JP2004085183A - Vapor compression type refrigerator - Google Patents

Vapor compression type refrigerator Download PDF

Info

Publication number
JP2004085183A
JP2004085183A JP2003153073A JP2003153073A JP2004085183A JP 2004085183 A JP2004085183 A JP 2004085183A JP 2003153073 A JP2003153073 A JP 2003153073A JP 2003153073 A JP2003153073 A JP 2003153073A JP 2004085183 A JP2004085183 A JP 2004085183A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
vapor compression
heat exchanger
pipes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003153073A
Other languages
Japanese (ja)
Inventor
Takeshi Sakai
酒井 猛
Susumu Kawamura
川村 進
Takeshi Okinoya
沖ノ谷 剛
Chiya Kojima
小島 千弥
Katsuya Tanaka
田中 勝也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003153073A priority Critical patent/JP2004085183A/en
Publication of JP2004085183A publication Critical patent/JP2004085183A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the efficiency of a vapor compression type refrigerator while suppressing the rise of the cost of manufacture of the refrigerator. <P>SOLUTION: A high-pressure coolant pipe 61 for carrying the coolant flowing out from a radiator 20 is brazed to a low-pressure coolant pipe 62 for carrying the coolant flowing out from an evaporator 40, and the joint part is covered with a heat insulating material 63. According to this, the efficiency of the vapor compression type refrigerator can be improved without providing an exclusive internal heat exchanger. The efficiency of the vapor compression type refrigerator can be improved while suppressing the rise of the cost of manufacture of the refrigerator. Since the pipes 61 and 62 are heat-insulated from the atmosphere by the heat insulating material 63, the heat exchange between the coolant carried in the pipe 62 and the coolant carried in the pipe 61 can be surely performed. Since the pipe 61 is integrated to the pipe 62 by brazing, the contact thermal pressure between both the pipes 61 and 62 can be minimized. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、蒸気圧縮式冷凍機に関するもので、蒸気圧縮式冷凍機により生成される温熱を利用した給湯装置や、温熱及び冷熱を利用する空調装置に適用して有効である。
【0002】
【従来の技術及び発明が解決しようとする課題】
蒸気圧縮式冷凍機は、周知のごとく、高圧側熱交換器にて放熱し、低圧側熱交換器にて冷媒を蒸発させて吸熱することにより低温側の熱を高温側に移動させるものである。
【0003】
ところで、蒸気圧縮式冷凍機の効率を上昇させる手段として、高圧側熱交換器を流出した冷媒と圧縮機に吸入される冷媒とを熱交換する内部熱交換器を設けること手段が知られている。
【0004】
つまり、給湯装置や暖房装置等の温熱を利用した蒸気圧縮式冷凍機においては、圧縮機に吸入される冷媒を高圧側熱交換器を流出した冷媒にて加熱することにより、高圧側熱交換器を流出した冷媒の有する余剰温熱を吸入冷媒に与えて圧縮機から吐出する冷媒の温度を上昇させ、また、冷房装置や冷蔵庫等の冷熱を利用した蒸気圧縮式冷凍機においては、高圧側熱交換器を流出した冷媒を吸入冷媒にて冷却して冷媒のエンタルピを減少させることにより吸熱能力を増大させるものである。
【0005】
このように、内部熱交換器を設ければ、蒸気圧縮式冷凍機の効率を向上させることができるものの、新たに内部熱交換器を必要とするため、蒸気圧縮式冷凍機の製造原価上昇を招いてしまう。
【0006】
本発明は、上記点に鑑み、第1には、従来と異なる新規な蒸気圧縮式冷凍機を提供し、第2には、蒸気圧縮式冷凍機の製造原価上昇を抑制しつつ、蒸気圧縮式冷凍機の効率を向上させることを目的とする。
【0007】
【課題を解決するための手段】
本発明は、上記目的を達成するために、請求項1に記載の発明では、低温側の熱を高温側に移動させる蒸気圧縮式冷凍機であって、冷媒を吸入圧縮する圧縮機(10)と、高圧冷媒の熱を放熱する高圧側熱交換器(20)と、高圧冷媒を減圧膨脹させる減圧手段(30)と、低圧冷媒を蒸発させて吸熱する低圧側熱交換器(40)と、高圧側熱交換器(20)を流出した冷媒が流れる高圧冷媒配管(61)と、低圧側熱交換器(40)を流出した冷媒が流れる低圧冷媒配管(62)とを備え、両冷媒配管(61、62)は、高圧冷媒配管(61)を流れる冷媒と低圧冷媒配管(62)を流れる冷媒との間で熱交換ができるように一体化されており、さらに、両冷媒配管(61、62)のうち、少なくとも両冷媒配管(61、62)が一体化された部位(60)は、断熱手段(63)にて雰囲気から熱的に隔離されていることを特徴とする。
【0008】
これにより、専用の内部熱交換器を設けることなく、蒸気圧縮式冷凍機の効率を向上させることができる。
【0009】
したがって、蒸気圧縮式冷凍機の製造原価上昇を抑制しつつ、蒸気圧縮式冷凍機の効率を向上させることができるとともに、従来と異なる新規な蒸気圧縮式冷凍機を得ることができる。
【0010】
また、高圧冷媒配管(61)と低圧冷媒配管(62)とが一体化された部位を断熱手段(63)にて雰囲気から断熱しているので、高圧圧冷媒配管(61)内を流れる冷媒と雰囲気とが熱交換してしまうことを防止でき、低圧冷媒配管(62)内を流れる冷媒と高圧冷媒配管(61)を流れる冷媒とを確実に熱交換することができる。
【0011】
請求項2に記載の発明では、両冷媒配管(61、62)のうち、少なくとも両冷媒配管(61、62)が一体化された部位(60)は、互いにろう接されていることを特徴とする。
【0012】
これにより、両冷媒配管61、62間の接触熱抵抗を極めて小さくすることができ、低圧冷媒配管62内を流れる冷媒と高圧冷媒配管61を流れる冷媒との熱交換効率を高めることができる。
【0013】
なお、「ろう接」とは、例えば「接続・接合技術」(東京電機大学出版局)に記載されているように、ろう材やはんだを用いて母材を溶融させないように接合する技術を言う。因みに、融点が450℃以上の溶加材を用いて接合するときをろう付けと言い、その際の溶加材をろう材と呼び、融点が450℃以下の溶加材を用いて接合するときをはんだ付けと言い、その際の溶加材をはんだと呼ぶ。
【0014】
請求項3に記載の発明では、両冷媒配管(61、62)のうち、少なくとも両冷媒配管(61、62)が一体化された部位(60)には、両冷媒配管(61、62)間の熱移動を補助する熱伝導性物質からなる伝熱層(64)が設けられていることを特徴とするものである。
【0015】
請求項4に記載の発明では、両冷媒配管(61、62)のうち、少なくとも両冷媒配管(61、62)が一体化された部位(60)では、両冷媒配管(61、62)が直接に接触していることを特徴とするものである。
【0016】
請求項5に記載の発明では、両冷媒配管(61、62)のうち、少なくとも両冷媒配管(61、62)が一体化された部位(60)は、平坦形状に形成されて互いに対峙していることを特徴とする。
【0017】
これにより、両冷媒配管(61、62)間の熱抵抗を低減することができるので、低圧冷媒配管(62)内を流れる冷媒と高圧冷媒配管(61)を流れる冷媒との熱交換効率を高めることができる。
【0018】
請求項6に記載の発明では、減圧手段として、高圧冷媒を等エントロピ的に減圧膨脹させるノズル、及び減圧膨脹時に低下したエンタルピを圧力エネルギに変換する昇圧部を有するエジェクタ(40)が用いられていること特徴とするものである。
【0019】
請求項7に記載の発明では、高圧冷媒の圧力は、冷媒の臨界圧力以上であることを特徴とするものである。
【0020】
請求項8に記載の発明では、冷媒として二酸化炭素が用いられていることを特徴とするものである。
【0021】
請求項9に記載の発明では、低圧側熱交換器(40)から流出した冷媒を液相冷媒と気相冷媒とに気液分離して余剰冷媒を液相冷媒として蓄えるとともに、気相冷媒を圧縮機(10)の吸入側に供給する気液分離器(50)を有し、圧縮機(10)は、高圧側熱交換器(20)、低圧側熱交換器(40)、両冷媒配管(61、62)が一体化されて構成された内部熱交換器(60)、及び気液分離器(50)により囲まれていることを特徴とする。
【0022】
これにより、騒音の放射源となる圧縮機(10)の4方が、高圧側熱交換器(20)、低圧側熱交換器(40)、内部熱交換器(60)、及び気液分離器(50)により囲まれた状態となるので、圧縮機(10)から放射される騒音を遮ることができ、遮音効果を高めることができる。
【0023】
請求項10に記載の発明では、請求項1ないし8のいずれか1つに記載の蒸気圧縮式冷凍にて水を加熱することを特徴とするものである。
【0024】
請求項11に記載の発明では、請求項1ないし8のいずれか1つに記載の蒸気圧縮式冷凍にて室内に吹き出す空気を加熱又は冷却することを特徴とするものである。
【0025】
因みに、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
【0026】
【発明の実施の形態】
(第1実施形態)
本実施形態は、本発明に係る蒸気圧縮式冷凍機を給湯器装置に適用したもので、図1は本実施形態に係る給湯器装置の模式図である。
【0027】
圧縮機10は冷媒を吸入圧縮するものであり、放熱器20は圧縮機10から吐出した冷媒と給湯水とを熱交換して給湯水を加熱することにより冷媒を冷却する高圧側熱交換器である。
【0028】
ここで、圧縮機10は電動モータ(図示せず。)により駆動されており、放熱器20での加熱能力を大きくするときには、圧縮機10の回転数を増大させて圧縮機10から吐出する冷媒の流量を増大させ、一方、加熱能力を小さくするときには、圧縮機10の回転数を低下させて圧縮機10から吐出する冷媒の流量を減少させる。
【0029】
なお、本実施形態では、冷媒として二酸化炭素を用いており、圧縮機10は放熱器20の冷媒入口での冷媒温度が80℃〜90℃以上となるように、冷媒を臨界圧力以上まで加圧している。因みに、放熱器20内の圧力は臨界圧力以上であるので、冷媒は、放熱器20内で凝縮することなく、冷媒入口側から冷媒出口側に向かうほど冷媒温度を低下させながらエンタルピを低下させていく。
【0030】
また、膨脹弁30は放熱器20から流出した高圧冷媒を等エントロピ的に減圧膨脹させる減圧手段であり、蒸発器40は室外空気と液相冷媒とを熱交換させて液相冷媒を蒸発させることにより冷媒を蒸発させて室外空気から吸熱する低圧側熱交換器である。
【0031】
なお、本実施形態では、膨脹弁30の絞り開度、つまり高圧側冷媒圧力は、高い成績係数を維持されるように、放熱器20の冷媒出口側における冷媒温度に基づいて可変制御されているが、高圧側冷媒圧力が略一定となるように可変制御してもよい。
【0032】
気液分離器50は、蒸発器40から流出した冷媒を液相冷媒と気相冷媒とに気液分離して余剰冷媒を液相冷媒として蓄えるとともに、気相冷媒を圧縮機10の吸入側に供給するアキュムレータである。
【0033】
そして、放熱器20を流出した冷媒が流れる高圧冷媒配管61と、蒸発器40を流出した冷媒が流れる低圧冷媒配管62とは、高圧冷媒配管61を流れる冷媒と低圧冷媒配管62を流れる冷媒との間で熱交換ができるように一体化されて内部熱交換器60を構成している。なお、両冷媒配管61、62は、アルミニウム又は銅等の金属製である。
【0034】
ここで、内部熱交換器60、すなわち両冷媒配管61、62のうち少なくとも両冷媒配管61、62が一体化された部位は、図2に示すように、高圧冷媒配管61の少なくとも一部と低圧冷媒配管62の少なくとも一部とをろう付けにて接合するとともに、その接合箇所を樹脂やグラスウール等の熱伝導率の小さな材質からなる断熱材63に覆うことにより雰囲気から熱的に隔離したものである。
【0035】
次に、本実施形態に係る蒸気圧縮式冷凍機の概略作動を述べる。
【0036】
圧縮機10から吐出した高圧冷媒は、放熱器20にて給湯水を加熱しながら自身の温度を低下させていく。
【0037】
このとき、放熱器20に流入する給湯水の温度が比較的に高いときには、放熱器20から流出する冷媒の温度も高くなるため、放熱器20から流出する冷媒は、給湯水を高い温度まで加熱上昇させることはできないものの、比較的大きな余剰温熱量を有している。
【0038】
したがって、内部熱交換器60にて放熱器20を流出した冷媒の有する余剰温熱を圧縮機に吸入される冷媒に与えれば、圧縮機10から吐出する冷媒の温度を上昇させることができるので、温度の低い余剰温熱を高い温度として給湯水に与えることができる。
【0039】
また、膨脹弁30にて減圧された低圧冷媒は、蒸発器40にて外気から吸熱して蒸発し、圧縮機10に加圧されてその温度及び圧力を上昇させる。
【0040】
次に、本実施形態の作用効果を述べる。
【0041】
本実施形態では、高圧冷媒配管61と低圧冷媒配管62とを一体化することにより内部熱交換器60を構成しているので、専用の内部熱交換器を設けることなく、蒸気圧縮式冷凍機の効率を向上させることができる。
【0042】
したがって、蒸気圧縮式冷凍機の製造原価上昇を抑制しつつ、蒸気圧縮式冷凍機の効率を向上させることができる。
【0043】
因みに、内部熱交換器60での熱交換量は、高圧冷媒配管61と低圧冷媒配管62との接触面積を適切な大きさとすることにより設定される。
【0044】
また、高圧冷媒配管61と低圧冷媒配管62とが一体化された部位を断熱材63にて雰囲気から断熱しているので、高圧冷媒配管61内を流れる冷媒と雰囲気とが熱交換してしまうことを防止でき、低圧冷媒配管62内を流れる冷媒と高圧冷媒配管61を流れる冷媒とを確実に熱交換することができる。
【0045】
また、高圧冷媒配管61と低圧冷媒配管62とをろう付けにて一体化しているので、両冷媒配管61、62間の接触熱抵抗を極めて小さくすることができ、低圧冷媒配管62内を流れる冷媒と高圧冷媒配管61を流れる冷媒との熱交換効率を高めることができる。
【0046】
(第2実施形態)
第1実施形態では、高圧冷媒配管61と低圧冷媒配管62とをろう付けにて一体化したが、本実施形態は、図3に示すように、両冷媒配管61、62間の熱移動を補助するシリコングリース等の熱伝導性ペーストからなる伝熱層64を介して両冷媒配管61、62を接触させたものである。
【0047】
なお、両冷媒配管61、62は、ボルトやベルト等の機械的な締結手段により互いに保持固定されている。
【0048】
(第3実施形態)
本実施形態は、第2実施形態の変形例であり、具体的には、図4に示すように、伝熱層64を熱伝導率に優れたシリコン等の熱伝導性弾性部材にて構成するともに、伝熱層64を高圧冷媒配管61と低圧冷媒配管62にて挟んだものである。
【0049】
なお、両冷媒配管61、62は、ボルトやベルト等の機械的な締結手段により互いに保持固定されている。
【0050】
(第4実施形態)
本実施形態は、図5に示すように、高圧冷媒配管61と低圧冷媒配管62とを直接に接触させた状態で両冷媒配管61、62をボルトやベルト等の機械的な締結手段により互いに保持固定したものである。
【0051】
(第5実施形態)
本実施形態は、図6に示すように、高圧冷媒配管61及び低圧冷媒配管62のうち、少なくとも互いに対峙(対向)する部位を平坦形状に形成することにより両冷媒配管61、62の接触面積を増大させて熱抵抗を低減したものである。
【0052】
なお、両冷媒配管61、62は、ボルトやベルト等の機械的な締結手段により互いに保持固定されている。
【0053】
因みに、図5は第4実施形態に対して本実施形態を適用したものであったが、本実施形態はこれに限定されるものではなく、第1〜3実施形態に対しても適用することができる。
【0054】
(第6実施形態)
上述の実施形態では、減圧手段30として冷媒を等エントロピ的に減圧する膨脹弁を採用したが、本実施形態は、図7に示すように、減圧手段30として、高圧冷媒を等エントロピ的に減圧膨脹させるノズル、及び減圧膨脹時に低下したエンタルピを圧力エネルギに変換する昇圧部を有するエジェクタを採用したものである。
【0055】
なお、減圧手段30としてエジェクタを用いた蒸気圧縮式冷凍機では、周知のごとく、蒸発器40を流出した冷媒は、エジェクタの昇圧部を通過して気液分離器50に流入し、気相冷媒は圧縮機10に吸入され、液相冷媒は蒸発器40に流れ込むので、特許請求の範囲に記載された「低圧側熱交換器(40)を流出した冷媒」とは、蒸発器40を流出した直後の冷媒は勿論のこと、エジェクタ30から流出した冷媒、及び圧縮機10に吸入される冷媒も含む意味である。
【0056】
(第7実施形態)
本実施形態は、図8、9に示すように、騒音の放射源となる圧縮機10の4方を、少なくとも放熱器20、蒸発器40、内部熱交換器60、及び気液分離器50により囲むことにより、圧縮機10から放射される騒音を遮って、遮音効果を高めるものである。
【0057】
なお、圧縮機10の上方側は、圧縮機10の作動を制御するインバータ回路等の駆動制御装置10aにより閉塞され、圧縮機10の下方側は、フェルト等の吸音材に閉塞されている。
【0058】
また、吸音材は、放熱器20、蒸発器40、内部熱交換器60、及び気液分離器50を収納する室外ユニットを構成する金属製の外板70の内側、及び蒸発器40とそれ以外の室外ユニット内機器とを仕切る金属製の中仕切板71に接着固定されている。
【0059】
(その他の実施形態)
上述の実施形態では、本発明に係る蒸気圧縮式冷凍機を給湯装置に適用したが、本発明の適用はこれに限定されるものではなく、空調装置、冷凍庫、冷蔵庫等にも適用することができる。
【0060】
また、上述の実施形態では、冷媒を二酸化炭素として高圧側圧力を臨界圧力以上まで加圧したが、本発明はこれに限定されるものではなく、例えば冷媒をフロン(R134a)として放熱器20内の冷媒圧力を冷媒の臨界圧力以下としてもよい。
【0061】
また、第1〜5実施形態では、気液分離器50が低圧側に設けられアキュムレータサイクルであったが、本発明はこれに限定されるものではなく、気液分離器50が高圧側に設けられレシーバサイクルであってもよい。
【0062】
第7実施形態では、騒音の放射源となる圧縮機10の4方を、少なくとも放熱器20、蒸発器40、内部熱交換器60、及び気液分離器50により囲んだが、第7実施形態は、室外ユニットを構成する圧縮機10以外の機能部品にて圧縮機10を囲んで遮音効果を発揮させるものであるので、本発明はこれに限定されるものではなく、例えば内部熱交換器60を圧縮機10の上方側に配置し、これに代えて駆動制御装置10aにて圧縮機10を囲む、又は蒸発器40を圧縮機10を囲むように曲げて蒸発器40にて少なくとも2方を囲む等、その他の機能部品にて圧縮機10を囲んでもよい。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る蒸気圧縮式冷凍機の模式図である。
【図2】本発明の第1実施形態に係る内部熱交換器の模式図である。
【図3】本発明の第2実施形態に係る内部熱交換器の模式図である。
【図4】本発明の第3実施形態に係る内部熱交換器の模式図である。
【図5】本発明の第4実施形態に係る内部熱交換器の模式図である。
【図6】本発明の第5実施形態に係る内部熱交換器の模式図である。
【図7】本発明の第6実施形態に係る蒸気圧縮式冷凍機の模式図である。
【図8】本発明の第7実施形態に係る蒸気圧縮式冷凍機の実装構造を示す図である。
【図9】本発明の第7実施形態に係る蒸気圧縮式冷凍機の実装構造を示す図である。
【符号の説明】
60…内部熱交換器、61…高圧冷媒配管、62…低圧冷媒配管、
63…断熱材。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a vapor compression refrigerator, and is effective when applied to a hot water supply device using heat generated by the vapor compression refrigerator and an air conditioner using hot and cold heat.
[0002]
Problems to be solved by the prior art and the invention
As is well known, a vapor compression refrigerator transfers heat from a low-temperature side to a high-temperature side by radiating heat in a high-pressure side heat exchanger and evaporating and absorbing the refrigerant in a low-pressure side heat exchanger. .
[0003]
Incidentally, as means for increasing the efficiency of the vapor compression refrigerator, there is known means for providing an internal heat exchanger for exchanging heat between the refrigerant flowing out of the high-pressure side heat exchanger and the refrigerant drawn into the compressor. .
[0004]
In other words, in a vapor compression refrigerator using the heat of a hot water supply device, a heating device, or the like, the refrigerant sucked into the compressor is heated by the refrigerant flowing out of the high pressure side heat exchanger, thereby forming a high pressure side heat exchanger. In the case of a vapor compression type refrigerator using cold heat, such as a cooling device or a refrigerator, the excess heat of the refrigerant flowing out of the compressor is given to the suction refrigerant to increase the temperature of the refrigerant discharged from the compressor. The heat absorption capacity is increased by cooling the refrigerant flowing out of the vessel with the suction refrigerant to reduce the enthalpy of the refrigerant.
[0005]
As described above, if the internal heat exchanger is provided, the efficiency of the vapor compression refrigerator can be improved. However, since a new internal heat exchanger is required, the manufacturing cost of the vapor compression refrigerator increases. I will invite you.
[0006]
In view of the above points, the present invention firstly provides a new vapor compression type refrigerator different from the conventional one, and secondly, a vapor compression type refrigerator while suppressing an increase in the manufacturing cost of the vapor compression type refrigerator. An object is to improve the efficiency of a refrigerator.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, there is provided a vapor compression refrigerator for transferring heat on a low temperature side to a high temperature side, wherein the compressor compresses a refrigerant by suction. A high-pressure side heat exchanger (20) for releasing heat of the high-pressure refrigerant, a decompression means (30) for decompressing and expanding the high-pressure refrigerant, and a low-pressure side heat exchanger (40) for evaporating the low-pressure refrigerant and absorbing heat. A high-pressure refrigerant pipe (61) through which the refrigerant flowing out of the high-pressure side heat exchanger (20) flows, and a low-pressure refrigerant pipe (62) through which the refrigerant flowing out of the low-pressure side heat exchanger (40) flows. 61, 62) are integrated so that heat can be exchanged between the refrigerant flowing through the high-pressure refrigerant pipe (61) and the refrigerant flowing through the low-pressure refrigerant pipe (62). ), At least both refrigerant pipes (61, 62) are integrated. Sites (60) is characterized in that it is thermally isolated from the atmosphere by the heat insulating means (63).
[0008]
Thus, the efficiency of the vapor compression refrigerator can be improved without providing a dedicated internal heat exchanger.
[0009]
Therefore, it is possible to improve the efficiency of the vapor compression refrigerator while suppressing an increase in the manufacturing cost of the vapor compression refrigerator, and to obtain a new vapor compression refrigerator different from the conventional one.
[0010]
Also, since the part where the high-pressure refrigerant pipe (61) and the low-pressure refrigerant pipe (62) are integrated is insulated from the atmosphere by the heat-insulating means (63), the refrigerant flowing through the high-pressure refrigerant pipe (61) is It is possible to prevent the atmosphere from exchanging heat, and to reliably exchange heat between the refrigerant flowing through the low-pressure refrigerant pipe (62) and the refrigerant flowing through the high-pressure refrigerant pipe (61).
[0011]
The invention according to claim 2 is characterized in that, of the two refrigerant pipes (61, 62), at least a part (60) where the two refrigerant pipes (61, 62) are integrated is brazed to each other. I do.
[0012]
Thereby, the contact thermal resistance between the refrigerant pipes 61 and 62 can be extremely reduced, and the heat exchange efficiency between the refrigerant flowing in the low-pressure refrigerant pipe 62 and the refrigerant flowing in the high-pressure refrigerant pipe 61 can be increased.
[0013]
The term “brazing” refers to a technique for joining a base material using a brazing material or solder so as not to be melted, as described in, for example, “Connection and Joining Technology” (Tokyo Denki University Press). . By the way, when joining using a filler material with a melting point of 450 ° C or more, it is called brazing, and the filler material at that time is called a brazing material, and when joining using a filler material with a melting point of 450 ° C or less. Is called soldering, and the filler material at that time is called solder.
[0014]
According to the third aspect of the present invention, at least a part (60) of the two refrigerant pipes (61, 62) where the two refrigerant pipes (61, 62) are integrated is provided between the two refrigerant pipes (61, 62). A heat transfer layer (64) made of a heat conductive substance for assisting the heat transfer.
[0015]
According to the invention described in claim 4, the refrigerant pipes (61, 62) are directly connected to at least a part (60) of the refrigerant pipes (61, 62) where the refrigerant pipes (61, 62) are integrated. The contact is characterized by being in contact with.
[0016]
In the invention according to claim 5, at least a portion (60) of the two refrigerant pipes (61, 62) where the two refrigerant pipes (61, 62) are integrated is formed in a flat shape and faces each other. It is characterized by having.
[0017]
Thereby, the thermal resistance between the two refrigerant pipes (61, 62) can be reduced, so that the heat exchange efficiency between the refrigerant flowing in the low-pressure refrigerant pipe (62) and the refrigerant flowing in the high-pressure refrigerant pipe (61) is increased. be able to.
[0018]
According to the invention described in claim 6, as the depressurizing means, an ejector (40) having a nozzle for decompressing and expanding the high-pressure refrigerant in an isentropic manner and a booster for converting the enthalpy reduced during decompression and expansion into pressure energy is used. It is characterized by having.
[0019]
According to a seventh aspect of the present invention, the pressure of the high-pressure refrigerant is equal to or higher than the critical pressure of the refrigerant.
[0020]
The invention according to claim 8 is characterized in that carbon dioxide is used as the refrigerant.
[0021]
According to the ninth aspect of the present invention, the refrigerant flowing out of the low-pressure side heat exchanger (40) is gas-liquid separated into a liquid-phase refrigerant and a gas-phase refrigerant, and the excess refrigerant is stored as a liquid-phase refrigerant. The compressor (10) has a gas-liquid separator (50) to be supplied to the suction side of the compressor (10). The compressor (10) includes a high-pressure heat exchanger (20), a low-pressure heat exchanger (40), and both refrigerant pipes. (61, 62) is characterized by being surrounded by an internal heat exchanger (60) integrally formed and a gas-liquid separator (50).
[0022]
Accordingly, the compressor (10), which is a noise radiation source, is connected to the high-pressure heat exchanger (20), the low-pressure heat exchanger (40), the internal heat exchanger (60), and the gas-liquid separator. Since the state is surrounded by (50), the noise radiated from the compressor (10) can be blocked, and the sound insulating effect can be enhanced.
[0023]
According to a tenth aspect of the present invention, the water is heated by the vapor compression refrigeration according to any one of the first to eighth aspects.
[0024]
According to an eleventh aspect of the present invention, the air blown into the room is heated or cooled by the vapor compression refrigeration according to any one of the first to eighth aspects.
[0025]
Incidentally, the reference numerals in parentheses of the respective means are examples showing the correspondence with specific means described in the embodiments described later.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
(1st Embodiment)
In the present embodiment, the vapor compression refrigerator according to the present invention is applied to a water heater, and FIG. 1 is a schematic diagram of the water heater according to the present embodiment.
[0027]
The compressor 10 sucks and compresses the refrigerant, and the radiator 20 is a high-pressure side heat exchanger that cools the refrigerant by exchanging heat between the refrigerant discharged from the compressor 10 and the hot water and heating the hot water. is there.
[0028]
Here, the compressor 10 is driven by an electric motor (not shown). When increasing the heating capacity of the radiator 20, the rotation speed of the compressor 10 is increased and the refrigerant discharged from the compressor 10 is increased. When the heating capacity is reduced while the flow rate of the refrigerant is increased, the rotational speed of the compressor 10 is reduced to decrease the flow rate of the refrigerant discharged from the compressor 10.
[0029]
In the present embodiment, carbon dioxide is used as the refrigerant, and the compressor 10 pressurizes the refrigerant to a critical pressure or higher so that the refrigerant temperature at the refrigerant inlet of the radiator 20 is 80 ° C to 90 ° C or higher. ing. By the way, since the pressure in the radiator 20 is equal to or higher than the critical pressure, the refrigerant does not condense in the radiator 20 and reduces the enthalpy while decreasing the refrigerant temperature from the refrigerant inlet side to the refrigerant outlet side. Go.
[0030]
Further, the expansion valve 30 is a decompression means for decompressing and expanding the high-pressure refrigerant flowing out of the radiator 20 in an isentropic manner, and the evaporator 40 exchanges heat between the outdoor air and the liquid-phase refrigerant to evaporate the liquid-phase refrigerant. This is a low-pressure side heat exchanger that evaporates refrigerant and absorbs heat from outdoor air.
[0031]
In the present embodiment, the throttle opening of the expansion valve 30, that is, the high-pressure side refrigerant pressure is variably controlled based on the refrigerant temperature at the refrigerant outlet side of the radiator 20 so that a high coefficient of performance is maintained. However, variable control may be performed so that the high-pressure side refrigerant pressure is substantially constant.
[0032]
The gas-liquid separator 50 gas-liquid separates the refrigerant flowing out of the evaporator 40 into a liquid-phase refrigerant and a gas-phase refrigerant, stores the excess refrigerant as a liquid-phase refrigerant, and transfers the gas-phase refrigerant to the suction side of the compressor 10. Accumulator to supply.
[0033]
The high-pressure refrigerant pipe 61 in which the refrigerant flowing out of the radiator 20 flows and the low-pressure refrigerant pipe 62 in which the refrigerant flowing out of the evaporator 40 flows are formed by the refrigerant flowing through the high-pressure refrigerant pipe 61 and the refrigerant flowing through the low-pressure refrigerant pipe 62. The internal heat exchanger 60 is integrated so that heat can be exchanged between them. The refrigerant pipes 61 and 62 are made of metal such as aluminum or copper.
[0034]
Here, the internal heat exchanger 60, that is, the part where at least the two refrigerant pipes 61 and 62 of the two refrigerant pipes 61 and 62 are integrated is, as shown in FIG. At least a part of the refrigerant pipe 62 is joined by brazing, and the joined portion is thermally isolated from the atmosphere by being covered with a heat insulating material 63 made of a material having a low thermal conductivity such as resin or glass wool. is there.
[0035]
Next, a schematic operation of the vapor compression refrigerator according to the present embodiment will be described.
[0036]
The high-pressure refrigerant discharged from the compressor 10 lowers its temperature while heating the hot water with the radiator 20.
[0037]
At this time, when the temperature of the hot water flowing into the radiator 20 is relatively high, the temperature of the refrigerant flowing out of the radiator 20 is also high, so that the refrigerant flowing out of the radiator 20 heats the hot water to a high temperature. Although it cannot be raised, it has a relatively large amount of excess heat.
[0038]
Therefore, if the excess heat of the refrigerant flowing out of the radiator 20 is given to the refrigerant sucked into the compressor by the internal heat exchanger 60, the temperature of the refrigerant discharged from the compressor 10 can be increased, so that the temperature can be increased. Low surplus heat can be given to the hot water as a high temperature.
[0039]
The low-pressure refrigerant decompressed by the expansion valve 30 absorbs heat from the outside air in the evaporator 40 and evaporates, and is pressurized by the compressor 10 to increase its temperature and pressure.
[0040]
Next, the operation and effect of the present embodiment will be described.
[0041]
In the present embodiment, the internal heat exchanger 60 is configured by integrating the high-pressure refrigerant pipe 61 and the low-pressure refrigerant pipe 62, and therefore, without providing a dedicated internal heat exchanger, Efficiency can be improved.
[0042]
Therefore, the efficiency of the vapor compression refrigerator can be improved while suppressing an increase in the manufacturing cost of the vapor compression refrigerator.
[0043]
Incidentally, the amount of heat exchange in the internal heat exchanger 60 is set by setting the contact area between the high-pressure refrigerant pipe 61 and the low-pressure refrigerant pipe 62 to an appropriate size.
[0044]
Further, since the part where the high-pressure refrigerant pipe 61 and the low-pressure refrigerant pipe 62 are integrated is insulated from the atmosphere by the heat insulating material 63, heat exchange between the refrigerant flowing in the high-pressure refrigerant pipe 61 and the atmosphere occurs. Therefore, the heat exchange between the refrigerant flowing in the low-pressure refrigerant pipe 62 and the refrigerant flowing in the high-pressure refrigerant pipe 61 can be surely performed.
[0045]
Further, since the high-pressure refrigerant pipe 61 and the low-pressure refrigerant pipe 62 are integrated by brazing, the contact thermal resistance between the refrigerant pipes 61 and 62 can be extremely reduced, and the refrigerant flowing in the low-pressure refrigerant pipe 62 The heat exchange efficiency between the refrigerant flowing through the high-pressure refrigerant pipe 61 and the refrigerant flowing through the high-pressure refrigerant pipe 61 can be increased.
[0046]
(2nd Embodiment)
In the first embodiment, the high-pressure refrigerant pipe 61 and the low-pressure refrigerant pipe 62 are integrated by brazing. However, this embodiment assists the heat transfer between the refrigerant pipes 61 and 62 as shown in FIG. The refrigerant pipes 61 and 62 are in contact with each other via a heat transfer layer 64 made of a heat conductive paste such as silicon grease.
[0047]
The refrigerant pipes 61 and 62 are held and fixed to each other by mechanical fastening means such as bolts and belts.
[0048]
(Third embodiment)
This embodiment is a modification of the second embodiment. Specifically, as shown in FIG. 4, the heat transfer layer 64 is formed of a heat conductive elastic member having excellent heat conductivity, such as silicon. In both cases, the heat transfer layer 64 is sandwiched between a high-pressure refrigerant pipe 61 and a low-pressure refrigerant pipe 62.
[0049]
The refrigerant pipes 61 and 62 are held and fixed to each other by mechanical fastening means such as bolts and belts.
[0050]
(Fourth embodiment)
In this embodiment, as shown in FIG. 5, in a state where the high-pressure refrigerant pipe 61 and the low-pressure refrigerant pipe 62 are in direct contact, the refrigerant pipes 61 and 62 are held together by mechanical fastening means such as bolts and belts. It is fixed.
[0051]
(Fifth embodiment)
In the present embodiment, as shown in FIG. 6, at least portions of the high-pressure refrigerant pipe 61 and the low-pressure refrigerant pipe 62 that face each other (opposite) are formed in a flat shape, so that the contact area between the refrigerant pipes 61 and 62 is reduced. The heat resistance is reduced by increasing the resistance.
[0052]
The refrigerant pipes 61 and 62 are held and fixed to each other by mechanical fastening means such as bolts and belts.
[0053]
Incidentally, FIG. 5 shows an application of the present embodiment to the fourth embodiment, but the present embodiment is not limited to this, and may be applied to the first to third embodiments. Can be.
[0054]
(Sixth embodiment)
In the above-described embodiment, an expansion valve that isentropically depressurizes the refrigerant is adopted as the depressurizing means 30. However, in this embodiment, as shown in FIG. It employs an ejector having a nozzle for expansion and a booster for converting enthalpy reduced during expansion under reduced pressure into pressure energy.
[0055]
In a vapor compression refrigerator using an ejector as the pressure reducing means 30, as is well known, the refrigerant flowing out of the evaporator 40 flows into the gas-liquid separator 50 through the pressurizing section of the ejector, and flows into the vapor-phase refrigerant. Is sucked into the compressor 10, and the liquid-phase refrigerant flows into the evaporator 40. Therefore, “the refrigerant that has flowed out of the low-pressure side heat exchanger (40)” described in the claims has flowed out of the evaporator 40. This means not only the refrigerant immediately after, but also the refrigerant flowing out of the ejector 30 and the refrigerant sucked into the compressor 10.
[0056]
(Seventh embodiment)
In this embodiment, as shown in FIGS. 8 and 9, the compressor 10 serving as a noise radiation source is connected to at least the radiator 20, the evaporator 40, the internal heat exchanger 60, and the gas-liquid separator 50. By surrounding, the noise radiated from the compressor 10 is blocked, and the sound insulating effect is enhanced.
[0057]
The upper side of the compressor 10 is closed by a drive control device 10a such as an inverter circuit for controlling the operation of the compressor 10, and the lower side of the compressor 10 is closed by a sound absorbing material such as felt.
[0058]
The sound absorbing material is provided inside the metal outer plate 70 that constitutes the outdoor unit that houses the radiator 20, the evaporator 40, the internal heat exchanger 60, and the gas-liquid separator 50, and the evaporator 40 and other components. Is bonded and fixed to a metal middle partition plate 71 that separates the device in the outdoor unit.
[0059]
(Other embodiments)
In the above embodiment, the vapor compression refrigerator according to the present invention is applied to a hot water supply device, but the application of the present invention is not limited to this, and may be applied to an air conditioner, a freezer, a refrigerator, and the like. it can.
[0060]
Further, in the above-described embodiment, the high-pressure side pressure is increased to the critical pressure or higher by using carbon dioxide as the refrigerant, but the present invention is not limited to this. May be equal to or lower than the critical pressure of the refrigerant.
[0061]
In the first to fifth embodiments, the gas-liquid separator 50 is provided on the low pressure side and is an accumulator cycle. However, the present invention is not limited to this, and the gas-liquid separator 50 is provided on the high pressure side. Receiver cycle.
[0062]
In the seventh embodiment, at least four sides of the compressor 10 that is a noise radiation source are surrounded by at least the radiator 20, the evaporator 40, the internal heat exchanger 60, and the gas-liquid separator 50. However, the present invention is not limited to this, since the functional components other than the compressor 10 constituting the outdoor unit surround the compressor 10 and exhibit a sound insulation effect. It is arranged on the upper side of the compressor 10, and instead, the drive control device 10 a surrounds the compressor 10, or the evaporator 40 is bent so as to surround the compressor 10 and surrounds at least two sides by the evaporator 40. The compressor 10 may be surrounded by other functional components such as.
[Brief description of the drawings]
FIG. 1 is a schematic view of a vapor compression refrigerator according to a first embodiment of the present invention.
FIG. 2 is a schematic diagram of an internal heat exchanger according to the first embodiment of the present invention.
FIG. 3 is a schematic diagram of an internal heat exchanger according to a second embodiment of the present invention.
FIG. 4 is a schematic diagram of an internal heat exchanger according to a third embodiment of the present invention.
FIG. 5 is a schematic diagram of an internal heat exchanger according to a fourth embodiment of the present invention.
FIG. 6 is a schematic diagram of an internal heat exchanger according to a fifth embodiment of the present invention.
FIG. 7 is a schematic diagram of a vapor compression refrigerator according to a sixth embodiment of the present invention.
FIG. 8 is a view showing a mounting structure of a vapor compression refrigerator according to a seventh embodiment of the present invention.
FIG. 9 is a view showing a mounting structure of a vapor compression refrigerator according to a seventh embodiment of the present invention.
[Explanation of symbols]
60 ... internal heat exchanger, 61 ... high-pressure refrigerant pipe, 62 ... low-pressure refrigerant pipe,
63 ... Insulation material.

Claims (11)

低温側の熱を高温側に移動させる蒸気圧縮式冷凍機であって、
冷媒を吸入圧縮する圧縮機(10)と、
高圧冷媒の熱を放熱する高圧側熱交換器(20)と、
高圧冷媒を減圧膨脹させる減圧手段(30)と、
低圧冷媒を蒸発させて吸熱する低圧側熱交換器(40)と、
前記高圧側熱交換器(20)を流出した冷媒が流れる高圧冷媒配管(61)と、
前記低圧側熱交換器(40)を流出した冷媒が流れる低圧冷媒配管(62)とを備え、
前記両冷媒配管(61、62)は、前記高圧冷媒配管(61)を流れる冷媒と前記低圧冷媒配管(62)を流れる冷媒との間で熱交換ができるように一体化されており、
さらに、前記両冷媒配管(61、62)のうち、少なくとも前記両冷媒配管(61、62)が一体化された部位(60)は、断熱手段(63)にて雰囲気から熱的に隔離されていることを特徴とする蒸気圧縮式冷凍機。
A vapor compression refrigerator that transfers heat on the low temperature side to the high temperature side,
A compressor (10) for sucking and compressing the refrigerant;
A high-pressure side heat exchanger (20) for radiating heat of the high-pressure refrigerant;
Decompression means (30) for decompressing and expanding the high-pressure refrigerant;
A low-pressure side heat exchanger (40) that evaporates the low-pressure refrigerant and absorbs heat;
A high-pressure refrigerant pipe (61) through which the refrigerant flowing out of the high-pressure side heat exchanger (20) flows;
A low-pressure refrigerant pipe (62) through which refrigerant flowing out of the low-pressure side heat exchanger (40) flows;
The refrigerant pipes (61, 62) are integrated so that heat can be exchanged between the refrigerant flowing through the high-pressure refrigerant pipe (61) and the refrigerant flowing through the low-pressure refrigerant pipe (62).
Further, at least a portion (60) of the two refrigerant pipes (61, 62) where the two refrigerant pipes (61, 62) are integrated is thermally isolated from the atmosphere by a heat insulating means (63). A vapor compression refrigerator.
前記両冷媒配管(61、62)のうち、少なくとも前記両冷媒配管(61、62)が一体化された部位(60)は、互いにろう接されていることを特徴とする請求項1に記載の蒸気圧縮式冷凍機。2. The device according to claim 1, wherein at least a portion (60) of the two refrigerant pipes (61, 62) where the two refrigerant pipes (61, 62) are integrated is brazed to each other. Steam compression refrigerator. 前記両冷媒配管(61、62)のうち、少なくとも前記両冷媒配管(61、62)が一体化された部位(60)には、前記両冷媒配管(61、62)間の熱移動を補助する熱伝導性物質からなる伝熱層(64)が設けられていることを特徴とする請求項1に記載の蒸気圧縮式冷凍機。At least a portion (60) of the two refrigerant pipes (61, 62) where the two refrigerant pipes (61, 62) are integrated with each other assists heat transfer between the two refrigerant pipes (61, 62). The vapor compression refrigerator according to claim 1, further comprising a heat transfer layer (64) made of a heat conductive material. 前記両冷媒配管(61、62)のうち、少なくとも前記両冷媒配管(61、62)が一体化された部位(60)では、前記両冷媒配管(61、62)が直接に接触していることを特徴とする請求項1に記載の蒸気圧縮式冷凍機。At least a part (60) of the two refrigerant pipes (61, 62) where the two refrigerant pipes (61, 62) are integrated, the two refrigerant pipes (61, 62) are in direct contact with each other. The vapor compression refrigerator according to claim 1, wherein: 前記両冷媒配管(61、62)のうち、少なくとも前記両冷媒配管(61、62)が一体化された部位(60)は、平坦形状に形成されて互いに対峙していることを特徴とする請求項1ないし4のいずれか1つに記載の蒸気圧縮式冷凍機。At least a portion (60) of the refrigerant pipes (61, 62) where the refrigerant pipes (61, 62) are integrated is formed in a flat shape and faces each other. Item 5. The vapor compression refrigerator according to any one of Items 1 to 4. 前記減圧手段として、高圧冷媒を等エントロピ的に減圧膨脹させるノズル、及び減圧膨脹時に低下したエンタルピを圧力エネルギに変換する昇圧部を有するエジェクタ(40)が用いられていること特徴とする請求項1ないし5のいずれか1つに記載の蒸気圧縮式冷凍機。2. An ejector (40) having a nozzle for decompressing and expanding a high-pressure refrigerant in an isentropic manner and a booster for converting enthalpy reduced in pressure decompression and expansion into pressure energy as said decompression means. 6. The vapor compression refrigerator according to any one of items 5 to 5. 高圧冷媒の圧力は、冷媒の臨界圧力以上であることを特徴とする請求項1ないし6のいずれか1つに記載の蒸気圧縮式冷凍機。The vapor compression refrigerator according to any one of claims 1 to 6, wherein a pressure of the high-pressure refrigerant is equal to or higher than a critical pressure of the refrigerant. 冷媒として二酸化炭素が用いられていることを特徴とする請求項1ないし7のいずれか1つに記載の蒸気圧縮式冷凍機。The vapor compression refrigerator according to any one of claims 1 to 7, wherein carbon dioxide is used as the refrigerant. 前記低圧側熱交換器(40)から流出した冷媒を液相冷媒と気相冷媒とに気液分離して余剰冷媒を液相冷媒として蓄えるとともに、気相冷媒を前記圧縮機(10)の吸入側に供給する気液分離器(50)を有し、
前記圧縮機(10)は、前記高圧側熱交換器(20)、前記低圧側熱交換器(40)、前記両冷媒配管(61、62)が一体化されて構成された内部熱交換器(60)、及び前記気液分離器(50)により囲まれていることを特徴とする請求項1ないし8のいずれか1つに記載の蒸気圧縮式冷凍機。
The refrigerant flowing out of the low-pressure side heat exchanger (40) is gas-liquid separated into a liquid-phase refrigerant and a gas-phase refrigerant, and the excess refrigerant is stored as a liquid-phase refrigerant, and the gas-phase refrigerant is sucked into the compressor (10). Having a gas-liquid separator (50) for feeding to the side,
The compressor (10) includes an internal heat exchanger (20) configured integrally with the high-pressure side heat exchanger (20), the low-pressure side heat exchanger (40), and the refrigerant pipes (61, 62). The vapor compression refrigerator according to any one of claims 1 to 8, characterized by being surrounded by the gas-liquid separator (50).
請求項1ないし9のいずれか1つに記載の蒸気圧縮式冷凍にて水を加熱することを特徴とする給湯装置。A water heater that heats water by the vapor compression refrigeration according to claim 1. 請求項1ないし9のいずれか1つに記載の蒸気圧縮式冷凍にて室内に吹き出す空気を加熱又は冷却することを特徴とする空調装置。An air conditioner, which heats or cools air blown into a room by the vapor compression refrigeration according to any one of claims 1 to 9.
JP2003153073A 2002-06-24 2003-05-29 Vapor compression type refrigerator Pending JP2004085183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003153073A JP2004085183A (en) 2002-06-24 2003-05-29 Vapor compression type refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002182875 2002-06-24
JP2003153073A JP2004085183A (en) 2002-06-24 2003-05-29 Vapor compression type refrigerator

Publications (1)

Publication Number Publication Date
JP2004085183A true JP2004085183A (en) 2004-03-18

Family

ID=32071553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003153073A Pending JP2004085183A (en) 2002-06-24 2003-05-29 Vapor compression type refrigerator

Country Status (1)

Country Link
JP (1) JP2004085183A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064540A (en) * 2005-08-30 2007-03-15 Denso Corp Geothermal heat pump type water heater
JP2007218462A (en) * 2006-02-15 2007-08-30 Matsushita Electric Ind Co Ltd Heat pump heat storage device
JP2008025931A (en) * 2006-07-24 2008-02-07 Sanyo Electric Co Ltd Refrigerator
JP2008096101A (en) * 2007-12-14 2008-04-24 Daikin Ind Ltd Heat pump type hot water supply apparatus
JP2008224073A (en) * 2007-03-09 2008-09-25 Matsushita Electric Ind Co Ltd Heat pump hot water supply device
JP2008224064A (en) * 2007-03-09 2008-09-25 Matsushita Electric Ind Co Ltd Heat pump hot water supply device
JP2008249312A (en) * 2007-03-30 2008-10-16 Hitachi Appliances Inc Heat pump water heater
JP2010121844A (en) * 2008-11-19 2010-06-03 Panasonic Corp Refrigerating cycle device
JP2011196586A (en) * 2010-03-18 2011-10-06 Mitsubishi Electric Corp Heat pump water heater
JP2014181870A (en) * 2013-03-21 2014-09-29 Panasonic Corp Refrigeration cycle device
JP2017129129A (en) * 2015-12-30 2017-07-27 ゼネラル・エレクトリック・カンパニイ Tube thermal coupling assembly
WO2018073917A1 (en) * 2016-10-19 2018-04-26 三菱電機株式会社 Heat pump device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4650171B2 (en) * 2005-08-30 2011-03-16 株式会社デンソー Geothermal heat pump water heater
JP2007064540A (en) * 2005-08-30 2007-03-15 Denso Corp Geothermal heat pump type water heater
JP2007218462A (en) * 2006-02-15 2007-08-30 Matsushita Electric Ind Co Ltd Heat pump heat storage device
JP2008025931A (en) * 2006-07-24 2008-02-07 Sanyo Electric Co Ltd Refrigerator
JP2008224073A (en) * 2007-03-09 2008-09-25 Matsushita Electric Ind Co Ltd Heat pump hot water supply device
JP2008224064A (en) * 2007-03-09 2008-09-25 Matsushita Electric Ind Co Ltd Heat pump hot water supply device
JP2008249312A (en) * 2007-03-30 2008-10-16 Hitachi Appliances Inc Heat pump water heater
JP2008096101A (en) * 2007-12-14 2008-04-24 Daikin Ind Ltd Heat pump type hot water supply apparatus
JP2010121844A (en) * 2008-11-19 2010-06-03 Panasonic Corp Refrigerating cycle device
JP2011196586A (en) * 2010-03-18 2011-10-06 Mitsubishi Electric Corp Heat pump water heater
JP2014181870A (en) * 2013-03-21 2014-09-29 Panasonic Corp Refrigeration cycle device
JP2017129129A (en) * 2015-12-30 2017-07-27 ゼネラル・エレクトリック・カンパニイ Tube thermal coupling assembly
US10584927B2 (en) 2015-12-30 2020-03-10 General Electric Company Tube thermal coupling assembly
WO2018073917A1 (en) * 2016-10-19 2018-04-26 三菱電機株式会社 Heat pump device
JPWO2018073917A1 (en) * 2016-10-19 2019-02-21 三菱電機株式会社 Heat pump equipment

Similar Documents

Publication Publication Date Title
JP2865844B2 (en) Refrigeration system
JP2004085183A (en) Vapor compression type refrigerator
JP4808732B2 (en) Heat exchanger and heat pump circuit
JPH024163A (en) Cooling device for semiconductor element for power
JP2004322914A (en) Heat exchanger for combined cycle
US20070180853A1 (en) Refrigerator
JP2004198045A (en) Vapor compression type refrigerator
CN107940563B (en) Machine and air conditioner in air conditioning
JP2004239506A (en) Heat pump unit
JP4269752B2 (en) Vapor compression refrigerator
JP2004003804A (en) Vapor compression type refrigerating machine
JP2001227840A (en) Hybrid type heat pump device
JPH11325634A (en) Four-way valve cooler of air conditioner
JPH0498026A (en) Outdoor unit of air conditioner
JP2005265269A (en) Heat exchange pipe for refrigerating cycle
JP2007078275A (en) Heat exchanger for stirling refrigerating machine
CN107166692A (en) Air-conditioning system
JP2653438B2 (en) Stirling heat engine
KR100306513B1 (en) A cooling pipe for improving cooling efficient in thermoelectric element and a cooler using thereof
JPS5922460Y2 (en) Refrigeration equipment
JP2008224047A (en) Ejector type refrigerating cycle
JP2003139417A (en) Cooling system
JP2003139416A (en) Cooling system
CN208859932U (en) A kind of refrigeration equipment improving air-conditioning Energy Efficiency Ratio
JP2001108332A (en) Refrigerant heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071002