JP5217350B2 - 偏芯測定装置 - Google Patents

偏芯測定装置 Download PDF

Info

Publication number
JP5217350B2
JP5217350B2 JP2007266953A JP2007266953A JP5217350B2 JP 5217350 B2 JP5217350 B2 JP 5217350B2 JP 2007266953 A JP2007266953 A JP 2007266953A JP 2007266953 A JP2007266953 A JP 2007266953A JP 5217350 B2 JP5217350 B2 JP 5217350B2
Authority
JP
Japan
Prior art keywords
light
optical system
incident
imaging optical
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007266953A
Other languages
English (en)
Other versions
JP2009097883A (ja
Inventor
志強 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2007266953A priority Critical patent/JP5217350B2/ja
Publication of JP2009097883A publication Critical patent/JP2009097883A/ja
Application granted granted Critical
Publication of JP5217350B2 publication Critical patent/JP5217350B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Description

本発明は、偏芯測定装置に関する。
従来、偏芯測定装置として、回転対称な被検体を取り付けた状態で高速回転可能な高精度回転軸(スピンドル)を備える装置が知られている(例えば、特許文献1参照)。このような偏芯測定装置では、被検体の被検面で反射された光の像の振れを測定することで被検体の偏芯量を測定する。測定に際し特許文献1に記載の偏芯測定装置では、平行光束を利用して偏芯を測定するため、結像光学系を測定装置の光路中に挿入し、この結像光学系を介して光を被検体に入射させ、且つ結像光学系を介して被検体からの反射光を偏芯量検出センサに入射させている。
特開平11−287742号公報
結像光学系を偏芯測定装置の光路中に挿入する際に、結像光学系の光軸と偏芯測定装置の光軸とがずれてしまった場合、偏芯量を精度良く測定することは困難である。
本発明は、偏芯測定装置の光軸と結像光学系の光軸とのずれが偏芯量の測定に与える影響を抑制することが可能な偏芯測定装置を提供することを目的とする。
本発明を例示する態様に従えば、被検体の偏芯量を測定する装置であって、所定の焦点距離を有する結像光学系と、結像光学系を透過後に入射した光を被検体に入射するように反射する第1の反射部材と、被検体を介した後に入射した光を結像光学系に入射するように反射する第2の反射部材と、装置の光軸に対する結像光学系を介した第2の反射部材での反射光の傾きを検出する傾き検出手段と、を備え、第1及び第2の反射部材の何れか一方は入射された光を光軸に対して180度回転して入射方向に沿って反射する反射部材であって、他方は平面鏡であることを特徴とする偏芯測定装置が提供される。
本発明を例示する態様によれば、第1及び第2の反射部材の何れか一方が入射された光を光軸に対して180度回転して入射方向に沿って反射する。したがって、結像光学系の光軸と偏芯測定装置の光軸とがずれている場合には、被検体での反射光は結像光学系の光軸に沿って結像光学系に戻され、また結像光学系を透過した被検体での反射光は平行光束となることができる。これにより、本発明を例示する態様によれば、結像光学系の光軸と偏芯測定装置の光軸とがずれている場合であっても、被検体の偏芯量を精度よく測定することが可能となる。
本発明によれば、偏芯測定装置の光軸と結像光学系の光軸とのずれが偏芯量の測定に与える影響を抑制することが可能な偏芯測定装置を提供することができる。
以下、添付図面を参照して、本発明の実施形態について詳細に説明する。なお、説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。
(第1実施形態)
図1及び図2を参照して、第1実施形態に係る偏芯測定装置1の構成について説明する。図1は、第1実施形態に係る偏芯測定装置の構成図である。図2は、第1実施形態に係る偏芯測定装置に含まれるコーナーキューブの斜視図である。
図1に示す偏芯測定装置1は、光源2と、コリメータレンズ3と、偏光ビームスプリッタ4と、結像光学系5と、偏光ビームスプリッタ(光反射透過部材)6と、1/4波長板7、9、10と、コーナーキューブ(第1の反射部材)8と、平面鏡(第2の反射部材)11と、集光光学系12と、位置センサ13とを備えている。偏芯測定装置1は、光源2から出力された光Lを、結像光学系5及びコーナーキューブ8を介して被検体Sに入射させ、被検体Sの被検面で反射された光Lを平面鏡11及び結像光学系5を介して位置センサ13に入射させることで、被検体Sの偏芯量を測定する装置である。
光源2は、例えばレーザ装置であり、光Lをコリメータレンズ3に入射する。コリメータレンズ3は、光源2から出力された光Lを平行光束にして、偏光ビームスプリッタ4に入射させる。偏光ビームスプリッタ4は、コリメータレンズ3を透過した光Lを反射して結像光学系5に入射させる。偏光ビームスプリッタ4はまた、結像光学系5を透過した光Lを透過する。
結像光学系5は、有限の焦点距離を有する合焦光学系である。結像光学系5は、その焦点距離を変えることができる可変焦点距離光学系でもある。結像光学系5は、被検体Sの被検面の曲率中心から偏芯測定装置1の光軸Axに沿って焦点距離の分だけ離れた位置に配置されている。光源2側から結像光学系5を透過した光Lは、偏光ビームスプリッタ6に入射する。一方、被検体S側から結像光学系5を透過した光Lは、偏光ビームスプリッタ4に入射する。
偏光ビームスプリッタ6は、結像光学系5を透過した光Lを反射して、1/4波長板7に入射させる。偏光ビームスプリッタ6はまた、コーナーキューブ8で反射されて1/4波長板7を透過した光Lを透過して1/4波長板9及び被検体Sに入射させる。偏光ビームスプリッタ6はまた、被検体Sの被検面Smで反射されて1/4波長板9を透過した光Lを反射して1/4波長板10及び平面鏡11に入射させる。偏光ビームスプリッタ6はまた、平面鏡11で反射されて1/4波長板10を透過した光Lを透過して結像光学系5に入射させる。
1/4波長板7、9、10は、入射された光Lが直線偏光の場合にはその偏光状態を円偏光とし、入射された光Lが円偏光の場合にはその偏光状態を直線偏光とする。
コーナーキューブ8は、結像光学系5を透過後、偏光ビームスプリッタ6及び1/4波長板7を介して入射した光Lを、偏光ビームスプリッタ6及び1/4波長板7、9を介して被検体Sに入射するように反射する。図2にコーナーキューブ8の斜視図を示す。図2に示されるように、コーナーキューブ8は、互いに直交する3つの反射面8a、8b、8cを有し、入射した光Lを入射光軸の方向に反射する。コーナーキューブ8のこうした特性により、光Lは入射光路方向に沿った方向に反射される。コーナーキューブ8は、入射された光Lをコーナーキューブ8自身の光軸、本実施形態では装置1の光軸Axに対して180度回転して入射方向に沿って反射する。
再び図1に戻って偏芯測定装置1の説明を続ける。平面鏡11は、被検体Sで反射された後、偏光ビームスプリッタ6及び1/4波長板9、10を介して入射した光Lを、偏光ビームスプリッタ6及び1/4波長板10を介して結像光学系5に入射するように反射する。平面鏡11は、反射表面と光軸Axとが直交するように配置され、光Lを入射光路方向に沿った方向に反射する。
集光光学系12は、結像光学系5を透過した平面鏡11での反射光Lを位置センサ13上に集光する。位置センサ13は、集光光学系12によって集光された光Lの光量中心の位置を観察する。位置センサ13は、例えばスクリーン及びCCDカメラによって構成されていてもよい。この場合、スクリーン上に集光されたスポット光をCCDカメラが撮像する。あるいは、位置センサ13は、例えば光位置センサ(Position Sensitive Detector;PSD)であってもよい。あるいは、位置センサ13は、例えばスクリーンであって、スクリーン上に集光されたスポット光の位置を測量によって観察してもよい。
位置センサ13はさらに、観察された反射光Lの光量重心の位置に基づき、光軸Axに対する集光光学系12を透過した平面鏡11での反射光Lの傾きを検出する。このように、集光光学系12及び位置センサ13は傾き検出手段として機能する。
なお、結像光学系5、コリメータレンズ3、及び集光光学系12は、図1では1枚の光学レンズで表しているが、実際には複数枚の光学レンズによって構成されていてもよい。
次に、偏芯測定装置1によって被検体Sの偏芯を測定する方法を説明する。まず、光源2から出射された光Lがコリメータレンズ3を通って平行光束にされ、偏光ビームスプリッタ4で反射される。結像光学系5は被検体Sの被検面Smの曲率中心に集光するように、その焦点距離を変える。偏光ビームスプリッタ4で反射された光Lは、結像光学系5を透過し、偏光ビームスプリッタ6で反射する。偏光ビームスプリッタ6で反射された光Lは、1/4波長板7を通って、コーナーキューブ8で反射する。コーナーキューブ8で反射した光は再度1/4波長板7及び偏光ビームスプリッタ6を透過後、さらに1/4波長板9を通ったあとに、被検体Sの被検面Smに入射する。被検面Smで反射した光Lは再度1/4波長板9を透過した後に、偏光ビームスプリッタ6で反射する。偏光ビームスプリッタ6で反射した光Lは、1/4波長板10を透過後、平面鏡11で反射し、再度1/4波長板10を透過して偏光ビームスプリッタ6を通る。この光Lはさらに結像光学系5を通り、偏光ビームスプリッタ4を通った後、集光光学系12を介して位置センサ13に集光される。位置センサ13上のスポットの位置から、光軸Axに対する集光光学系12を透過した平面鏡11での反射光Lの傾きを検出する。そして、被検体Sの被検面Smの偏芯量を検出することができる。
続いて、図3を参照して結像光学系5の光軸と偏芯測定装置1の光軸Axとのずれが偏芯量の測定に与える影響を抑制する原理を説明する。偏芯測定装置1では、結像光学系5がその光軸5aと偏芯測定装置1の光軸Axとがずれて配置された場合、結像光学系5を通った光Lが装置の結像光学系5の光軸5aを装置の光軸として進行してしまう。そのため、結像光学系5以降の光軸は、元々の装置の光軸Axからずれてしまう。そのため、光Lはコーナーキューブ8で反射後、被検面Smの曲率中心Oからずれた点Aに集光してしまう。ここで、被検面Smに偏芯がなければ、被検面Smで反射した光の像点は曲率中心Oに関して点Aと点対称な位置にある点B1になる。したがって、被検面Smで反射した光Lは、点B1から出射された光のように進行する。被検面Smで反射した光Lは、偏光ビームスプリッタ6及び平面鏡11で反射する。偏光ビームスプリッタ6及び平面鏡11で反射した光の像点は点B2になる。偏芯測定装置1では、図3に示されるように、像点B2は結像光学系5の光軸5aの延長線上にある。そのため、被検面Smに偏芯がない場合、平面鏡11で反射された後結像光学系5を透過した光は、偏芯測定装置1の光軸Axに平行な平行光束になる。一方、被検面Smに偏芯がある場合には、平面鏡11で反射された後結像光学系5を透過した光は、通常の測定と同じように、偏芯測定装置1の光軸Axに平行な平行光束ではなくなり、位置センサ13上のスポットの光量中心の位置が変化する。
偏芯測定装置1では、コーナーキューブ8に入射された光Lが光軸Axに対して180度回転して入射方向に沿って反射される。したがって、図3に示されるように、結像光学系5の光軸5aと偏芯測定装置の光軸Axとがずれている場合には、被検体Sの被検面Smでの反射光Lは結像光学系5の光軸5aを光軸として結像光学系5に戻される。そのため、結像光学系5を透過した被検体Sの被検面Smでの反射光Lは平行光束となることができる。これにより、偏芯測定装置1では、結像光学系5の光軸5aと偏芯測定装置1の光軸Axとがずれている場合であっても、被検体の偏芯量を精度よく測定することが可能となる。
また、偏芯測定装置1では、上述のように結像光学系5の光軸5aが偏芯測定装置1の光軸Axとずれていても、ずれによる影響を抑制して偏芯量を測定することが可能である。
また、偏芯の測定おいて回転台が不要であるため、測定時間の短縮化、及びコストの抑制が可能となる。さらに、回転台の設置によって被検体Sの姿勢が制限されることもなく、様々な配置で測定することが可能である。
また、偏芯測定装置1は、入射された光を反射又は透過する偏光ビームスプリッタ6を備える。そして、コーナーキューブ8は、結像光学系5を透過後に、偏光ビームスプリッタ6を介して入射した光を、偏光ビームスプリッタ6を介して被検体Sに入射するように反射する。平面鏡11は、被検体Sで反射された後、偏光ビームスプリッタ6を介して入射した光を、偏光ビームスプリッタ6を介して結像光学系5に入射するように反射する。このように偏芯測定装置1では偏光ビームスプリッタ6を利用しているため、装置を小型化することが可能である。
また、結像光学系5は、その焦点距離を変えることができる可変焦点距離光学系である。そのため、被検体Sを交換して被検面Smの曲率中心の位置が変化しても、結像光学系5の焦点距離を変えて、集光点の位置を変えることができる。これにより、偏芯測定装置1では、さまざまな形状の被検体の偏芯量を精度よく測定することが可能となる。
図4に、偏芯測定装置1の変形例に係る偏芯測定装置1Aを示す。偏芯測定装置1Aは、コーナーキューブ8の配置と平面鏡11の配置とが逆である点で相違する。すなわち、平面鏡11が第1の反射部材として機能し、コーナーキューブ8が第2の反射部材として機能する。
偏芯測定装置1Aでは、光源2から出射された光Lは、結像光学系5を透過し、偏光ビームスプリッタ6で反射し、1/4波長板7を通って、平面鏡11で反射する。平面鏡11で反射した光は再度1/4波長板7及び偏光ビームスプリッタ6を透過後、さらに1/4波長板9を通り、被検体Sの被検面Smに入射する。被検面Smで反射した光Lは再度1/4波長板9を透過した後に、偏光ビームスプリッタ6で反射する。偏光ビームスプリッタ6で反射した光Lは、1/4波長板10を透過後、コーナーキューブ8で反射し、再度1/4波長板10を透過して偏光ビームスプリッタ6を通る。この光Lはさらに結像光学系5を通り、偏光ビームスプリッタ4を通った後、集光光学系12を介して位置センサ13に集光される。
偏芯測定装置1Aでは、偏芯測定装置1と同様に、結像光学系5の光軸と偏芯測定装置1の光軸とがずれている場合であっても、被検体の偏芯量を精度よく測定することが可能となる。
図6に、偏芯測定装置1の別の変形例に係る偏芯測定装置1Bを示す。偏芯測定装置1Bは、第1及び第2のマスク14、15をさらに備える点で第1実施形態に係る偏芯測定装置1とは相違する。
第1のマスク14は、第1のマスク14を通過後に被検体Sに光が入射する位置、より詳しくはコリメータレンズ3と偏光ビームスプリッタ4との間に配置されている。第2のマスク15は、被検体Sで反射した後に第2のマスク15に光が入射する位置、より詳しくは偏光ビームスプリッタ4と集光光学系12との間に配置されている。
円形状を呈する第1のマスク14は、光を遮蔽する3つの遮蔽部14aと光を通過させる3つの通過部14bとからなるパターンを有する。遮蔽部14aと通過部14bとは周方向で交互に配置されている。遮蔽部14a及び通過部14bは何れも、円の中心から放射状に伸びる中心角60度の扇形を呈する。第1のマスク14のパターンでは、光軸Axを中心に180度回転させることで遮蔽部14aの位置と通過部14bの位置とが反転する。
円形状を呈する第2のマスク15は、光を遮蔽する3つの遮蔽部15aと光を通過させる3つの通過部15bとからなるパターンを有する。遮蔽部15aと通過部15bとは周方向で交互に配置されている。遮蔽部15a及び通過部15bは何れも、円の中心から放射状に伸びる中心角60度の扇形を呈する。第2のマスク15のパターンでは、光軸Axを中心に180度回転させることで遮蔽部15aの位置と通過部15bの位置とが反転する。なお、図6では、見易さのため、遮蔽部14a、15aにハッチングを付している。
第1及び第2のマスク14、15は、光軸Axを中心にパターンが互いに180度反転するように配置されている。すなわち、第1のマスク14の遮蔽部14aと第2のマスクの通過部15bとが光軸Axに対して同等の位置に位置され、第1のマスク14の通過部14bと第2のマスクの遮蔽部15aとが光軸Axに対して同等の位置に配置される。
被検体Sが複数の光学系から構成されている場合、例えば図7に示されるように、被検体Sの複数の光学系のうちの一つの面Sxが被検面Smの曲率中心又は近軸焦点である点Xに近い位置にある場合に、面Sxから反射された光も位置センサ13に結像されてしまう。そして、面Sxで反射された光は、ノイズ光として被検体Sの偏芯量の測定精度を低下させるおそれがある。
これに対し、偏芯測定装置1Bでは、第1及び第2のマスク14、15をパターンが互いに180度反転するように配置されている。そのため、第1のマスク14の通過部14bを通過した光が被検面Smで反射した場合には第2のマスク15の通過部15bを通過するが、第1のマスク14の通過部14bを通過した光が面Sxで反射した場合には第2のマスク15の遮蔽部15aに到達してしまう。これは、図7に示されるように、被検面Smで反射した光は入射光と同じ光路方向に反射されるのに対し、被検面Smの曲率中心又は近軸焦点である点Xに近い位置にある面Sxで反射した光は入射光の光路とは光軸Axに対して対称な光路方向に反射されることによる。その結果、偏芯測定装置1Bでは、被検面Smで反射された測定光のみが第2のマスク14を通過し位置センサ13に到達する。そして、被検面Smで反射された測定光と面Sxで反射されたノイズ光の区別がつかず、面Sxで反射されたノイズ光が測定に影響を与えてしまうことが抑制される。
なお、第1及び第2のマスク14、15は、図6に示されたようなそれぞれ3つの遮蔽部14a、15aと3つの通過部14b、15bとが交互に配置されたパターンに限られない。第1及び第2のマスク14、15は、マスクを180度回転させることでパターンが反転するようなパターンであればよい。
具体的には、例えば、図8及び図9に示されるように、奇数個の遮蔽部とそれと同数の通過部と、等しい中心角を有する扇形状を呈した上で交互に配置されるようなパターンでもよい。すなわち、図8に示されるように、第1及び第2のマスク14、15がそれぞれ、1つの遮蔽部14a、15aと1つの通過部14b、15bとによって形成されるパターンを呈してもよい。この場合、遮蔽部14a、15a及び通過部14b、15bは何れも半円形状を呈する。または、図9に示されるように、第1及び第2のマスク14、15がそれぞれ、5つの遮蔽部14a、15aと5つの通過部14b、15bとによって形成されるパターンを呈してもよい。この場合、遮蔽部14a、15a及び通過部14b、15bは何れも中心角36度の扇形状を呈する。
(第2実施形態)
図5を参照して、第2実施形態に係る偏芯測定装置21の構成について説明する。第2実施形態に係る偏芯測定装置21は、被検体Sの被検面Smに入射する光の光路と被検面Smで反射された光の光路とが異なる点で、第1実施形態に係る偏芯測定装置とは異なる。図5は、第2実施形態に係る偏芯測定装置の構成図である。
図5に示す偏芯測定装置21は、光源22と、コリメータレンズ23と、結像光学系24と、平面反射鏡25と、コーナーキューブ(第1の反射部材)26と、偏光ビームスプリッタ(光反射透過部材)27と、1/4波長板28、29と、平面鏡(第2の反射部材)30と、結像光学系31と、光学系32、34と、空間フィルタ33と、検光板(偏光板)35と、集光光学系36と、位置センサ37とを備えている。偏芯測定装置21は、光源22から出力された光Lを、結像光学系24及びコーナーキューブ26を介して被検体Sに入射させ、被検体Sの被検面Smで反射された光Lを平面鏡30及び結像光学系31を介して位置センサ37に入射させることで、被検体Sの偏芯量を測定する装置である。
光源22は、光Lをコリメータレンズ23に入射する。コリメータレンズ23は、光源22から出力された光Lを平行光束にして、結像光学系24に入射させる。結像光学系24は、有限の焦点距離を有する合焦光学系である。結像光学系24は、被検体Sの被検面の曲率中心からコーナーキューブ26を経由して偏芯測定装置21の光軸Axに沿って焦点距離の分だけ離れた位置に配置されている。平面反射鏡25は、結像光学系24を透過した光Lを反射してコーナーキューブ26に入射させる。
コーナーキューブ26は、結像光学系24を透過後、平面反射鏡25で反射された光Lを、偏光ビームスプリッタ27を介して被検体Sに入射するように反射する。コーナーキューブ26は、入射された光Lをコーナーキューブ26自身の光軸、本実施形態では装置1の光軸Axの光軸に対して180度回転して入射方向に沿って反射する。
偏光ビームスプリッタ27は、平面反射鏡25を反射した光Lを透過して、1/4波長板28に入射させる。偏光ビームスプリッタ27はまた、被検体Sの被検面Smで反射されて1/4波長板28を透過した光Lを反射して1/4波長板29及び平面鏡30に入射させる。偏光ビームスプリッタ27はまた、平面鏡30で反射されて1/4波長板29を透過した光Lを透過して結像光学系31に入射させる。
結像光学系31は、被検体Sの被検面の曲率中心から平面鏡30を経由して偏芯測定装置21の光軸Axに沿って焦点距離の分だけ離れた位置に配置されている。偏芯測定装置21では、結像光学系24及び結像光学系31は、被検体Sの被検面Smの曲率中心から光軸Axに沿って焦点距離だけ離れた位置に配置されている1つの結像光学ユニットFとして機能する。
集光光学系36は、結像光学系31を透過後、光学系32、空間フィルタ33、光学系34、及び検光板35を通過した光Lを位置センサ37上に集光する。位置センサ37は、集光光学系36によって集光された光Lの光量中心の位置を観察することで、光軸Axに対する結像光学系36を透過した平面鏡30での反射光Lの傾きを検出する。
なお、結像光学系24、31、コリメータレンズ23、光学系32、34、及び集光光学系36は、図5では1枚の光学レンズで表しているが、実際には複数枚の光学レンズによって構成されていてもよい。
次に、偏芯測定装置21によって被検体Sの偏芯を測定する方法を説明する。まず、光源22から出射された光Lがコリメータレンズ23を通って平行光束にされ、結像光学系24に入射する。結像光学系24を透過後、平面反射鏡25で反射された光Lは、コーナーキューブ26で反射する。コーナーキューブ26で反射された光Lは、偏光ビームスプリッタ27及び1/4波長板28を通って、被検体Sの被検面Smに入射する。被検面Smで反射した光Lは再度1/4波長板28を透過した後に、偏光ビームスプリッタ27で反射する。偏光ビームスプリッタ27で反射した光Lは、1/4波長板29を透過後、平面鏡30で反射し、再度1/4波長板29を透過して偏光ビームスプリッタ27を通る。この光Lはさらに結像光学系31を通り、空間フィルタ33及び検光板35を通った後、集光光学系36を介して位置センサ37に集光される。位置センサ37上のスポットの位置から、被検体Sの被検面Smの偏芯量を検出することができる。
偏芯測定装置21では、コーナーキューブ26に入射された光Lが光軸Axに対して180度回転して入射方向に沿って反射される。したがって、結像光学ユニットFの光軸と偏芯測定装置の光軸Axとがずれている場合には、被検体Sの被検面Smでの反射光Lは結像光学ユニットFの光軸を光軸として結像光学系31に戻される。そのため、結像光学系31を透過した被検体Sの被検面Smでの反射光Lは平行光束となることができる。これにより、偏芯測定装置21では、結像光学ユニットFの光軸と偏芯測定装置21の光軸Axとがずれている場合であっても、被検体の偏芯量を精度よく測定することが可能となる。
また、偏芯測定装置21では、上述のように結像光学ユニットFの光軸が偏芯測定装置21の光軸Axとずれていても、ずれによる影響を抑制して偏芯量を測定することが可能であるため、測定の高速化、及びコストの抑制が可能になる。さらに、被検体Sを様々な配置で測定可能である。
また、偏芯測定装置21は、入射された光を反射又は透過する偏光ビームスプリッタ27を備える。そして、コーナーキューブ26は、結像光学系24を透過後に、平面反射鏡25を介して入射した光を、偏光ビームスプリッタ27を介して被検体Sに入射するように反射する。平面鏡30は、被検体Sで反射された後、偏光ビームスプリッタ27を介して入射した光を、偏光ビームスプリッタ27を介して結像光学系31に入射するように反射する。このように偏芯測定装置21では偏光ビームスプリッタ27を利用しているため、装置を小型化することが可能である。
また、偏芯測定装置21は、空間フィルタ33及び検光板35を備えている。そのため、被検面Smで直接反射した光を空間フィルタ33及び検光板35においてカットすることが可能である。そのため、測定の精度をより一層向上させることが可能となる。
以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、様々な変形が可能である。例えば、第1又は第2の反射部材として、コーナーリフレクタを用いてもよい。また、結像光学系5、24、31は、焦点距離を変えることができず、固定された焦点距離を有する光学系であってもよい。
第1実施形態に係る偏芯測定装置の構成図である。 コーナーキューブの斜視図である。 第1実施形態に係る偏芯測定装置による測定方法の原理を説明するための図である。 第1実施形態の変形例に係る偏芯測定装置の構成図である。 第2実施形態に係る偏芯測定装置の構成図である。 第1実施形態の変形例に係る偏芯測定装置の構成図である。 被検体で反射される光の進行する光路方向を示す図である。 第1及び第2のマスクの平面図である。 第1及び第2のマスクの平面図である。
符号の説明
1、21…偏芯測定装置、2、22…光源、3、23…コリメータレンズ、4、6、27…偏光ビームスプリッタ、5、24、31…結像光学系、7、9、10、28、29…1/4波長板、8、26…コーナーキューブ、11、30…平面鏡、12、36…集光光学系、13、37…位置センサ、14…第1のマスク、15…第2のマスク、25…平面反射鏡、33…空間フィルタ、35…検光板。

Claims (9)

  1. 被検体の偏芯量を測定する装置であって、
    所定の焦点距離を有する結像光学系と、
    前記結像光学系を透過後に入射した光を前記被検体に入射するように反射する第1の反射部材と、
    前記被検体を介した後に入射した光を前記結像光学系に入射するように反射する第2の反射部材と、
    前記装置の光軸に対する前記結像光学系を介した前記第2の反射部材での反射光の傾きを検出する傾き検出手段と、を備え、
    前記第1及び第2の反射部材の何れか一方は入射された光を光軸に対して180度回転して入射方向に沿って反射する反射部材であって、他方は平面鏡であることを特徴とする偏芯測定装置。
  2. 入射された光を反射又は透過する光反射透過部材をさらに備え、
    前記第1の反射部材は、前記結像光学系を透過後に入射した光を、前記光反射透過部材を介して前記被検体に入射するように反射し、
    前記第2の反射部材は、前記被検体を介した後、前記光反射透過部材を介して入射した光を、前記光反射透過部材を介して前記結像光学系に入射するように反射することを特徴とする請求項1に記載の偏芯測定装置。
  3. 前記第1及び第2の反射部材のうち、入射された光を光軸に対して180度回転して入射方向に沿って反射する反射部材は、互いに直交する3つの反射面を有することを特徴とする請求項1又は2に記載の偏芯測定装置。
  4. 前記第1及び第2の反射部材のうち、入射された光を光軸に対して180度回転して入射方向に沿って反射する反射部材は、コーナーキューブであることを特徴とする請求項1〜3のいずれか一項に記載の偏芯測定装置。
  5. 前記第1及び第2の反射部材のうち、入射された光を光軸に対して180度回転して入射方向に沿って反射する反射部材は、コーナーリフレクタであることを特徴とする請求項1〜3のいずれか一項に記載の偏芯測定装置。
  6. 前記結像光学系は、前記焦点距離を変えることができることを特徴とする請求項1〜5のいずれか一項に記載の偏芯測定装置。
  7. 前記結像光学系は、有限の焦点距離を有し、前記被検体の曲率中心から光軸に沿って前記焦点距離だけ離れた位置に配置されていることを特徴とする請求項1〜6のいずれか一項に記載の偏芯測定装置。
  8. 前記傾き検出手段は、前記結像光学系を透過した前記第2の反射部材での反射光を集光し、集光された光の光量重心の位置を観察することで、前記装置の光軸に対する前記結像光学系を透過した前記第2の反射部材での反射光の傾きを検出することを特徴とする請求項1〜7のいずれか一項記載の偏芯測定装置。
  9. 光を遮蔽する遮蔽部と光を通過させる通過部とからなり、前記装置の光軸を中心に180度回転させることで前記遮蔽部の位置と前記通過部の位置とが反転するパターンを有する第1のマスク及び第2のマスクをさらに備え、
    前記第1のマスクは、当該第1のマスクを通過後に前記被検体に光が入射する位置に配置され、
    前記第2のマスクは、前記被検体を介した後に当該第2のマスクに光が入射する位置に配置され、
    前記第1及び第2のマスクは、前記パターンが互いに180度反転するように配置されていることを特徴とする請求項1〜8のいずれか一項記載の偏芯測定装置。
JP2007266953A 2007-10-12 2007-10-12 偏芯測定装置 Expired - Fee Related JP5217350B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007266953A JP5217350B2 (ja) 2007-10-12 2007-10-12 偏芯測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007266953A JP5217350B2 (ja) 2007-10-12 2007-10-12 偏芯測定装置

Publications (2)

Publication Number Publication Date
JP2009097883A JP2009097883A (ja) 2009-05-07
JP5217350B2 true JP5217350B2 (ja) 2013-06-19

Family

ID=40701036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007266953A Expired - Fee Related JP5217350B2 (ja) 2007-10-12 2007-10-12 偏芯測定装置

Country Status (1)

Country Link
JP (1) JP5217350B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5459619B2 (ja) * 2010-05-21 2014-04-02 株式会社ニコン 偏芯測定装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214070A (ja) * 2001-01-15 2002-07-31 Nikon Corp 偏芯測定装置、偏芯測定方法及びこれらを用いて偏芯が測定された光学素子を組み込んでなる投影レンズ
JP2005003667A (ja) * 2003-05-16 2005-01-06 Olympus Corp 基準軸設定光学系、並びにこれを用いた偏心量測定機及び偏心測定方法

Also Published As

Publication number Publication date
JP2009097883A (ja) 2009-05-07

Similar Documents

Publication Publication Date Title
JP2913984B2 (ja) 傾斜角測定装置
JP5569132B2 (ja) 測距装置および撮像装置
JP5713545B2 (ja) 斜入射干渉計
JP2007279287A (ja) 構造化照明光学系、及びそれを備えた構造化照明顕微鏡
JP4751156B2 (ja) オートコリメータ及びそれを用いた角度測定装置
JP2008096197A (ja) 偏心測定装置
US20200341379A1 (en) Pattern drawing device
JP5217350B2 (ja) 偏芯測定装置
JPS6249925B2 (ja)
JP6289353B2 (ja) 波面収差計測装置
JP2013213802A (ja) 計測装置
JP2014145684A (ja) 測定装置
JP5346670B2 (ja) 非接触表面形状測定装置
JP2008107274A (ja) 焦点位置測定装置
JP2009121927A (ja) 偏芯測定装置及び偏芯測定方法
JP5641278B2 (ja) 検査装置
JP2009250927A (ja) 偏芯測定装置
JP5459619B2 (ja) 偏芯測定装置
JP2017072465A (ja) 測量機の光学系
JP2005315683A (ja) シヤリング干渉計及び干渉計測装置
JP3315806B2 (ja) 像面測定装置
JP2003140029A (ja) 焦点検出装置及びそれを組合せた自動焦点顕微鏡
JP2005140589A (ja) 干渉計
JPH08166209A (ja) 多面鏡評価装置
JP2005009977A (ja) 光学系偏心測定装置及び光学系偏心測定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5217350

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees