average molecular weight was 4,900. As a result of analysis by 1 H-NMR using acetone-d 6 as a solvent, silanol groups (SiOH groups) were not detected.

参考例7:ケイ素含有重合体Gの合成
アミノプロピルトリエトキシシラン(2部)と水(0.5部)、およびエタノール(7.9部)を混合し、78℃にて1時間反応後、メチルトリエトキシシラン(16部)を加えてから78℃で4時間反応した。次いで、メチルイソブチルケトン(135部)を加えて蒸留する。反応液の温度が100℃に達してから更に2時間攪拌後、減圧して溶媒を留去した。次いで、クロロホルム(150部)、ピリジン(9.5部)を加え、トリメチルクロロシラン(5.4部)を滴下して、50℃にて4時間反応した。溶媒を減圧留去後、トルエン(43部)を加え、析出した固形分を濾別し、吸着剤(0.1部)を加え、100℃にて処理してから吸着剤を濾過して除去後、150℃、10mmHgにて揮発成分を留去し、ケイ素含有重合体Gを得た。GPCによる分析の結果、重量平均分子量は3700であった。
Reference Example 7: Synthesis of silicon-containing polymer G Aminopropyltriethoxysilane (2 parts), water (0.5 parts), and ethanol (7.9 parts) were mixed, reacted at 78 ° C for 1 hour, and then methyltriethoxysilane. (16 parts) was added and reacted at 78 ° C. for 4 hours. Then methyl isobutyl ketone (135 parts) is added and distilled. After the temperature of the reaction solution reached 100 ° C., the mixture was further stirred for 2 hours, and then the solvent was distilled off under reduced pressure. Chloroform (150 parts) and pyridine (9.5 parts) were then added, and trimethylchlorosilane (5.4 parts) was added dropwise, followed by reaction at 50 ° C. for 4 hours. After distilling off the solvent under reduced pressure, toluene (43 parts) was added, the precipitated solid was filtered off, adsorbent (0.1 part) was added, and after treating at 100 ° C., the adsorbent was filtered and removed. Volatile components were distilled off at 150 ° C. and 10 mmHg to obtain a silicon-containing polymer G. As a result of analysis by GPC, the weight average molecular weight was 3,700.

参考例8:ケイ素含有重合体Hの合成
メチルトリエトキシシラン(27部)、フェニルトリメトキシシラン(10部)、および0.032%リン酸水溶液(18部)を混合し、10℃にて2時間反応後、水酸化ナトリウム水溶液を添加して中和後、40℃にて40分間反応した。次いで、クロロホルム(100部)を加え、芒硝にて脱水後、ピリジン(24部)を加え、ジメチルビニルクロロシラン(24部)を滴下し1時間反応した。40℃にて溶媒を減圧留去後、トルエン(100ml)を加え析出した固形分を濾別後、揮発成分を50℃にて減圧留去し、ケイ素重合体Hを得た。GPCによる分析の結果、重量平均分子量は92000であった。アセトン−d6およびCDCl3を溶媒とする1H−NMRによる分析の結果、シラノール基(SiOH基)は検出されなかった。
Reference Example 8: Synthesis of silicon-containing polymer H Methyltriethoxysilane (27 parts), phenyltrimethoxysilane (10 parts), and 0.032% phosphoric acid aqueous solution (18 parts) were mixed and reacted at 10 ° C for 2 hours. Thereafter, an aqueous sodium hydroxide solution was added for neutralization, and the mixture was reacted at 40 ° C. for 40 minutes. Next, chloroform (100 parts) was added, dehydrated with sodium sulfate, pyridine (24 parts) was added, and dimethylvinylchlorosilane (24 parts) was added dropwise to react for 1 hour. After the solvent was distilled off under reduced pressure at 40 ° C., toluene (100 ml) was added and the precipitated solid was filtered off, and then the volatile component was distilled off under reduced pressure at 50 ° C. to obtain a silicon polymer H. As a result of analysis by GPC, the weight average molecular weight was 92000. As a result of analysis by 1 H-NMR using acetone-d 6 and CDCl 3 as solvents, silanol groups (SiOH groups) were not detected.

参考例9:ケイ素含有重合体Iの合成
ジメチルビニルクロロシラン(24部)の代わりにジメチルクロロシラン(19部)、最後の減圧留去の温度が100℃である以外は参考例8と同様に処理して、ケイ素重合体Iを得た。GPCによる分析の結果、重量平均分子量は79000であった。アセトン−d6を溶媒とする1H−NMRによる分析の結果、シラノール基(SiOH基)は検出されなかった。
Reference Example 9: Synthesis of silicon-containing polymer I The same treatment as in Reference Example 8 was conducted except that dimethylchlorosilane (19 parts) was used instead of dimethylvinylchlorosilane (24 parts) and the final vacuum distillation temperature was 100 ° C. Thus, a silicon polymer I was obtained. As a result of analysis by GPC, the weight average molecular weight was 79000. As a result of analysis by 1 H-NMR using acetone-d 6 as a solvent, silanol groups (SiOH groups) were not detected.

応用例1
ケイ素含有重合体A(7部)、シラノール末端ジフェニルシロキサン-ジメチルシロキサンコポリマー(3部)、および硬化触媒としてジブチルジアセトキシスズ(0.01部)を混合して、透明な硬化性組成物を得た。
この硬化性組成物をガラス板上に滴下後、“室温→(10℃/分)→150℃×10分→(10℃/分)→200℃×10分→(10℃/分)→250℃×4時間”にて硬化し、透明なフィルムを得た。フィルムは濁り等なく均一で透明性に優れていた。
Application example 1
Silicon-containing polymer A (7 parts), silanol-terminated diphenylsiloxane-dimethylsiloxane copolymer (3 parts), and dibutyldiacetoxytin (0.01 part) as a curing catalyst were mixed to obtain a transparent curable composition.
After dropping this curable composition onto a glass plate, “room temperature → (10 ° C./min)→150° C. × 10 min → (10 ° C./min)→200° C. × 10 min → (10 ° C./min)→250 C. for 4 hours to obtain a transparent film. The film was uniform and transparent without turbidity.

応用例2
ケイ素含有重合体B(7部)、シラノール末端ジフェニルシロキサン-ジメチルシロキサンコポリマー(3部)、および硬化触媒としてジブチルジアセトキシスズ (0.01部)を混合して、透明な硬化性組成物を得た。
この硬化性組成物をガラス板上に滴下後、“室温→(10℃/分)→150℃×10分→(10℃/分)→200℃×10分→(10℃/分)→250℃×4時間”にて硬化し、透明なフィルムを得た。フィルムは濁り等なく均一で透明性に優れていた。
Application example 2
Silicon-containing polymer B (7 parts), silanol-terminated diphenylsiloxane-dimethylsiloxane copolymer (3 parts), and dibutyldiacetoxytin (0.01 part) as a curing catalyst were mixed to obtain a transparent curable composition.
After dropping this curable composition onto a glass plate, “room temperature → (10 ° C./min)→150° C. × 10 min → (10 ° C./min)→200° C. × 10 min → (10 ° C./min)→250 C. for 4 hours to obtain a transparent film. The film was uniform and transparent without turbidity.

応用例3
ケイ素含有重合体C(5部)、H末端ポリジメチルシロキサン(5部)、および白金カルボニルビニルメチルシロキサン溶液(0.01部)を混合して、透明な硬化性組成物を得た。
この硬化性組成物をガラス板上に滴下後、150℃にて2時間加熱し、透明なフィルムを得た。フィルムは濁り等なく均一で透明性に優れていた。
Application example 3
Silicon-containing polymer C (5 parts), H-terminated polydimethylsiloxane (5 parts), and platinum carbonylvinylmethylsiloxane solution (0.01 parts) were mixed to obtain a transparent curable composition.
This curable composition was dropped on a glass plate and then heated at 150 ° C. for 2 hours to obtain a transparent film. The film was uniform and transparent without turbidity.

応用例4
ケイ素含有重合体C(5部)、ケイ素含有重合体E(5部)、および白金カルボニルビニルメチルシロキサン溶液(0.01部)を混合して、透明な硬化性組成物を得た。
この硬化性組成物をガラス板上に滴下後、150℃にて2時間加熱し、透明なフィルムを得た。フィルムは濁り等なく均一で透明性に優れていた。
Application example 4
Silicon-containing polymer C (5 parts), silicon-containing polymer E (5 parts), and platinum carbonylvinylmethylsiloxane solution (0.01 part) were mixed to obtain a transparent curable composition.
This curable composition was dropped on a glass plate and then heated at 150 ° C. for 2 hours to obtain a transparent film. The film was uniform and transparent without turbidity.

応用例5
ケイ素含有重合体D(5部)、ケイ素含有重合体F(5部)、および白金カルボニルビニルメチルシロキサン溶液(0.01部)を混合して、透明な硬化性組成物を得た。
この硬化性組成物をガラス板上に滴下後、150℃にて2時間加熱し、青色透明なフィルムを得た。得られたフィルムは、濁り等なく均一で透明性に優れていた。
Application example 5
Silicon-containing polymer D (5 parts), silicon-containing polymer F (5 parts), and platinum carbonylvinylmethylsiloxane solution (0.01 parts) were mixed to obtain a transparent curable composition.
This curable composition was dropped on a glass plate and then heated at 150 ° C. for 2 hours to obtain a blue transparent film. The obtained film was uniform without transparency and excellent in transparency.

応用例6
ビスフェノールA型エポキシ樹脂アデカレジンEP−4100[旭電化工業(株)製、エポキシ当量190]に、ケイ素含有重合体Gを、活性水素当量がエポキシ当量の95%になるように添加し、冷却しながら混合した。約1分間攪拌を行い、ガラス板上に塗り付け、その上にアルミニウム箔をはりつけて60℃で1時間、その後120℃で4時間、硬化処理を行った。硬化物は、均一であり、さらに耐熱性良好であった。
Application example 6
While adding silicon-containing polymer G to bisphenol A type epoxy resin Adeka Resin EP-4100 [Asahi Denka Kogyo Co., Ltd., epoxy equivalent 190] so that the active hydrogen equivalent is 95% of the epoxy equivalent, while cooling Mixed. The mixture was stirred for about 1 minute, applied onto a glass plate, and an aluminum foil was applied thereon, followed by curing at 60 ° C. for 1 hour and then at 120 ° C. for 4 hours. The cured product was uniform and had good heat resistance.

応用例7
ケイ素含有重合体H(5部)、ケイ素含有重合体I(5部)、および白金カルボニルビニルメチルシロキサン溶液(0.01部)を混合して、透明な硬化性組成物を得た。
この硬化性組成物をガラス板上に滴下後、150℃にて2時間加熱し、透明なフィルムを得た。得られたフィルムは可撓性がやや不足していたが、濁り等なく均一で透明性に優れていた。
Application example 7
Silicon-containing polymer H (5 parts), silicon-containing polymer I (5 parts), and platinum carbonylvinylmethylsiloxane solution (0.01 parts) were mixed to obtain a transparent curable composition.
This curable composition was dropped on a glass plate and then heated at 150 ° C. for 2 hours to obtain a transparent film. The obtained film was slightly insufficient in flexibility, but was uniform and excellent in transparency without turbidity.

発明の効果Effect of the invention

本発明によれば、安定性、透明性、硬化性能に優れ、更にその硬化物が、耐熱性、耐溶剤性、耐アルカリ性、耐候性、光学特性、電気特性などの諸物性に優れた硬化性組成物を提供することができる。  According to the present invention, stability, transparency, and curing performance are excellent, and further, the cured product has excellent physical properties such as heat resistance, solvent resistance, alkali resistance, weather resistance, optical properties, and electrical properties. A composition can be provided.

Claims (1)

Si−OR1、Si−CH=CH2、Si−R2−CH=CH2、Si−H、Si−R2−NH2、Si−R2−OCOC(R3)=CH2およびSi−R2−OH基[式中、R1は炭素数1〜5のアルキル基、R2は炭素数1〜9のアルキレン基またはフェニレン基、R3は水素またはメチル基である]からなる群から選ばれる反応基Aを一種または二種以上有し、Si−OH基は有さず、Si−O−Si結合による橋かけ構造を一箇所以上有し、分子量500〜100万のケイ素含有重合体の製造方法であって、
反応基Aを有するアルコキシシランまたはクロロシランを加水分解・縮合反応させて重合体を得た後、この重合体に、オルト蟻酸エステル、オルト酢酸エステル、テトラアルコキシメタンおよび炭酸エステルからなる群から選ばれる一種または二種以上の加水分解性エステル化合物を加え、撹拌および加熱することにより重合体のSi−OH基を封止することを特徴とするケイ素含有重合体の製造方法。
Si-OR 1, Si-CH = CH 2, Si-R 2 -CH = CH 2, Si-H, Si-R 2 -NH 2, Si-R 2 -OCOC (R 3) = CH 2 and Si- From the group consisting of R 2 —OH groups, wherein R 1 is an alkyl group having 1 to 5 carbon atoms, R 2 is an alkylene group or phenylene group having 1 to 9 carbon atoms, and R 3 is hydrogen or a methyl group. A silicon-containing polymer having one or more selected reactive groups A, no Si-OH groups, one or more cross-linking structures by Si-O-Si bonds, and a molecular weight of 500 to 1,000,000 A manufacturing method of
After obtaining a polymer by hydrolyzing / condensing alkoxysilane or chlorosilane having a reactive group A, the polymer is a kind selected from the group consisting of orthoformate ester, orthoacetate ester, tetraalkoxymethane and carbonate ester Alternatively, a method for producing a silicon-containing polymer, wherein two or more hydrolyzable ester compounds are added, and the Si—OH group of the polymer is sealed by stirring and heating.
JP2001163189A 2001-05-30 2001-05-30 Method for producing silicon-containing polymer Expired - Lifetime JP5225528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001163189A JP5225528B2 (en) 2001-05-30 2001-05-30 Method for producing silicon-containing polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001163189A JP5225528B2 (en) 2001-05-30 2001-05-30 Method for producing silicon-containing polymer

Publications (2)

Publication Number Publication Date
JP2002356617A JP2002356617A (en) 2002-12-13
JP5225528B2 true JP5225528B2 (en) 2013-07-03

Family

ID=19006206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001163189A Expired - Lifetime JP5225528B2 (en) 2001-05-30 2001-05-30 Method for producing silicon-containing polymer

Country Status (1)

Country Link
JP (1) JP5225528B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003321544A (en) * 2002-04-30 2003-11-14 Chisso Corp Thermal-responsive silane compound, method for producing the same and thermo-responsive material containing the same
WO2005013361A1 (en) * 2003-07-30 2005-02-10 The Kansai Electric Power Co., Inc. High-heat-resistant semiconductor device
JP5132027B2 (en) * 2004-05-12 2013-01-30 株式会社Adeka Silicon-containing curable composition and cured product obtained by thermally curing the same
US7960030B2 (en) 2004-05-14 2011-06-14 Dow Corning Corporation Free films made of cured organopolysiloxane resins, process for production thereof, and laminated films
JP2006206721A (en) * 2005-01-27 2006-08-10 Kansai Electric Power Co Inc:The Highly heat-resistant synthetic polymer compound and semiconductor device of high dielectric strength coated with the same
JP4818646B2 (en) * 2005-06-10 2011-11-16 東レ・ダウコーニング株式会社 Method for purifying silicone resin
JP2007277072A (en) * 2006-03-16 2007-10-25 Jsr Corp Oxide microparticle dispersion and method for producing the same
JP2007277073A (en) * 2006-03-16 2007-10-25 Jsr Corp Oxide microparticle dispersion and method for producing the same
JP2007277505A (en) * 2006-03-16 2007-10-25 Jsr Corp Oxide particulate dispersion and manufacturing method thereof
KR20080111480A (en) * 2006-03-16 2008-12-23 제이에스알 가부시끼가이샤 Oxide particle-containing polysiloxane composition and method for producing same
JP2007291324A (en) * 2006-03-31 2007-11-08 Jsr Corp Oxide particulate-containing polysiloxane composition and its production process
JP2007270056A (en) * 2006-03-31 2007-10-18 Jsr Corp Metal oxide particulate-containing polysiloxane composition and method for producing the same
JP2007270055A (en) * 2006-03-31 2007-10-18 Jsr Corp Polyfunctional polysiloxane, polysiloxane composition containing metal oxide fine particle and method for producing them
RU2401846C2 (en) * 2006-04-25 2010-10-20 Учреждение Российской академии наук Институт синтетических полимерных материалов им. Н.С. Ениколопова РАН (ИСПМ РАН) Functional polyorganosiloxanes and curable composition based on said polyorganosiloxanes
JP5114971B2 (en) * 2007-02-23 2013-01-09 横浜ゴム株式会社 SEALING COMPOSITION FOR LIGHT EMITTING ELEMENT, CURED PRODUCT AND LIGHT EMITTING ELEMENT SEAL
JP5248034B2 (en) * 2007-04-23 2013-07-31 株式会社Adeka Silicon-containing compound, curable composition, and cured product
WO2009088600A1 (en) 2008-01-08 2009-07-16 Dow Corning Toray Co., Ltd. Silsesquioxane resins
KR20100114075A (en) * 2008-01-15 2010-10-22 다우 코닝 코포레이션 Silsesquioxane resins
EP2250213B1 (en) 2008-03-04 2013-08-21 Dow Corning Corporation Silsesquioxane resins
WO2009111121A2 (en) 2008-03-05 2009-09-11 Dow Corning Corporation Silsesquioxane resins
EP2373722A4 (en) 2008-12-10 2013-01-23 Dow Corning Silsesquioxane resins
JP2012097225A (en) * 2010-11-04 2012-05-24 Daicel Corp Curable resin composition and cured article
JP2012111875A (en) * 2010-11-25 2012-06-14 Daicel Corp Curable resin composition and cured article

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE759657A (en) * 1969-12-09 1971-04-30 Goldschmidt Ag Th SILICONE RESIN CURING AT ROOM TEMPERATURE
US4267298A (en) * 1979-11-09 1981-05-12 General Electric Company Process for preparing M-stopped silicone fluids from silanol fluids
JPS6054392A (en) * 1983-09-05 1985-03-28 Shin Etsu Chem Co Ltd Silylation of organosilicon compounds
US4661577A (en) * 1985-10-01 1987-04-28 General Electric Company Aminofunctional polysiloxanes
DE3535379A1 (en) * 1985-10-03 1987-04-09 Wacker Chemie Gmbh METHOD FOR STABILIZING ORGANOPOLYSILOXANS
US4766192A (en) * 1987-07-10 1988-08-23 Dow Corning Corporation Silicone polymer termination
JP2609256B2 (en) * 1987-07-21 1997-05-14 鐘淵化学工業株式会社 Curable composition
JP2508550B2 (en) * 1991-02-21 1996-06-19 信越化学工業株式会社 Method for producing fine powder of silicone elastomer containing amino group
JP3404795B2 (en) * 1993-03-31 2003-05-12 東レ株式会社 Epoxy resin composition for semiconductor encapsulation
JP3474007B2 (en) * 1993-11-05 2003-12-08 信越化学工業株式会社 Method for producing organofunctional organosiloxane containing organic functional groups
JPH0820707A (en) * 1994-07-07 1996-01-23 Matsushita Electric Works Ltd Sealing epoxy resin composition
JP3057143B2 (en) * 1994-11-11 2000-06-26 信越化学工業株式会社 Optically curable silicone composition
US5510430A (en) * 1995-03-31 1996-04-23 General Electric Company Method of functionalizing organosiloxane condensation products
JP3232004B2 (en) * 1995-08-17 2001-11-26 信越化学工業株式会社 Coating composition
JPH09176363A (en) * 1995-12-28 1997-07-08 Kanegafuchi Chem Ind Co Ltd Composition for decomposing silicone compound and decomposition of silicone compound
JPH09208829A (en) * 1996-01-31 1997-08-12 Toray Dow Corning Silicone Co Ltd Curable organopolysiloxane composition and method for bonding substrate to adherend using the same
JP3628098B2 (en) * 1996-03-29 2005-03-09 ダウ コーニング アジア株式会社 Radiation curable composition and method for producing cured product pattern using the same
JPH10130393A (en) * 1996-09-03 1998-05-19 Showa Denko Kk Wholly side-chain mercapto group-bearing polyorganosilsesquioxane and its production
JP3835914B2 (en) * 1997-12-26 2006-10-18 ジーイー東芝シリコーン株式会社 Room temperature curable polyorganosiloxane composition
JP4058808B2 (en) * 1998-06-18 2008-03-12 Jsr株式会社 Photocurable composition and cured film
JP2000007920A (en) * 1998-06-22 2000-01-11 Dow Corning Toray Silicone Co Ltd Curable silicone resin composition
JP3646785B2 (en) * 1999-06-09 2005-05-11 信越化学工業株式会社 Underfill material for flip chip type semiconductor device and flip chip type semiconductor device
JP4520559B2 (en) * 1999-12-02 2010-08-04 株式会社Adeka Curable composition
WO2002100867A1 (en) * 2000-10-27 2002-12-19 The Regents Of The University Of Michigan Well-defined nanosized building blocks for organic/inorganic nanocomposites
JP2002138204A (en) * 2000-11-02 2002-05-14 Kanegafuchi Chem Ind Co Ltd Flame retardant resin composition
JP2002348473A (en) * 2001-05-23 2002-12-04 Asahi Denka Kogyo Kk Curable composition

Also Published As

Publication number Publication date
JP2002356617A (en) 2002-12-13

Similar Documents

Publication Publication Date Title
JP5225528B2 (en) Method for producing silicon-containing polymer
EP1746132B1 (en) Silicon-containing curable composition and cured object obtained by thermally curing the same
CN101657491B (en) Silicon-containing compound, curable composition and cured product
EP3543304B1 (en) Organofunctional siloxanes, method for its preparation and use for the treatment of fillers and surfaces
JP2010116462A (en) Siloxane polymer, siloxane-based crosslinkable composition and silicone membrane
EP2290008A2 (en) Transparent siloxane resin composition for optical applications
JP2006283012A (en) Silicon-containing curable composition and thermally cured material therefrom
KR20170068550A (en) Surface-modified metal oxide particle dispersion liquid, method for producing same, surface-modified metal oxide particle-silicone resin composite composition, surface-modified metal oxide particle-silicone resin composite body,optical member and light emitting device
JP2010261049A (en) Stable composition
JP3635180B2 (en) Silylated polymethylsilsesquioxane, process for producing the same, and composition using the same
KR20090129989A (en) Silicon-containing compound, curable composition and cured product
JP5828292B2 (en) Acid anhydride group-containing organosiloxane and method for producing the same
JP2000026727A (en) Curable silicone resin composition
KR101745608B1 (en) Acid anhydride group-containing organosiloxane and method for producing the same
JPH1060279A (en) Curable polymethylsilsesquioxane composition
JP2002348473A (en) Curable composition
KR101772549B1 (en) Insulation coating composition and manufacturing method thereof
JP3635179B2 (en) Silylated polymethylsilsesquioxane, process for producing the same, and composition using the same
JP4189756B2 (en) Process for producing alkoxysilyl group-containing silane-modified phenylene ether resin, alkoxysilyl group-containing silane-modified phenylene ether resin, alkoxysilyl group-containing silane-modified phenylene ether resin composition, and phenylene ether resin-silica hybrid cured product
JP5878383B2 (en) Polysiloxane material
JP5748226B2 (en) Method for producing polyorganosiloxane
JP4171894B2 (en) Composition for forming porous film, method for producing porous film, porous film, interlayer insulating film, and semiconductor device
JP2001146518A (en) Optical polysiloxane
EP1106653A2 (en) Method for photocuring polyorganosiloxane and polysiloxane composition for optical use
JP2001146522A (en) Method for photocuring polysiloxane

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061010

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080407

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130313

R151 Written notification of patent or utility model registration

Ref document number: 5225528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

EXPY Cancellation because of completion of term