JP5217945B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP5217945B2
JP5217945B2 JP2008295238A JP2008295238A JP5217945B2 JP 5217945 B2 JP5217945 B2 JP 5217945B2 JP 2008295238 A JP2008295238 A JP 2008295238A JP 2008295238 A JP2008295238 A JP 2008295238A JP 5217945 B2 JP5217945 B2 JP 5217945B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
compressor
pipe
internal heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008295238A
Other languages
Japanese (ja)
Other versions
JP2010121844A (en
Inventor
典穂 岡座
由樹 山岡
和生 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008295238A priority Critical patent/JP5217945B2/en
Publication of JP2010121844A publication Critical patent/JP2010121844A/en
Application granted granted Critical
Publication of JP5217945B2 publication Critical patent/JP5217945B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

本発明は、ヒートポンプ給湯機などに利用される冷凍サイクル装置であって、放熱器から流出した高圧側冷媒と、蒸発器から流出した低圧側冷媒との間で熱交換を行わせる内部熱交換器を備えた冷凍サイクル装置に関する。   The present invention is a refrigeration cycle apparatus used in a heat pump water heater or the like, and an internal heat exchanger that exchanges heat between a high-pressure refrigerant flowing out of a radiator and a low-pressure refrigerant flowing out of an evaporator The present invention relates to a refrigeration cycle apparatus including

ヒートポンプ式給湯機などに利用される冷凍サイクル装置において、内部熱交換器を設け、この内部熱交換器によって、放熱器から減圧手段に供給される冷媒と蒸発器から圧縮機に供給される冷媒との熱交換を行い、圧縮機に吸入される冷媒温度を高めることで、圧縮機の吐出温度を高め、その結果、放熱器で生成される湯の温度を高めるものが提案されている。   In a refrigeration cycle apparatus used for a heat pump hot water heater or the like, an internal heat exchanger is provided, and by this internal heat exchanger, a refrigerant supplied from the radiator to the decompression means and a refrigerant supplied from the evaporator to the compressor It has been proposed to increase the temperature of the hot water generated by the radiator as a result of increasing the refrigerant temperature sucked into the compressor and increasing the discharge temperature of the compressor.

図6に内部熱交換器を用いたヒートポンプ式給湯機の概略図を示す。   FIG. 6 shows a schematic diagram of a heat pump type water heater using an internal heat exchanger.

図6において、冷凍サイクル装置10は、圧縮機11、放熱器12(水熱交換器)、減圧手段13、及び蒸発器14を配管で接続して冷凍サイクルが構成されている。内部熱交換器30は、蒸発器14から圧縮機11に至る低圧側流路30Aを流れる低圧側冷媒と、放熱器12から減圧手段13に至る高圧側流路30Bを流れる高圧冷媒との間で熱交換を行う。   In FIG. 6, the refrigeration cycle apparatus 10 has a refrigeration cycle in which a compressor 11, a radiator 12 (water heat exchanger), a decompression means 13, and an evaporator 14 are connected by piping. The internal heat exchanger 30 is between the low-pressure side refrigerant flowing through the low-pressure side flow path 30A from the evaporator 14 to the compressor 11 and the high-pressure refrigerant flowing through the high-pressure side flow path 30B from the radiator 12 to the decompression means 13. Perform heat exchange.

内部熱交換器30の設置方法として、送風室や機械室の下部に、放熱器12とともに設置するものが提案されている(例えば、特許文献1、特許文献2参照)。特許文献1では、放熱器12の低温側となる部分近傍に内部熱交換器30を設置すること、特許文献2では、放熱器12と内部熱交換器30の間に断熱材を挿入することで、放熱器12から内部熱交換器30への熱の移動を防止している。
特開2006−336894号公報 特開2007−285611号公報
As an installation method of the internal heat exchanger 30, an installation method is proposed that is installed together with the radiator 12 in the lower part of the blower chamber or the machine room (see, for example, Patent Document 1 and Patent Document 2). In Patent Document 1, the internal heat exchanger 30 is installed near the portion on the low temperature side of the radiator 12, and in Patent Document 2, a heat insulating material is inserted between the radiator 12 and the internal heat exchanger 30. The heat transfer from the radiator 12 to the internal heat exchanger 30 is prevented.
JP 2006-336894 A JP 2007-285611 A

冷媒として二酸化炭素を用いる冷凍サイクルにおいて内部熱交換器を設け、冷凍サイクルの効率を向上させることは有効である。特に、ヒートポンプ式給湯機において、内部熱交換器を設け、圧縮機に吸入される冷媒温度を高めることで、圧縮機の吐出温度を高め、その結果、放熱器で生成される湯の温度を高めることは有効である。   It is effective to improve the efficiency of the refrigeration cycle by providing an internal heat exchanger in the refrigeration cycle using carbon dioxide as the refrigerant. In particular, in a heat pump water heater, an internal heat exchanger is provided to increase the refrigerant temperature sucked into the compressor, thereby increasing the discharge temperature of the compressor and, as a result, increasing the temperature of hot water generated by the radiator. It is effective.

しかし、特許文献1、特許文献2のように、圧縮機から離れた位置に設置された放熱器の近傍に、内部熱交換器を設置すると、圧縮機の吸入部と内部熱交換器の低圧側入口部との配管が長くなり、この配管を冷媒が流れる際の圧力損失が増大し、冷凍サイクルの効率を低下させるといった課題を生じる。   However, as in Patent Document 1 and Patent Document 2, if an internal heat exchanger is installed in the vicinity of a radiator installed at a position away from the compressor, the suction portion of the compressor and the low pressure side of the internal heat exchanger The piping with an inlet part becomes long, the pressure loss at the time of a refrigerant | coolant flowing through this piping increases, and the subject that the efficiency of a refrigerating cycle falls is produced.

一方、内部熱交換器を圧縮機の近傍に設置すると、圧縮機から内部熱交換器への熱の移動により、圧縮機の吐出温度を低下させ、その結果、放熱器で生成される湯の温度を低下させることで、冷凍サイクルの効率を低下させるといった課題を生じる。   On the other hand, when the internal heat exchanger is installed in the vicinity of the compressor, the discharge temperature of the compressor is lowered by the transfer of heat from the compressor to the internal heat exchanger, and as a result, the temperature of the hot water generated by the radiator As a result, the problem of reducing the efficiency of the refrigeration cycle occurs.

本発明は、上記従来の課題を解決するもので、圧縮機と内部熱交換器との間の配管での圧力損失の増大を抑制するとともに、圧縮機から内部熱交換器への熱の移動も防止し、効率の良い冷凍サイクル装置を、低コストで提供することを目的とする。   The present invention solves the above-described conventional problems, and suppresses an increase in pressure loss in piping between the compressor and the internal heat exchanger, and also transfers heat from the compressor to the internal heat exchanger. An object of the present invention is to provide an efficient refrigeration cycle apparatus that can be prevented at low cost.

前記従来の課題を解決するために本発明の冷凍サイクル装置は、圧縮機、放熱器、減圧手段、蒸発器を冷媒配管で接続して冷媒を循環させる冷媒回路を備え、前記放熱器と前記減圧手段との間を流れる高圧側冷媒と、前記蒸発器と前記圧縮機との間を流れる低圧側冷媒とを熱交換させるとともに、前記高圧側冷媒が流れる配管を内方に、前記低圧側冷媒が流れる配管をその外方に配設した二重管構成である内部熱交換器を有し、前記内部熱交換器を前記圧縮機の近傍に設置するとともに、前記圧縮機と前記内部熱交換器との間に、板状の断熱材を設けたことを特徴とするもので、圧力損失が増大しやすい吸入配管での圧力損失を抑制するとともに、圧縮機から比較的低温となる内部熱交換器への熱の移動を防止することができ、冷凍サイクルの効率の低下を防止することができる。 In order to solve the conventional problems, the refrigeration cycle apparatus of the present invention includes a compressor, a radiator, a decompression unit, and a refrigerant circuit that circulates a refrigerant by connecting an evaporator with a refrigerant pipe, and the radiator and the decompression unit. Heat exchange between the high-pressure side refrigerant flowing between the means and the low-pressure side refrigerant flowing between the evaporator and the compressor, and the low- pressure side refrigerant is placed inside a pipe through which the high-pressure side refrigerant flows. includes an internal heat exchanger pipe is its outer double tube structure which is disposed in the flow, we established the internal heat exchanger in the vicinity of the compressor, said internal heat exchanger and the compressor It is characterized by providing a plate-shaped heat insulating material between the compressor and the pressure loss in the suction pipe, where pressure loss tends to increase. Refrigeration cycle that can prevent heat transfer It is possible to prevent a reduction in efficiency.

本発明によれば、圧縮機と内部熱交換器との間の配管での圧力損失の増大を抑制するとともに、圧縮機から内部熱交換器への熱の移動も防止し、効率の良い冷凍サイクル装置を
、低コストで提供できる。
According to the present invention, an increase in pressure loss in the pipe between the compressor and the internal heat exchanger is suppressed, and heat transfer from the compressor to the internal heat exchanger is also prevented, so that an efficient refrigeration cycle is achieved. The device can be provided at low cost.

第1の発明は、圧縮機、放熱器、減圧手段、蒸発器を冷媒配管で接続して冷媒を循環させる冷媒回路を備え、前記放熱器と前記減圧手段との間を流れる高圧側冷媒と、前記蒸発器と前記圧縮機との間を流れる低圧側冷媒とを熱交換させるとともに、前記高圧側冷媒が流れる配管を内方に、前記低圧側冷媒が流れる配管をその外方に配設した二重管構成である内部熱交換器を有し、前記内部熱交換器を前記圧縮機の近傍に設置するとともに、前記圧縮機と前記内部熱交換器との間に、板状の断熱材を設けたことを特徴とするものである。 The first invention comprises a refrigerant circuit that circulates a refrigerant by connecting a compressor, a radiator, a decompression unit, and an evaporator with refrigerant piping, and a high-pressure side refrigerant that flows between the radiator and the decompression unit; Heat exchange is performed between the low-pressure refrigerant flowing between the evaporator and the compressor, a pipe through which the high-pressure refrigerant flows is arranged inward, and a pipe through which the low-pressure refrigerant flows is arranged outward. An internal heat exchanger having a heavy pipe configuration is provided, and the internal heat exchanger is installed in the vicinity of the compressor, and a plate-like heat insulating material is provided between the compressor and the internal heat exchanger. It is characterized by that .

これにより、圧力損失が増大しやすい吸入配管での圧力損失を抑制するとともに、圧縮機から比較的低温となる内部熱交換器への熱の移動を防止することができ、冷凍サイクルの効率の低下を防止することができる。 As a result, pressure loss in the suction pipe, where pressure loss tends to increase, can be suppressed, and heat transfer from the compressor to the internal heat exchanger at a relatively low temperature can be prevented, reducing the efficiency of the refrigeration cycle. Can be prevented .

第2の発明は、断熱材を、内部熱交換器が圧縮機の高温部と近接する部分のみに設けることを特徴とするもので、圧力損失が増大しやすい吸入配管での圧力損失を抑制するとともに、圧縮機から比較的低温となる内部熱交換器への熱の移動を防止することができ、冷凍サイクルの効率の低下を、低コストで防止することができる。 The second invention is characterized in that the heat insulating material is provided only in a portion where the internal heat exchanger is close to the high temperature portion of the compressor, and suppresses the pressure loss in the suction pipe where the pressure loss is likely to increase. At the same time, heat transfer from the compressor to the internal heat exchanger having a relatively low temperature can be prevented, and a reduction in efficiency of the refrigeration cycle can be prevented at low cost.

以下、添付の図面を参照しつつ本発明の実施の形態について説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本実施の形態にかかる冷凍サイクル装置の熱源ユニット110の構成概略図である。熱源ユニット110は、冷媒を高温、高圧に圧縮する圧縮機11と、圧縮機11で圧縮された冷媒により水を加熱する水冷媒熱交換器12と、水冷媒熱交換器12で冷却された冷媒を減圧する減圧手段13と、減圧手段13で減圧した冷媒を蒸発させる蒸発器14とを備えている。
(Embodiment 1)
FIG. 1 is a schematic configuration diagram of a heat source unit 110 of the refrigeration cycle apparatus according to the present embodiment. The heat source unit 110 includes a compressor 11 that compresses the refrigerant to a high temperature and a high pressure, a water refrigerant heat exchanger 12 that heats water using the refrigerant compressed by the compressor 11, and a refrigerant that is cooled by the water refrigerant heat exchanger 12. And a evaporator 14 for evaporating the refrigerant decompressed by the decompression means 13.

内部熱交換器30は、蒸発器14から圧縮機11の間を流れる低圧側冷媒と、放熱器12から減圧手段13の間を流れる高圧冷媒との間で熱交換を行うように構成されている。圧縮機11、水冷媒熱交換器12、減圧手段13、蒸発器14および内部熱交換器30は、冷媒が循環するように冷媒配管によって相互に接続され冷媒回路を構成している。冷媒回路には、二酸化炭素(R744)が冷媒として充填されている。   The internal heat exchanger 30 is configured to exchange heat between the low-pressure refrigerant flowing between the evaporator 14 and the compressor 11 and the high-pressure refrigerant flowing between the radiator 12 and the decompression unit 13. . The compressor 11, the water-refrigerant heat exchanger 12, the decompression means 13, the evaporator 14, and the internal heat exchanger 30 are connected to each other by a refrigerant pipe so as to circulate the refrigerant, thereby constituting a refrigerant circuit. The refrigerant circuit is filled with carbon dioxide (R744) as a refrigerant.

また、蒸発器14に隣接する形でファン17が設けられている。ファン17は、蒸発器14で冷媒と熱交換するべき空気を蒸発器14に供給する。仕切板41は、ファン17が蒸発器14へ送風する送風室の一部を形成しており、ファン17が送風する空気が、圧縮機11や減圧手段13やそれらの接続配管に当たらないように構成されている。   A fan 17 is provided adjacent to the evaporator 14. The fan 17 supplies the evaporator 14 with air to be exchanged with the refrigerant in the evaporator 14. The partition plate 41 forms a part of a blower chamber through which the fan 17 blows air to the evaporator 14, so that the air blown by the fan 17 does not hit the compressor 11, the decompression means 13, and their connection pipes. It is configured.

水冷媒熱交換器12は、冷媒入口部12a、冷媒出口部12b、水入口部12c、水出口部12dを有している。冷媒は、圧縮機11より吐出配管35を通って冷媒入口部12aから流入し、水冷媒熱交換器12で水と熱交換し、冷媒出口部12bより流出する。   The water-refrigerant heat exchanger 12 has a refrigerant inlet part 12a, a refrigerant outlet part 12b, a water inlet part 12c, and a water outlet part 12d. The refrigerant flows from the compressor 11 through the discharge pipe 35 through the refrigerant inlet portion 12a, exchanges heat with water in the water / refrigerant heat exchanger 12, and flows out from the refrigerant outlet portion 12b.

その後、冷媒は配管36を通って、内部熱交換器30の高圧側流路30Bに導入された後、減圧手段13で減圧される。減圧された冷媒は、蒸発器14で空気と熱交換した後、内部熱交換器30の低圧側流路30Aに導入される。その後、冷媒は、吸入配管37を通って、圧縮機11に吸入される。   Thereafter, the refrigerant is introduced into the high-pressure channel 30 </ b> B of the internal heat exchanger 30 through the pipe 36, and then depressurized by the decompression means 13. The decompressed refrigerant exchanges heat with air in the evaporator 14 and then is introduced into the low-pressure channel 30 </ b> A of the internal heat exchanger 30. Thereafter, the refrigerant is sucked into the compressor 11 through the suction pipe 37.

一方、貯湯タンクユニット(図示せず)の水は、水配管(図示せず)を通って、水配管接続口18から熱源ユニット110に導入され、水入口部12cから水冷媒熱交換器12に流入し、水出口部12dよりお湯となって流出する。   On the other hand, the water in the hot water storage tank unit (not shown) passes through a water pipe (not shown), is introduced into the heat source unit 110 from the water pipe connection port 18, and is supplied from the water inlet portion 12c to the water refrigerant heat exchanger 12. It flows in and flows out as hot water from the water outlet 12d.

その後、お湯は、湯配管接続口19から、熱源ユニット110から出て、湯配管(図示せず)を通って、再び、貯湯タンクユニット(図示せず)に戻る。   Thereafter, the hot water exits the heat source unit 110 from the hot water pipe connection port 19, passes through the hot water pipe (not shown), and returns to the hot water storage tank unit (not shown).

熱源ユニット110の底部は基板42により構成されている。圧縮機11、水冷媒熱交換器12、蒸発器14などの冷媒回路の主要構成要素や仕切板41は、基板42に固定されている。また、熱源ユニット110の天部は天板43により覆われている。   The bottom of the heat source unit 110 is configured by the substrate 42. Main components of the refrigerant circuit such as the compressor 11, the water / refrigerant heat exchanger 12, and the evaporator 14 and the partition plate 41 are fixed to the substrate 42. The top of the heat source unit 110 is covered with a top plate 43.

さらに、熱源ユニット110の周囲は、蒸発器14で構成されている部分を除いて、筐体外装板44により覆われている。機械室111は、四方を仕切板41と筐体外装板44の一部とにより仕切られ、上下を天板43の一部と基板42の一部により仕切られた空間である。   Further, the periphery of the heat source unit 110 is covered with a casing exterior plate 44 except for the portion constituted by the evaporator 14. The machine room 111 is a space that is partitioned on four sides by the partition plate 41 and a part of the casing exterior plate 44, and is vertically partitioned by a part of the top plate 43 and a part of the substrate 42.

圧縮機11には、スクロール式、レシプロ式、ロータリ式などの容積式の流体機構を採用できる。水冷媒熱交換器12には、二重管式、プレート式などの熱交換器が採用できる。蒸発器14は、フィンチューブ型熱交換器に代表される空気熱交換器である。   The compressor 11 may employ a positive displacement fluid mechanism such as a scroll type, a reciprocating type, or a rotary type. The water-refrigerant heat exchanger 12 can employ a heat exchanger such as a double pipe type or a plate type. The evaporator 14 is an air heat exchanger represented by a fin tube type heat exchanger.

次に、内部熱交換器30の構成について説明する。図2は、本実施の形態にかかる内部熱交換器の要部側面図、図3は図2におけるX−X線断面図である。   Next, the configuration of the internal heat exchanger 30 will be described. FIG. 2 is a side view of the main part of the internal heat exchanger according to the present embodiment, and FIG. 3 is a cross-sectional view taken along line XX in FIG.

内部熱交換器30は、第1冷媒管31と第2冷媒管32とから構成されている。第2冷媒管32は、第1冷媒管31より細管であり、第2冷媒管32は第1冷媒管31内に配置されている。内部熱交換器30の両端にはそれぞれ所定大きさのヘッダ33を有している。   The internal heat exchanger 30 includes a first refrigerant pipe 31 and a second refrigerant pipe 32. The second refrigerant pipe 32 is narrower than the first refrigerant pipe 31, and the second refrigerant pipe 32 is disposed in the first refrigerant pipe 31. Each end of the internal heat exchanger 30 has a header 33 having a predetermined size.

ヘッダ33は、所定長さの管を、拡管加工または縮管加工によって一端側開口部331を他端側開口部332よりも小さく形成し、一端側開口部331には第1冷媒管31を溶接によって接続し、他端側開口部332には第2冷媒管32の一部である第2接続管35A、35Bとともに第1接続管34A、34Bを溶接によって接続する。すなわち、第1接続管34A、34Bは、第1冷媒管31と連通している。第2接続管35A、35Bは、第2冷媒管32の一部である。   The header 33 is formed with a pipe having a predetermined length by forming the one end side opening 331 smaller than the other end side opening 332 by pipe expansion or contraction, and the first refrigerant pipe 31 is welded to the one end side opening 331. The first connection pipes 34A and 34B are connected to the other end side opening 332 by welding together with the second connection pipes 35A and 35B which are part of the second refrigerant pipe 32. That is, the first connection pipes 34 </ b> A and 34 </ b> B communicate with the first refrigerant pipe 31. The second connection pipes 35 </ b> A and 35 </ b> B are part of the second refrigerant pipe 32.

第1冷媒管31における冷媒流れ方向と第2冷媒管32における冷媒流れ方向とは対向している。すなわち、第1接続管34Aは、蒸発器14の出口部に接続され、第1接続管34Bは、圧縮機11の吸入配管37に接続されている。第2接続管35Bは、放熱器12の出口側の配管36に接続され、第2接続管35Aは、減圧手段13の入口部に接続されている。   The refrigerant flow direction in the first refrigerant pipe 31 and the refrigerant flow direction in the second refrigerant pipe 32 are opposed to each other. That is, the first connection pipe 34 </ b> A is connected to the outlet portion of the evaporator 14, and the first connection pipe 34 </ b> B is connected to the suction pipe 37 of the compressor 11. The second connection pipe 35 </ b> B is connected to the pipe 36 on the outlet side of the radiator 12, and the second connection pipe 35 </ b> A is connected to the inlet portion of the decompression means 13.

したがって、図3に示すように、第2冷媒管32の管内は、高圧側流路30Bを構成し、放熱器12から減圧手段13に至る高圧冷媒が流れ、第1冷媒管31の管内と第2冷媒管32の管外とで低圧側流路30Aを構成し、蒸発器14から圧縮機11に至る低圧側冷媒が流れる。そして、低圧側流路30Aを流れる低圧側冷媒と高圧側流路30Bを流れる高圧冷媒との間で熱交換を行う。   Therefore, as shown in FIG. 3, the inside of the second refrigerant pipe 32 constitutes a high-pressure side flow path 30 </ b> B, and high-pressure refrigerant from the radiator 12 to the decompression means 13 flows, and the first refrigerant pipe 31 and the second refrigerant pipe 32 The low pressure side flow path 30 </ b> A is configured outside the two refrigerant pipes 32, and the low pressure side refrigerant from the evaporator 14 to the compressor 11 flows. Then, heat exchange is performed between the low-pressure refrigerant flowing through the low-pressure channel 30A and the high-pressure refrigerant flowing through the high-pressure channel 30B.

本実施の形態では、内部熱交換器30は、図1に示すように、圧縮機11の近傍に設置されている。すなわち、吸入配管37は可能な限り短く構成されている。したがって、圧力損失が増大しやすい吸入配管37での圧力損失を抑制することができる。さらに、図1
に示すように、内部熱交換器30の周囲には第1断熱部材51を設けている。
In the present embodiment, the internal heat exchanger 30 is installed in the vicinity of the compressor 11 as shown in FIG. That is, the suction pipe 37 is configured to be as short as possible. Therefore, it is possible to suppress the pressure loss in the suction pipe 37 where the pressure loss is likely to increase. In addition, FIG.
As shown in FIG. 1, a first heat insulating member 51 is provided around the internal heat exchanger 30.

したがって、高温となる圧縮機11から比較的低温となる内部熱交換器30への熱の移動を防止することができ、圧縮機11の吐出温度や、放熱器12で生成される湯の温度の低下、さらには、冷凍サイクルの効率の低下を防止することができる。   Therefore, the heat transfer from the compressor 11 at a high temperature to the internal heat exchanger 30 at a relatively low temperature can be prevented, and the discharge temperature of the compressor 11 and the temperature of hot water generated by the radiator 12 can be prevented. A decrease, and further, a decrease in the efficiency of the refrigeration cycle can be prevented.

なお、図4に示すように、内部熱交換器30のうち、圧縮機11の高温部と近接する部分のみ、内部熱交換器30の周囲に第2断熱部材52を設けてもよい。   As shown in FIG. 4, the second heat insulating member 52 may be provided around the internal heat exchanger 30 only in a portion of the internal heat exchanger 30 that is close to the high temperature portion of the compressor 11.

また、吸入配管37は、圧縮機11の振動が内部熱交換器30へ伝わることを防止するために必要な長さを設けたり、あるいは、立体的に屈曲させたりしてもよい。また、第1冷媒管31及び第2冷媒管32は、配設される空間に応じて所定の折り曲げ部を形成してもよい。   Further, the suction pipe 37 may be provided with a length necessary for preventing the vibration of the compressor 11 from being transmitted to the internal heat exchanger 30, or may be bent three-dimensionally. Moreover, the 1st refrigerant | coolant pipe | tube 31 and the 2nd refrigerant | coolant pipe | tube 32 may form a predetermined bending part according to the space arrange | positioned.

以上の構成により、圧縮機11と内部熱交換器30との間の吸入配管37での圧力損失の増大を抑制するとともに、圧縮機11から内部熱交換器30への熱の移動も防止できる。さらに、内部熱交換器30が圧縮機11の高温部と近接する部分のみに断熱材を設けることで、圧縮機11から内部熱交換器30への熱の移動の防止を、低コストで実現できる。   With the above configuration, an increase in pressure loss in the suction pipe 37 between the compressor 11 and the internal heat exchanger 30 can be suppressed, and heat transfer from the compressor 11 to the internal heat exchanger 30 can be prevented. Furthermore, by providing a heat insulating material only in the part where the internal heat exchanger 30 is close to the high temperature part of the compressor 11, prevention of heat transfer from the compressor 11 to the internal heat exchanger 30 can be realized at low cost. .

また、図5において、第3断熱部材53は、圧縮機11の近傍に設置された内部熱交換器30と圧縮機11の間に設けられた板状の断熱材である。これによれば、圧縮機11と内部熱交換器30との間の吸入配管37での圧力損失の増大を抑制するとともに、圧縮機11から内部熱交換器30への熱の移動も防止できる。さらに、内部熱交換器30が圧縮機11の高温部と近接する部分のみに断熱材を設けることで、圧縮機11から内部熱交換器30への熱の移動の防止を、低コストで実現できる。   In FIG. 5, the third heat insulating member 53 is a plate-like heat insulating material provided between the internal heat exchanger 30 installed in the vicinity of the compressor 11 and the compressor 11. According to this, an increase in pressure loss in the suction pipe 37 between the compressor 11 and the internal heat exchanger 30 can be suppressed, and heat transfer from the compressor 11 to the internal heat exchanger 30 can be prevented. Furthermore, by providing a heat insulating material only in the part where the internal heat exchanger 30 is close to the high temperature part of the compressor 11, prevention of heat transfer from the compressor 11 to the internal heat exchanger 30 can be realized at low cost. .

なお、以上の実施の形態では、二重管式の内部熱交換器で説明したが、第1冷媒管31と第2冷媒管32とを長手方向に沿わすことで熱的に接するように配置したパイプ型内部熱交換器であってもよい。第1断熱部材51、第2断熱部材52、第3断熱部材53に用いる断熱材はグラスウール、発泡系ウレタン、真空断熱材、吸音効果と断熱効果のあるフエルト系の吸音断熱材の少なくとも一つで構成されている。   In the above embodiment, the double-tube internal heat exchanger has been described. However, the first refrigerant pipe 31 and the second refrigerant pipe 32 are arranged so as to be in thermal contact with each other along the longitudinal direction. It may be a pipe-type internal heat exchanger. The heat insulating material used for the first heat insulating member 51, the second heat insulating member 52, and the third heat insulating member 53 is at least one of glass wool, foamed urethane, vacuum heat insulating material, and felt type heat absorbing heat insulating material having a sound absorbing effect and a heat insulating effect. It is configured.

本発明のヒートポンプ給湯機は、家庭用、業務用を問わず広い用途に適用することができる。   The heat pump water heater of the present invention can be applied to a wide range of uses regardless of home use or business use.

本発明の実施の形態1におけるヒートポンプ給湯機の熱源ユニットの概略正面図Schematic front view of the heat source unit of the heat pump water heater in Embodiment 1 of the present invention 同内部熱交換器の要部側面図Side view of the main part of the internal heat exchanger 図2のX―X断面図XX sectional view of FIG. 本発明の実施の形態1におけるヒートポンプ給湯機の他の熱源ユニットの概略正面図Schematic front view of another heat source unit of the heat pump water heater in Embodiment 1 of the present invention 本発明の実施の形態1におけるヒートポンプ給湯機の他の熱源ユニットの概略正面図Schematic front view of another heat source unit of the heat pump water heater in Embodiment 1 of the present invention 従来のヒートポンプ給湯機の回路図Circuit diagram of conventional heat pump water heater

11 圧縮機
12 放熱器
13 減圧手段
14 蒸発器
17 ファン
30 内部熱交換器
31 第1冷媒管
32 第2冷媒管
37 吸入配管
51 第1断熱部材
52 第2断熱部材
53 第3断熱部材
DESCRIPTION OF SYMBOLS 11 Compressor 12 Radiator 13 Pressure reducing means 14 Evaporator 17 Fan 30 Internal heat exchanger 31 First refrigerant pipe 32 Second refrigerant pipe 37 Suction pipe 51 First heat insulating member 52 Second heat insulating member 53 Third heat insulating member

Claims (2)

圧縮機、放熱器、減圧手段、蒸発器を冷媒配管で接続して冷媒を循環させる冷媒回路を備え、前記放熱器と前記減圧手段との間を流れる高圧側冷媒と、前記蒸発器と前記圧縮機との間を流れる低圧側冷媒とを熱交換させるとともに、前記高圧側冷媒が流れる配管を内方に、前記低圧側冷媒が流れる配管をその外方に配設した二重管構成である内部熱交換器を有し、前記内部熱交換器を前記圧縮機の近傍に設置するとともに、前記圧縮機と前記内部熱交換器との間に、板状の断熱材を設けたことを特徴とする冷凍サイクル装置。 A compressor, a radiator, a decompression unit, a refrigerant circuit that connects the evaporator with a refrigerant pipe to circulate the refrigerant, a high-pressure refrigerant that flows between the radiator and the decompression unit, the evaporator, and the compression An internal structure that exchanges heat with the low-pressure refrigerant flowing between the machine and the pipe through which the high-pressure refrigerant flows inward and the pipe through which the low-pressure refrigerant flows outward. A heat exchanger is provided, the internal heat exchanger is installed in the vicinity of the compressor, and a plate-like heat insulating material is provided between the compressor and the internal heat exchanger. Refrigeration cycle equipment. 断熱材を、内部熱交換器が圧縮機の高温部と近接する部分のみに設けたことを特徴とする請求項1に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1, wherein the heat insulating material is provided only in a portion where the internal heat exchanger is close to the high temperature portion of the compressor.
JP2008295238A 2008-11-19 2008-11-19 Refrigeration cycle equipment Active JP5217945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008295238A JP5217945B2 (en) 2008-11-19 2008-11-19 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008295238A JP5217945B2 (en) 2008-11-19 2008-11-19 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2010121844A JP2010121844A (en) 2010-06-03
JP5217945B2 true JP5217945B2 (en) 2013-06-19

Family

ID=42323335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008295238A Active JP5217945B2 (en) 2008-11-19 2008-11-19 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP5217945B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012097957A (en) * 2010-11-02 2012-05-24 Showa Denko Kk Intermediate heat exchanger
SG11201902192PA (en) * 2016-10-19 2019-05-30 Mitsubishi Electric Corp Heat pump device
JP2018179352A (en) * 2017-04-07 2018-11-15 パナソニックIpマネジメント株式会社 Water heater, and binary hot water generation unit
WO2019130439A1 (en) * 2017-12-26 2019-07-04 三菱電機株式会社 Heat pump hot water supplying outdoor unit
EP3795927B1 (en) * 2018-05-17 2023-03-08 Mitsubishi Electric Corporation Refrigeration cycle device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085183A (en) * 2002-06-24 2004-03-18 Denso Corp Vapor compression type refrigerator
JP2005221088A (en) * 2004-02-03 2005-08-18 Matsushita Electric Ind Co Ltd Heat pump type water heater
JP2005337700A (en) * 2004-04-28 2005-12-08 Fuji Electric Retail Systems Co Ltd Refrigerant cooling circuit
JP2006003026A (en) * 2004-06-18 2006-01-05 Daikin Ind Ltd Refrigeration device
JP4450196B2 (en) * 2004-09-24 2010-04-14 株式会社デンソー Heat pump equipment
JP2006105483A (en) * 2004-10-05 2006-04-20 Sharp Corp Stirling engine mounted equipment
JP4725164B2 (en) * 2005-03-31 2011-07-13 パナソニック株式会社 Heat storage device
JP4211041B2 (en) * 2005-05-31 2009-01-21 三菱電機株式会社 Heat pump water heater
JP4277871B2 (en) * 2006-04-18 2009-06-10 ダイキン工業株式会社 Heat pump type water heater
JP4305544B2 (en) * 2007-03-30 2009-07-29 パナソニック株式会社 Hot water storage water heater

Also Published As

Publication number Publication date
JP2010121844A (en) 2010-06-03

Similar Documents

Publication Publication Date Title
WO2014103563A1 (en) Heat exchanger
WO2012073719A1 (en) Heat exchanger, and all-in-one air conditioner equipped therewith
JP4450196B2 (en) Heat pump equipment
JP6028221B2 (en) Heat exchanger unit and heat pump hot water heater equipped with the same
JP5217945B2 (en) Refrigeration cycle equipment
JP2006258368A (en) Heat exchanger and heat pump water heater using it
JP2005241236A (en) Piping structure of outdoor unit of air-conditioner
JP2009109062A (en) Refrigerating cycle device using four-way switch valve
JP6826805B2 (en) Outdoor unit of refrigeration equipment
JP4985341B2 (en) Heat pump water heater
JP2009133593A (en) Cooling apparatus
JP2005257232A (en) Refrigeration air conditioner, four-way valve, heat insulating material mounting method of refrigeration air conditioner
JP2011112254A (en) Refrigeration device
JP6310077B2 (en) Heat source system
JP2009085528A (en) Heat-pump hot-water supply device
JP2017032184A (en) Heat generation unit
JP6563115B2 (en) Heat exchanger and refrigeration cycle apparatus
JP2016121856A (en) Heat source unit for refrigerator
JP2009204238A (en) Piping structure in air conditioner
JP5895125B2 (en) Heat pump equipment
JP6954429B2 (en) Outdoor unit of refrigeration equipment
JP2015152241A (en) Outdoor unit of air conditioner
WO2016185689A1 (en) Air conditioning and hot water supplying system
JP5531621B2 (en) Refrigeration equipment
KR100274262B1 (en) Heat exchanger of air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110302

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120829

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5217945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3