JP5213986B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP5213986B2
JP5213986B2 JP2011089470A JP2011089470A JP5213986B2 JP 5213986 B2 JP5213986 B2 JP 5213986B2 JP 2011089470 A JP2011089470 A JP 2011089470A JP 2011089470 A JP2011089470 A JP 2011089470A JP 5213986 B2 JP5213986 B2 JP 5213986B2
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
gas
liquid
ejector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011089470A
Other languages
Japanese (ja)
Other versions
JP2012220166A (en
Inventor
多佳志 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011089470A priority Critical patent/JP5213986B2/en
Publication of JP2012220166A publication Critical patent/JP2012220166A/en
Application granted granted Critical
Publication of JP5213986B2 publication Critical patent/JP5213986B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本発明は、例えば空気調和機等に適用される冷凍サイクル装置、特に気液分離器を備えた冷凍サイクル装置に関するものである。   The present invention relates to a refrigeration cycle apparatus applied to, for example, an air conditioner, and more particularly to a refrigeration cycle apparatus including a gas-liquid separator.

従来の空気調和機は、圧縮機、四方弁、室外熱交換器、減圧装置、室内熱交換器等が順次に環状に接続された冷媒回路を有し、その減圧装置と室内熱交換器の間に気液分離器を備えている。気液分離器の下部が室内熱交換器に接続されると共に、その上部が開閉弁およびキャビラリーチューブを介して圧縮機の吸入側に接続されている。室内熱交換器および延長配管を流れる冷媒の流速を抑えることにより管内圧損の増大を防ぎ、冷凍効果を確保することにより冷房能力の低下を防止している(例えば、特許文献1参照)。   A conventional air conditioner has a refrigerant circuit in which a compressor, a four-way valve, an outdoor heat exchanger, a decompression device, an indoor heat exchanger, and the like are sequentially connected in an annular shape, and between the decompression device and the indoor heat exchanger. Is equipped with a gas-liquid separator. The lower part of the gas-liquid separator is connected to the indoor heat exchanger, and the upper part thereof is connected to the suction side of the compressor via an on-off valve and a cabryry tube. By suppressing the flow rate of the refrigerant flowing through the indoor heat exchanger and the extension pipe, an increase in the pressure loss in the pipe is prevented, and a decrease in cooling capacity is prevented by ensuring the refrigeration effect (see, for example, Patent Document 1).

特開平7−120076号公報(要約書、図1)Japanese Patent Laid-Open No. 7-120076 (abstract, FIG. 1)

前述した従来の空気調和機では、圧縮機の吸入側に直接ガス冷媒を戻す構成であるため、圧縮機への液戻り防止の観点から気液分離器のガス側出口を完全ガス化する必要があるが、液側出口にガスが混入することがある。その場合には、冷房運転時に室内熱交換器の冷媒分配性能が低下し、冷凍サイクル装置の性能(以下、COP)が低下するという課題があった。特に、熱交換器として、圧力損失が大きく冷媒分岐数が多くなる直径5mm以下の細管や扁平管を用いる場合、ガスのみが流れる伝熱管が発生し、分配性能の低下が顕著に現れるという課題があった。
また、気液分離器で分離された冷媒が低圧である圧縮機の吸入部へバイパスされるため、圧縮過程の中間圧力部へバイパスする場合に比べ、冷凍サイクルの効率が低下するという課題があった。
Since the conventional air conditioner described above is configured to return the gas refrigerant directly to the suction side of the compressor, it is necessary to completely gasify the gas side outlet of the gas-liquid separator from the viewpoint of preventing liquid return to the compressor. There is a case where gas is mixed into the liquid side outlet. In that case, the refrigerant | coolant distribution performance of the indoor heat exchanger fell at the time of air_conditionaing | cooling operation, and the subject that the performance (henceforth COP) of a refrigerating-cycle apparatus fell occurred. In particular, when a thin tube or flat tube having a diameter of 5 mm or less, which has a large pressure loss and a large number of refrigerant branches, is used as a heat exchanger, there is a problem that a heat transfer tube through which only gas flows is generated, and a reduction in distribution performance appears significantly. there were.
In addition, since the refrigerant separated by the gas-liquid separator is bypassed to the suction portion of the low-pressure compressor, there is a problem that the efficiency of the refrigeration cycle is reduced as compared with the case of bypassing to the intermediate pressure portion of the compression process. It was.

本発明は、前記のような課題を解決するためになされたものであり、少なくとも室内熱交換器の冷媒の分配性能を上げると共に、圧縮機による低圧から中間圧力までの圧縮動力を削減できる冷凍サイクル装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and at least improves the refrigerant distribution performance of the indoor heat exchanger and reduces the compression power from the low pressure to the intermediate pressure by the compressor. An object is to provide an apparatus.

本発明に係る冷凍サイクル装置は、少なくとも、圧縮機、四方弁、室外熱交換器、エジェクタ、室内熱交換器が順次に環状に接続された冷媒回路を有する冷凍サイクル装置において、エジェクタからの冷媒をガス冷媒と液冷媒とに分離し、ガス冷媒を圧縮機の中間圧部にバイパスさせると共に、液冷媒を室内熱交換器に送る気液分離器と、エジェクタにより吸引された気液分離器からの一部の液冷媒で室内熱交換器に流れる残り液冷媒を冷却する内部熱交換器とを備えたものである。   A refrigeration cycle apparatus according to the present invention includes a refrigerant circuit in which at least a compressor, a four-way valve, an outdoor heat exchanger, an ejector, and an indoor heat exchanger are sequentially connected in an annular manner. The gas refrigerant and liquid refrigerant are separated from each other, the gas refrigerant is bypassed to the intermediate pressure part of the compressor, and the liquid refrigerant is sent from the gas-liquid separator sucked by the ejector to the indoor heat exchanger. And an internal heat exchanger that cools the remaining liquid refrigerant flowing into the indoor heat exchanger with some liquid refrigerant.

本発明によれば、例えば冷房運転時に、エジェクタにより吸引された気液分離器からの一部の液冷媒で室内熱交換器に流れる残り液冷媒を冷却する内部熱交換器を設けているので、内部熱交換器により冷却された液冷媒を室内熱交換器に送ることが可能になり、そのため、室内熱交換器の冷媒分配性能が向上し、高効率の冷凍サイクル装置を提供できる。
また、気液分離器で分離されたガス冷媒を圧縮機の中間圧部にバイパスしているので、低圧から中間圧力までの圧縮動力が削減でき、高効率の冷凍サイクル装置を提供することができる。
According to the present invention, for example, during cooling operation, an internal heat exchanger that cools the remaining liquid refrigerant flowing to the indoor heat exchanger with a part of the liquid refrigerant from the gas-liquid separator sucked by the ejector is provided. The liquid refrigerant cooled by the internal heat exchanger can be sent to the indoor heat exchanger, so that the refrigerant distribution performance of the indoor heat exchanger is improved and a highly efficient refrigeration cycle apparatus can be provided.
Further, since the gas refrigerant separated by the gas-liquid separator is bypassed to the intermediate pressure portion of the compressor, the compression power from the low pressure to the intermediate pressure can be reduced, and a highly efficient refrigeration cycle apparatus can be provided. .

本発明の実施の形態1に係る冷凍サイクル装置の構成を示す冷媒回路図である。It is a refrigerant circuit diagram which shows the structure of the refrigeration cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置のエジェクタの構成図である。It is a block diagram of the ejector of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る冷凍サイクル装置の構成を示す冷媒回路図である。It is a refrigerant circuit figure which shows the structure of the refrigerating-cycle apparatus which concerns on Embodiment 2 of this invention.

実施の形態1.
図1は本発明の実施の形態1に係る冷凍サイクル装置の構成を示す冷媒回路図、図2は本発明の実施の形態1に係る冷凍サイクル装置のエジェクタの構成図である。
実施の形態1の冷凍サイクル装置は、図1に示すように、2段圧縮機1、冷房と暖房の運転切換を行うための四方弁2、室外熱交換器3、エジェクタ8、気液分離器5、室内熱交換器4が冷媒管(液管10、ガス管11)により順次に環状に接続されて構成されている。室内熱交換器4には、後述するが、気液分離器5からの液冷媒を均等分配するための分配器41が設けられている。
Embodiment 1 FIG.
FIG. 1 is a refrigerant circuit diagram showing a configuration of a refrigeration cycle apparatus according to Embodiment 1 of the present invention, and FIG. 2 is a configuration diagram of an ejector of the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
As shown in FIG. 1, the refrigeration cycle apparatus of Embodiment 1 includes a two-stage compressor 1, a four-way valve 2 for switching between cooling and heating operation, an outdoor heat exchanger 3, an ejector 8, and a gas-liquid separator. 5. The indoor heat exchanger 4 is configured in such a manner that the refrigerant pipes (liquid pipe 10 and gas pipe 11) are sequentially connected in an annular shape. As will be described later, the indoor heat exchanger 4 is provided with a distributor 41 for evenly distributing the liquid refrigerant from the gas-liquid separator 5.

2段圧縮機1は、同一シェル内に第1圧縮機1aと第2圧縮機1bが内蔵された1シェル型の圧縮機である。第1圧縮機1aの吸入部、第2圧縮機1bの吐出部がシェル内に開放され、シェル内は中間圧の状態に維持されている。本実施の形態では、このような1シェル型の2段圧縮機の例を示したが、これに限るものではなく、第1圧縮機1aと第2圧縮機1bが配管を介して直列接続される2シェル型の2段圧縮機でも良い。   The two-stage compressor 1 is a one-shell type compressor in which a first compressor 1a and a second compressor 1b are built in the same shell. The suction portion of the first compressor 1a and the discharge portion of the second compressor 1b are opened in the shell, and the inside of the shell is maintained at an intermediate pressure state. In the present embodiment, an example of such a one-shell type two-stage compressor has been described. However, the present invention is not limited to this, and the first compressor 1a and the second compressor 1b are connected in series via a pipe. A two-shell type two-stage compressor may be used.

エジェクタ8は、後述するが可変絞り構造となっており、下流側に気液分離器5が設けられている。気液分離器5の下部に設けられた液側出口は、室内熱交換器4からの液管10と第3減圧装置15を介して接続されていると共に、液側出口から分岐する第1バイパス管51を介してエジェクタ8の吸引部81と接続されている。気液分離器5の上部に設けられたガス側出口は、第2バイパス管52を介して2段圧縮機1の第1圧縮機1aと第2圧縮機1bの間の中間圧部と接続されている。第1バイパス管51に第2減圧装置14が、第2バイパス管52に第1減圧装置12が、液管10の入口部に第3減圧装置15がそれぞれ設けられている。   As will be described later, the ejector 8 has a variable throttle structure, and a gas-liquid separator 5 is provided on the downstream side. The liquid side outlet provided in the lower part of the gas-liquid separator 5 is connected to the liquid pipe 10 from the indoor heat exchanger 4 via the third decompression device 15 and is branched from the liquid side outlet. The pipe 51 is connected to the suction part 81 of the ejector 8. The gas side outlet provided in the upper part of the gas-liquid separator 5 is connected to the intermediate pressure part between the first compressor 1a and the second compressor 1b of the two-stage compressor 1 via the second bypass pipe 52. ing. The first pressure reducing device 14 is provided in the first bypass pipe 51, the first pressure reducing device 12 is provided in the second bypass pipe 52, and the third pressure reducing device 15 is provided in the inlet of the liquid pipe 10.

また、気液分離器5の液側出口から液管10内に流入する液冷媒を第1バイパス管51に流れる液冷媒により熱交換(冷却)する内部熱交換器9が設けられている。その内部熱交換器9は、液冷媒同士を熱交換するものであるため、例えばプレート式や二重管式の熱交換器が用いられている。   In addition, an internal heat exchanger 9 is provided that heat-exchanges (cools) the liquid refrigerant flowing into the liquid pipe 10 from the liquid-side outlet of the gas-liquid separator 5 with the liquid refrigerant flowing in the first bypass pipe 51. Since the internal heat exchanger 9 exchanges heat between liquid refrigerants, for example, a plate type or double tube type heat exchanger is used.

第2減圧装置14の出口には第1温度センサー22が設けられ、内部熱交換器9の低圧側出口とエジェクタ8の吸引部81との間には第2温度センサー23が設けられている。エジェクタ8の内部絞りは、一般的な電子膨張弁と同様に、例えば室内熱交換器4(蒸発器)の出口の過熱度を制御するようにすれば良い。   A first temperature sensor 22 is provided at the outlet of the second decompression device 14, and a second temperature sensor 23 is provided between the low pressure side outlet of the internal heat exchanger 9 and the suction part 81 of the ejector 8. The internal throttle of the ejector 8 may control the degree of superheat at the outlet of the indoor heat exchanger 4 (evaporator), for example, in the same manner as a general electronic expansion valve.

前述のエジェクタ8は、図2に示すように、高圧の液冷媒E1が流入し、内部にニードル82が挿入されたノズル部83と、吸引部81を有し、吸引部81から流入するガス冷媒E2とノズル部83からの液冷媒E1を混合する混合部84と、ディフューザ部85と、電磁コイル86と、ニードル82をノズル喉部83cへ抜き差し可能な可変絞り機構とを備えている。ノズル部83は、ノズル減圧部83aとノズル喉部83cとノズル末広部83bから構成されている。   As shown in FIG. 2, the above-described ejector 8 includes a nozzle portion 83 into which a high-pressure liquid refrigerant E <b> 1 flows and a needle 82 is inserted, and a suction portion 81, and a gas refrigerant that flows from the suction portion 81. E2 and the mixing part 84 which mixes the liquid refrigerant | coolant E1 from the nozzle part 83, the diffuser part 85, the electromagnetic coil 86, and the variable throttle mechanism which can insert / extract the needle 82 to the nozzle throat part 83c are provided. The nozzle part 83 includes a nozzle decompression part 83a, a nozzle throat part 83c, and a nozzle divergent part 83b.

エジェクタ8は、駆動流である高圧の液冷媒E1をノズル減圧部83aで減圧膨張させてノズル喉部83cで音速とし、さらにノズル末広部83bにより超音速として減圧・加速させる。このとき、第1バイパス管51内を流れるガス冷媒E2を吸引部81から吸引して混合する。混合された気液二相冷媒は、混合部84によりある程度の圧力に回復し、さらにディフューザ部85によって出口圧力まで圧力上昇し、エジェクタ8から流出する。   The ejector 8 decompresses and accelerates the high-pressure liquid refrigerant E1, which is a driving flow, at the nozzle decompression unit 83a to reduce the pressure and accelerate it to the sound velocity at the nozzle throat portion 83c, and further to the supersonic velocity at the nozzle divergent portion 83b. At this time, the gas refrigerant E <b> 2 flowing through the first bypass pipe 51 is sucked from the suction part 81 and mixed. The mixed gas-liquid two-phase refrigerant recovers to a certain pressure by the mixing unit 84, further rises to the outlet pressure by the diffuser unit 85, and flows out from the ejector 8.

次に、実施の形態1の冷凍サイクル装置の動作について説明する。
冷房運転時は、四方弁2が実線のように接続されると共に、第1減圧装置12が開放され、気液分離器5により分離されたガス冷媒が第1圧縮機1aと第2圧縮機1bの間の中間圧部にバイパスされる。第1圧縮機1aにより高温・高圧となった冷媒は、四方弁2を通って室外熱交換器3により凝縮され、エジェクタ8により膨張されて低温・低圧の二相冷媒となり、気液分離器5により飽和液冷媒(実際には、ガス冷媒が少量混入した乾き度の低い二相状態)と飽和ガス冷媒に分離される。
Next, the operation of the refrigeration cycle apparatus of Embodiment 1 will be described.
During the cooling operation, the four-way valve 2 is connected as shown by a solid line, the first pressure reducing device 12 is opened, and the gas refrigerant separated by the gas-liquid separator 5 is the first compressor 1a and the second compressor 1b. Is bypassed to the intermediate pressure section. The refrigerant that has become high temperature and high pressure by the first compressor 1 a passes through the four-way valve 2, is condensed by the outdoor heat exchanger 3, and is expanded by the ejector 8 to become a low temperature and low pressure two-phase refrigerant. Is separated into a saturated liquid refrigerant (actually, a two-phase state with a low degree of dryness in which a small amount of gas refrigerant is mixed) and a saturated gas refrigerant.

分離された飽和液冷媒は、内部熱交換器9で過冷却された後、その一部の液冷媒が第3減圧装置15、液管10を介して分配器41で均等分配されて室内熱交換器4に導かれ、そこで蒸発してガス管11、四方弁2を介して低圧側に配置された第2圧縮機1bへ戻る。過冷却された液冷媒の他の一部は、第2減圧装置14で減圧された後、内部熱交換器9を介してエジェクタ8の吸引部81へ吸引される。一方、気液分離器5のガス側出口から流出した飽和ガス冷媒は、第1減圧装置12を介して第1圧縮機1aと第2圧縮機1bの間の中間圧部へバイパスされる。このとき、ガス冷媒が圧縮途中の中間圧力にバイパスされるため、従来例に比べ低圧から中間圧力までの圧縮動力を削減でき、高効率の冷凍サイクル装置を提供できる。   The separated saturated liquid refrigerant is supercooled by the internal heat exchanger 9, and then a part of the liquid refrigerant is equally distributed by the distributor 41 via the third decompression device 15 and the liquid pipe 10, so that the indoor heat exchange is performed. Then, the gas is evaporated to return to the second compressor 1b disposed on the low pressure side through the gas pipe 11 and the four-way valve 2. Another part of the supercooled liquid refrigerant is decompressed by the second decompression device 14 and then sucked into the suction part 81 of the ejector 8 through the internal heat exchanger 9. On the other hand, the saturated gas refrigerant flowing out from the gas side outlet of the gas-liquid separator 5 is bypassed to the intermediate pressure part between the first compressor 1 a and the second compressor 1 b via the first pressure reducing device 12. At this time, since the gas refrigerant is bypassed to the intermediate pressure in the middle of compression, the compression power from the low pressure to the intermediate pressure can be reduced as compared with the conventional example, and a highly efficient refrigeration cycle apparatus can be provided.

ここで、気液分離器5の効率低下や環境条件の変化により、気液分離器5の液側出口にガス冷媒が少量混入した場合、気液分離器5内の液面は、下部に設けられた液側出口の管接続位置に近い低位置にあり、気液分離器5を流出する液冷媒は実質的に二相状態となる。従って、室内熱交換器4の入口の分配器41で液単相流の均質な冷媒分配を得るためには、気液分離器5を流出する液冷媒を低温の冷媒で冷却し、過冷却させて確実に液状態となるようにする必要がある。本実施の形態では、エジェクタ8により低温の二相冷媒を生成し、その冷媒と熱交換する内部熱交換器9を気液分離器5の液側出口に設けたため、分配器41での液単相流の均質分配が可能となり、気液二相流で生じる不均一分配に伴う性能低下を防止できる。   Here, when a small amount of gas refrigerant is mixed into the liquid-side outlet of the gas-liquid separator 5 due to a reduction in efficiency of the gas-liquid separator 5 or a change in environmental conditions, the liquid level in the gas-liquid separator 5 is provided at the lower part. The liquid refrigerant flowing out of the gas-liquid separator 5 is substantially in a two-phase state. Therefore, in order to obtain a homogeneous refrigerant distribution of the liquid single phase flow in the distributor 41 at the inlet of the indoor heat exchanger 4, the liquid refrigerant flowing out of the gas-liquid separator 5 is cooled with a low-temperature refrigerant and is supercooled. It is necessary to ensure that it is in a liquid state. In the present embodiment, a low-temperature two-phase refrigerant is generated by the ejector 8 and the internal heat exchanger 9 for exchanging heat with the refrigerant is provided at the liquid side outlet of the gas-liquid separator 5. The homogeneous distribution of the phase flow becomes possible, and the performance deterioration due to the non-uniform distribution generated in the gas-liquid two-phase flow can be prevented.

ところで、エジェクタ8の吸引部81の過熱度制御は次のようになる。すなわち、第1温度センサー22の検知温度をT1、第2温度センサー23の検知温度をT2とした場合、過熱度SH=T2―T1と表される。この値が環境条件や運転条件に応じた所定値(例えば、5〜10℃)となるように第2減圧装置14の開度が制御される。第2減圧装置14の開度にて過熱度を制御する例は一例にすぎず、開閉弁と毛細管の組み合わせにより1つの環境条件や運転条件でのみ所定の過熱度を確保する構成としても良い。なお、第1減圧装置12の開度は、例えば第1圧縮機1aの吐出温度や吐出過熱度を検知し、その吐出温度や吐出過熱度が所定値となるように制御すれば良い。   By the way, the superheat degree control of the suction part 81 of the ejector 8 is as follows. That is, when the detected temperature of the first temperature sensor 22 is T1, and the detected temperature of the second temperature sensor 23 is T2, the degree of superheat SH = T2-T1. The opening degree of the second decompression device 14 is controlled so that this value becomes a predetermined value (for example, 5 to 10 ° C.) according to the environmental condition and the operating condition. The example in which the degree of superheat is controlled by the opening degree of the second pressure reducing device 14 is merely an example, and a configuration in which a predetermined degree of superheat is ensured only under one environmental condition or operating condition by a combination of an on-off valve and a capillary tube. Note that the opening degree of the first pressure reducing device 12 may be controlled such that, for example, the discharge temperature or the discharge superheat degree of the first compressor 1a is detected, and the discharge temperature or the discharge superheat degree becomes a predetermined value.

次に、暖房運転時は、四方弁2が点線のように接続されると共に、第2減圧装置14と第1減圧装置12が全閉され、気液分離器5が液溜め容器として利用される。第1圧縮機1aにより高温・高圧となった冷媒は、四方弁2を通り、室内熱交換器4により凝縮液化される。さらに過冷却された液冷媒は、分配器41と液管10を介して気液分離器5に流入する。気液分離器5は、過冷却液で満たされて満液となる。気液分離器5を通過した冷媒は、エジェクタ8を逆流して膨張後、低温・低圧の二相冷媒となり、室外熱交換器3に流入し、そこで蒸発して四方弁2を介して第2圧縮機1bへ戻る。   Next, during the heating operation, the four-way valve 2 is connected as indicated by a dotted line, the second decompression device 14 and the first decompression device 12 are fully closed, and the gas-liquid separator 5 is used as a liquid storage container. . The refrigerant that has become high temperature and high pressure by the first compressor 1 a passes through the four-way valve 2 and is condensed and liquefied by the indoor heat exchanger 4. Further, the supercooled liquid refrigerant flows into the gas-liquid separator 5 through the distributor 41 and the liquid pipe 10. The gas-liquid separator 5 is filled with the supercooled liquid and becomes full. The refrigerant that has passed through the gas-liquid separator 5 flows back through the ejector 8 and expands to become a low-temperature / low-pressure two-phase refrigerant that flows into the outdoor heat exchanger 3 where it evaporates and passes through the four-way valve 2 to be second. Return to the compressor 1b.

実施の形態1においては、冷房運転時に、エジェクタ8からの冷媒(二相冷媒)を気液分離器5により分離し、液冷媒をエジェクタ8の吸引冷媒により過冷却して室内熱交換器4(蒸発器)に送るようにしているため、室内熱交換器4の冷媒の分配性能が向上し、高効率の冷凍サイクル装置を提供することができる。
また、熱交換器として冷媒分岐数が多くなる直径5mm以下の細管や扁平管を用いる場合、各分岐管の断面積が小さいため、気液分離器5で分離された液冷媒中に少量のガスが発生した場合でも、一部の分岐管はガスで満たされる状態となり易く、特に本実施の形態の効果が大きくなる。
さらに、気液分離器5で分離されたガス冷媒を圧縮機1の第1圧縮機1aと第2圧縮機1bの間の中間圧部にバイパスさせるため、低圧から中間圧力までの圧縮動力を削減でき、高効率で、省エネの冷凍サイクル装置を提供することができる。
In the first embodiment, during the cooling operation, the refrigerant (two-phase refrigerant) from the ejector 8 is separated by the gas-liquid separator 5, and the liquid refrigerant is supercooled by the suction refrigerant of the ejector 8, and the indoor heat exchanger 4 ( Since the refrigerant distribution performance of the indoor heat exchanger 4 is improved, a highly efficient refrigeration cycle apparatus can be provided.
In addition, when a thin tube or flat tube having a diameter of 5 mm or less with an increased number of refrigerant branches is used as a heat exchanger, a small amount of gas is contained in the liquid refrigerant separated by the gas-liquid separator 5 because the sectional area of each branch tube is small. Even when this occurs, some of the branch pipes are easily filled with gas, and the effect of the present embodiment is particularly great.
Further, since the gas refrigerant separated by the gas-liquid separator 5 is bypassed to the intermediate pressure portion between the first compressor 1a and the second compressor 1b of the compressor 1, the compression power from the low pressure to the intermediate pressure is reduced. It is possible to provide a highly efficient and energy-saving refrigeration cycle apparatus.

実施の形態2.
本発明の実施の形態2について、図3を用いて説明する。
図3は本発明の実施の形態2に係る冷凍サイクル装置の構成を示す冷媒回路図である。
本実施の形態の冷凍サイクル装置には、室外熱交換器3に分配器31が設けられており、また、冷房運転時に、前記室外熱交換器からの冷媒を前記エジェクタに誘導すると共に、前記気液分離器からの液冷媒を前記内部熱交換器を介して前記室内熱交換器に導き、暖房運転時には、前記室内熱交換器からの冷媒を前記エジェクタに誘導すると共に、前記気液分離器から液冷媒を前記内部熱交換器を介して前記室外熱交換器に導く冷媒流路整流手段である逆止弁ブリッジ回路70が設けられている。
Embodiment 2. FIG.
A second embodiment of the present invention will be described with reference to FIG.
FIG. 3 is a refrigerant circuit diagram showing the configuration of the refrigeration cycle apparatus according to Embodiment 2 of the present invention.
In the refrigeration cycle apparatus of the present embodiment, the outdoor heat exchanger 3 is provided with a distributor 31. Further, during cooling operation, the refrigerant from the outdoor heat exchanger is guided to the ejector, and the air Liquid refrigerant from the liquid separator is guided to the indoor heat exchanger via the internal heat exchanger, and during the heating operation, the refrigerant from the indoor heat exchanger is guided to the ejector, and from the gas-liquid separator. There is provided a check valve bridge circuit 70 which is a refrigerant flow rectifying means for guiding the liquid refrigerant to the outdoor heat exchanger via the internal heat exchanger.

例えば、逆止弁ブリッジ回路70は、室外熱交換器3と室内熱交換器4の各分配器31、41を接続する液管10に挿入され、互いに流出側が向き合う逆止弁71、73と、逆止弁71、73に並列に接続され、互いに流入側が向き合う逆止弁72、74とを備えている。逆止弁71、73の間には、エジェクタ8から配管された液管10が接続され、逆止弁72、74の間には、気液分離器5の液側出口から内部熱交換器9を介して配管された液管10が接続されている。逆止弁ブリッジ回路70と室内熱交換器4の間の液管10には、第3減圧装置15が設けられ、逆止弁ブリッジ回路70と室外熱交換器3の間の液管10には、第4減圧装置16が設けられている。   For example, the check valve bridge circuit 70 is inserted into the liquid pipe 10 that connects the distributors 31 and 41 of the outdoor heat exchanger 3 and the indoor heat exchanger 4, and check valves 71 and 73 that face each other on the outflow side; Check valves 72 and 74 are connected in parallel to the check valves 71 and 73 and the inflow sides face each other. The liquid pipe 10 piped from the ejector 8 is connected between the check valves 71 and 73, and the internal heat exchanger 9 is connected between the check valves 72 and 74 from the liquid side outlet of the gas-liquid separator 5. The liquid pipe 10 piped through is connected. A third pressure reducing device 15 is provided in the liquid pipe 10 between the check valve bridge circuit 70 and the indoor heat exchanger 4, and the liquid pipe 10 between the check valve bridge circuit 70 and the outdoor heat exchanger 3 is provided in the liquid pipe 10. A fourth decompression device 16 is provided.

次に、実施の形態2の冷凍サイクル装置の動作について説明する。
冷房運転時は、四方弁2が実線のように接続されると共に、第1減圧装置12、第4減圧装置16が開放され、気液分離器5により分離されたガス冷媒が第1圧縮機1aと第2圧縮機1bの間の中間圧部にバイパスされる。第1圧縮機1aにより高温・高圧となった冷媒は、四方弁2を通り、室外熱交換器3により凝縮されて分配器31から流出し、第4減圧装置16を通過して逆止弁71によりエジェクタ8に誘導される。その液冷媒は、エジェクタ8により膨張されて低温・低圧の二相冷媒となり、気液分離器5により飽和液冷媒(実際には、ガス冷媒が少量混入した乾き度の低い二相状態)と飽和ガス冷媒に分離される。
Next, operation | movement of the refrigerating-cycle apparatus of Embodiment 2 is demonstrated.
During the cooling operation, the four-way valve 2 is connected as shown by a solid line, the first decompression device 12 and the fourth decompression device 16 are opened, and the gas refrigerant separated by the gas-liquid separator 5 is the first compressor 1a. And is bypassed to the intermediate pressure section between the second compressor 1b. The refrigerant that has become high temperature and high pressure by the first compressor 1 a passes through the four-way valve 2, is condensed by the outdoor heat exchanger 3, flows out of the distributor 31, passes through the fourth decompression device 16, and passes through the check valve 71. Is guided to the ejector 8. The liquid refrigerant is expanded by the ejector 8 to become a low-temperature / low-pressure two-phase refrigerant, and saturated by the gas-liquid separator 5 with a saturated liquid refrigerant (actually, a two-phase state having a low dryness in which a small amount of gas refrigerant is mixed). Separated into gas refrigerant.

分離された飽和液冷媒は、内部熱交換器9を通過後に分岐する。そのとき、内部熱交換器9により過冷却された液冷媒の一部は、逆止弁74により第3減圧装置15、液管10を介して分配器41に流入する。分配器41に流入した液冷媒は、液分配されて室内熱交換器4に流入し、そこで蒸発してガス管11、四方弁2を介して第2圧縮機1bへ戻る。また、内部熱交換器9により過冷却された液冷媒の他の一部は、第2減圧装置14により減圧され、内部熱交換器9を介してエジェクタ8の吸引部81へ吸引される。一方、気液分離器5のガス側出口のガス冷媒は、第1減圧装置12を介して第1圧縮機1aと第2圧縮機1bの間の中間圧部へバイパスされる。このとき、ガス冷媒が圧縮途中の中間圧力にバイパスされるため、低圧から中間圧力までの圧縮動力を削減でき、高効率の冷凍サイクル装置を提供することができる。   The separated saturated liquid refrigerant branches after passing through the internal heat exchanger 9. At that time, part of the liquid refrigerant supercooled by the internal heat exchanger 9 flows into the distributor 41 via the third pressure reducing device 15 and the liquid pipe 10 by the check valve 74. The liquid refrigerant flowing into the distributor 41 is liquid-distributed and flows into the indoor heat exchanger 4, where it evaporates and returns to the second compressor 1b via the gas pipe 11 and the four-way valve 2. Further, the other part of the liquid refrigerant supercooled by the internal heat exchanger 9 is decompressed by the second decompression device 14 and sucked into the suction part 81 of the ejector 8 through the internal heat exchanger 9. On the other hand, the gas refrigerant at the gas side outlet of the gas-liquid separator 5 is bypassed to the intermediate pressure portion between the first compressor 1 a and the second compressor 1 b via the first pressure reducing device 12. At this time, since the gas refrigerant is bypassed to the intermediate pressure during compression, the compression power from the low pressure to the intermediate pressure can be reduced, and a highly efficient refrigeration cycle apparatus can be provided.

気液分離器5内の液面やエジェクタ8の吸引部81の過熱度制御は実施の形態1と同様であるため、詳細な説明を省略する。   Since the superheat degree control of the liquid level in the gas-liquid separator 5 and the suction part 81 of the ejector 8 is the same as that of the first embodiment, detailed description thereof is omitted.

暖房運転時も冷房運転時と同様に、四方弁2が点線のように接続されると共に、第1減圧装置12、第3減圧装置15が開放され、気液分離器5により分離されたガス冷媒が第1圧縮機1aと第2圧縮機1bの間の中間圧部にバイパスされる。第1圧縮機1aにより高温・高圧となった冷媒は、四方弁2を通り、室内熱交換器4により凝縮液化される。さらに過冷却された液冷媒は、分配器41、液管10、第3減圧装置15を通り、逆止弁73によりエジェクタ8に誘導される。誘導された液冷媒は、エジェクタ8により膨張されて低温・低圧の二相冷媒となり、気液分離器5により飽和液冷媒(実際には、ガス冷媒が少量混入した乾き度の低い二相状態)と飽和ガス冷媒に分離される。   In the heating operation, as in the cooling operation, the four-way valve 2 is connected as indicated by a dotted line, and the first decompression device 12 and the third decompression device 15 are opened and separated by the gas-liquid separator 5. Is bypassed to the intermediate pressure section between the first compressor 1a and the second compressor 1b. The refrigerant that has become high temperature and high pressure by the first compressor 1 a passes through the four-way valve 2 and is condensed and liquefied by the indoor heat exchanger 4. Further, the supercooled liquid refrigerant passes through the distributor 41, the liquid pipe 10, and the third pressure reducing device 15, and is guided to the ejector 8 by the check valve 73. The induced liquid refrigerant is expanded by the ejector 8 to become a low-temperature / low-pressure two-phase refrigerant, and is saturated by the gas-liquid separator 5 (actually, a low-dryness two-phase state in which a small amount of gas refrigerant is mixed). And saturated gas refrigerant.

分離された飽和液冷媒は、内部熱交換器9を通過後に分岐する。そのとき、内部熱交換器9により過冷却された液冷媒の一部は、逆止弁72により第4減圧装置16を通過後、分配器31に導かれて液分配され、室外熱交換器3に流入し、そこで蒸発して四方弁2を介して第2圧縮機1bへ戻る。また、内部熱交換器9により過冷却された液冷媒の他の一部は、第2減圧装置14で減圧され、内部熱交換器9を介してエジェクタ8の吸引部81へ吸引される。一方、気液分離器5のガス側出口のガス冷媒は、第1減圧装置12を介して第1圧縮機1aと第2圧縮機1bの間の中間圧部へバイパスされる。   The separated saturated liquid refrigerant branches after passing through the internal heat exchanger 9. At that time, a part of the liquid refrigerant supercooled by the internal heat exchanger 9 passes through the fourth decompression device 16 by the check valve 72 and is then led to the distributor 31 for liquid distribution, and the outdoor heat exchanger 3. And then evaporates and returns to the second compressor 1b via the four-way valve 2. Further, the other part of the liquid refrigerant supercooled by the internal heat exchanger 9 is decompressed by the second decompression device 14 and sucked into the suction part 81 of the ejector 8 through the internal heat exchanger 9. On the other hand, the gas refrigerant at the gas side outlet of the gas-liquid separator 5 is bypassed to the intermediate pressure portion between the first compressor 1 a and the second compressor 1 b via the first pressure reducing device 12.

実施の形態2においては、冷房および暖房運転時に液冷媒が逆止弁ブリッジ回路70により、エジェクタ8に導かれて気液分離器5により分離され、エジェクタ8の吸引冷媒で過冷却された液冷媒を室内熱交換器4または室外熱交換器3(蒸発器)に送ることができるため、室内又は室外熱交換器3、4の入口部での冷媒の分配性能が向上し、高効率の冷凍サイクル装置を提供することができる。
また、気液分離器5により分離されたガス冷媒を圧縮機1の第1圧縮機1aと第2圧縮機1bの間の中間圧部にバイパスするため、低圧から中間圧力までの圧縮動力を削減でき、高効率で、省エネの冷凍サイクル装置を提供することができる。
In the second embodiment, the liquid refrigerant is guided to the ejector 8 by the check valve bridge circuit 70 and separated by the gas-liquid separator 5 during the cooling and heating operation, and is supercooled by the suction refrigerant of the ejector 8. Can be sent to the indoor heat exchanger 4 or the outdoor heat exchanger 3 (evaporator), the refrigerant distribution performance at the inlet of the indoor or outdoor heat exchangers 3 and 4 is improved, and a highly efficient refrigeration cycle An apparatus can be provided.
Further, since the gas refrigerant separated by the gas-liquid separator 5 is bypassed to the intermediate pressure portion between the first compressor 1a and the second compressor 1b of the compressor 1, the compression power from the low pressure to the intermediate pressure is reduced. It is possible to provide a highly efficient and energy-saving refrigeration cycle apparatus.

1 2段圧縮機、1a 第1圧縮機、1b 第2圧縮機、2 四方弁、3 室外熱交換器、4 室内熱交換器、5 気液分離器、8 エジェクタ、9 内部熱交換器、10 液管、11 ガス管、12 第1減圧装置、14 第2減圧装置、15 第3減圧装置、16 第4減圧装置、22 第1温度センサー、23 第2温度センサー、31、41 分配器、51、52 バイパス管、70 逆止弁ブリッジ回路、71、72、73、74 逆止弁、81 吸引部、82 ニードル、83 ノズル部、83a ノズル減圧部、83b ノズル末広部、83c ノズル喉部、84 混合部、85 ディフューザ部、86 電磁コイル。   1 2-stage compressor, 1a 1st compressor, 1b 2nd compressor, 2 4-way valve, 3 outdoor heat exchanger, 4 indoor heat exchanger, 5 gas-liquid separator, 8 ejector, 9 internal heat exchanger, 10 Liquid pipe, 11 Gas pipe, 12 1st decompression device, 14 2nd decompression device, 15 3rd decompression device, 16 4th decompression device, 22 1st temperature sensor, 23 2nd temperature sensor, 31, 41 Distributor, 51 , 52 Bypass pipe, 70 Check valve bridge circuit, 71, 72, 73, 74 Check valve, 81 Suction part, 82 Needle, 83 nozzle part, 83a Nozzle pressure reducing part, 83b Nozzle wide part, 83c Nozzle throat part, 84 Mixing section, 85 diffuser section, 86 electromagnetic coil.

Claims (5)

少なくとも、圧縮機、室外熱交換器、エジェクタ、室内熱交換器が順次に環状に接続された冷媒回路を有する冷凍サイクル装置において、
前記エジェクタからの冷媒をガス冷媒と液冷媒とに分離し、前記ガス冷媒を前記圧縮機の中間圧部にバイパスさせると共に、前記液冷媒を前記室内熱交換器に送る気液分離器と、
前記エジェクタにより吸引された前記気液分離器からの一部の液冷媒で前記室内熱交換器に流れる液冷媒を冷却する内部熱交換器と
を備えたことを特徴とする冷凍サイクル装置。
At least in a refrigeration cycle apparatus having a refrigerant circuit in which a compressor, an outdoor heat exchanger, an ejector, and an indoor heat exchanger are sequentially connected in an annular shape,
A gas-liquid separator that separates the refrigerant from the ejector into a gas refrigerant and a liquid refrigerant, bypasses the gas refrigerant to an intermediate pressure portion of the compressor, and sends the liquid refrigerant to the indoor heat exchanger;
A refrigeration cycle apparatus comprising: an internal heat exchanger that cools a liquid refrigerant flowing into the indoor heat exchanger with a part of the liquid refrigerant from the gas-liquid separator sucked by the ejector.
冷房と暖房の運転切換を行う四方弁と、
冷房運転時に、前記室外熱交換器からの冷媒を前記エジェクタに誘導すると共に、前記気液分離器からの液冷媒を前記内部熱交換器を介して前記室内熱交換器に導き、暖房運転時には、前記室内熱交換器からの冷媒を前記エジェクタに誘導すると共に、前記気液分離器から液冷媒を前記内部熱交換器を介して前記室外熱交換器に導く冷媒流路整流手段とを備えたことを特徴とする請求項1記載の冷凍サイクル装置。
A four-way valve that switches between cooling and heating operation,
During the cooling operation, the refrigerant from the outdoor heat exchanger is guided to the ejector, and the liquid refrigerant from the gas-liquid separator is guided to the indoor heat exchanger via the internal heat exchanger. A refrigerant flow rectifier that guides the refrigerant from the indoor heat exchanger to the ejector and guides the liquid refrigerant from the gas-liquid separator to the outdoor heat exchanger via the internal heat exchanger; The refrigeration cycle apparatus according to claim 1.
前記冷媒流路整流手段は、前記室外熱交換器と前記室内熱交換器との間に冷媒の流出側が互いに向き合った状態で挿入され、冷房運転時には、前記室外熱交換器からの冷媒を前記エジェクタに導き、暖房運転時には、前記室内熱交換器からの冷媒を前記エジェクタに導く第1及び第2の逆止弁と、冷媒の流入側が互いに向き合った状態で前記第1及び第2の逆止弁に並列に接続され、冷房運転時に、前記気液分離器からの液冷媒を前記内部熱交換器を介して前記室内熱交換器に導き、暖房運転時には、前記気液分離器からの液冷媒を前記内部熱交換器を介して前記室外熱交換器に導く第3及び第4の逆止弁とを有する逆止弁ブリッジ回路で構成されていることを特徴とする請求項2に記載の冷凍サイクル装置。 The refrigerant flow rectifying means is inserted between the outdoor heat exchanger and the indoor heat exchanger with the refrigerant outflow sides facing each other, and during cooling operation, the refrigerant from the outdoor heat exchanger is transferred to the ejector In the heating operation, the first and second check valves for guiding the refrigerant from the indoor heat exchanger to the ejector, and the first and second check valves in a state where the refrigerant inflow sides face each other. In the cooling operation, the liquid refrigerant from the gas-liquid separator is guided to the indoor heat exchanger via the internal heat exchanger, and during the heating operation, the liquid refrigerant from the gas-liquid separator is The refrigeration cycle according to claim 2 , comprising a check valve bridge circuit having third and fourth check valves that lead to the outdoor heat exchanger via the internal heat exchanger. apparatus. 前記圧縮機は、同一シェル内に第1および第2圧縮機が内蔵された1シェル型、あるいは第1および第2圧縮機が配管により直列接続された2シェル型であることを特徴とする請求項1乃至3の何れかに記載の冷凍サイクル装置。   The compressor is a one-shell type in which the first and second compressors are built in the same shell, or a two-shell type in which the first and second compressors are connected in series by piping. Item 4. The refrigeration cycle apparatus according to any one of Items 1 to 3. 前記エジェクタは、内部に可変絞り機構が設けられたものであることを特徴とする請求項1乃至4の何れかに記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to any one of claims 1 to 4, wherein the ejector is provided with a variable throttle mechanism therein.
JP2011089470A 2011-04-13 2011-04-13 Refrigeration cycle equipment Active JP5213986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011089470A JP5213986B2 (en) 2011-04-13 2011-04-13 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011089470A JP5213986B2 (en) 2011-04-13 2011-04-13 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2012220166A JP2012220166A (en) 2012-11-12
JP5213986B2 true JP5213986B2 (en) 2013-06-19

Family

ID=47271874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011089470A Active JP5213986B2 (en) 2011-04-13 2011-04-13 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP5213986B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6083330B2 (en) 2012-11-16 2017-02-22 株式会社デンソー Ejector
CN104976813B (en) * 2014-04-04 2017-07-28 广东美的暖通设备有限公司 Air conditioner
JP2019138577A (en) * 2018-02-13 2019-08-22 株式会社デンソー Refrigeration cycle device
CN109682120A (en) * 2019-01-28 2019-04-26 天津商业大学 A kind of high-efficiency evaporator for reducing defrost heat and spreading in vain

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03282159A (en) * 1990-03-08 1991-12-12 Mitsubishi Electric Corp Freezing cycle device
JP3941495B2 (en) * 2001-12-19 2007-07-04 株式会社デンソー Ejector type decompression device
JP4358832B2 (en) * 2005-03-14 2009-11-04 三菱電機株式会社 Refrigeration air conditioner
JP5786481B2 (en) * 2010-06-18 2015-09-30 ダイキン工業株式会社 Refrigeration equipment

Also Published As

Publication number Publication date
JP2012220166A (en) 2012-11-12

Similar Documents

Publication Publication Date Title
CN101384862B (en) Refrigeration device
KR101146460B1 (en) A refrigerant system
CN107178833B (en) Heat recovery external machine system and air conditioning system
KR20140123824A (en) Air Conditioner and Controlling method for the same
WO2007105511A1 (en) Refrigerating apparatus
KR20120049440A (en) Air conditioner
WO2013140918A1 (en) Refrigeration cycle and refrigeration showcase
US20130055754A1 (en) Air conditioner
US20170074552A1 (en) Air conditioner
JP5213986B2 (en) Refrigeration cycle equipment
US9581359B2 (en) Regenerative air-conditioning apparatus
WO2013146415A1 (en) Heat pump-type heating device
JP2010078164A (en) Refrigeration and air conditioning device
CN108800393B (en) Air conditioning system
KR101161381B1 (en) Refrigerant cycle apparatus
JP5237157B2 (en) Air heat source turbo heat pump
KR102136883B1 (en) A heat pump system
JP6253370B2 (en) Refrigeration cycle equipment
JP2010078165A (en) Refrigeration and air conditioning device
JP2012002418A (en) Air conditioner and gas-liquid separator
EP3734199B1 (en) Air-conditioner system
CN108088008B (en) Multi-split air conditioner and heat recovery system thereof
JP2007051788A (en) Refrigerating device
CN111795452B (en) Air conditioning system
CN108007010B (en) Heat pump system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130226

R150 Certificate of patent or registration of utility model

Ref document number: 5213986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250