JP5220143B2 - Method for recovering Ir from platinum group-containing solution - Google Patents

Method for recovering Ir from platinum group-containing solution Download PDF

Info

Publication number
JP5220143B2
JP5220143B2 JP2011029892A JP2011029892A JP5220143B2 JP 5220143 B2 JP5220143 B2 JP 5220143B2 JP 2011029892 A JP2011029892 A JP 2011029892A JP 2011029892 A JP2011029892 A JP 2011029892A JP 5220143 B2 JP5220143 B2 JP 5220143B2
Authority
JP
Japan
Prior art keywords
acidic solution
activated carbon
solution
recovering
neutralization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011029892A
Other languages
Japanese (ja)
Other versions
JP2012167334A (en
Inventor
諭 長尾
燈文 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2011029892A priority Critical patent/JP5220143B2/en
Priority to CN201210026237.8A priority patent/CN102676835B/en
Priority to KR20120015373A priority patent/KR101313474B1/en
Publication of JP2012167334A publication Critical patent/JP2012167334A/en
Application granted granted Critical
Publication of JP5220143B2 publication Critical patent/JP5220143B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/02Settling tanks with single outlets for the separated liquid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G55/00Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Water Treatment By Sorption (AREA)
  • Removal Of Specific Substances (AREA)

Description

本発明は白金族含有液からのIrの回収方法に関し、特に、Irを含む酸性溶液、例えばCu電解殿物を脱Cu浸出、塩化浸出、Au抽出、SO2還元した後の工業排水からIrを効率よく回収する方法に関する。 The present invention relates to a method for recovering Ir from a platinum group-containing liquid, and in particular, an Ir solution containing Ir, for example, Cu from an industrial wastewater after leaching Cu chloride, leaching with chloride, extracting Au, and SO 2 reduction. The present invention relates to an efficient collection method.

Irなどの白金族金属を溶液から回収する方法としてはイオン交換樹脂や溶媒抽出剤を用いた方法が知られている。しかしこれらの方法は、イオン交換樹脂や溶媒抽出剤が比較的高価であること、溶離性が悪いこと、卑金属や共存イオンの混在により性能の減弱があるなどの欠点がある。   As a method for recovering a platinum group metal such as Ir from a solution, a method using an ion exchange resin or a solvent extractant is known. However, these methods have drawbacks such that the ion exchange resin and the solvent extractant are relatively expensive, the elution property is poor, and the performance is reduced due to the mixing of base metals and coexisting ions.

そうした流れを汲み、活性炭への吸着が広く用いられることとなった。例えば、特開2010−174336号公報(特許文献1)では、Irを含む酸性溶液に硫化剤を添加し、不純物を除き、濾液をカラムに充填した活性炭に通液させることにより、Irを活性炭に吸着させて溶液から回収する方法がある。   Taking such a flow, adsorption on activated carbon was widely used. For example, in JP 2010-174336 A (Patent Document 1), a sulfurizing agent is added to an acidic solution containing Ir, impurities are removed, and the filtrate is passed through activated carbon packed in a column, whereby Ir is converted into activated carbon. There is a method of recovering from a solution by adsorption.

特開2010−174336号公報JP 2010-174336 A

しかしながら、特許文献1の方法を用いたとしても、Irを含む酸性溶液の条件の違いにより、Irの活性炭への吸着率が十分に得られない場合があり、未だ検討の余地がある。   However, even if the method of Patent Document 1 is used, the adsorption rate of Ir to activated carbon may not be sufficiently obtained due to the difference in the conditions of the acidic solution containing Ir, and there is still room for examination.

そこで本発明は、Irの活性炭への吸着率を高めることができ、Irをより効率良く回収可能な白金族含有溶液からのIrの回収方法を提供する。   Therefore, the present invention provides a method for recovering Ir from a platinum group-containing solution that can increase the adsorption rate of Ir to activated carbon and can recover Ir more efficiently.

本発明者らは上記課題を解決するために鋭意検討した結果、Irを含む酸性溶液中のイオン強度がIrの活性炭へ吸着に影響を及ぼすことが分かった。即ち、Irを含む酸性溶液中のイオン強度が高すぎる場合には、Irの活性炭への吸着率が低下し、所望のIr回収率が得られない傾向にあることが分かった。そこで、本発明者らは、活性炭処理前に、溶液中のイオン強度に影響を及ぼす成分を予め除去する中和処理を実施し、イオン強度が下がったことの指標として酸性溶液中の遊離酸濃度を評価したところ、Irの活性炭への吸着率を有意に改善することができることを見出した。 As a result of intensive studies to solve the above problems, the present inventors have found that the ionic strength in an acidic solution containing Ir affects the adsorption of Ir onto activated carbon. That is, it was found that when the ionic strength in the acidic solution containing Ir is too high, the adsorption rate of Ir to the activated carbon decreases, and the desired Ir recovery rate tends not to be obtained. Therefore, the present inventors performed a neutralization treatment to remove in advance components that affect the ionic strength in the solution before the activated carbon treatment, and the free acid concentration in the acidic solution as an indicator that the ionic strength has decreased. As a result, it was found that the adsorption rate of Ir to activated carbon can be significantly improved.

以上の知見を基礎として完成した本発明は一側面において、Ir及び硫酸を含む酸性溶液に、硫酸を沈殿させる中和剤を添加することにより酸性溶液中の硫酸イオンを沈殿させて分離し、酸性溶液中の遊離酸濃度を0.03mol/L〜1.2mol/Lにして酸性溶液中のイオン強度を低下させる中和工程と、中和後のIrを含む酸性溶液を活性炭に通液し、Irを活性炭に吸着させる活性炭吸着工程とを含む白金族含有溶液からのIrの回収方法である。 The present invention completed on the basis of the above knowledge, in one aspect, by adding a neutralizing agent for precipitating sulfuric acid to an acidic solution containing Ir and sulfuric acid to precipitate and separate sulfate ions in the acidic solution, a neutralization step to reduce the ionic strength of the acidic solution and the free acid concentration of the acidic solution to 0.03mol / L~1.2mol / L, an acidic solution containing Ir after neutralization was passed through the activated carbon And a method for recovering Ir from a platinum group-containing solution including an activated carbon adsorption step of adsorbing Ir onto activated carbon.

本発明の白金族含有溶液からのIrの回収方法は一実施態様において、中和剤が、Ca(OH)2、CaO、CaCO3、Sr(OH)2、SrO、SrCO3のいずれかを含む。 In one embodiment of the method for recovering Ir from the platinum group-containing solution of the present invention, the neutralizing agent includes any one of Ca (OH) 2 , CaO, CaCO 3 , Sr (OH) 2 , SrO, and SrCO 3. .

本発明の白金族含有溶液からのIrの回収方法は別の一実施態様において、中和工程が、酸性溶液中のイオン強度が2以下となるように中和剤を添加することを含む。   In another embodiment of the method for recovering Ir from the platinum group-containing solution of the present invention, the neutralization step includes adding a neutralizing agent so that the ionic strength in the acidic solution is 2 or less.

本発明の白金族含有溶液からのIrの回収方法は更に別の一実施態様において、硫化工程が、中和後のIrを含む酸性溶液の酸化還元電位を70〜90mVに制御することを含む。   In yet another embodiment of the method for recovering Ir from a platinum group-containing solution of the present invention, the sulfurization step includes controlling the oxidation-reduction potential of the acidic solution containing Ir after neutralization to 70 to 90 mV.

本発明によれば、Irの含有量が微量であり、イオン強度が高いIrを含む溶液であっても、Irの活性炭への吸着率を高め、Irをより効率良く回収することが可能な白金族含有溶液からのIrの回収方法が提供できる。   According to the present invention, platinum that can increase the adsorption rate of Ir to activated carbon and recover Ir more efficiently even in a solution containing Ir with a small amount of Ir and high ionic strength. A method for recovering Ir from a group-containing solution can be provided.

本発明の実施の形態に係るIrの回収方法の処理フローシートの一態様を示す。The one aspect | mode of the processing flow sheet of the collection | recovery method of Ir which concerns on embodiment of this invention is shown. 中和処理での遊離酸濃度とIr液分配率との関係の例を示す。An example of the relationship between the free acid concentration and the Ir liquid partition rate in the neutralization treatment is shown. 中和処理での遊離酸濃度と溶液のイオン強度との関係の例を示す。The example of the relationship between the free acid density | concentration in the neutralization process and the ionic strength of a solution is shown. 活性炭吸着処理での吸着前液のイオン強度とIr吸着率の関係の例を示す。An example of the relationship between the ionic strength of the pre-adsorption solution and the Ir adsorption rate in the activated carbon adsorption treatment is shown.

以下本発明の実施の形態を詳細に説明する。
本発明の処理対象物は、白金族含有溶液、即ちIrを含む酸性溶液であり、より具体的には、Cu電解殿物を脱Cu浸出、塩化浸出、Au抽出、SO2還元した後の工業排水である。この処理対象物にはIrだけでなく、As、Cu、Fe、Ni、Zn、Bi、Pb、Te、Sn、Sb等の不純物が含まれ、硫酸濃度1mol/L、塩酸濃度1mol/Lを含む強酸性溶液である。このIrを含む酸性溶液のうち、イオン強度に最も影響が大きい成分は硫酸であり、Irを含む酸性溶液から硫酸を除去することで、Irを含む酸性溶液のイオン強度を効率的に低下させることができる。
Hereinafter, embodiments of the present invention will be described in detail.
The object to be treated of the present invention is a platinum group-containing solution, that is, an acidic solution containing Ir, and more specifically, an industrial product after Cu electrolysis is subjected to deCu leaching, chloride leaching, Au extraction , and SO 2 reduction. It is drainage. This processing object contains not only Ir but also impurities such as As, Cu, Fe, Ni, Zn, Bi, Pb, Te, Sn, Sb, etc., and contains sulfuric acid concentration 1 mol / L, hydrochloric acid concentration 1 mol / L. Strongly acidic solution. Among the acidic solutions containing Ir, the component having the greatest influence on the ionic strength is sulfuric acid. By removing sulfuric acid from the acidic solution containing Ir, the ionic strength of the acidic solution containing Ir can be efficiently reduced. Can do.

Irを含む酸性溶液から硫酸を除去する方法として、Irを含む酸性溶液中に中和剤を添加する中和方法が利用できる。中和剤としては、例えば、Ca(OH)2、CaO、CaCO3等のCa化合物、Sr(OH)2、SrO、SrCO3等のSr化合物等の硫酸を沈殿させるための中和剤が好適である。CaCO3を用いる場合には、スラリー状の炭酸カルシウムを用いることが望ましい。例えば、中和剤としてCa(OH)2を用いる場合は、(1)式に従って、Irと硫酸を含む酸性溶液中の硫酸イオンを、石膏(CaSO4・2H2O)として沈殿させ、Ir及び硫酸を含む酸性溶液のイオン強度を2以下に低下させることが好ましい。

2H++SO4 2-+Ca(OH)2→CaSO4・2H2O ・・・(1)
As a method for removing sulfuric acid from an acidic solution containing Ir, a neutralizing method in which a neutralizing agent is added to the acidic solution containing Ir can be used. As the neutralizing agent, for example, a neutralizing agent for precipitating sulfuric acid such as Ca compounds such as Ca (OH) 2 , CaO and CaCO 3 , Sr compounds such as Sr (OH) 2 , SrO and SrCO 3 is suitable. It is. When using CaCO 3 , it is desirable to use slurry calcium carbonate. For example, when using Ca (OH) 2 as a neutralizing agent, sulfate ions in an acidic solution containing Ir and sulfuric acid are precipitated as gypsum (CaSO 4 .2H 2 O) according to the formula (1), and Ir and It is preferable to reduce the ionic strength of the acidic solution containing sulfuric acid to 2 or less.

2H + + SO 4 2− + Ca (OH) 2 → CaSO 4 .2H 2 O (1)

中和工程において、Ir及び硫酸を含む酸性溶液のイオン強度は2以下とすることが好ましく、より好ましく1.2以下である。イオン強度を2よりも高くすると、効率的にIrを回収することができない。イオン強度の下限値に特に制限はないが、例えばIrイオンのイオン強度とすることができる。なお、Ir及び硫酸を含む酸性溶液のイオン強度は溶液に含まれるi種のイオンのモル濃度をci、電荷数をziとしたとき、(1/2)Σcii 2であり、液中のイオンのモル濃度を測定することにより求めることができる。 In the neutralization step, the ionic strength of the acid solution containing Ir and sulfuric acid is preferably set to 2 or less, more preferably 1.2 or less. If the ionic strength is higher than 2, Ir cannot be efficiently recovered. Although there is no restriction | limiting in particular in the lower limit of ion intensity, For example, it can be set as the ion intensity of Ir ion. The ionic strength of the acidic solution containing Ir and sulfuric acid is (1/2) Σc i z i 2 , where the molar concentration of i-type ions contained in the solution is c i and the number of charges is z i . It can be determined by measuring the molar concentration of ions in the liquid.

上記中和工程においては、Ir及び硫酸を含む酸性溶液の遊離酸濃度を0.03mol/L〜1.2mol/Lになるように、より好ましくは遊離酸濃度が0.1mol/L〜1.2mol/Lになるように中和剤を添加することが好ましい。遊離酸濃度が1.2mol/Lより高い場合は、硫酸イオンがIrを含む酸性溶液中に多量に存在するためイオン強度が高くなり、後述する活性炭吸着工程におけるIr吸着率が低下する。一方、遊離酸濃度が0.03mol/Lより低いと、Irを含む酸性溶液中の硫酸イオンが反応を終え、過剰となった中和剤の陽イオン(例えばCa化合物を用いた場合はCaイオン)等が溶解し始めるため、再びイオン強度が高くなる。さらに、中和によりIrが沈殿するため、遊離酸濃度が0.03mol/Lより低いと、Irが沈殿し、Ir液分配率が低くなる。なお、遊離酸濃度は中和滴定法により測定することができる。   In the neutralization step, the free acid concentration of the acidic solution containing Ir and sulfuric acid is more preferably 0.1 mol / L to 1. mol so that the free acid concentration is 0.03 mol / L to 1.2 mol / L. It is preferable to add a neutralizing agent so as to be 2 mol / L. When the free acid concentration is higher than 1.2 mol / L, since a large amount of sulfate ions are present in the acidic solution containing Ir, the ionic strength increases, and the Ir adsorption rate in the activated carbon adsorption step described later decreases. On the other hand, if the free acid concentration is lower than 0.03 mol / L, the sulfate ion in the acidic solution containing Ir has finished the reaction, and the cation of the neutralizing agent that has become excessive (for example, Ca ion when using a Ca compound) ) Etc. begin to dissolve, so the ionic strength increases again. Furthermore, since Ir precipitates due to neutralization, if the free acid concentration is lower than 0.03 mol / L, Ir precipitates and the Ir liquid partition rate decreases. The free acid concentration can be measured by a neutralization titration method.

中和工程の進行状況を、Ir及び硫酸を含む酸性溶液中のpHで管理することもできる。この場合、Ir及び硫酸を含む酸性溶液中のpHがpH=−0.08〜1.5となるように中和剤を添加すればよい。   The progress of the neutralization step can also be controlled by the pH in the acidic solution containing Ir and sulfuric acid. In this case, a neutralizing agent may be added so that the pH in the acidic solution containing Ir and sulfuric acid becomes pH = −0.08 to 1.5.

沈殿したCaSO4・2H2Oは濾過により分離し、Irを含む酸性溶液を回収する。Irを含む酸性溶液(中和濾液)には、As、Cu、Fe、Ni、Zn、Bi、Pb、Te、Sn、Sb等の不純物が含まれる。このため、硫化剤の添加により、As、Cu、Fe、Ni、Zn、Bi、Pb、Te、Sn、Sbの少なくとも1種以上の不純物を取り除く硫化工程を実施することが好ましい。 The precipitated CaSO 4 .2H 2 O is separated by filtration, and an acidic solution containing Ir is recovered. The acidic solution (neutralized filtrate) containing Ir contains impurities such as As, Cu, Fe, Ni, Zn, Bi, Pb, Te, Sn, and Sb. For this reason, it is preferable to carry out a sulfiding step of removing at least one impurity of As, Cu, Fe, Ni, Zn, Bi, Pb, Te, Sn, and Sb by adding a sulfiding agent.

硫化剤としては、水硫化ナトリウム、硫化ナトリウム、硫化水素、等が好適に用いられる。硫化剤を溶液で投入する場合の硫化剤の濃度については、濾液量の増加や硫化時の溶液の酸化還元電位の制御を考慮し20〜30mass%が望ましい。硫化剤の添加速度については、硫化時の溶液の酸化還元電位(ORP)の制御を考慮し、Irを含む酸性溶液1Lに対して3ml/min以下が望ましい。硫化を行う際の温度は、硫化反応の速度に関係するものであるが、特定の温度に限定されるものではなく、常温でもあるいは加熱してもIrを効率よく分離することができる。   As the sulfiding agent, sodium hydrosulfide, sodium sulfide, hydrogen sulfide and the like are preferably used. The concentration of the sulfiding agent when the sulfiding agent is added as a solution is preferably 20 to 30 mass% in consideration of the increase in the amount of filtrate and the control of the redox potential of the solution during sulfiding. The addition rate of the sulfiding agent is preferably 3 ml / min or less with respect to 1 L of the acidic solution containing Ir in consideration of the control of the oxidation-reduction potential (ORP) of the solution during sulfiding. The temperature at which sulfidation is performed is related to the speed of the sulfidation reaction, but is not limited to a specific temperature, and Ir can be efficiently separated even at room temperature or even when heated.

硫化後液のAg/AgCl電極を基準電極とする酸化還元電位(ORP)は、硫化時の酸化還元電位とRu、Irの分配比の関係、硫化時の酸化還元電位と硫化後液の不純物(活性炭にIrを吸着させる際にIrの吸着を妨げる不純物、例えばAs、Pb、Sn等)濃度の関係から、70〜90mVの範囲を指標とすることが望ましい。   The oxidation-reduction potential (ORP) using the Ag / AgCl electrode of the solution after sulfidation as a reference electrode is the relationship between the oxidation-reduction potential during sulfidation and the distribution ratio of Ru and Ir, the oxidation-reduction potential during sulfidation and the impurities ( It is desirable to use the range of 70 to 90 mV as an index in view of the concentration of impurities that interfere with the adsorption of Ir (for example, As, Pb, Sn, etc.) when adsorbing Ir on activated carbon.

硫化処理後の溶液を、濾過により不純物を除去し、Irを含む酸性溶液(硫化後液)を回収する。その後、回収後のIrを含む酸性溶液を活性炭と接触させて、Irを活性炭に吸着させる。   Impurities are removed from the solution after sulfidation by filtration, and an acidic solution containing Ir (sulfurized solution) is recovered. Then, the acidic solution containing Ir after collection | recovery is made to contact activated carbon, and Ir is made to adsorb | suck to activated carbon.

活性炭と溶液との接触方法については、活性炭をカラムに充填し、そのカラムにIrを含む酸性溶液を連続的に流し込む方式が望ましい。   Regarding the contact method between the activated carbon and the solution, it is desirable to fill the column with activated carbon and continuously flow an acidic solution containing Ir into the column.

活性炭の種類は特に限定されないが、中でも椰子殻活性炭が吸着量が大きく、吸着速度も速いため望ましい。また、吸着させる前に脱泡処理をすることが望ましい。活性炭への通液速度についてはSV(空間速度)=1〜20の範囲で制御することが望ましい。   The type of activated carbon is not particularly limited, but coconut shell activated carbon is preferable because it has a large adsorption amount and a high adsorption rate. Moreover, it is desirable to perform a defoaming process before making it adsorb | suck. It is desirable to control the liquid passing rate to the activated carbon in a range of SV (space velocity) = 1-20.

以下に本発明の実施例を示すが、以下の実施例に本発明が限定されることを意図するものではない。   Examples of the present invention are shown below, but the present invention is not intended to be limited to the following examples.

(実施例1)
中和工程では、Cu電解殿物を脱Cu浸出、塩化浸出、Au抽出、SO2還元した後の工業廃水9.3m3に対して遊離酸濃度が1.2mol/Lになるまでスラリー状の炭酸カルシウムを添加して撹拌し、溶液中のイオン強度を3.2から1.2にまで低減させた。
Example 1
The neutralization step, de-Cu leaching Cu electrolytic gluteal was leached chloride, Au extraction, the free acid concentration for industrial wastewater 9.3 m 3 after SO 2 reduction slurry until 1.2 mol / L Calcium carbonate was added and stirred to reduce the ionic strength in the solution from 3.2 to 1.2.

表1に中和工程の液組成、遊離酸濃度(フリー酸濃度)および中和後液への分配率を示す。炭酸カルシウムの添加によって液量が増加し、Ir液濃度は低下するがIr含有量はほとんど変わらず、Irの96.1%を中和後液として回収できた。

Figure 0005220143
Table 1 shows the liquid composition, free acid concentration (free acid concentration) in the neutralization step, and the distribution ratio to the liquid after neutralization. By adding calcium carbonate, the liquid volume increased and the Ir liquid concentration decreased, but the Ir content remained almost unchanged, and 96.1% of Ir could be recovered as a liquid after neutralization.
Figure 0005220143

中和後液の硫化工程による不純物の除去について説明する。中和工程により回収したIrを含む中和後液(硫化前液)20m3に、25mass%水硫化ナトリウムをAg/AgCl電極を基準電極としてORP=80mVになるまで添加した。表2に硫化工程の液組成、硫化工程における液分配率を示す。硫化工程によりIr、Ruを除くCu、Fe、Ni、Zn、Pb、Te、Sb、Sn、As、Bi等の不純物はほとんど除去できており、Irは99.3%、Ruは72.7%が硫化後液中に回収できた。

Figure 0005220143

The removal of impurities by the sulfurization step of the neutralized solution will be described. 25 mass % sodium hydrosulfide was added to 20 m 3 of the post-neutralization solution (pre-sulfurization solution) containing Ir recovered in the neutralization step until the ORP = 80 mV using an Ag / AgCl electrode as a reference electrode. Table 2 shows the liquid composition in the sulfiding step and the liquid distribution rate in the sulfiding step. Impurities such as Cu, Fe, Ni, Zn, Pb, Te, Sb, Sn, As, and Bi except for Ir and Ru can be almost removed by the sulfidation process, Ir is 99.3% and Ru is 72.7%. Was recovered in the liquid after sulfidation.
Figure 0005220143

硫化後液の活性炭吸着工程によるIrの活性炭への吸着に関して説明する。硫化工程により回収したIrを含む硫化後液(吸着前液)20m3を、活性炭を充填した吸着塔に通液しIrを活性炭に吸着させた。表3に活性炭吸着工程の液組成、吸着率を示す。Irの85.7%は活性炭に吸着し、回収することができた。

Figure 0005220143
The adsorption of Ir onto activated carbon by the activated carbon adsorption process of the post-sulfurization solution will be described. 20 m 3 of the post-sulfurization solution (pre-adsorption solution) containing Ir recovered by the sulfidation step was passed through an adsorption tower packed with activated carbon to adsorb Ir onto the activated carbon. Table 3 shows the liquid composition and adsorption rate of the activated carbon adsorption process. 85.7% of Ir was adsorbed on activated carbon and recovered.
Figure 0005220143

(実施例2)
Cu電解殿物を脱Cu浸出、塩化浸出、Au抽出、SO2還元した後の工業廃水であるIrを含む酸性溶液200mlに遊離酸濃度が0.1mol/LになるまでCa(OH)2を添加し、溶液中のイオン強度を4.89から1.73にまで低減させ、濾過によりIrを含む酸性溶液を回収した。表4に中和における液組成、中和後液への分配率を示す。中和前液ではSO4 2-、Cl-、遊離酸濃度によるイオン強度への影響が大きいが、中和後液ではIr液分配率は75.4%となるものの、SO4 2-を除去し、遊離酸濃度を低下させ、イオン強度を下げることができた。

Figure 0005220143
(Example 2)
Ca (OH) 2 is added to 200 ml of an acidic solution containing Ir, which is industrial wastewater, after the Cu electrolytic deposit has been subjected to de-Cu leaching, chloride leaching, Au extraction, and SO 2 reduction until the free acid concentration becomes 0.1 mol / L. The ionic strength in the solution was reduced from 4.89 to 1.73, and an acidic solution containing Ir was collected by filtration. Table 4 shows the liquid composition in neutralization and the distribution ratio to the liquid after neutralization. SO 4 2-in before neutralization solution, Cl -, is large influence of the ionic strength by free acid concentration, but becomes 75.4 percent Ir liquid distribution rate in the post-neutralization solution, removing the SO 4 2- As a result, the free acid concentration was reduced and the ionic strength was reduced.
Figure 0005220143

(実施例3)
中和時の遊離酸濃度を1.0mol/Lとしたこと以外は実施例1と同様な中和処理、硫化処理によりイオン強度を1.14に調整したIrを含む酸性溶液に対して脱泡した活性炭を溶液100mLに対して4gの割合で投入後、24時間撹拌してIrを活性炭に吸着させた。表5に活性炭吸着における液組成、吸着率を示す。活性炭吸着により、Irの84.1%を吸着させ、回収することができた。

Figure 0005220143
(Example 3)
Defoaming with respect to an acidic solution containing Ir having an ionic strength adjusted to 1.14 by neutralization treatment and sulfurization treatment similar to those in Example 1 except that the free acid concentration during neutralization was 1.0 mol / L The activated carbon was added at a rate of 4 g with respect to 100 mL of the solution, and then stirred for 24 hours to adsorb Ir onto the activated carbon. Table 5 shows the liquid composition and adsorption rate in the activated carbon adsorption. By activated carbon adsorption, 84.1% of Ir could be adsorbed and recovered.
Figure 0005220143

(実施例4)
<中和処理における遊離酸濃度とIr液分配率の関係>
中和処理における遊離酸濃度(フリー酸濃度)の変化と回収したIrを含む溶液へのIr液分配率との関係を評価した。結果を図2に示す。図2では、中和工程に関して実施例2と同様な条件で、Ca(OH)2の添加量を変えて遊離酸濃度を変化させたものである。中和により遊離酸濃度が1.2mol/L付近より低くなるにつれてIr液分配率が低くなることが分かる。
Example 4
<Relationship between free acid concentration and Ir liquid partition rate in neutralization treatment>
The relationship between the change in the free acid concentration (free acid concentration) in the neutralization treatment and the Ir liquid partition rate into the solution containing the recovered Ir was evaluated. The results are shown in FIG. In FIG. 2, the free acid concentration is changed by changing the amount of Ca (OH) 2 added under the same conditions as in Example 2 for the neutralization step. It can be seen that the Ir liquid partition rate decreases as the free acid concentration becomes lower than around 1.2 mol / L due to neutralization.

(実施例5)
<中和処理における遊離酸濃度と溶液イオン強度の関係>
実施例2と同様な条件で遊離酸濃度(フリー酸濃度)を変化させた場合の遊離酸濃度と溶液イオン強度との関係を評価した結果を図3に示す。Ca(OH)2添加前の中和前液のイオン強度は4.9と高く、遊離酸、硫酸イオン、塩化物イオンが大きく影響していた。Ca(OH)2の添加により遊離酸濃度は低くなり、さらに硫酸イオンがCaSO4・2H2Oとなり沈殿するため、溶液のイオン強度は低下する。遊離酸濃度が1.0mol/Lのときのイオン強度は1.4となったが、さらに遊離酸濃度を低くした場合、硫酸イオンは反応を終えて過剰となったCaが溶解するため、イオン強度は高くなることが分かる。
(Example 5)
<Relationship between free acid concentration and solution ionic strength in neutralization treatment>
The results of evaluating the relationship between the free acid concentration and the solution ionic strength when the free acid concentration (free acid concentration) is changed under the same conditions as in Example 2 are shown in FIG. The ionic strength of the pre-neutralization solution before addition of Ca (OH) 2 was as high as 4.9, and free acid, sulfate ions and chloride ions were greatly affected. Addition of Ca (OH) 2 lowers the free acid concentration, and further sulfate ions become CaSO 4 · 2H 2 O and precipitate, so that the ionic strength of the solution decreases. When the free acid concentration is 1.0 mol / L, the ionic strength is 1.4. However, when the free acid concentration is further lowered, sulfate ions are dissolved because excess Ca is dissolved after the reaction. It can be seen that the strength increases.

(実施例6)
<イオン強度とIr活性炭吸着率との関係>
活性炭吸着に関して、イオン強度の異なる吸着前液を用いて、実施例3と同様な条件、即ち、脱泡した活性炭を溶液100mLに対して4gの割合で投入後、24時間撹拌してIrを活性炭に吸着させた。図4に結果を示す。吸着前液のイオン強度とIr吸着率には相関がみられ、イオン強度が低い方が、Irは活性炭に吸着しやすいことが把握された。
(Example 6)
<Relationship between ionic strength and Ir activated carbon adsorption rate>
For activated carbon adsorption, using pre-adsorption liquids with different ionic strengths, the same conditions as in Example 3, ie, after adding defoamed activated carbon at a rate of 4 g to 100 mL of solution, stirring for 24 hours, Ir was activated carbon. It was made to adsorb to. The results are shown in FIG. There was a correlation between the ionic strength of the pre-adsorption solution and the Ir adsorption rate, and it was found that Ir was easier to adsorb on activated carbon when the ionic strength was lower.

(比較例1)
Cu電解殿物を脱Cu浸出、塩化浸出、Au抽出、SO2還元した後の工業廃水であるIrを含む酸性溶液200mlに遊離酸濃度が0.01mol/LになるまでCa(OH)2を添加し、濾過によりIrを含む酸性溶液を回収した。表6に中和による液組成、液分配率を示す。遊離酸濃度0.01mol/Lでは中和後液に含まれるIr濃度が低く、Irの69.8%が中和により沈殿しているため、濾過によりIrを含む溶液を回収した場合、Irが30.2%しか回収できていない。

Figure 0005220143
(Comparative Example 1)
Ca (OH) 2 is added to 200 ml of an acidic solution containing Ir, which is industrial wastewater, after the Cu electrolytic deposit has been subjected to Cu leaching, chloride leaching, Au extraction, and SO 2 reduction until the free acid concentration becomes 0.01 mol / L. And an acidic solution containing Ir was collected by filtration. Table 6 shows the liquid composition and liquid distribution ratio by neutralization. When the free acid concentration is 0.01 mol / L, the Ir concentration contained in the solution after neutralization is low, and 69.8% of Ir is precipitated by neutralization. Therefore, when a solution containing Ir is collected by filtration, Ir is Only 30.2% can be recovered.
Figure 0005220143

(比較例2)
活性炭吸着に関して実施例3と同様な条件で、中和処理終了後のイオン強度が3.17、遊離酸濃度を1.9mol/Lとした吸着前液を用いて活性炭吸着を行った。表7に結果を示す。Ir吸着率は58.2%であり、十分にIrを回収できていない。したがって、イオン強度の高い吸着前液では効率的にIrを回収することができないが、中和によりイオン強度を下げることによりIrの吸着率が改善されることが把握された。

Figure 0005220143
(Comparative Example 2)
With respect to the activated carbon adsorption, activated carbon adsorption was carried out under the same conditions as in Example 3 using a pre-adsorption solution having an ionic strength of 3.17 after completion of neutralization and a free acid concentration of 1.9 mol / L. Table 7 shows the results. The Ir adsorption rate is 58.2%, and Ir cannot be sufficiently recovered. Therefore, it was found that Ir can not be efficiently recovered with a pre-adsorption solution having a high ionic strength, but the adsorption rate of Ir can be improved by reducing the ionic strength by neutralization.
Figure 0005220143

Claims (5)

Ir及び硫酸を含む酸性溶液に、硫酸を沈殿させる中和剤を添加することにより酸性溶液中の硫酸イオンを沈殿させて分離し、酸性溶液中の遊離酸濃度を0.03mol/L〜1.2mol/Lにして酸性溶液中のイオン強度を低下させる中和工程と、
和後のIrを含む酸性溶液を活性炭に通液し、Irを活性炭に吸着させる活性炭吸着工程と
を含むことを特徴とする白金族含有溶液からのIrの回収方法。
By adding a neutralizing agent for precipitating sulfuric acid to an acidic solution containing Ir and sulfuric acid, sulfate ions in the acidic solution are precipitated and separated, and the free acid concentration in the acidic solution is 0.03 mol / L to 1.. A neutralization step of reducing the ionic strength in the acidic solution to 2 mol / L ;
The acidic solution containing Ir after Neutralization was passed through activated carbon, Ir method of recovering a platinum group-containing solution characterized in that it comprises an activated carbon adsorption step a of adsorbing Ir on the activated carbon.
前記中和剤が、Ca(OH)2、CaO、CaCO3、Sr(OH)2、SrO、SrCO3のいずれかを含む請求項1に記載の白金族含有溶液からのIrの回収方法。 The neutralizing agent, Ca (OH) 2, CaO , CaCO 3, Sr (OH) 2, SrO, Ir method of recovering a platinum group-containing solution of claim 1 comprising any of SrCO 3. 前記中和工程が、酸性溶液中のイオン強度が2以下となるように中和剤を添加することを含む請求項1又は2に記載の白金族含有溶液からのIrの回収方法。   The method for recovering Ir from a platinum group-containing solution according to claim 1 or 2, wherein the neutralizing step includes adding a neutralizing agent so that the ionic strength in the acidic solution is 2 or less. 前記Ir及び硫酸を含む酸性溶液は、さらにAs、Cu、Fe、Ni、Zn、Bi、Pb、Te、Sn、Sbの中から選択される1種以上の不純物を含み、The acidic solution containing Ir and sulfuric acid further contains one or more impurities selected from As, Cu, Fe, Ni, Zn, Bi, Pb, Te, Sn, and Sb.
前記中和後のIrを含む酸性溶液に対して、活性炭吸着工程の前に、前記As、Cu、Fe、Ni、Zn、Bi、Pb、Te、Sn、Sbの中から選択される1種以上の不純物を硫化剤の添加により取り除く硫化工程をさらに備えることを特徴とする請求項1〜3のいずれか1項に記載の白金族含有溶液からのIrの回収方法。One or more types selected from As, Cu, Fe, Ni, Zn, Bi, Pb, Te, Sn, and Sb before the activated carbon adsorption step for the neutralized Ir-containing acidic solution The method for recovering Ir from a platinum group-containing solution according to any one of claims 1 to 3, further comprising a sulfiding step of removing the impurities by adding a sulfiding agent.
前記硫化工程が、中和後のIrを含む酸性溶液の酸化還元電位を70〜90mVに制御することを含む請求項に記載の白金族含有溶液からのIrの回収方法。 The method for recovering Ir from a platinum group-containing solution according to claim 4 , wherein the sulfurization step includes controlling the oxidation-reduction potential of the neutralized Ir-containing acidic solution to 70 to 90 mV.
JP2011029892A 2011-02-15 2011-02-15 Method for recovering Ir from platinum group-containing solution Expired - Fee Related JP5220143B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011029892A JP5220143B2 (en) 2011-02-15 2011-02-15 Method for recovering Ir from platinum group-containing solution
CN201210026237.8A CN102676835B (en) 2011-02-15 2012-02-07 Method for recovery of Ir from platinum group-containing solution
KR20120015373A KR101313474B1 (en) 2011-02-15 2012-02-15 METHOD FOR RECOVERY OF Ir FROM PLATINUM GROUP-CONTAINING SOLUTION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011029892A JP5220143B2 (en) 2011-02-15 2011-02-15 Method for recovering Ir from platinum group-containing solution

Publications (2)

Publication Number Publication Date
JP2012167334A JP2012167334A (en) 2012-09-06
JP5220143B2 true JP5220143B2 (en) 2013-06-26

Family

ID=46809380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011029892A Expired - Fee Related JP5220143B2 (en) 2011-02-15 2011-02-15 Method for recovering Ir from platinum group-containing solution

Country Status (3)

Country Link
JP (1) JP5220143B2 (en)
KR (1) KR101313474B1 (en)
CN (1) CN102676835B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107512813A (en) * 2017-08-25 2017-12-26 金川集团股份有限公司 A kind of multipath recoverying and utilizing method of metallurgical off-gas acid-making waste water

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104451144A (en) * 2014-12-07 2015-03-25 金川集团股份有限公司 Method for reducing acidity of precursor feed liquid for extracting noble metals
JP6907791B2 (en) * 2017-08-07 2021-07-21 住友金属鉱山株式会社 How to recover iridium
CN107445352B (en) * 2017-09-28 2020-07-31 黄河三角洲京博化工研究院有限公司 Innocent treatment process for acidic water of reforming device in petrochemical industry
CN108640390B (en) * 2018-05-31 2021-10-22 阳谷祥光铜业有限公司 Treatment method of antimony-containing wastewater
JP7183694B2 (en) * 2018-10-25 2022-12-06 住友金属鉱山株式会社 Ruthenium recovery method
CN110777259A (en) * 2019-10-23 2020-02-11 金川集团股份有限公司 Method for pre-treating platinum group metal refining tailings to enrich precious metals by fire method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2861370B2 (en) * 1990-11-09 1999-02-24 三菱マテリアル株式会社 Wastewater treatment method
JP2941073B2 (en) * 1991-02-01 1999-08-25 田中貴金属工業株式会社 Method for separating platinum group metals
JPH11207365A (en) * 1998-01-26 1999-08-03 Ebara Corp Treatment of selenium-containing waste water
JP2002194450A (en) * 2000-12-27 2002-07-10 Muromachi Chemical Kk Selective adsorbent for platinum-group noble metal
JP3975901B2 (en) * 2002-12-09 2007-09-12 住友金属鉱山株式会社 Iridium separation and purification method
JP4403259B2 (en) 2004-03-23 2010-01-27 Dowaメタルマイン株式会社 Method for recovering platinum group elements
JP5004104B2 (en) * 2009-01-30 2012-08-22 Jx日鉱日石金属株式会社 Method for recovering Ru and / or Ir from platinum group-containing solution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107512813A (en) * 2017-08-25 2017-12-26 金川集团股份有限公司 A kind of multipath recoverying and utilizing method of metallurgical off-gas acid-making waste water

Also Published As

Publication number Publication date
CN102676835B (en) 2015-06-10
JP2012167334A (en) 2012-09-06
CN102676835A (en) 2012-09-19
KR20120093792A (en) 2012-08-23
KR101313474B1 (en) 2013-10-01

Similar Documents

Publication Publication Date Title
JP5220143B2 (en) Method for recovering Ir from platinum group-containing solution
JP5994912B2 (en) Scandium recovery method
CN101001693B (en) Fluorine absorption/desorption agent for electrolysis solution in zinc electrolytic refining, and method for removing fluorine using said fluorine absorption/desorption agent
WO2014181721A1 (en) Method for recovering scandium
JP5454461B2 (en) Method for recovering selenium from copper electrolytic slime
JP5633129B2 (en) Method for separating rhenium from solutions containing perrhenic acid
JP5636142B2 (en) Method for producing high purity ammonium paratungstate
JP2013155432A (en) Recovery method of bismuth
CN104995320A (en) Method for collecting scandium
JP6098569B2 (en) Purification method of aqueous cobalt chloride solution
JP2014051737A (en) Noble metal recovery method
JP5200588B2 (en) Method for producing high purity silver
JP5004104B2 (en) Method for recovering Ru and / or Ir from platinum group-containing solution
JP4321231B2 (en) Method for removing chloride ions in non-ferrous metal sulfate solutions
RU2421532C1 (en) Procedure for extraction of rhenium from dead catalyst on supporters out of aluminium oxide containing platinum metals and rhenium
JP2010264331A (en) Separation method of arsenic
JP4124071B2 (en) Purification method of nickel chloride aqueous solution
JP2011195935A (en) Method for separating and recovering platinum group element
JP2012001414A (en) Method for producing nickel/cobalt sulfate solution with low chlorine concentration
JP4862191B2 (en) Method for treating selenium-containing water
JP5565339B2 (en) Effective chlorine removal method and cobalt recovery method
RU2772003C1 (en) Method for producing a noble metal concentrate
JP2008196039A (en) Method of removing fluorine from processing liquid used in wet zinc smelting
KR100889171B1 (en) Fluorine absorption/desorption agent for electrolysis solution in zinc electrolytic refining, and method for removing fluorine using said fluorine absorption/desorption agent
JP2008038236A (en) Method of separating zinc from aqueous nickel chloride solution

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees