JP2008196039A - Method of removing fluorine from processing liquid used in wet zinc smelting - Google Patents

Method of removing fluorine from processing liquid used in wet zinc smelting Download PDF

Info

Publication number
JP2008196039A
JP2008196039A JP2007035368A JP2007035368A JP2008196039A JP 2008196039 A JP2008196039 A JP 2008196039A JP 2007035368 A JP2007035368 A JP 2007035368A JP 2007035368 A JP2007035368 A JP 2007035368A JP 2008196039 A JP2008196039 A JP 2008196039A
Authority
JP
Japan
Prior art keywords
fluorine
iron
solution
adsorption
cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007035368A
Other languages
Japanese (ja)
Inventor
Masaki Kato
雅樹 加藤
Kazuhiko Nishina
一彦 仁科
Masatami Sakata
政民 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2007035368A priority Critical patent/JP2008196039A/en
Publication of JP2008196039A publication Critical patent/JP2008196039A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently adsorb and remove fluorine so that fluorine does not accumulate in liquid when using zinc-containing matters such as crude zinc oxide containing fluorine in a wet zinc smelting process. <P>SOLUTION: The problem can be solved by making fluorine ions and ferric ions to co-exist in a sulfuric acid solution, neutralized the solution to produce iron precipitate and removing the fluorine through adsorption to and coprecipitation with the iron precipitate. In order to make the most of the capacity of elemental iron as a fluorine adsorbent, the fluorine-adsorbing iron precipitate is redissolved and used as an iron raw material for adsorbing fluorine for a plurality of times. By utilizing undissolved residues produced in the zinc smelting process as an iron raw material serving as an adsorbent and using fluorine-containing crude zinc oxide etc. as a neutralizer, the purpose can be accomplished through only the operations generally conducted in the wet zinc smelting process, i.e. dissolving, neutralization and solid-liquid separation, without requiring a large capital investment. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本件発明は、湿式亜鉛製錬用工程液からフッ素を除去する方法に関する。   The present invention relates to a method of removing fluorine from a process liquid for wet zinc smelting.

一般的な湿式亜鉛製錬工程では、硫化亜鉛鉱を焙焼して、主成分である硫化亜鉛を酸化脱硫し、酸化亜鉛を主成分とした焼鉱を得ている。そして、この焼鉱を電解尾液と接触させて亜鉛を溶解浸出する。ここで用いる電解尾液とは、亜鉛電解槽で金属亜鉛の電解採取工程を経た硫酸酸性溶液である。しかし、前述の硫化亜鉛鉱は少なからず鉄を含んでいるため、高温で焙焼して得られる焼鉱内にはジンクフェライトが形成されている。このジンクフェライトは、前記溶解浸出工程では溶解しないため、シックナーやフィルタープレス等を用いて固液分離された残渣(以下、「未溶解残渣」と称する。)の主成分となってしまう。   In a general wet zinc smelting process, zinc sulfide ore is roasted to oxidize and desulfurize zinc sulfide, which is the main component, to obtain a sinter containing zinc oxide as the main component. Then, this sinter is brought into contact with an electrolytic tail solution to dissolve and leach zinc. The electrolytic tail solution used here is a sulfuric acid acidic solution that has been subjected to an electrowinning process of metallic zinc in a zinc electrolytic cell. However, since the aforementioned zinc sulfide ore contains not a little iron, zinc ferrite is formed in the burned ore obtained by roasting at a high temperature. Since this zinc ferrite does not dissolve in the dissolution and leaching step, it becomes a main component of a residue (hereinafter referred to as “undissolved residue”) that has been solid-liquid separated using a thickener or a filter press.

上記固液分離工程で得られた亜鉛浸出液(以下、「中性Th/OF」と称する。)は、電解採取工程に悪影響を与える不純物(主に亜鉛よりもイオン化傾向の小さな金属)を含んでいる。そのため、浄液工程において、前記不純物を除去した清浄液とする。この清浄液は、電解採取工程内を循環している亜鉛電解液の亜鉛濃度などの調整に用いられる。そして、亜鉛電解液は、その循環工程内に配備された亜鉛電解槽で電解に用い、当該亜鉛電解槽には鉛系合金製のアノード板及びアルミニウム製のカソード板を配備している。そして、電解が終了すると、カソード板に電着した亜鉛を剥ぎ取り、電気亜鉛を得る。本件発明では、湿式亜鉛製錬工程に係わる硫酸酸性溶液である電解尾液、亜鉛電解液、中性Th/OF及び清浄液を総称して「湿式亜鉛製錬用工程液」と称する。   The zinc leachate obtained in the solid-liquid separation step (hereinafter referred to as “neutral Th / OF”) contains impurities (mainly metals having a smaller ionization tendency than zinc) that adversely affect the electrowinning step. Yes. Therefore, it is set as the cleaning liquid which removed the said impurity in a liquid purification process. This cleaning solution is used for adjusting the zinc concentration of the zinc electrolyte circulating in the electrolytic collection process. The zinc electrolytic solution is used for electrolysis in a zinc electrolytic cell provided in the circulation process, and an anode plate made of a lead-based alloy and an aluminum cathode plate are arranged in the zinc electrolytic cell. When the electrolysis is completed, the zinc electrodeposited on the cathode plate is peeled off to obtain electrozinc. In the present invention, the electrolytic tail solution, zinc electrolytic solution, neutral Th / OF and cleaning solution, which are sulfuric acid acidic solutions related to the wet zinc smelting process, are collectively referred to as “process solution for wet zinc smelting”.

一方、近年は、製鋼所の製鋼過程で排出される製鋼ダストや、亜鉛めっき工程で発生する亜鉛滓類を再生処理し、粗酸化亜鉛などの亜鉛含有物として回収している。そして、これらの亜鉛含有物を、前述の焼鉱と混合して使用する方法も採用されている。しかし、この亜鉛含有物はハロゲン元素を含有しているため、亜鉛含有物を焼鉱と同様の取り扱いをすると、湿式亜鉛製錬用工程液中のハロゲン元素濃度が上昇し、湿式亜鉛製錬工程において種々の不具合が発生する原因となる。そして、ハロゲン元素の中でも、湿式亜鉛製錬工程において、特に重大な問題を引き起こすのがフッ素である。   On the other hand, in recent years, steelmaking dust discharged in the steelmaking process of steelworks and zinc soot generated in the galvanizing process are regenerated and recovered as zinc-containing materials such as crude zinc oxide. And the method of mixing and using these zinc containing materials with the above-mentioned calcination is also adopted. However, since this zinc-containing material contains a halogen element, if the zinc-containing material is handled in the same manner as sinter, the halogen element concentration in the process solution for wet zinc smelting increases, and the wet zinc smelting process Causes various problems. Among halogen elements, fluorine causes a particularly serious problem in the wet zinc smelting process.

前記亜鉛電解液中におけるフッ素濃度の許容範囲は、一般的には20mg/Lが上限とされている。亜鉛電解液中のフッ素濃度が20mg/Lを超えると、亜鉛を電着させるカソードであるアルミニウム板が腐食される傾向が現れる。すると、電着した亜鉛をカソード板から剥ぎ取ることができなくなる、いわゆる密着板が発生することになる。密着板が発生すると、電解工程の連続操業を維持するために、密着板を連続ラインから系外に抜き取って、代替のカソード板と入れ替えるという操作が必要になる。即ち、この密着板を、オフラインで処理する工数が発生し、カソード板には腐食や機械的ダメージが生じる。よって、湿式亜鉛製錬用工程液中のフッ素管理は、安定操業を維持する上で重要である。   The upper limit of the allowable range of the fluorine concentration in the zinc electrolyte is generally 20 mg / L. When the fluorine concentration in the zinc electrolyte exceeds 20 mg / L, the aluminum plate, which is a cathode for electrodepositing zinc, tends to be corroded. As a result, a so-called contact plate is generated in which the electrodeposited zinc cannot be peeled off from the cathode plate. When the contact plate is generated, in order to maintain the continuous operation of the electrolysis process, it is necessary to remove the contact plate from the continuous line and replace it with an alternative cathode plate. That is, man-hours for processing the contact plate off-line are generated, and the cathode plate is corroded and mechanically damaged. Therefore, fluorine management in the process liquid for wet zinc smelting is important in maintaining stable operation.

そこで、亜鉛電解液中にフッ素を混入させない手法として、いくつかの方法が提案されている。特許文献1には3つの手法が開示されている。1つ目は原料の段階で水洗を行う方法(「従来法1」とする。)である。しかし、この従来法1では、亜鉛含有物に含まれているフッ素の化学結合状態がすべて易水溶性であるとは限らないために、水洗のみではフッ素の十分な除去はそれほど期待できない。   Therefore, several methods have been proposed as a method for preventing fluorine from being mixed into the zinc electrolyte. Patent Document 1 discloses three methods. The first is a method of performing water washing at the raw material stage (referred to as “conventional method 1”). However, in this conventional method 1, since not all the chemical bonding states of fluorine contained in the zinc-containing material are readily water-soluble, sufficient removal of fluorine cannot be expected with water washing alone.

2つ目は硫酸化焙焼法でフッ素を除去する方法(「従来法2」とする。)である。この従来法2では、硫酸化焙焼という特殊な工程を必要とするために追加設備が必要であり、故にランニングコストも上昇し、経済性を損なうという欠点がある。   The second is a method of removing fluorine by a sulfated roasting method (referred to as “conventional method 2”). This conventional method 2 requires a special process called sulfation roasting, and therefore requires additional equipment, and therefore has a drawback of increasing running costs and impairing economy.

3つ目は亜鉛の電解製錬工程を2段階に分け、第1段階でフッ素イオンを含まない亜鉛電解液を用いて所定量の亜鉛を析出させ、第2段階では、既に析出している亜鉛の上に、フッ素イオンを含む亜鉛電解液を用いて亜鉛を析出させる、2段階電解採取法(「従来法3」とする。)である。この従来法3では、電解採取工程を2段階に分けるため、類似の電解採取設備が最低2セット必要となり、設備投資費用が増大し、工程管理も複雑化するためにコストも上昇し、経済性を損なうという欠点がある。   Thirdly, the zinc electrolytic smelting process is divided into two stages. In the first stage, a predetermined amount of zinc is deposited using a zinc electrolyte containing no fluorine ions. In the second stage, zinc that has already been deposited is deposited. Is a two-stage electrowinning method in which zinc is deposited using a zinc electrolyte containing fluorine ions (referred to as “conventional method 3”). In this conventional method 3, since the electrowinning process is divided into two stages, at least two sets of similar electrowinning equipment are required, the capital investment cost increases, the process management becomes complicated, and the cost rises. There is a disadvantage of damaging.

また、特許文献2には、水酸化セリウムを用いて、亜鉛電解液から直接フッ素を除去する方法が開示されている(「従来法4」とする。)。   Patent Document 2 discloses a method of removing fluorine directly from a zinc electrolyte using cerium hydroxide (referred to as “conventional method 4”).

更に、特許文献3には、硫酸チタヌルを用いて、亜鉛電解液から直接フッ素を除去する方法が開示されている(「従来法5」とする。)。   Further, Patent Document 3 discloses a method of removing fluorine directly from a zinc electrolyte using titanur sulfate (referred to as “conventional method 5”).

上記従来法4や従来法5では、フッ素を吸着する機能を持つ水酸化セリウムや硫酸チタヌルの価格が高く、ランニングコストが上昇し、経済性を損なうものである。   In the conventional method 4 and the conventional method 5, the price of cerium hydroxide or titanur sulfate having a function of adsorbing fluorine is high, the running cost is increased, and the economy is impaired.

特許文献4〜特許文献9には、排水処理工程に於けるフッ素の除去手法が開示されている。   Patent Documents 4 to 9 disclose a method for removing fluorine in a wastewater treatment process.

特許文献4及び特許文献5に示されている方法を、硫酸根を含む水溶液を対象にして用いると、硫酸カルシウムが生成してしまい、本来発揮するであろうフッ素除去の効果が得られにくくなる。特に、湿式亜鉛製錬用工程液では、硫酸カルシウムが大量に生成するため、適用は困難である。   When the methods shown in Patent Document 4 and Patent Document 5 are used on an aqueous solution containing a sulfate radical, calcium sulfate is generated, and it is difficult to obtain the effect of removing fluorine that would be originally exhibited. . In particular, the process solution for wet zinc smelting is difficult to apply because calcium sulfate is produced in a large amount.

特許文献6〜特許文献9に開示されている技術でも、硫酸酸性溶液中では硫酸カルシウムが生成するため、適用が困難である。   Even the techniques disclosed in Patent Documents 6 to 9 are difficult to apply because calcium sulfate is generated in a sulfuric acid acidic solution.

特開平4−221089号公報JP-A-4-22189 特開2002−105685号公報JP 2002-105685 A 特開平6−57476号公報JP-A-6-57476 特開平6−262170号公報JP-A-6-262170 特開平10−137744号公報Japanese Patent Laid-Open No. 10-137744 特開平11−57747号公報JP-A-11-57747 特開2001−17982号公報JP 2001-17982 A 特開2001−232373号公報JP 2001-232373 A 特開2003−266083号公報JP 2003-266083 A

上記のように、湿式亜鉛製錬工程でフッ素を含む粗酸化亜鉛などの亜鉛含有物を有効利用しつつ、フッ素の影響を排除することが、亜鉛製錬業者の大きな命題であった。   As described above, it has been a major proposition of a zinc smelter to effectively use zinc-containing materials such as crude zinc oxide containing fluorine in the wet zinc smelting process while eliminating the influence of fluorine.

本件発明者等は、上記課題を解決すべく鋭意研究の結果、鉄沈殿物を吸着剤に用いてフッ素を吸着除去する、湿式亜鉛製錬用工程液のフッ素除去方法を見出したのである。以下に、本件出願に係る発明について述べる。   As a result of diligent research to solve the above-mentioned problems, the present inventors have found a method for removing fluorine from a process liquid for hydrometallurgical smelting by using an iron precipitate as an adsorbent and removing fluorine by adsorption. The invention relating to the present application will be described below.

本件発明に係るフッ素除去方法: 本件発明に係るフッ素除去方法は、鉄沈殿物を吸着剤に用いてフッ素を吸着除去する、湿式亜鉛製錬用工程液のフッ素除去方法であって、以下のステップA〜ステップCを1サイクルとして、この1サイクルを複数サイクル(第1サイクル〜第nサイクル:但し、n≧2)繰り返してフッ素を除去する工程の、第nサイクルのステップAで用いる鉄化合物は、第(n−1)サイクルのステップCで得られたフッ素吸着鉄沈殿物であることを特徴としている。 Fluorine removal method according to the present invention: The fluorine removal method according to the present invention is a method for removing fluorine from a process liquid for wet zinc smelting by adsorbing and removing fluorine using an iron precipitate as an adsorbent, comprising the following steps: The iron compound used in Step A of the nth cycle of the process of removing fluorine by repeating A to Step C as one cycle and repeating this one cycle for a plurality of cycles (1st cycle to nth cycle: n ≧ 2). The fluorine-adsorbed iron precipitate obtained in Step C of the (n-1) th cycle.

ステップA: 鉄化合物を硫酸酸性溶液に溶解してフッ素吸着用鉄溶液を得るフッ素吸着用鉄溶液調製工程。
ステップB: 前記フッ素吸着用鉄溶液を中和して鉄沈殿物を形成させ、溶液中のフッ素イオンを析出する鉄沈殿物に吸着共沈させたフッ素共沈スラリーを得るフッ素共沈工程。
ステップC: ステップBで得られたフッ素共沈スラリーをフッ素除去液とフッ素吸着鉄沈殿物に分別するフッ素除去液回収工程。
Step A: A fluorine adsorption iron solution preparation step in which an iron compound is dissolved in a sulfuric acid acidic solution to obtain a fluorine adsorption iron solution.
Step B: A fluorine coprecipitation step of obtaining a fluorine coprecipitation slurry in which the iron solution for fluorine adsorption is neutralized to form an iron precipitate and adsorbed and coprecipitated on the iron precipitate that deposits fluorine ions in the solution.
Step C: Fluorine removal liquid recovery step of separating the fluorine coprecipitation slurry obtained in Step B into a fluorine removal liquid and a fluorine adsorbed iron precipitate.

本件発明に係るフッ素除去方法においては、第1サイクルの前記ステップAで調製するフッ素吸着用鉄溶液は、硫酸酸性溶液に電解尾液を用い、鉄化合物には未溶解残渣を用い、当該未溶解残渣に含まれる鉄及び亜鉛を電解尾液に抽出したものであることも好ましい。   In the fluorine removal method according to the present invention, the fluorine adsorption iron solution prepared in Step A of the first cycle uses an electrolytic tail solution as the sulfuric acid solution, and uses an undissolved residue as the iron compound. It is also preferable that iron and zinc contained in the residue are extracted into an electrolytic tail solution.

本件発明に係るフッ素除去方法においては、前記ステップBの中和にフッ素を含有した亜鉛含有物を用いることも好ましい。   In the fluorine removal method according to the present invention, it is also preferable to use a zinc-containing material containing fluorine for the neutralization in Step B.

本件発明に係るフッ素除去方法においては、第nサイクルの前記ステップCで得られたフッ素除去液を、第(n−1)サイクルの前記ステップA又は第(n−1)サイクルの前記ステップBのいずれか一方又は両方で用いることも好ましい。 In the fluorine removing method according to the present invention, the fluorine removing liquid obtained in Step C of the nth cycle is the same as that of Step A of the (n-1) cycle or Step B of the (n-1) cycle. It is also preferred to use either or both.

本件発明に係るフッ素除去方法を用いれば、湿式亜鉛製錬用工程液のフッ素濃度を安定して20mg/L以下にできる。本件発明に係るフッ素除去方法は、フッ素吸着用鉄溶液から析出する鉄沈殿物を吸着剤として用いるため、鉄沈殿物の吸着サイトを最大限に活用できるからである。そして、フッ素を吸着した鉄沈殿物を再溶解し、複数回フッ素吸着用の鉄原料として使用するので、鉄沈殿物をフッ素吸着剤として最大限に活用できる。また、鉄沈殿物をフッ素吸着剤に用いる工程では、湿式亜鉛製錬工程で発生する未溶解残渣を、吸着剤である鉄の原料として活用できる。更に、実施する操作は、溶解、中和、固液分離が中心であり、新規の薬品類の投入や、特殊な設備を導入する等の大きな設備投資も必要としない。   If the fluorine removal method according to the present invention is used, the fluorine concentration of the process liquid for wet zinc smelting can be stably reduced to 20 mg / L or less. This is because the method for removing fluorine according to the present invention uses the iron precipitate precipitated from the iron solution for adsorption of fluorine as an adsorbent, so that the adsorption site of the iron precipitate can be utilized to the maximum. And since the iron precipitate which adsorb | sucked the fluorine is redissolved and used as an iron raw material for fluorine adsorption several times, an iron precipitate can be utilized to the maximum as a fluorine adsorbent. Moreover, in the process using an iron precipitate for a fluorine adsorbent, undissolved residue generated in the wet zinc smelting process can be used as a raw material for iron as an adsorbent. Furthermore, the operations to be performed are mainly dissolution, neutralization and solid-liquid separation, and no large capital investment such as introduction of new chemicals or introduction of special equipment is required.

本件発明に係るフッ素吸着工程を説明する前に、説明の理解が容易になるよう、鉄沈殿物によるフッ素の吸着機構について説明する。鉄沈殿物によるフッ素の吸着機構は化学吸着であって、吸着反応はイオン交換的な働きによる平衡反応であると考えられる。即ち、活性炭吸着のような、マイクロポアによる分子の物理的な取り込みによる吸着機構とは異なる。   Before explaining the fluorine adsorption process according to the present invention, a mechanism for adsorbing fluorine by iron precipitate will be explained so that the explanation can be easily understood. The adsorption mechanism of fluorine by the iron precipitate is chemical adsorption, and the adsorption reaction is considered to be an equilibrium reaction due to ion exchange. That is, it is different from the adsorption mechanism by physical uptake of molecules by micropores such as activated carbon adsorption.

本件発明に係るフッ素除去方法の形態: 本件発明に係るフッ素除去方法は、鉄沈殿物を吸着剤に用いてフッ素を除去することを特徴とした、湿式亜鉛製錬用工程液のフッ素除去方法である。具体的には、以下のステップA〜ステップCを1サイクルとして、この1サイクルを複数サイクル(第1サイクル〜第nサイクル:但し、n≧2)繰り返してフッ素を除去する工程の、第nサイクルのステップAで用いる鉄化合物には、第(n−1)サイクルのステップCで得られたフッ素吸着鉄沈殿物を用いる。以下、各ステップ毎に説明を加える。 Form of Fluorine Removal Method According to the Present Invention: The fluorine removal method according to the present invention is a method for removing fluorine from a process liquid for wet zinc smelting, characterized by removing fluorine using an iron precipitate as an adsorbent. is there. Specifically, the following step A to step C are defined as one cycle, and this one cycle is repeated a plurality of cycles (first cycle to nth cycle, where n ≧ 2), and the nth cycle of the process of removing fluorine. As the iron compound used in Step A, the fluorine-adsorbed iron precipitate obtained in Step C of the (n-1) th cycle is used. Hereinafter, explanation will be added for each step.

本件発明に係るフッ素除去方法におけるステップAは、鉄化合物を硫酸酸性溶液に溶解してフッ素吸着用鉄溶液を得るフッ素吸着用鉄溶液調製工程である。ステップAは、調製するフッ素吸着用鉄溶液に含まれる鉄を、第二鉄イオンの形態としておくことを特徴としている。第二鉄イオンは、中和により沈殿を形成しやすく、また、得られる沈殿も濾過性が良好だからである。当該鉄溶液中に第一鉄イオンが存在する場合には、中和前に硫酸酸性の状態でエアレーションを行ったり、二酸化マンガンなどの酸化剤を用いて事前に第二鉄イオンとしておくことが好ましい。   Step A in the fluorine removal method according to the present invention is a fluorine adsorption iron solution preparation step in which an iron compound is dissolved in a sulfuric acid acidic solution to obtain a fluorine adsorption iron solution. Step A is characterized in that iron contained in the prepared iron solution for adsorption of fluorine is in the form of ferric ions. This is because ferric ions tend to form precipitates by neutralization, and the resulting precipitates also have good filterability. When ferrous ions are present in the iron solution, aeration is preferably performed in a sulfuric acid state before neutralization, or ferric ions are preferably used in advance using an oxidizing agent such as manganese dioxide. .

この工程でフッ素吸着用鉄溶液の調製に用いる鉄化合物には、工業薬品レベルの硫酸第二鉄を用いることができる。この場合は、硫酸第二鉄を希硫酸等の硫酸酸性溶液に溶解して鉄濃度を30g/L程度とした水溶液とすることで、好適に使用できるフッ素吸着用鉄溶液が得られる。工業薬品レベルの硫酸第二鉄だけを使用してフッ素吸着用鉄溶液を調製すれば、フッ素を含んだ廃水等を対象とした脱フッ素操作への適用も可能になる。しかし、優先的にコストを考慮するのであれば、湿式亜鉛製錬工程で発生する未溶解残渣等、生産活動に付随して発生する鉄化合物を用いることが好ましい。特に、廃棄対象としている副産物を活用することが最も好ましい。ここでいう副産物としては、例えば、アルミナ製造の副産物であり、廃棄物として処理されている赤泥も鉄を多く含んでおり、鉄化合物として選択しうる。   As the iron compound used in the preparation of the iron solution for fluorine adsorption in this step, ferric sulfate at the industrial chemical level can be used. In this case, an iron solution for fluorine adsorption that can be suitably used can be obtained by dissolving ferric sulfate in a sulfuric acid acidic solution such as dilute sulfuric acid to obtain an aqueous solution having an iron concentration of about 30 g / L. If an iron solution for fluorine adsorption is prepared using only ferric sulfate at the industrial chemical level, it can be applied to a defluorination operation for waste water containing fluorine. However, if the cost is preferentially taken into consideration, it is preferable to use an iron compound generated accompanying production activities such as an undissolved residue generated in the wet zinc smelting process. In particular, it is most preferable to use a by-product to be discarded. As the by-product here, for example, red mud which is a by-product of alumina production and treated as waste also contains a large amount of iron and can be selected as an iron compound.

そして、ステップAで調製するフッ素吸着用鉄溶液中の鉄濃度は、5g/L〜40g/Lとすることが好ましい。鉄濃度が5g/Lを下回ると、中和により形成される鉄沈殿物のフッ素吸着量が低下するため好ましくない。また、鉄濃度が40g/Lを超えると、得られるフッ素共沈スラリーの沈降性や濾過性が悪くなるため好ましくない。従って、フッ素の吸着能力と沈降性及び濾過性とを考慮すると、鉄溶液中の鉄濃度は、15g/L〜30g/Lとすることがより好ましい。   And it is preferable that the iron concentration in the iron solution for fluorine adsorption prepared in Step A is 5 g / L to 40 g / L. If the iron concentration is less than 5 g / L, the amount of fluorine adsorbed on the iron precipitate formed by neutralization decreases, which is not preferable. On the other hand, when the iron concentration exceeds 40 g / L, the sedimentation property and filterability of the obtained fluorine coprecipitation slurry are deteriorated, which is not preferable. Therefore, considering the fluorine adsorption capacity, sedimentation and filterability, the iron concentration in the iron solution is more preferably 15 g / L to 30 g / L.

そして、第1サイクルの前記ステップAで調製するフッ素吸着用鉄溶液は、硫酸酸性溶液に電解尾液を用い、鉄化合物には湿式亜鉛製錬工程で発生する未溶解残渣を用いて調製することが好ましい。未溶解残渣中のジンクフェライトから鉄を抽出してフッ素吸着用鉄溶液を調製すると、共存する亜鉛も抽出され、亜鉛の回収率も向上するからである。   The fluorine adsorption iron solution prepared in Step A of the first cycle should be prepared using an electrolytic tail solution for the sulfuric acid acidic solution and an undissolved residue generated in the wet zinc smelting process for the iron compound. Is preferred. This is because when iron is extracted from zinc ferrite in the undissolved residue to prepare an iron solution for fluorine adsorption, coexisting zinc is also extracted and the recovery rate of zinc is improved.

本件発明に係るフッ素除去方法におけるステップBは、前記フッ素吸着用鉄溶液を中和し、析出する鉄沈殿物に溶液中のフッ素イオンを吸着共沈させたフッ素共沈スラリーを得る、フッ素共沈工程である。このステップBは、中和によりフッ素吸着用鉄溶液中の第二鉄イオンを水酸化鉄などの鉄沈殿物として析出させることを特徴としている。フッ素イオンが共存した状態で中和操作を行うと、鉄沈殿物が析出すると同時にフッ素イオンを吸着するため、吸着剤としての鉄沈殿物の吸着サイトを最大限に活用できるため好ましいのである。   Step B in the method for removing fluorine according to the present invention comprises the step of neutralizing the iron solution for adsorbing fluorine to obtain a fluorine coprecipitation slurry in which fluorine ions in the solution are adsorbed and coprecipitated to the precipitated iron precipitate. It is a process. This step B is characterized by depositing ferric ions in the iron solution for adsorption of fluorine as iron precipitates such as iron hydroxide by neutralization. When the neutralization operation is performed in the state where fluorine ions coexist, it is preferable because the iron precipitate is deposited and at the same time the fluorine ions are adsorbed, so that the adsorption site of the iron precipitate as the adsorbent can be utilized to the maximum.

このときに析出する鉄沈殿物は、硫酸根が共存しているため、塩基性硫酸鉄、水酸化鉄、オキシ水酸化鉄、酸化鉄のいずれか又はこれらの混合物の形態をとっていると考えられる。そして、前記フッ素吸着用鉄溶液には、必ずしもフッ素イオンが含まれている必要はない。フッ素を含有する物質を中和剤として用いれば、この物質がフッ素吸着用鉄溶液に溶解することによって、フッ素吸着用鉄溶液にフッ素イオンが溶出する。そして、このフッ素イオンが析出する鉄沈殿物に吸着されるのである。   The iron precipitates deposited at this time are considered to be in the form of basic iron sulfate, iron hydroxide, iron oxyhydroxide, iron oxide, or a mixture thereof, since sulfate groups coexist. It is done. The fluorine adsorption iron solution does not necessarily contain fluorine ions. If a fluorine-containing substance is used as a neutralizing agent, this substance dissolves in the fluorine adsorption iron solution, so that fluorine ions are eluted in the fluorine adsorption iron solution. And this fluorine ion is adsorbed by the iron deposit which precipitates.

このステップBで用いる中和剤には、特に制限はなく、目標とするpHに調整できるものであればよい。即ち、前述のようにフッ素の含有、不含有を問わず使用が可能である。しかし、例えばCaのように、溶液中の硫酸根と反応して沈殿を形成するアルカリ土類金属等の使用は、残渣量が増加するため好ましくない。   The neutralizing agent used in Step B is not particularly limited as long as it can be adjusted to the target pH. That is, it can be used regardless of whether fluorine is contained or not contained as described above. However, the use of an alkaline earth metal or the like that reacts with a sulfate group in a solution to form a precipitate, such as Ca, is not preferable because the amount of residue increases.

中和時の液温は、フッ素吸着鉄沈殿物の濾過性を高めるためには、高めの温度とすることが好ましい。例えば60℃〜80℃とするなどである。一般的な物理吸着では高温にするほど吸着能力が低下する傾向が見られるが、鉄沈殿物によるフッ素の吸着は化学吸着であるため、物理吸着ほどには吸着操作時の温度の影響を受けにくい。   The liquid temperature during neutralization is preferably set to a higher temperature in order to improve the filterability of the fluorine-adsorbed iron precipitate. For example, the temperature is set to 60 ° C to 80 ° C. In general physical adsorption, the adsorption capacity tends to decrease as the temperature rises. However, the adsorption of fluorine by iron precipitate is chemical adsorption, so it is less affected by the temperature during the adsorption operation than physical adsorption. .

また、中和の目標pHは、亜鉛の沈殿形成が起こらない3.5〜4.5とし、鉄沈殿物の形成反応が十分に完了する60分〜120分程度の反応滞留時間をとることが好ましい。   The target pH for neutralization is set to 3.5 to 4.5 at which zinc precipitate formation does not occur, and a reaction residence time of about 60 minutes to 120 minutes can be taken to complete the iron precipitate formation reaction sufficiently. preferable.

そして、前記ステップBの中和には、フッ素を含有した亜鉛含有物を好適に用いることができる。フッ素を含有する固体を中和剤に用いると、その固体が溶解してフッ素がイオン化して溶出すると同時に、その溶出した領域の周辺pHが上昇し、鉄沈殿物が形成されてフッ素の吸着が起こる。従って、湿式亜鉛製錬工程では、フッ素を含んでいる粗酸化亜鉛等を好適に使用できる。粗酸化亜鉛を直接中和剤として用いる場合には、コンテナ等に貯蔵しておき、振動フィーダーなどを使用して、フッ素吸着用鉄溶液のpH変化を監視しながら添加する。また、粗酸化亜鉛をフッ素除去液や水などと混合し、スラリーとして用いることもできる。また、固体に限らず、フッ素イオン及び亜鉛イオンを含むアルカリ溶液も中和剤として用いることもできる。   For the neutralization in Step B, a zinc-containing material containing fluorine can be suitably used. When a fluorine-containing solid is used as a neutralizing agent, the solid dissolves and the fluorine ionizes and elutes. At the same time, the pH around the eluted region rises, an iron precipitate is formed, and the adsorption of fluorine occurs. Occur. Therefore, in the wet zinc smelting process, crude zinc oxide containing fluorine can be suitably used. When crude zinc oxide is used directly as a neutralizing agent, it is stored in a container or the like and added while monitoring the pH change of the fluorine adsorption iron solution using a vibration feeder or the like. Further, the crude zinc oxide can be mixed with a fluorine removing liquid or water and used as a slurry. Moreover, not only solid but the alkaline solution containing a fluorine ion and zinc ion can also be used as a neutralizing agent.

ステップCは、ステップBで得られたフッ素共沈スラリーをフッ素除去液とフッ素吸着鉄沈殿物とに分別するフッ素除去液回収工程である。このステップCでは、分離された固形物の取り扱いが容易な方法を用いればよい。フッ素除去液の回収率を高めたい場合には、フィルタープレス等の濾過装置を用いることが好ましい。しかし、ここで得られたフッ素吸着鉄沈殿物を再びフッ素吸着用の鉄原料として使用するのであれば、フッ素共沈スラリーを濃縮するだけでも構わない。シックナーなどを用いてフッ素共沈スラリーを濃縮し、底抜きしたスラッジを次工程に送れば、設備的には安価にできる。   Step C is a fluorine removal liquid recovery process in which the fluorine coprecipitation slurry obtained in Step B is separated into a fluorine removal liquid and a fluorine adsorbed iron precipitate. In Step C, a method that allows easy handling of the separated solid material may be used. In order to increase the recovery rate of the fluorine removing liquid, it is preferable to use a filtration device such as a filter press. However, if the fluorine-adsorbed iron precipitate obtained here is used again as an iron raw material for fluorine adsorption, the fluorine co-precipitation slurry may only be concentrated. If the fluorine coprecipitation slurry is concentrated using a thickener or the like and the bottomed sludge is sent to the next process, the equipment can be made inexpensive.

更に、第nサイクルの前記ステップCで得られたフッ素除去液を、第(n−1)サイクルの前記ステップA又は第(n−1)サイクルの前記ステップBの一方又は両方で用いることもできる。第nサイクルで得られたフッ素除去液を第(n−1)サイクルのステップAでフッ素吸着用鉄溶液に添加すれば、フッ素吸着用鉄溶液中の鉄濃度及びフッ素濃度を調整できる。そして、第(n−1)サイクルのステップBでは、中和剤として用いる粗酸化亜鉛をスラリー化するための液として、フッ素除去液を用いることができる。   Furthermore, the fluorine removing liquid obtained in Step C of the nth cycle can also be used in one or both of Step A of the (n-1) cycle and Step B of the (n-1) cycle. . If the fluorine removal liquid obtained in the nth cycle is added to the iron solution for fluorine adsorption in step A of the (n-1) th cycle, the iron concentration and fluorine concentration in the iron solution for fluorine adsorption can be adjusted. In Step B of the (n-1) th cycle, a fluorine removing liquid can be used as a liquid for slurrying crude zinc oxide used as a neutralizing agent.

上記に説明した工程の流れの理解を容易にするために、湿式亜鉛製錬工程に適用した吸着処理のフローシートを図1に示し、以下、図1を参照しながら工程の流れを明確にする。図1に示した工程では2サイクルで吸着操作を行っている。第1サイクルは、湿式亜鉛製錬用工程液中のフッ素濃度を目標値に調整する工程であり、「本吸着工程」と称している。そして第2サイクルは、本吸着工程でフッ素を吸着処理する湿式亜鉛製錬用工程液中のフッ素濃度を事前に調整する工程であり、「事前吸着工程」と称している。   In order to facilitate understanding of the process flow described above, the flow sheet of the adsorption treatment applied to the wet zinc smelting process is shown in FIG. 1, and the process flow is clarified below with reference to FIG. . In the process shown in FIG. 1, the adsorption operation is performed in two cycles. The first cycle is a step of adjusting the fluorine concentration in the process liquid for wet zinc smelting to a target value, and is referred to as “main adsorption step”. The second cycle is a step of adjusting in advance the fluorine concentration in the wet zinc smelting process liquid in which the fluorine is adsorbed in the main adsorption process, and is referred to as a “pre-adsorption process”.

前記本吸着工程(第1サイクル)でフッ素吸着用鉄溶液(I)の調製に用いる鉄化合物は、未溶解残渣である。まず、未溶解残渣を硫酸酸性溶液に溶解し、ジンクフェライト抽出液(以下、「ZF液」と称する。)を得る。そして、このZF液と事前吸着工程(第2サイクル)で得られたフッ素除去液(II)とを混合し、本吸着工程(第1サイクル)で用いるフッ素吸着用鉄溶液(I)を調製する。そして、このフッ素吸着用鉄溶液(I)に粗酸化亜鉛などを添加して中和し、析出沈殿する鉄沈殿物にフッ素を吸着させたフッ素共沈スラリー(I)を得る。このフッ素共沈スラリー(I)を固液分離してフッ素除去液(I)とフッ素吸着鉄沈殿物(I)とを得る。   The iron compound used in the preparation of the iron solution (I) for fluorine adsorption in the main adsorption step (first cycle) is an undissolved residue. First, an undissolved residue is dissolved in a sulfuric acid acidic solution to obtain a zinc ferrite extract (hereinafter referred to as “ZF solution”). And this ZF liquid and the fluorine removal liquid (II) obtained by the prior adsorption process (2nd cycle) are mixed, and the iron solution (I) for fluorine adsorption used by this adsorption process (1st cycle) is prepared. . Then, this zinc adsorption iron solution (I) is neutralized by adding crude zinc oxide or the like to obtain a fluorine coprecipitation slurry (I) in which fluorine is adsorbed on the iron precipitate that is precipitated and precipitated. This fluorine coprecipitation slurry (I) is subjected to solid-liquid separation to obtain a fluorine removal liquid (I) and a fluorine-adsorbed iron precipitate (I).

そして、事前吸着工程(第2サイクル)では、本吸着工程(第1サイクル)で得られたフッ素吸着鉄沈殿物(I)を、硫酸酸性溶液に溶解してフッ素吸着鉄溶解液(I)を得る。このフッ素吸着鉄溶解液(I)が、フッ素吸着用鉄溶液(II)を調製する際の基本の溶液になる。従って、基本の溶液をそのまま用いる場合のフッ素吸着用鉄溶液(II)は、フッ素吸着鉄溶解液(I)そのものである。そして、フッ素吸着鉄溶解液(I)には、必要に応じて後工程で得られたフッ素除去液を混合して、フッ素吸着用鉄溶液(II)とすることもできる。   In the pre-adsorption step (second cycle), the fluorine-adsorbed iron precipitate (I) obtained in the main adsorption step (first cycle) is dissolved in a sulfuric acid acidic solution to obtain a fluorine-adsorbed iron solution (I). obtain. This fluorine-adsorbed iron solution (I) becomes a basic solution for preparing the fluorine-adsorbing iron solution (II). Therefore, the iron solution (II) for fluorine adsorption when the basic solution is used as it is is the fluorine-adsorbed iron solution (I) itself. The fluorine-adsorbing iron solution (I) can be mixed with a fluorine removing liquid obtained in a subsequent step as necessary to obtain a fluorine-adsorbing iron solution (II).

このようにして調製したフッ素吸着用鉄溶液(II)に、粗酸化亜鉛などを添加して中和し、析出沈殿する鉄沈殿物にフッ素を吸着させたフッ素共沈スラリー(II)を得る。このフッ素共沈スラリー(II)を固液分離して、フッ素除去液(II)とフッ素吸着鉄沈殿物(II)とを得る。図1に示す2サイクル操業であれば、フッ素除去液(II)は本吸着工程(第1サイクル)において、更に溶液中のフッ素が吸着処理される。そして、フッ素吸着鉄沈殿物(II)は工程外に抜き出される。   Crude zinc oxide or the like is added to the thus prepared iron solution for adsorption of fluorine (II) for neutralization to obtain a fluorine coprecipitation slurry (II) in which fluorine is adsorbed on the iron precipitate that precipitates and precipitates. This fluorine coprecipitation slurry (II) is subjected to solid-liquid separation to obtain a fluorine removal liquid (II) and a fluorine-adsorbed iron precipitate (II). In the two-cycle operation shown in FIG. 1, the fluorine removal liquid (II) is further subjected to an adsorption treatment of fluorine in the solution in the main adsorption step (first cycle). Then, the fluorine-adsorbed iron precipitate (II) is extracted out of the process.

上記では、2サイクルの事例をフローシートに沿って説明したが、更にサイクル数を多くすることもできる。例えば、サイクル数を3にするのであれば、図1に示したフローシートの事前吸着工程(第2サイクル)と同様の工程を、第2サイクルに引き続き実施する第3サイクルとして追加すればよい。この場合は、第3サイクルのフッ素吸着用鉄溶液(III)には、フッ素吸着鉄沈殿物(II)を硫酸酸性溶液に溶解したフッ素吸着鉄溶解液(II)を基本の溶液として用いる。そして、第3サイクルで得られるフッ素除去液(III)は、第2サイクルのフッ素吸着用鉄溶液(II)と混合する。   In the above description, the case of two cycles has been described along the flow sheet, but the number of cycles can be further increased. For example, if the number of cycles is 3, a step similar to the pre-adsorption step (second cycle) of the flow sheet shown in FIG. 1 may be added as a third cycle that is performed following the second cycle. In this case, a fluorine-adsorbed iron solution (II) obtained by dissolving a fluorine-adsorbed iron precipitate (II) in a sulfuric acid acidic solution is used as the basic solution for the iron solution (III) for fluorine adsorption in the third cycle. Then, the fluorine removing liquid (III) obtained in the third cycle is mixed with the iron solution (II) for fluorine adsorption in the second cycle.

以上述べてきた、本件発明に係るフッ素除去工程では、処理工程の段階を多くする程、湿式亜鉛製錬用工程液のフッ素濃度の管理が容易になる。その結果、第1サイクルでは、前記ステップC後に得られるフッ素除去液中のフッ素濃度を、安定して目標とする20mg/L以下にすることができる。   As described above, in the fluorine removal process according to the present invention, the more the stage of the treatment process, the easier the management of the fluorine concentration of the process liquid for wet zinc smelting. As a result, in the first cycle, the fluorine concentration in the fluorine removing liquid obtained after Step C can be stably set to 20 mg / L or less.

実施例では、前述の図1と同様にして、本吸着工程(第1サイクル)と事前吸着工程(第2サイクル)の2サイクルでフッ素吸着操作を行った。   In the example, the fluorine adsorption operation was performed in two cycles of the main adsorption step (first cycle) and the pre-adsorption step (second cycle) in the same manner as in FIG.

<ZF液の調製>
未溶解残渣1000gと電解尾液4.0Lとを混合して90℃で4時間攪拌し、未溶解残渣に含まれるジンクフェライトを抽出した。そして、鉄濃度が最大値になったことを確認した後固液分離し、ZF液3.8Lを得た。この操作を12回繰り返して得られたZF液を混合し、以下の実施例及び比較例で使用するZF液を調製した。混合後のZF液の液組成と、後の工程で用いる粗酸化亜鉛(I)及び粗酸化亜鉛(II)の成分含有量を併せて表1に示す。表1に示すように、ZF液中のフッ素濃度は12.7mg/L、鉄濃度は25.1g/L、亜鉛濃度は83.7g/Lであった。また、粗酸化亜鉛(I)のフッ素含有量は0.05wt%、粗酸化亜鉛(II)のフッ素含有量は0.13wt%であった。
<Preparation of ZF solution>
1000 g of undissolved residue and 4.0 L of electrolytic tail solution were mixed and stirred at 90 ° C. for 4 hours to extract zinc ferrite contained in the undissolved residue. Then, after confirming that the iron concentration reached the maximum value, solid-liquid separation was performed to obtain 3.8 L of ZF solution. The ZF liquid obtained by repeating this operation 12 times was mixed to prepare ZF liquids used in the following Examples and Comparative Examples. Table 1 shows the composition of the ZF solution after mixing and the component contents of the crude zinc oxide (I) and crude zinc oxide (II) used in the subsequent steps. As shown in Table 1, the fluorine concentration in the ZF solution was 12.7 mg / L, the iron concentration was 25.1 g / L, and the zinc concentration was 83.7 g / L. Moreover, the fluorine content of crude zinc oxide (I) was 0.05 wt%, and the fluorine content of crude zinc oxide (II) was 0.13 wt%.

Figure 2008196039
Figure 2008196039

<フッ素吸着鉄沈殿物(I)の初期調製>
2サイクルの繰り返しを行うための準備として、フッ素吸着鉄沈殿物(I)を調製した。
<Initial preparation of fluorine-adsorbed iron precipitate (I)>
As preparation for repeating two cycles, a fluorine-adsorbed iron precipitate (I) was prepared.

まず中和槽に中性Th/OF液を2.0L投入し、液温を80℃に維持して攪拌した。この中和槽に、フッ素吸着用鉄溶液(I)として、前記にて得られたZF液を20mL/min.で添加した。同時に、この中和槽には純水でスラリー化した粗酸化亜鉛(I)を添加してpHを3.7に維持した。そして、上記添加を開始してから270分後に、中和槽内の中性Th/OFと添加したフッ素吸着用鉄溶液(I)等とが入れ替わり、フッ素吸着鉄沈殿物(I)の形成が定常状態に達したと判断した。   First, 2.0 L of neutral Th / OF solution was added to the neutralization tank, and the solution temperature was maintained at 80 ° C. and stirred. In this neutralization tank, the ZF solution obtained above was used as an iron solution (I) for fluorine adsorption at 20 mL / min. Added at. At the same time, crude zinc oxide (I) slurried with pure water was added to the neutralization tank to maintain the pH at 3.7. Then, 270 minutes after the start of the addition, the neutral Th / OF in the neutralization tank is replaced with the added fluorine adsorption iron solution (I) and the like, and the formation of the fluorine adsorbed iron precipitate (I) is formed. It was judged that the steady state was reached.

上記にて定常状態に達した後は、図2に示すように、中和槽へのZF液と粗酸化亜鉛(I)スラリーとの添加を継続し、中和槽の液面を一定に維持するように、定量ポンプを用いて、中和槽底部からフッ素共沈スラリー(I)を抜き出した。この間の定常状態に中和槽から抜き出した、フッ素共沈スラリー(I)をヌッチェを用いて固液分離し、フッ素吸着鉄沈殿物(I)とフッ素除去液(I)とを得た。以下、第1回フッ素事前吸着処理→第1回フッ素本吸着処理→第2回フッ素事前吸着処理→第2回フッ素本吸着処理→第3回フッ素事前吸着処理→第3回フッ素本吸着処理によって、フッ素を吸着除去したプロセスを説明する。   After reaching the steady state as described above, as shown in FIG. 2, the addition of the ZF liquid and the crude zinc (I) slurry to the neutralization tank is continued, and the liquid level of the neutralization tank is kept constant. Thus, the fluorine coprecipitation slurry (I) was extracted from the bottom of the neutralization tank using a metering pump. The fluorine coprecipitation slurry (I) extracted from the neutralization tank in a steady state during this period was subjected to solid-liquid separation using a Nutsche to obtain a fluorine-adsorbed iron precipitate (I) and a fluorine removal liquid (I). Hereinafter, the first fluorine pre-adsorption process → the first fluorine main adsorption process → the second fluorine pre-adsorption process → the second fluorine main adsorption process → the third fluorine pre-adsorption process → the third fluorine main adsorption process The process of adsorbing and removing fluorine will be described.

<第1回フッ素事前吸着処理>
第1回事前吸着処理では、上記フッ素吸着鉄沈殿物(I)を用いた。このフッ素吸着鉄沈殿物(I)を、室温で6時間かけて電解尾液に溶解してフッ素吸着鉄溶解液(I−1)を調製し、これをフッ素吸着用鉄溶液(II−1)とした。まず、中和槽に中性Th/OFを1.0L投入し、液温を80℃に維持して攪拌した。この中和槽に、フッ素吸着用鉄溶液(II−1)を10mL/min.で添加し、同時に純水でスラリー化した粗酸化亜鉛(II)を添加してpHを3.7に維持した。上記添加を開始してから270分後に、中和槽内の中性Th/OFと添加されたフッ素吸着用鉄溶液(II)等とが入れ替わり、フッ素吸着鉄沈殿物(II)の形成が定常状態に達したと判断した。上記定常状態に達してからが、図3に示す事前吸着工程である。中和槽へのフッ素吸着用鉄溶液(II)と粗酸化亜鉛(II)スラリーとの添加を継続し、中和槽の液面を一定に維持するように、定量ポンプを用いて、中和槽底部からフッ素共沈スラリー(II)を抜き出した。この間の定常状態に中和槽から抜き出した、フッ素共沈スラリー(II)をヌッチェを用いて固液分離し、第1回事前吸着処理におけるフッ素吸着鉄沈殿物(II−1)とフッ素除去液(II−1)とを得た。
<First fluorine pre-adsorption treatment>
In the first pre-adsorption treatment, the fluorine-adsorbed iron precipitate (I) was used. This fluorine-adsorbed iron precipitate (I) is dissolved in an electrolytic tail solution at room temperature for 6 hours to prepare a fluorine-adsorbed iron solution (I-1), which is then prepared as an iron solution for fluorine adsorption (II-1). It was. First, 1.0 L of neutral Th / OF was added to the neutralization tank, and the liquid temperature was maintained at 80 ° C. and stirred. In this neutralization tank, the iron solution (II-1) for fluorine adsorption was 10 mL / min. At the same time, crude zinc oxide (II) slurried with pure water was added to maintain the pH at 3.7. 270 minutes after the start of the addition, the neutral Th / OF in the neutralization tank is replaced with the added fluorine adsorption iron solution (II) and the like, and the formation of the fluorine adsorbed iron precipitate (II) is steady. Judged that the condition was reached. After reaching the steady state, the pre-adsorption step shown in FIG. 3 is performed. Continue to add the iron solution (II) for fluorine adsorption to the neutralization tank and the crude zinc oxide (II) slurry, and use a metering pump to neutralize the liquid level in the neutralization tank. The fluorine coprecipitation slurry (II) was extracted from the bottom of the tank. Fluorine coprecipitation slurry (II) extracted from the neutralization tank in a steady state during this period is solid-liquid separated using a Nutsche, and the fluorine adsorbed iron precipitate (II-1) and fluorine removal liquid in the first pre-adsorption treatment (II-1) was obtained.

<第1回フッ素本吸着処理>
第1回のフッ素本吸着処理では、前記フッ素除去液(II−1)と前記ZF液とを混合し、フッ素吸着用鉄溶液(I−1)を調製した。そして、中和槽に中性Th/OFを2.0L投入し、液温を80℃に維持して攪拌した。この中和槽に、フッ素吸着用鉄溶液(I−1)を20mL/min.で添加し、同時に純水でスラリー化した粗酸化亜鉛(I)を添加してpHを3.7に維持した。上記添加を開始してから270分後に、中和槽内の中性Th/OFと添加されたフッ素吸着用鉄溶液(I−1)等とが入れ替わり、フッ素吸着鉄沈殿物(I−1)の形成が定常状態に達したと判断した。
<First fluorine main adsorption treatment>
In the first fluorine main adsorption treatment, the fluorine removal liquid (II-1) and the ZF liquid were mixed to prepare a fluorine adsorption iron solution (I-1). Then, 2.0 L of neutral Th / OF was added to the neutralization tank, and the liquid temperature was maintained at 80 ° C. and stirred. In this neutralization tank, the iron solution (I-1) for fluorine adsorption is 20 mL / min. At the same time, crude zinc oxide (I) slurried with pure water was added to maintain the pH at 3.7. 270 minutes after the start of the addition, the neutral Th / OF in the neutralization tank is replaced with the added iron solution for fluorine adsorption (I-1) and the like, and the fluorine adsorbed iron precipitate (I-1) Was judged to have reached a steady state.

上記定常状態に達してからが、図3に示す本吸着工程である。中和槽へのフッ素吸着用鉄溶液(I−1)と粗酸化亜鉛(I)スラリーとの添加を継続し、中和槽の液面を一定に維持するように、定量ポンプを用いて、中和槽底部からフッ素共沈スラリー(I)を抜き出した。定常状態に達した後の300分間の添加に用いたZF液量は4.4L、フッ素除去液(II−1)量は1.62L、粗酸化亜鉛(I)量は540g(純水量は1.0L)であった。この間の定常状態に中和槽から抜き出したフッ素共沈スラリー(I)を、ヌッチェを用いて固液分離し、フッ素除去液(I−1)7.1Lとフッ素吸着鉄沈殿物(I−1)610gとを得た。   After reaching the steady state, the main adsorption step shown in FIG. 3 is performed. In order to continue the addition of the iron solution for fluorine adsorption (I-1) and the crude zinc oxide (I) slurry to the neutralization tank and maintain the liquid level of the neutralization tank constant, using a metering pump, The fluorine coprecipitation slurry (I) was extracted from the bottom of the neutralization tank. The amount of ZF solution used for the addition for 300 minutes after reaching the steady state was 4.4 L, the amount of fluorine removal solution (II-1) was 1.62 L, the amount of crude zinc oxide (I) was 540 g (the amount of pure water was 1 .0L). The fluorine coprecipitation slurry (I) extracted from the neutralization tank in a steady state during this period was subjected to solid-liquid separation using a Nutsche, and 7.1 L of a fluorine removal liquid (I-1) and a fluorine-adsorbed iron precipitate (I-1) ) To obtain 610 g.

<第2回フッ素事前吸着処理>
第2回フッ素事前吸着処理では、前記フッ素吸着鉄沈殿物(I−1)を電解尾液に溶解してフッ素吸着鉄溶解液(I−2)を調製した。そして、前記フッ素吸着鉄溶解液(I−2)をフッ素吸着用鉄溶液(II−2)として用いた以外は、第1回フッ素事前吸着処理と同様にして実施した。
<2nd fluorine pre-adsorption treatment>
In the second fluorine pre-adsorption treatment, the fluorine-adsorbed iron precipitate (I-1) was dissolved in an electrolytic tail solution to prepare a fluorine-adsorbed iron solution (I-2). And it implemented similarly to the 1st fluorine preadsorption process except having used the said fluorine adsorption iron solution (I-2) as an iron solution (II-2) for fluorine adsorption.

第2回のフッ素事前吸着処理において、定常状態に達した後の200分間の添加に用いた前記フッ素吸着鉄沈殿物(I−1)量は510g、電解尾液は1.8L、粗酸化亜鉛(II)量は260g(純水量は0.24L)であった。この定常状態の間に中和槽から抜き出した、フッ素共沈スラリー(II)を、ヌッチェを用いて固液分離し、フッ素除去液(II−2)1.66Lとフッ素吸着鉄沈殿物(II−2)540gとを得た。   In the second fluorine pre-adsorption treatment, the amount of the fluorine-adsorbed iron precipitate (I-1) used for the addition for 200 minutes after reaching the steady state was 510 g, the electrolytic tail solution was 1.8 L, and the crude zinc oxide The amount of (II) was 260 g (the amount of pure water was 0.24 L). The fluorine coprecipitation slurry (II) extracted from the neutralization tank during this steady state was subjected to solid-liquid separation using a Nutsche, and 1.66 L of fluorine removal liquid (II-2) and fluorine adsorbed iron precipitate (II) -2) 540 g was obtained.

上記第2回のフッ素事前吸着処理に引き続き、フッ素除去液(II−2)とZF液を用いた第2回本吸着処理、フッ素吸着鉄沈殿物(I−2)を用いた第3回事前吸着処理とフッ素除去液(II−3)とZF液を用いた第3回本吸着処理とを前述と同様の手順で実施した。即ち、実施例では本吸着処理と事前吸着処理とをそれぞれ合計3回ずつ実施した。第2回本吸着処理以降の処理に関する具体的な実施内容の記載は、説明の重複を避けるために省略する。   Following the second fluorine pre-adsorption treatment, the second main adsorption treatment using the fluorine removal liquid (II-2) and the ZF liquid, and the third pre-treatment using the fluorine-adsorbed iron precipitate (I-2). The adsorption treatment and the third main adsorption treatment using the fluorine removing liquid (II-3) and the ZF liquid were carried out in the same procedure as described above. That is, in this example, the main adsorption process and the pre-adsorption process were each performed three times in total. The description of specific implementation details regarding the processes after the second main adsorption process is omitted to avoid duplication of explanation.

前記3回の繰り返し試験を実施した結果、フッ素除去液(I)のフッ素濃度は、それぞれ16mg/L、15mg/L、17mg/Lであり、目標を達成していた。そして、フッ素除去液(II)のフッ素濃度は、それぞれ41mg/L、45mg/L、48mg/Lであった。これらの液中の亜鉛濃度は、フッ素除去液(I)で平均139g/L、フッ素除去液(II)で平均146g/Lであった。結果を纏めて表2に示す。   As a result of carrying out the three repeated tests, the fluorine concentrations of the fluorine removal solution (I) were 16 mg / L, 15 mg / L, and 17 mg / L, respectively, and the target was achieved. And the fluorine concentration of fluorine removal liquid (II) was 41 mg / L, 45 mg / L, and 48 mg / L, respectively. The zinc concentration in these liquids was 139 g / L on average for the fluorine removal liquid (I) and 146 g / L on average for the fluorine removal liquid (II). The results are summarized in Table 2.

Figure 2008196039
Figure 2008196039

また、フッ素吸着鉄沈殿物(I)のフッ素含有量は、それぞれ0.046wt%、0.043wt%、0.039wt%であり、鉄含有量ははそれぞれ19.9wt%、20.5wt%、20.4wt%であった。そして、フッ素吸着鉄沈殿物(II)のフッ素含有量はそれぞれ0.093wt%、0.098wt%、0.098wt%であり、鉄含有量はそれぞれ16.0wt%、15.8wt%、15.5wt%であった。結果を纏めて表3に示す。   In addition, the fluorine content of the fluorine-adsorbed iron precipitate (I) is 0.046 wt%, 0.043 wt%, and 0.039 wt%, respectively, and the iron content is 19.9 wt%, 20.5 wt%, It was 20.4 wt%. And fluorine content of fluorine adsorption iron precipitate (II) is 0.093 wt%, 0.098 wt%, 0.098 wt%, respectively, and iron content is 16.0 wt%, 15.8 wt%, 15. It was 5 wt%. The results are summarized in Table 3.

Figure 2008196039
Figure 2008196039

上記結果から、本件発明に係る処理工程を実施した場合にフッ素1gを吸着するために必要な鉄量(g)を計算し、表4に示す。   From the above results, the amount of iron (g) required to adsorb 1 g of fluorine when the treatment process according to the present invention is carried out is calculated and shown in Table 4.

Figure 2008196039
Figure 2008196039

<鉄のフッ素吸着能力>
上記表4から、フッ素吸着工程に投入された鉄がフッ素を吸着し、最終的に工程外に抜き出されるフッ素吸着鉄沈殿物(II)の〔Fe(g)/F(g)〕比は平均164である。逆算によって得られる、1gの鉄が吸着したフッ素量は6.1mgである。
<Iron fluoride adsorption capacity>
From Table 4 above, the [Fe (g) / F (g)] ratio of the fluorine-adsorbed iron precipitate (II) finally extracted out of the process when the iron introduced into the fluorine adsorption process adsorbs fluorine is: The average is 164. The amount of fluorine adsorbed by 1 g of iron obtained by back calculation is 6.1 mg.

比較例Comparative example

比較例では、本件発明の第2サイクルに相当する工程で個体のフッ素吸着剤を用い、フッ素を含有する溶液からフッ素を吸着除去する方式を採用した。比較例では、実施例の各吸着処理工程との混同を避けるために、本件発明の第2サイクルの事前吸着工程に相当する工程を「フッ素初期吸着処理」と称し、第1サイクルの本吸着工程に相当する工程を「フッ素最終吸着処理」と称する。そして、当該個体のフッ素吸着剤には、フッ素最終吸着処理工程で得られたフッ素吸着鉄沈殿物(I)を用いた。   In the comparative example, a method of using an individual fluorine adsorbent in a process corresponding to the second cycle of the present invention and adsorbing and removing fluorine from a solution containing fluorine was adopted. In the comparative example, in order to avoid confusion with each adsorption treatment process of the embodiment, a process corresponding to the pre-adsorption process of the second cycle of the present invention is referred to as “fluorine initial adsorption process”, and the main adsorption process of the first cycle. The process corresponding to is called “fluorine final adsorption treatment”. And the fluorine adsorption iron precipitate (I) obtained at the fluorine final adsorption treatment process was used for the fluorine adsorption agent of the solid.

<フッ素最終吸着処理>
フッ素最終吸着処理では、中和槽に中性Th/OF液を2.0L投入し、液温を80℃に維持して攪拌した。この中和槽に、ZF液、フッ素初期吸着処理で得られたフッ素除去液(II)及び純水でスラリー化した粗酸化亜鉛(I)を添加してpHを3.7に維持した。そして、上記添加を開始してから270分後に、中和槽内の中性Th/OFと添加されたフッ素吸着用鉄溶液とが入れ替わり、フッ素吸着鉄沈殿物(I)の形成が定常状態に達したと判断した。
<Fluorine final adsorption treatment>
In the final fluorine adsorption treatment, 2.0 L of neutral Th / OF solution was added to the neutralization tank, and the solution temperature was maintained at 80 ° C. and stirred. To this neutralization tank, the ZF solution, the fluorine removing solution (II) obtained by the fluorine initial adsorption treatment and the crude zinc oxide (I) slurried with pure water were added to maintain the pH at 3.7. Then, 270 minutes after the start of the addition, the neutral Th / OF in the neutralization tank and the added fluorine adsorption iron solution are exchanged, and the formation of the fluorine adsorbed iron precipitate (I) is in a steady state. Judged to have reached.

上記定常状態に達してからが、図4に示すフッ素最終吸着処理工程である。中和槽へのZF液、フッ素除去液(II)及び純水でスラリー化した粗酸化亜鉛(I)の添加を継続し、中和槽の液面を一定に維持するように、定量ポンプを用いて、中和槽底部からフッ素共沈スラリーを抜き出した。定常状態に達した後の300分間の添加に用いたZF液量は4.5L、フッ素除去液(II)は1.7Lそして粗酸化亜鉛(I)量は584gであった。そして、上記300分間に中和槽底部から抜き出したフッ素共沈スラリーを、ヌッチェを用いて固液分離し、フッ素吸着鉄沈殿物(I)582gとフッ素除去液(I)7.2Lとを得た。フッ素除去液(I)のフッ素濃度は19.0mg/L、亜鉛濃度は115g/Lであった。また、フッ素吸着鉄沈殿物(I)のフッ素含有量は0.055wt%、鉄含有量は21.2wt%であった。結果を纏めて表5に示す。   After reaching the steady state, the fluorine final adsorption treatment step shown in FIG. 4 is performed. Continue to add ZF liquid, fluorine removal liquid (II) and crude zinc oxide (I) slurried with pure water to the neutralization tank, and keep the liquid level in the neutralization tank constant. Using, the fluorine coprecipitation slurry was extracted from the bottom of the neutralization tank. The amount of ZF solution used for addition for 300 minutes after reaching the steady state was 4.5 L, the amount of fluorine removing solution (II) was 1.7 L, and the amount of crude zinc oxide (I) was 584 g. Then, the fluorine coprecipitation slurry extracted from the bottom of the neutralization tank for 300 minutes is subjected to solid-liquid separation using a Nutsche to obtain 582 g of fluorine adsorbed iron precipitate (I) and 7.2 L of fluorine removal liquid (I). It was. The fluorine removal solution (I) had a fluorine concentration of 19.0 mg / L and a zinc concentration of 115 g / L. Moreover, the fluorine content of the fluorine-adsorbed iron precipitate (I) was 0.055 wt%, and the iron content was 21.2 wt%. The results are summarized in Table 5.

Figure 2008196039
Figure 2008196039

<フッ素初期吸着処理>
フッ素初期吸着処理の対象とする液には、粗酸化亜鉛(II)300gを電解尾液1.7Lに溶解して調製した、粗酸化亜鉛溶解液(以下、「母液」と称する。)を用いた。この母液のフッ素濃度は、表6に示すように、229mg/Lであった。
<Fluorine initial adsorption treatment>
As the liquid to be subjected to the fluorine initial adsorption treatment, a crude zinc oxide solution (hereinafter referred to as “mother liquid”) prepared by dissolving 300 g of crude zinc oxide (II) in 1.7 L of electrolytic tail liquid is used. It was. As shown in Table 6, the fluorine concentration of the mother liquor was 229 mg / L.

Figure 2008196039
Figure 2008196039

フッ素初期吸着処理では、母液1.7Lとフッ素吸着鉄沈殿物(I)572gとを混合し、60℃で攪拌しながらフッ素の吸着操作を行った。90分間の吸着操作の後、この混合スラリーをヌッチェを用いて固液分離し、フッ素除去液(II)とフッ素吸着鉄沈殿物(II)とを得た。フッ素除去液(II)のフッ素濃度は80.0mg/L、亜鉛濃度は155g/Lであった。そして、フッ素吸着鉄沈殿物(II)のフッ素含有量は0.086wt%、鉄含有量は20.7wt%であった。上記結果、及び、計算により求めたフッ素吸着鉄沈殿物(II)の〔Fe(g)/F(g)〕比とを纏めて表7に示す。   In the fluorine initial adsorption treatment, 1.7 L of mother liquor and 572 g of fluorine adsorbed iron precipitate (I) were mixed, and the fluorine adsorption operation was performed while stirring at 60 ° C. After the adsorption operation for 90 minutes, the mixed slurry was subjected to solid-liquid separation using a Nutsche to obtain a fluorine removing liquid (II) and a fluorine-adsorbed iron precipitate (II). The fluorine removal solution (II) had a fluorine concentration of 80.0 mg / L and a zinc concentration of 155 g / L. And fluorine content of fluorine adsorption iron precipitate (II) was 0.086 wt%, and iron content was 20.7 wt%. Table 7 summarizes the results and the [Fe (g) / F (g)] ratio of the fluorine-adsorbed iron precipitate (II) obtained by calculation.

Figure 2008196039
Figure 2008196039

<鉄のフッ素吸着能力>
比較例では、フッ素吸着工程に投入された鉄がフッ素を吸着し、最終的に工程外に抜き出されるフッ素吸着鉄沈殿物(II)の〔Fe(g)/F(g)〕比は241であった。逆算すると、鉄1gが吸着したフッ素量は4.1mgである。実施例では鉄1gがフッ素を6.1mg吸着しており、実施例における鉄沈殿物のフッ素吸着能力は、比較例の約1.5倍となる。
<Iron fluoride adsorption capacity>
In the comparative example, the iron introduced into the fluorine adsorption process adsorbs fluorine, and the [Fe (g) / F (g)] ratio of the fluorine adsorbed iron precipitate (II) finally extracted out of the process is 241. Met. In reverse calculation, the amount of fluorine adsorbed by 1 g of iron is 4.1 mg. In the example, 1 g of iron adsorbs 6.1 mg of fluorine, and the fluorine adsorption capacity of the iron precipitate in the example is about 1.5 times that of the comparative example.

<実施例と比較例との対比>
実施例と比較例では共に2サイクルの吸着を実施し、湿式亜鉛製錬用工程液中のフッ素濃度を20mg/L以下にする目標を達成できた。しかし、鉄のフッ素吸着能力で対比すれば、鉄1gが吸着したフッ素量は、比較例の4.1mgに対して実施例では6.1mgであり、約1.5倍に増加している。従って、本件発明に係る工程である、鉄沈殿物を形成しつつフッ素を吸着する方法の優位性が明らかである。
<Contrast between Example and Comparative Example>
In both the example and the comparative example, two cycles of adsorption were performed, and the target of setting the fluorine concentration in the process solution for wet zinc smelting to 20 mg / L or less could be achieved. However, in comparison with the fluorine adsorption capacity of iron, the amount of fluorine adsorbed by 1 g of iron is 6.1 mg in the example compared to 4.1 mg in the comparative example, which is increased by about 1.5 times. Therefore, the superiority of the method of adsorbing fluorine while forming an iron precipitate, which is a process according to the present invention, is clear.

上記実施形態及び実施例において本件発明の内容を具体的に示したが、当業者であれば、本件発明の基本的思想及び教示に基づき、容易に種々のアレンジを行いうるものである。例えば、中和工程には、必ず粗酸化亜鉛を用いなければならないというものでもない。また、パイロットスケール又は量産スケールで実施した場合にはパラメータ及び諸条件に多少の変動がありうる。従って、本件発明は上記に記載の実施例の条件に制約されるものではない。   Although the contents of the present invention have been specifically shown in the above embodiments and examples, those skilled in the art can easily make various arrangements based on the basic idea and teaching of the present invention. For example, it does not necessarily mean that crude zinc oxide must be used in the neutralization step. In addition, when implemented on a pilot scale or mass production scale, there may be some variation in parameters and various conditions. Therefore, the present invention is not limited to the conditions of the embodiments described above.

本件発明に係るフッ素除去方法を用いれば、湿式亜鉛製錬用工程液のフッ素濃度を安定して20mg/L以下にできる。析出する鉄沈殿物にフッ素イオンを吸着共沈させるため、吸着剤の持つ吸着サイトを最大限に活用できるためである。また、フッ素を吸着した鉄沈殿物を複数回フッ素吸着用の鉄原料として使用するので、鉄沈殿物の有しているフッ素吸着能力を最大限に有効活用できる。また、当該湿式亜鉛製錬工程では、自工程で発生するジンクフェライトを含んだ未溶解残渣をフッ素吸着剤とする鉄化合物の原料として用いることができる。更に、実施する操作は、溶解、中和、固液分離が中心であり、特別の工程を新設しなくても、湿式亜鉛製錬用工程液中のフッ素濃度を管理する手法として有効に用いることができる方法である。そして、鉄化合物や硫酸酸性溶液に工業薬品レベルのものを用いれば、フッ素を含有する廃水等の処理にも適用可能である。   If the fluorine removal method according to the present invention is used, the fluorine concentration of the process liquid for wet zinc smelting can be stably reduced to 20 mg / L or less. This is because the adsorption sites of the adsorbent can be utilized to the maximum because fluorine ions are adsorbed and co-precipitated on the iron precipitate to be deposited. Moreover, since the iron precipitate which adsorb | sucked fluorine is used as an iron raw material for fluorine adsorption in multiple times, the fluorine adsorption capability which an iron precipitate has can be utilized effectively to the maximum. Moreover, in the said wet zinc smelting process, it can use as a raw material of the iron compound which uses the undissolved residue containing the zinc ferrite generated in a self process as a fluorine adsorbent. Furthermore, the operations to be performed are mainly dissolution, neutralization, and solid-liquid separation, and should be used effectively as a technique for managing the fluorine concentration in the process liquid for wet zinc smelting, without the need for a new process. It is a method that can be. And if an industrial chemical level thing is used for an iron compound and a sulfuric acid acidic solution, it is applicable also to processing of the waste water etc. which contain fluorine.

本件発明に係る湿式亜鉛製錬用工程液からフッ素を除去する工程を2サイクルで実施する場合の、定常状態におけるフローシートである。It is a flow sheet in a steady state when the process of removing fluorine from the process liquid for wet zinc smelting according to the present invention is performed in two cycles. 実施例において、第2サイクルで用いるフッ素吸着鉄沈殿物(I)の事前形成に適用した、定常状態におけるフローシートである。In an Example, it is the flow sheet in the steady state applied to the preforming of the fluorine adsorption iron precipitate (I) used by a 2nd cycle. 実施例に適用した、定常状態におけるフローシートである。It is the flow sheet in the steady state applied to the Example. 比較例に適用した、定常状態におけるフローシートである。It is the flow sheet in the steady state applied to the comparative example.

Claims (4)

鉄沈殿物を吸着剤に用いてフッ素を吸着除去する湿式亜鉛製錬用工程液のフッ素除去方法であって、
以下のステップA〜ステップCを1サイクルとして、この1サイクルを複数サイクル(第1サイクル〜第nサイクル:但し、n≧2)繰り返してフッ素を除去する工程の、第nサイクルのステップAで用いる鉄化合物は第(n−1)サイクルのステップCで得られたフッ素吸着鉄沈殿物であることを特徴とする湿式亜鉛製錬用工程液のフッ素除去方法。
ステップA: 鉄化合物を硫酸酸性溶液に溶解してフッ素吸着用鉄溶液を得るフッ素吸着用鉄溶液調製工程。
ステップB: 前記フッ素吸着用鉄溶液を中和して鉄沈殿物を形成させ、溶液中のフッ素イオンを析出する鉄沈殿物に吸着共沈させたフッ素共沈スラリーを得るフッ素共沈工程。
ステップC: ステップBで得られたフッ素共沈スラリーをフッ素除去液とフッ素吸着鉄沈殿物に分別するフッ素除去液回収工程。
A method of removing fluorine from a process liquid for wet zinc smelting using an iron precipitate as an adsorbent to adsorb and remove fluorine,
The following Step A to Step C are defined as one cycle, and this one cycle is used in Step A of the nth cycle of the process of removing fluorine by repeating a plurality of cycles (1st cycle to nth cycle: where n ≧ 2). The method for removing fluorine from a process liquid for wet zinc smelting, wherein the iron compound is a fluorine-adsorbed iron precipitate obtained in Step C of the (n-1) th cycle.
Step A: A fluorine adsorption iron solution preparation step in which an iron compound is dissolved in a sulfuric acid acidic solution to obtain a fluorine adsorption iron solution.
Step B: A fluorine coprecipitation step of obtaining a fluorine coprecipitation slurry in which the iron solution for fluorine adsorption is neutralized to form an iron precipitate and adsorbed and coprecipitated on the iron precipitate that deposits fluorine ions in the solution.
Step C: Fluorine removal liquid recovery step of separating the fluorine coprecipitation slurry obtained in Step B into a fluorine removal liquid and a fluorine adsorbed iron precipitate.
第1サイクルの前記ステップAで調製するフッ素吸着用鉄溶液は、硫酸酸性溶液に電解尾液を用い、鉄化合物には未溶解残渣を用いて当該未溶解残渣に含まれる鉄及び亜鉛を電解尾液に抽出したものである請求項1に記載のフッ素除去方法。 The iron solution for fluorine adsorption prepared in Step A of the first cycle uses an electrolytic tail solution as the sulfuric acid acidic solution, and uses an undissolved residue as the iron compound, and converts the iron and zinc contained in the undissolved residue into an electrolytic tail. The method for removing fluorine according to claim 1, which is extracted into a liquid. 前記ステップBの中和にフッ素を含有した亜鉛含有物を用いる請求項1又は請求項2に記載のフッ素除去方法。 The fluorine removal method according to claim 1 or 2, wherein a zinc-containing material containing fluorine is used for neutralization in the step B. 第nサイクルの前記ステップCで得られたフッ素除去液を、第(n−1)サイクルの前記ステップA又は第(n−1)サイクルの前記ステップBの一方又は両方で用いる請求項1〜請求項3のいずれかに記載のフッ素除去方法。 The fluorine removing liquid obtained in Step C of the nth cycle is used in one or both of Step A of the (n-1) cycle and Step B of the (n-1) cycle. Item 4. The method for removing fluorine according to any one of Items 3 to 4.
JP2007035368A 2007-02-15 2007-02-15 Method of removing fluorine from processing liquid used in wet zinc smelting Pending JP2008196039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007035368A JP2008196039A (en) 2007-02-15 2007-02-15 Method of removing fluorine from processing liquid used in wet zinc smelting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007035368A JP2008196039A (en) 2007-02-15 2007-02-15 Method of removing fluorine from processing liquid used in wet zinc smelting

Publications (1)

Publication Number Publication Date
JP2008196039A true JP2008196039A (en) 2008-08-28

Family

ID=39755247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007035368A Pending JP2008196039A (en) 2007-02-15 2007-02-15 Method of removing fluorine from processing liquid used in wet zinc smelting

Country Status (1)

Country Link
JP (1) JP2008196039A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102921385A (en) * 2012-11-29 2013-02-13 四川师范大学 Process for preparing modified humic acid fluorine-removal adsorption material
WO2023221907A1 (en) * 2022-05-19 2023-11-23 中南大学 Method for synchronously removing fluorine, chlorine and iron in solution

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102921385A (en) * 2012-11-29 2013-02-13 四川师范大学 Process for preparing modified humic acid fluorine-removal adsorption material
WO2023221907A1 (en) * 2022-05-19 2023-11-23 中南大学 Method for synchronously removing fluorine, chlorine and iron in solution

Similar Documents

Publication Publication Date Title
JP5541336B2 (en) Method for producing high purity cobalt sulfate aqueous solution
JP4921529B2 (en) Copper converter dust treatment method
JP2006055834A (en) Fluorine absorption/desorption agent for electrolysis solution in zinc electrolytic refining, and method for removing fluorine using the fluorine absorption/desorption agent
JP6077624B2 (en) Method for treating zinc sulfate containing solution
WO2015146329A1 (en) Copper removal method for aqueous nickel chloride solution
WO2020196046A1 (en) Method for manufacturing nickel and cobalt-containing solution from hydroxide containing nickel and cobalt
JP2014526614A (en) Zinc oxide purification method
EA020759B1 (en) Method of processing nickel bearing raw material
CN102732722A (en) Zinc hydrometallurgy method for removing fluorine and chlorine by extraction
JP7070209B2 (en) Method for manufacturing high-purity cobalt chloride aqueous solution
JP7070208B2 (en) Method for manufacturing high-purity cobalt chloride aqueous solution
JP2012167334A (en) METHOD OF RECOVERING Ir FROM PLATINUM GROUP-CONTAINING SOLUTION
JP4079018B2 (en) Method for purifying cobalt aqueous solution
JP4215547B2 (en) Cobalt recovery method
Kumar et al. Recovery of cadmium from hydrometallurgical zinc smelter by selective leaching
CN103221557B (en) Method for producing nickel-ontaining acidic solution
WO2017130692A1 (en) Method for recovering scandium
JP2006316293A (en) Method for removing manganese from cobalt sulfate solution
JP2008196039A (en) Method of removing fluorine from processing liquid used in wet zinc smelting
JP4907985B2 (en) Fluorine removal method
JP2010202457A (en) Method for removing chlorine in acidic liquid
CN1960796A (en) Method of obtaining electrolytic manganese from ferroalloy production waste
JP2010264331A (en) Separation method of arsenic
JP7383550B2 (en) Manganese ion removal method
JP6206358B2 (en) Scandium recovery method