JP5209920B2 - Absorber refrigerator regenerator - Google Patents

Absorber refrigerator regenerator

Info

Publication number
JP5209920B2
JP5209920B2 JP2007234169A JP2007234169A JP5209920B2 JP 5209920 B2 JP5209920 B2 JP 5209920B2 JP 2007234169 A JP2007234169 A JP 2007234169A JP 2007234169 A JP2007234169 A JP 2007234169A JP 5209920 B2 JP5209920 B2 JP 5209920B2
Authority
JP
Japan
Prior art keywords
heat transfer
liquid
mixed liquid
regenerator
transfer surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007234169A
Other languages
Japanese (ja)
Other versions
JP2009068722A (en
Inventor
▲隆▼一郎 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2007234169A priority Critical patent/JP5209920B2/en
Publication of JP2009068722A publication Critical patent/JP2009068722A/en
Application granted granted Critical
Publication of JP5209920B2 publication Critical patent/JP5209920B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

本発明は、再生器本体内に、加熱媒体を通すとともに外面を伝熱面に形成した伝熱部材を設け、その伝熱部材の上部に、吸収液と冷媒との混合液を伝熱面に液膜状に自然流下によって供給する混合液供給部を設け、混合液を加熱沸騰させて冷媒蒸気を発生させる、いわゆる流下液膜式の吸収冷凍機用再生器に関する。   The present invention provides a heat transfer member that allows a heating medium to pass through and has an outer surface formed as a heat transfer surface in the regenerator body, and a mixed liquid of an absorbing liquid and a refrigerant is formed on the heat transfer surface above the heat transfer member. The present invention relates to a regenerator for a so-called falling liquid film type absorption chiller in which a mixed liquid supply unit that supplies a liquid film by natural flow is provided, and the mixed liquid is heated and boiled to generate refrigerant vapor.

吸収冷凍機用再生器としては、混合液を溜める容器内に加熱媒体を通す伝熱パイプを設け、その混合液を加熱する満液式の再生器があるが、この満液式の再生器の場合、溶液の沸騰温度は圧力に依存し、容器内で混合液中に伝熱パイプを浸漬させる上で液深が存在するために伝熱面の圧力が高くなり、混合液の沸騰温度が上昇する不都合がある。また、コージェネレーションシステムなどに代表されるエンジンの排熱を加熱媒体として使用する場合、エンジンの耐久性やエンジンオイルの劣化などの制約からエンジンの排熱温度をあまり高くすることができない不都合がある。   As a regenerator for an absorption refrigeration machine, there is a full liquid type regenerator in which a heat transfer pipe for passing a heating medium is provided in a container for storing a mixed liquid, and the mixed liquid is heated. In this case, the boiling temperature of the solution depends on the pressure, and since the liquid depth exists when the heat transfer pipe is immersed in the liquid mixture in the container, the pressure on the heat transfer surface increases and the boiling temperature of the liquid mixture rises. There is an inconvenience. In addition, when engine exhaust heat typified by a cogeneration system is used as a heating medium, there is an inconvenience that the engine exhaust heat temperature cannot be increased too much due to constraints such as engine durability and engine oil deterioration. .

このような不都合を回避する上で、流下液膜式の吸収冷凍機用再生器が有利であり、従来、次のようなものが知られている。
すなわち、チューブ伝熱部材間に波型フィンを挿入してスペーサーバーにより閉塞して形成した通路が所要数積層され、比較的狭幅の加熱流体通路と広幅の溶液通路とが交互に積層配置されている。
加熱流体通路には、その下部から加熱流体(温水)が導入され、通路内を上昇して流出するように構成されている。
加熱流体通路の上部には、スペーサーバーによって分離した空間部に希溶液の導入分配部が設けられ、隣接の溶液通路とのチューブ伝熱部材に貫通孔によるノズルを設けて導入分配部内の希溶液を分配して溶液通路内へ導入し、液膜流下させるように構成されている。
以上の構成により、希溶液が導入分配部よりノズルを介して溶液通路内へ導入され、溶液通路内を液膜流下する間、隣接の加熱流体通路を上昇する加熱流体と熱交換され、溶液通路内に冷媒蒸気が発生して溶液が順次濃縮されて濃溶液となり、分離空間部で分離された濃溶液が吸収器へ送られ、一方、冷媒蒸気は凝縮器に供給されるようになっている(特許文献1参照)。
特開平8−105669号公報
In order to avoid such an inconvenience, a falling liquid film type refrigerating machine for an absorption refrigerator is advantageous. Conventionally, the following are known.
That is, a required number of passages formed by inserting wave-shaped fins between tube heat transfer members and closed by spacer bars are stacked, and relatively narrow heating fluid passages and wide solution passages are alternately stacked. ing.
A heating fluid (warm water) is introduced into the heating fluid passage from below, and is configured to rise and flow out of the passage.
A dilute solution introduction / distribution unit is provided in the space separated by the spacer bar at the upper part of the heating fluid passage. Is distributed and introduced into the solution passage so that the liquid film flows down.
With the above configuration, the dilute solution is introduced from the introduction / distribution section into the solution passage through the nozzle, and while the liquid film flows down in the solution passage, heat exchange is performed with the heating fluid that rises in the adjacent heating fluid passage. Refrigerant vapor is generated in the solution, and the solution is sequentially concentrated to become a concentrated solution. The concentrated solution separated in the separation space is sent to the absorber, while the refrigerant vapor is supplied to the condenser. (See Patent Document 1).
JP-A-8-105669

しかしながら、チューブ伝熱部材の表面で溶液を液膜流下させる場合、次のような問題があった。
ノズルの径を小さくし、そのノズルを多数設けると、ゴミ詰まりや経年での錆詰まりを起こしやすい欠点があった。
逆に、ノズルの径を大きくして流量が代わらないように間隔を広げると、液膜が形成される面積が小さくなるとともに液膜厚さが増して、伝熱効率が低下する欠点があった。
また、ノズルの径を大きくしてより多く設けようとすると、流出量が多くなるために導入分配部での溶液高さが低くなり、溶液が各ノズルに対して均一に分配されにくくなり、導入分配部の僅かな傾きでも、溶液の供給に影響を与え、再生器の製作に高度な工作精度が要求され、高価になる欠点があった。
また、チューブ伝熱部材の表面にスプレーノズルで溶液を散布する場合は、液膜形成には有利であっても大きなポンプ動力が必要になってランニングコストが増加する欠点があった。
However, when the solution is allowed to flow down on the surface of the tube heat transfer member, there are the following problems.
If the nozzle diameter is reduced and a large number of nozzles are provided, there is a drawback that dust clogging or rust clogging over time tends to occur.
Conversely, if the nozzle diameter is increased and the interval is increased so that the flow rate does not change, the area where the liquid film is formed is reduced, the liquid film thickness is increased, and heat transfer efficiency is reduced.
In addition, if the nozzle diameter is increased and more are provided, the amount of outflow increases, so the solution height at the introduction / distribution section decreases, and the solution is less likely to be uniformly distributed to each nozzle. Even a slight inclination of the distribution section has an effect on the supply of the solution, and a high degree of work accuracy is required for the production of the regenerator.
In addition, when the solution is sprayed on the surface of the tube heat transfer member with a spray nozzle, there is a drawback that a large pump power is required even if it is advantageous for forming a liquid film, resulting in an increase in running cost.

本発明は、このような事情に鑑みてなされたものであって、請求項1および請求項2に係る発明は、簡単な構成により、伝熱部材の伝熱面に極力広い面積で薄い液膜を形成して伝熱効率をより良好に向上できるようにすることを目的とし、請求項に係る発明は、良好な伝熱効率を安定的に維持できるようにすることを目的とする。 The present invention has been made in view of such circumstances, and the invention according to claim 1 and claim 2 is a thin liquid film with a wide area as much as possible on the heat transfer surface of the heat transfer member with a simple configuration. The purpose of the invention according to claim 3 is to stably maintain good heat transfer efficiency.

請求項1に係る発明は、上述のような目的を達成するために、
再生器本体内に、加熱媒体を通すとともに外面を伝熱面に形成した伝熱部材を設け、前記伝熱部材の上部に、吸収液と冷媒との混合液を前記伝熱面に液膜状に自然流下によって供給する混合液供給部を設け、混合液を加熱沸騰させて冷媒蒸気を発生させる吸収冷凍機用再生器において、
前記伝熱部材の上端側に、前記伝熱部材の水平方向の幅が下方側程幅広になるように傾斜伝熱面を形成し、
前記混合液供給部を、
混合液を溜める液溜め部と、
前記液溜め部に前記伝熱面に沿う方向に所定間隔を隔てて設けられて前記伝熱面に混合液を接触供給する第1の混合液供給部と、
前記液溜め部に前記第1の混合液供給部よりも上方に位置してその先端を前記第1の混合液供給部の先端よりも突出させるとともに前記傾斜伝熱面の鉛直上方に位置させる状態で設けられて、混合液の供給量が増加したときに前記傾斜伝熱面の表面に混合液を液滴状に散布供給する第2の混合液供給部とから構成したことを特徴としている。
In order to achieve the above-described object, the invention according to claim 1
In the regenerator main body, a heat transfer member that passes a heating medium and has an outer surface formed as a heat transfer surface is provided, and a liquid mixture of an absorbing liquid and a refrigerant is formed on the heat transfer surface above the heat transfer member. In a regenerator for an absorption refrigeration machine that is provided with a liquid mixture supply unit that is supplied by natural flow to generate a refrigerant vapor by heating and boiling the liquid mixture,
On the upper end side of the heat transfer member, an inclined heat transfer surface is formed so that the horizontal width of the heat transfer member is wider toward the lower side,
The mixed liquid supply unit,
A liquid reservoir for storing the liquid mixture;
A first mixed liquid supply unit that is provided in the liquid reservoir part at a predetermined interval in a direction along the heat transfer surface and supplies the mixed liquid to the heat transfer surface in contact with the first liquid supply part;
A state in which the liquid reservoir is positioned above the first mixed liquid supply unit and has a tip protruding from the front end of the first mixed liquid supply unit and positioned vertically above the inclined heat transfer surface. And a second mixed liquid supply unit that supplies the mixed liquid in droplets onto the surface of the inclined heat transfer surface when the supply amount of the mixed liquid increases .

(作用・効果)
請求項1に係る発明の吸収冷凍機用再生器の構成によれば、例えば、再生器とそれに連なる吸収器との圧力差が無い運転開始時などのように通常のエンジンの定格運転状態時に比べて液溜め部への混合液の供給量が多い場合には、第1の混合液供給部の先端よりも突出させて設けられた第2の混合液供給部を通じて伝熱部材の上端側に形成した傾斜伝熱面に液滴状に混合液を散布供給するに伴い、傾斜伝熱面上に落下した液滴が、落下時の衝突によって拡散し、伝熱部材の伝熱面に広い面積で濡れ壁を形成しながら第1の混合液供給部から伝熱面に混合液を接触供給し、その後に通常のエンジンの定格運転状態などのように吸収器よりも再生器の圧力が高くなって混合液の供給量が減少した状態で再生器に安定的に供給される状態においては、第1の混合液供給部のみを通じて液溜め部から伝熱面に少量の混合液を接触供給し、一旦形成された濡れ壁に薄い膜厚で液膜を形成し、伝熱面を介して加熱媒体の熱を液膜状の混合液に伝えることができる。
したがって、伝熱部材の上端側に傾斜伝熱面を形成し、その傾斜伝熱面に混合液を散布供給するという簡単な構成により、伝熱面への衝突による液滴状の混合液の拡散性を利用して、広い範囲の濡れ壁を良好に形成でき、伝熱部材の伝熱面に極力広い面積で薄い液膜を形成し、その液膜状の混合液に伝熱面を介して加熱媒体の熱を伝えるから、伝熱効率をより良好に向上できる。
また、請求項2に係る発明は、前述のような目的を達成するために、
再生器本体内に、加熱媒体を通すとともに外面を伝熱面に形成した伝熱部材を設け、前記伝熱部材の上部に、吸収液と冷媒との混合液を前記伝熱面に液膜状に自然流下によって供給する混合液供給部を設け、混合液を加熱沸騰させて冷媒蒸気を発生させる吸収冷凍機用再生器において、
前記伝熱部材の上端側に、前記伝熱部材の水平方向の幅が下方側程幅広になるように傾斜伝熱面を形成し、
前記混合液供給部を、
上端側に水平方向に広幅の樋部分を形成するとともにその広幅樋部分の中央部に下方に連ねて前記伝熱部材の上端と同じ幅の樋部分を形成して混合液を溜める液溜め部と、
前記樋部分の両横側面に前記伝熱面に沿う方向に所定間隔を隔てて設けられて前記伝熱面に混合液を接触供給する第1の混合液供給部と、
前記広幅樋部分の幅方向の端部に下向きに設けられて、混合液の供給量が増加したときに前記傾斜伝熱面の表面に混合液を液滴状に散布供給する第2の混合液供給部とから構成したことを特徴としている。
(作用・効果)
請求項2に係る発明の吸収冷凍機用再生器の構成によれば、例えば、再生器とそれに連なる吸収器との圧力差が無い運転開始時などのように通常のエンジンの定格運転状態時に比べて液溜め部への混合液の供給量が多い場合には、広幅樋部分の幅方向の端部に下向きに設けられた第2の混合液供給部を通じて伝熱部材の上端側に形成した傾斜伝熱面に液滴状に混合液を散布供給するに伴い、傾斜伝熱面上に落下した液滴が、落下時の衝突によって拡散し、伝熱部材の伝熱面に広い面積で濡れ壁を形成しながら第1の混合液供給部から伝熱面に混合液を接触供給し、その後に通常のエンジンの定格運転状態などのように吸収器よりも再生器の圧力が高くなって混合液の供給量が減少した状態で再生器に安定的に供給される状態においては、第1の混合液供給部のみを通じて液溜め部から伝熱面に少量の混合液を接触供給し、一旦形成された濡れ壁に薄い膜厚で液膜を形成し、伝熱面を介して加熱媒体の熱を液膜状の混合液に伝えることができる。
したがって、伝熱部材の上端側に傾斜伝熱面を形成し、その傾斜伝熱面に混合液を散布供給するという簡単な構成により、伝熱面への衝突による液滴状の混合液の拡散性を利用して、広い範囲の濡れ壁を良好に形成でき、伝熱部材の伝熱面に極力広い面積で薄い液膜を形成し、その液膜状の混合液に伝熱面を介して加熱媒体の熱を伝えるから、伝熱効率をより良好に向上できる。
(Action / Effect)
According to the configuration of the regenerator for an absorption refrigerator according to the first aspect of the present invention, for example, compared with a normal engine rated operation state such as at the start of operation where there is no pressure difference between the regenerator and the absorber connected thereto. When the supply amount of the liquid mixture to the liquid reservoir is large, it is formed on the upper end side of the heat transfer member through the second liquid mixture supply part provided so as to protrude from the tip of the first liquid mixture supply part. As the mixed liquid is sprayed and supplied to the inclined heat transfer surface, the liquid droplets that have fallen on the inclined heat transfer surface are diffused by the collision at the time of dropping, and the heat transfer surface of the heat transfer member has a large area. The mixed liquid is contacted and supplied from the first mixed liquid supply section to the heat transfer surface while forming a wet wall, and then the pressure of the regenerator becomes higher than the absorber as in the normal operating condition of the engine. In a state where the supply amount of the mixed liquid is stably supplied to the regenerator with the supply amount decreased. A small amount of liquid mixture is contact-supplied from the liquid reservoir to the heat transfer surface only through the first liquid mixture supply unit, and a thin liquid film is formed on the wet wall once formed, and heated via the heat transfer surface. The heat of the medium can be transferred to the liquid film mixture.
Therefore, a simple structure of forming an inclined heat transfer surface on the upper end side of the heat transfer member and spraying and supplying the mixed liquid onto the inclined heat transfer surface allows diffusion of the liquid mixture in the form of droplets due to collision with the heat transfer surface. By utilizing the properties, a wide range of wetted walls can be formed well, a thin liquid film is formed on the heat transfer surface of the heat transfer member with a wide area as much as possible, and the liquid film mixture is passed through the heat transfer surface Since the heat of the heating medium is transmitted, the heat transfer efficiency can be improved more favorably.
In order to achieve the above-described object, the invention according to claim 2
In the regenerator main body, a heat transfer member that passes a heating medium and has an outer surface formed as a heat transfer surface is provided, and a liquid mixture of an absorbing liquid and a refrigerant is formed on the heat transfer surface above the heat transfer member. In a regenerator for an absorption refrigeration machine that is provided with a liquid mixture supply unit that is supplied by natural flow to generate a refrigerant vapor by heating and boiling the liquid mixture,
On the upper end side of the heat transfer member, an inclined heat transfer surface is formed so that the horizontal width of the heat transfer member is wider toward the lower side,
The mixed liquid supply unit,
A liquid reservoir portion that forms a wide ridge portion in the horizontal direction on the upper end side, and forms a ridge portion having the same width as that of the upper end of the heat transfer member in a lower portion at the center of the wide ridge portion to store a mixed liquid; ,
A first mixed liquid supply section that is provided on both lateral side surfaces of the flange portion at a predetermined interval in a direction along the heat transfer surface and supplies the liquid mixture in contact with the heat transfer surface;
A second mixed liquid that is provided downward at the end in the width direction of the wide flange portion and supplies the mixed liquid in droplets onto the surface of the inclined heat transfer surface when the supply amount of the mixed liquid increases. It is characterized by comprising a supply unit.
(Action / Effect)
According to the configuration of the regenerator for an absorption refrigerator of the invention according to claim 2, for example, compared with a normal engine rated operation state such as at the start of operation where there is no pressure difference between the regenerator and the absorber connected thereto. When the supply amount of the mixed liquid to the liquid reservoir is large, the slope formed on the upper end side of the heat transfer member through the second mixed liquid supply part provided downward at the end in the width direction of the wide ridge portion As the mixed liquid is sprayed and supplied to the heat transfer surface, the liquid droplets that fall on the inclined heat transfer surface are diffused by the collision at the time of dropping, and the wetting wall has a large area on the heat transfer surface of the heat transfer member. The mixed liquid is contact-supplied to the heat transfer surface from the first mixed liquid supply unit while the pressure of the regenerator becomes higher than that of the absorber, as in the normal operating condition of the engine. In a state where the supply amount of the battery is stably supplied to the regenerator with the supply amount of A small amount of liquid mixture is contacted and supplied from the liquid reservoir to the heat transfer surface only through the liquid mixture supply unit, and a thin liquid film is formed on the wet wall once formed, and the heat of the heating medium passes through the heat transfer surface. Can be transferred to the liquid film mixture.
Therefore, a simple structure of forming an inclined heat transfer surface on the upper end side of the heat transfer member and spraying and supplying the mixed liquid onto the inclined heat transfer surface allows diffusion of the liquid mixture in the form of droplets due to collision with the heat transfer surface. By utilizing the properties, a wide range of wetted walls can be formed well, a thin liquid film is formed on the heat transfer surface of the heat transfer member with a wide area as much as possible, and the liquid film mixture is passed through the heat transfer surface Since the heat of the heating medium is transmitted, the heat transfer efficiency can be improved more favorably.

請求項に係る発明は、前述のような目的を達成するために、
請求項1または2に記載の吸収冷凍機用再生器において、
伝熱効率の設定以上の低下を検出して増液信号を出力する伝熱効率低下検出手段と、
前記伝熱効率低下検出手段からの増液信号に応答して混合液供給部に混合液を供給する混合液ポンプの吐出量を設定時間だけ増加する混合液供給量増加手段とを備えて構成する。
In order to achieve the above-described object, the invention according to claim 3
In the absorption refrigerator regenerator according to claim 1 or 2 ,
A heat transfer efficiency decrease detecting means for detecting a decrease in heat transfer efficiency or more and outputting a liquid increase signal;
And a liquid mixture supply amount increasing means for increasing the discharge amount of the liquid mixture pump for supplying the liquid mixture to the liquid mixture supply section in response to a liquid increase signal from the heat transfer efficiency decrease detecting means for a set time.

(作用・効果)
請求項に係る発明の吸収冷凍機用再生器の構成によれば、運転途中などで加熱媒体の温度が低くなったり、あるいは、再生器の液溜め部に供給される混合液の量が減少したりするなどに起因して一時的に液膜の形成範囲が狭くなり、伝熱効率が低下した場合に、その伝熱効率の低下を検出し、それに基づいて液溜め部に供給する混合液の供給量を増加させ、第1および第2の混合液供給部の両方を通じて液溜め部から伝熱面に混合液を接触供給し、伝熱部材の伝熱面に広い濡れ壁を形成し、液膜の形成範囲の減少状態が継続することを防止する。
したがって、液膜の形成範囲の減少状態が発生したとしても、その状態を早期に解消できるから、良好な伝熱効率を安定的に維持できる。
(Action / Effect)
According to the configuration of the regenerator for an absorption refrigerator of the invention according to claim 3 , the temperature of the heating medium is lowered during operation or the amount of the mixed liquid supplied to the liquid reservoir of the regenerator is reduced. If the liquid film formation range is temporarily narrowed due to, for example, or the like, and the heat transfer efficiency is reduced, supply of the mixed liquid supplied to the liquid reservoir is detected based on the decrease in the heat transfer efficiency Increase the amount, contact and supply the mixed liquid from the liquid reservoir to the heat transfer surface through both the first and second mixed liquid supply units, and form a wide wet wall on the heat transfer surface of the heat transfer member, This prevents the reduction of the formation range of the continuation.
Therefore, even if a reduced state of the formation range of the liquid film occurs, the state can be eliminated at an early stage, so that good heat transfer efficiency can be stably maintained.

以上の説明から明らかなように、例えば、再生器とそれに連なる吸収器との圧力差が無い運転開始時などのように通常のエンジンの定格運転状態時に比べて液溜め部への混合液の供給量が多い場合には、第1の混合液供給部の先端よりも突出させて設けられた第2の混合液供給部を通じて伝熱部材の上端側に形成した傾斜伝熱面に液滴状に混合液を散布供給するに伴い、傾斜伝熱面上に落下した液滴が、落下時の衝突によって拡散し、伝熱部材の伝熱面に広い面積で濡れ壁を形成しながら第1の混合液供給部から伝熱面に混合液を接触供給し、その後に通常のエンジンの定格運転状態などのように吸収器よりも再生器の圧力が高くなって混合液の供給量が減少した状態で再生器に安定的に供給される状態においては、第1の混合液供給部のみを通じて液溜め部から伝熱面に少量の混合液を接触供給し、一旦形成された濡れ壁に薄い膜厚で液膜を形成し、伝熱面を介して加熱媒体の熱を液膜状の混合液に伝えることができる。
したがって、伝熱部材の上端側に傾斜伝熱面を形成し、その傾斜伝熱面に混合液を散布供給するという簡単な構成により、伝熱面への衝突による液滴状の混合液の拡散性を利用して、広い範囲の濡れ壁を良好に形成でき、伝熱部材の伝熱面に極力広い面積で薄い液膜を形成し、その液膜状の混合液に伝熱面を介して加熱媒体の熱を伝えるから、伝熱効率をより良好に向上できる。
As is clear from the above description, for example, the supply of the liquid mixture to the liquid reservoir compared to the normal rated operating state of the engine, such as at the start of operation where there is no pressure difference between the regenerator and the absorber connected thereto. When the amount is large, the droplets are formed on the inclined heat transfer surface formed on the upper end side of the heat transfer member through the second liquid mixture supply unit provided so as to protrude from the tip of the first liquid mixture supply unit. As the mixed liquid is sprayed and supplied, the liquid droplets dropped on the inclined heat transfer surface are diffused by the collision at the time of dropping, and the first mixing is performed while forming a wet wall in a large area on the heat transfer surface of the heat transfer member. The liquid mixture is contacted and supplied from the liquid supply section to the heat transfer surface, and then the regenerator pressure is higher than the absorber and the supply volume of the liquid mixture is reduced, as in the normal operating condition of the engine. In the state of being stably supplied to the regenerator, only the first liquid mixture supply unit A small amount of liquid mixture is contacted and supplied from the liquid reservoir to the heat transfer surface, and a thin liquid film is formed on the wet wall once formed, and the heat of the heating medium is formed into a liquid film via the heat transfer surface. Can be communicated to the liquid mixture.
Therefore, a simple structure of forming an inclined heat transfer surface on the upper end side of the heat transfer member and spraying and supplying the mixed liquid onto the inclined heat transfer surface allows diffusion of the liquid mixture in the form of droplets due to collision with the heat transfer surface. By utilizing the properties, a wide range of wetted walls can be formed well, a thin liquid film is formed on the heat transfer surface of the heat transfer member with a wide area as much as possible, and the liquid film mixture is passed through the heat transfer surface Since the heat of the heating medium is transmitted, the heat transfer efficiency can be improved more favorably.

次に、本発明の実施例を図面に基づいて詳細に説明する。   Next, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明に係る吸収冷凍機用再生器の実施例1を示す吸収冷凍機の全体概略構成図であり、ガスエンジン(図示せず)のエンジン冷却部からの排熱(エンジン冷却水)を加熱媒体として供給する再生器1内に、低圧下でエンジン冷却水(例えば、温度85℃)によって蒸発可能な水を冷媒とし、かつ、リチウムブロマイド溶液を吸収液としたリチウムブロマイド水溶液(混合液)が収容されている。   FIG. 1 is an overall schematic configuration diagram of an absorption refrigerator showing a first embodiment of an absorption refrigerator regenerator according to the present invention, in which exhaust heat (engine cooling water) from an engine cooling unit of a gas engine (not shown) is shown. ) In the regenerator 1 that supplies as a heating medium, an aqueous lithium bromide solution (mixed) using water that can be evaporated by low-pressure engine cooling water (for example, temperature 85 ° C.) as a refrigerant and a lithium bromide solution as an absorbent. Liquid).

再生器1には、吸収液を分離した冷媒蒸気を供給するように凝縮器2が第1の配管3を介して連通接続され、再生器1に第2の配管4を介して吸収器5が接続されるとともに、凝縮器2に第3の配管6を介して蒸発器7が接続され、更に、吸収器5と蒸発器7とがスリット8を介して連通接続され、吸収冷凍機が構成されている。   A condenser 2 is communicatively connected to the regenerator 1 via a first pipe 3 so as to supply refrigerant vapor from which the absorption liquid has been separated, and an absorber 5 is connected to the regenerator 1 via a second pipe 4. In addition to being connected, an evaporator 7 is connected to the condenser 2 via a third pipe 6, and the absorber 5 and the evaporator 7 are connected in communication via a slit 8 to constitute an absorption refrigerator. ing.

凝縮器2は、再生器1からの冷媒蒸気を流すフィン付きの第1の熱交換用パイプ9と、その第1の熱交換用パイプ9に外気を供給する第1のファン10と、液溜め11とから構成され、冷媒蒸気を空冷によって凝縮液化し、その液化した冷媒液を液溜め11に溜め、液化した冷媒液を蒸発器7に供給するようになっている。   The condenser 2 includes a first heat exchange pipe 9 with fins for flowing the refrigerant vapor from the regenerator 1, a first fan 10 that supplies outside air to the first heat exchange pipe 9, and a liquid reservoir 11, the refrigerant vapor is condensed and liquefied by air cooling, the liquefied refrigerant liquid is stored in the liquid reservoir 11, and the liquefied refrigerant liquid is supplied to the evaporator 7.

蒸発器7は、散布ノズル12を付設した冷媒液用液溜め部13と、冷媒液用液溜め部13から流下される冷媒液を分散させる分散板14とから構成されている。
蒸発器7の下部と冷媒液用液溜め部13とにわたって、冷媒ポンプ15および冷熱取り出し用熱交換器16を介装した循環配管17が接続されている。
冷熱取り出し用熱交換器16に、ガスヒートポンプ用の冷媒入口管18と冷媒供給管19とが接続され、吸収器5における吸収液による冷媒の吸収に伴って冷媒液を蒸発冷却し、その冷却冷媒液によってガスヒートポンプ用の冷媒を冷却するようになっている。
The evaporator 7 includes a refrigerant liquid reservoir 13 provided with a spray nozzle 12 and a dispersion plate 14 for dispersing the refrigerant liquid flowing down from the refrigerant liquid reservoir 13.
A circulation pipe 17 including a refrigerant pump 15 and a cold heat extraction heat exchanger 16 is connected to the lower portion of the evaporator 7 and the liquid reservoir portion 13.
A refrigerant inlet pipe 18 and a refrigerant supply pipe 19 for a gas heat pump are connected to the cold heat extraction heat exchanger 16, and the refrigerant liquid is evaporated and cooled along with the absorption of the refrigerant by the absorbing liquid in the absorber 5. The refrigerant for the gas heat pump is cooled by the liquid.

吸収器5には、上部に吸収液散布管20が設けられ、その吸収液散布管20と吸収器5の下部とが、混合液ポンプ21とフィン付きの第2の熱交換用パイプ22とを介装した第4の配管23を介して接続され、第2の熱交換用パイプ22に、それに外気を供給する第2のファン24が付設され、吸収液を循環しながら過冷却し、吸収液に吸収させる冷媒量を増加できるようになっている。   The absorber 5 is provided with an absorbent dispersion pipe 20 at the top, and the absorbent dispersion pipe 20 and the lower part of the absorber 5 connect the mixed liquid pump 21 and the second heat exchange pipe 22 with fins. A second fan 24 is connected to the second heat exchanging pipe 22 to supply outside air to the second heat exchanging pipe 22 and is supercooled while circulating the absorbing liquid. The amount of refrigerant absorbed can be increased.

第4の配管23の混合液ポンプ21とフィン付きの第2の熱交換用パイプ22との間の箇所と再生器1とにわたって第5の配管25が接続されている。第4の配管23の一部と第5の配管25とによって第2の配管4が構成されている。再生器1の下部と吸収器5とが第6の配管26を介して接続され、この第6の配管26と第5の配管25との間に熱交換器27が設けられ、再生器1に戻す混合液を、再生器1から吸収器5に流す吸収液によって加熱するようになっている。   A fifth pipe 25 is connected across the regenerator 1 and the portion between the mixed liquid pump 21 of the fourth pipe 23 and the second heat exchange pipe 22 with fins. A part of the fourth pipe 23 and the fifth pipe 25 constitute the second pipe 4. The lower part of the regenerator 1 and the absorber 5 are connected via a sixth pipe 26, and a heat exchanger 27 is provided between the sixth pipe 26 and the fifth pipe 25. The liquid mixture to be returned is heated by the absorbent flowing from the regenerator 1 to the absorber 5.

再生器1は、図2の一部省略正面図、および、図3の一部省略側面図に示すように、再生器本体28内に、外面を伝熱面に形成するとともに鉛直方向の伝熱面を有する伝熱部材29を水平方向に並設し、伝熱部材29の下部にエンジン冷却後のエンジン冷却水を伝熱部材29内に供給する加熱媒体供給管30を接続し、一方、伝熱部材29の上部に混合液との熱交換によって冷却されたエンジン冷却水を伝熱部材29内から取り出す加熱媒体取り出し管31を接続して構成されている。   As shown in the partially omitted front view of FIG. 2 and the partially omitted side view of FIG. 3, the regenerator 1 has an outer surface formed as a heat transfer surface in the regenerator body 28 and heat transfer in the vertical direction. A heat transfer member 29 having a surface is arranged in parallel in the horizontal direction, and a heating medium supply pipe 30 for supplying engine cooling water after cooling the engine into the heat transfer member 29 is connected to the lower part of the heat transfer member 29. A heating medium take-out pipe 31 for taking out engine cooling water cooled by heat exchange with the liquid mixture from the heat transfer member 29 is connected to the upper part of the heat member 29.

伝熱部材29の上方に、伝熱部材29の上端とほぼ同じ厚みで平面視において重複する状態で液溜め部としてのトレイ32が設けられ、そのトレイ32と伝熱部材29とが一対のガイド板33を介して連結されている。トレイ32どうしには、ヘッダー用トレイ34が接続され、混合液をヘッダー用トレイ34を介してトレイ32に分配供給するように構成されている。   A tray 32 serving as a liquid reservoir is provided above the heat transfer member 29 so as to overlap with the upper end of the heat transfer member 29 in plan view, and the tray 32 and the heat transfer member 29 are a pair of guides. They are connected via a plate 33. A header tray 34 is connected between the trays 32, and the mixed liquid is distributed and supplied to the tray 32 via the header tray 34.

トレイ32の両横側面の下方側には、図4の要部の拡大正面断面図に示すように、その長手方向に所定間隔を隔てて、第1の混合液供給部としての第1の散布孔35が形成されている。
また、第1の散布孔35よりも上方で、かつ、鉛直方向で第1の散布孔35と重複する位置に、第2の混合液供給部としての第2の散布孔36が形成されている。
ガイド板33には、第1および第2の散布孔35,36に連なる鉛直方向の切欠37が形成され、切欠37を伝いながら、第1の散布孔35から伝熱面に混合液を接触供給し、伝熱部材29の伝熱面に液膜状に混合液を流下できるように構成されている。
On the lower side of both lateral sides of the tray 32, as shown in the enlarged front sectional view of the main part of FIG. 4, a first spray as a first liquid mixture supply unit is provided at a predetermined interval in the longitudinal direction. A hole 35 is formed.
Further, a second spray hole 36 as a second mixed liquid supply unit is formed at a position above the first spray hole 35 and overlapping the first spray hole 35 in the vertical direction. .
The guide plate 33 is formed with a vertical notch 37 continuous with the first and second spray holes 35, 36, and the mixed liquid is contacted and supplied from the first spray hole 35 to the heat transfer surface while passing through the notch 37. In addition, the mixed liquid can flow down on the heat transfer surface of the heat transfer member 29 in the form of a liquid film.

伝熱部材29の上端側に、伝熱部材29の水平方向の幅が下方側程幅広になるように傾斜伝熱面Fが形成されている。
トレイ32が、平板状の板金の所定箇所に、先ず、通常のプレスによって第1の散布孔35を形成し、次いで、緩いプレスによって長い突起状の孔を形成するいわゆるバーリング加工によって第2の散布孔36を形成し、しかる後に、折り曲げ加工と端部の溶接を施して作製されている。
これにより、第2の散布孔36の先端を第1の散布孔35の先端よりも突出させるとともに、第2の散布孔36の先端が傾斜伝熱面Fの鉛直上方に位置するように構成され、第1の散布孔35からは、混合液を切欠37を通じて伝わせながら伝熱面に供給しながら、第2の散布孔36からは、その先端から伝熱部材29の傾斜伝熱面Fに混合液を液滴状に散布供給し、傾斜伝熱面F上に落下した液滴を落下時の衝突によって拡散させ、伝熱部材29の伝熱面に広い面積で濡れ壁を形成することができ、伝熱効率をより良好に向上できる。
An inclined heat transfer surface F is formed on the upper end side of the heat transfer member 29 so that the horizontal width of the heat transfer member 29 becomes wider toward the lower side.
The tray 32 first forms the first spraying hole 35 by a normal press at a predetermined position of the flat plate-shaped metal plate, and then forms a long projection-shaped hole by a loose press to perform the second spraying by so-called burring processing. The hole 36 is formed, and thereafter, bending is performed and end portions are welded.
As a result, the tip of the second spray hole 36 protrudes from the tip of the first spray hole 35 and the tip of the second spray hole 36 is positioned vertically above the inclined heat transfer surface F. From the first spray hole 35, the mixed liquid is supplied to the heat transfer surface while being transmitted through the notch 37, and from the second spray hole 36 to the inclined heat transfer surface F of the heat transfer member 29. The mixed liquid is sprayed and supplied in the form of droplets, the droplets falling on the inclined heat transfer surface F are diffused by the collision at the time of dropping, and a wet wall is formed on the heat transfer surface of the heat transfer member 29 in a wide area. It is possible to improve the heat transfer efficiency better.

上記実施例1では、先端から混合液を液滴状に散布供給できるように構成するために、第2の散布孔36をバーリング加工で形成するから、製作簡単な利点を有しているが、例えば、トレイに穴を形成するとともにその穴にパイプを溶接などによって取り付けるようにして第2の散布孔36を形成するようにしても良い。   In the first embodiment, since the second spray hole 36 is formed by burring processing so that the mixed liquid can be sprayed and supplied from the tip in the form of droplets, it has an advantage of easy manufacture. For example, the second spray hole 36 may be formed by forming a hole in the tray and attaching a pipe to the hole by welding or the like.

次に、上記実施例1の吸収冷凍機用再生器を用いて行った起動特性の実験結果について説明する。
比較例としては、第2の散布孔36を設けない構成の吸収冷凍機用再生器を用いた。
その結果、図5の交換熱量の経時的変化のグラフに示すように、比較例による場合(Bで示す)、必要な交換熱量(約10.5kW)を得るまでに要する時間が35分以上であるのに対し、実施例1による場合(Aで示す)、必要な交換熱量(約10.5kW)を得るまでに要する時間が約2〜3分程度であり、極めて起動特性に優れていることが明らかであった。
Next, the experimental results of the start-up characteristics performed using the absorption refrigerator regenerator of Example 1 will be described.
As a comparative example, an absorption refrigerator regenerator having a configuration in which the second spray hole 36 is not provided was used.
As a result, as shown in the graph of change over time in the exchange heat amount in FIG. 5, in the case of the comparative example (indicated by B), the time required to obtain the required exchange heat amount (about 10.5 kW) is 35 minutes or more. On the other hand, in the case of Example 1 (indicated by A), the time required to obtain the required exchange heat (about 10.5 kW) is about 2 to 3 minutes, and the start-up characteristics are extremely excellent. Was obvious.

図6は、本発明に係る吸収冷凍機用再生器の実施例2の要部の拡大正面断面であり、実施例1と異なるところは、次の通りである。
すなわち、トレイ32の上端側に、水平方向に広幅の樋部分41が形成され、その広幅樋部分41の中央部に下方に連なる伝熱部材29の上端と同じ幅の樋部分42が形成されている。樋部分42の両横側面に、第1の混合液供給部としての第1の散布孔43が形成され、広幅樋部分41の幅方向の端部に下向きに第2の混合液供給部としての第2の散布孔44が形成され、第2の散布孔44から伝熱部材29の傾斜伝熱面Fに混合液を液滴状に散布供給できるように構成されている。他の構成は実施例1と同じであり、同一図番を付すことによりその説明は省略する。
FIG. 6 is an enlarged front cross-section of the main part of the second embodiment of the refrigerating machine for an absorption refrigerator according to the present invention. The differences from the first embodiment are as follows.
That is, a wide flange portion 41 is formed in the horizontal direction on the upper end side of the tray 32, and a flange portion 42 having the same width as the upper end of the heat transfer member 29 connected downward is formed in the center of the wide flange portion 41. Yes. A first spray hole 43 as a first mixed liquid supply part is formed on both lateral side surfaces of the heel part 42, and the second mixed liquid supply part as a second mixed liquid supply part faces downward at the end in the width direction of the wide ridge part 41. A second spray hole 44 is formed, and the mixed liquid can be sprayed and supplied from the second spray hole 44 to the inclined heat transfer surface F of the heat transfer member 29 in the form of droplets. Other configurations are the same as those of the first embodiment, and the description is omitted by giving the same reference numerals.

図7は、本発明に係る吸収冷凍機用再生器の実施例3の概略構成図(この図において、後述する実施例4および5の構成をも示している)であり、第1の配管3に、冷媒蒸気の温度を測定する温度センサ51が設けられ、その温度センサ51にコントローラ52が接続されるとともに、コントローラ52に、吸収器5からの混合液を再生器1に供給する混合液ポンプ21が接続されている。   FIG. 7 is a schematic configuration diagram of a regenerator for an absorption chiller according to a third embodiment of the present invention (in this drawing, configurations of fourth and fifth embodiments described later are also shown), and the first pipe 3 In addition, a temperature sensor 51 for measuring the temperature of the refrigerant vapor is provided, a controller 52 is connected to the temperature sensor 51, and a liquid mixture pump that supplies the liquid mixture from the absorber 5 to the controller 52 to the regenerator 1. 21 is connected.

コントローラ52には、図8の制御系のブロック図に示すように、温度比較手段53と混合液供給量増加手段54とが備えられている。温度比較手段53では、温度センサ51で測定される冷媒蒸気の温度と設定温度(例えば、50℃)とを比較し、冷媒蒸気の温度が設定温度よりも低くなったときに増液信号を出力するようになっている。
混合液供給量増加手段54では、温度比較手段53からの増液信号に応答してトレイ32に混合液を供給する混合液ポンプ21の吐出量を設定時間(例えば、5分)だけ増加するようになっている。他の構成は実施例1と同じであり、同じ番号を付すことにより、その説明は省略する。
As shown in the block diagram of the control system in FIG. 8, the controller 52 includes a temperature comparison unit 53 and a mixed liquid supply amount increase unit 54. The temperature comparison unit 53 compares the temperature of the refrigerant vapor measured by the temperature sensor 51 with a set temperature (for example, 50 ° C.), and outputs a liquid increase signal when the temperature of the refrigerant vapor becomes lower than the set temperature. It is supposed to be.
The liquid mixture supply amount increasing means 54 increases the discharge amount of the liquid mixture pump 21 that supplies the liquid mixture to the tray 32 in response to the liquid increase signal from the temperature comparison means 53 by a set time (for example, 5 minutes). It has become. Other configurations are the same as those of the first embodiment, and the description thereof is omitted by giving the same numbers.

この実施例3によれば、運転途中などで加熱媒体の温度が低くなったり、あるいは、再生器1のトレイ32に供給される混合液の量が減少したりするなどに起因して一時的に液膜の形成範囲が狭くなり、伝熱効率が低下した場合に、その伝熱効率の低下を冷媒蒸気の温度低下によって検出し、それに基づいてトレイ32に供給する混合液の供給量を増加させ、第1および第2の散布孔35,36の両方を通じてトレイ32から伝熱面に混合液を接触供給し、伝熱部材29の伝熱面に広い濡れ壁を形成し、液膜の形成範囲の減少状態が継続することを防止できる。   According to the third embodiment, the temperature of the heating medium is lowered during operation, or the amount of the mixed liquid supplied to the tray 32 of the regenerator 1 is temporarily reduced. When the formation range of the liquid film is narrowed and the heat transfer efficiency is decreased, the decrease in the heat transfer efficiency is detected by the temperature decrease of the refrigerant vapor, and based on this, the supply amount of the mixed liquid supplied to the tray 32 is increased, The mixed liquid is contact-supplied from the tray 32 to the heat transfer surface through both the first and second spray holes 35 and 36, a wide wet wall is formed on the heat transfer surface of the heat transfer member 29, and the formation range of the liquid film is reduced. It is possible to prevent the state from continuing.

図9は、本発明に係る吸収冷凍機用再生器の実施例4の制御系のブロック図であり、再生器1にエンジン冷却水を供給する加熱媒体供給管30に、エンジン冷却水の温度を測定する第1の冷却水温度センサ61が設けられるとともに、再生器1からエンジン冷却水を取り出す加熱媒体取り出し管31に、熱交換後のエンジン冷却水の温度を測定する第2の冷却水温度センサ62が設けられ、第1および第2の冷却水温度センサ61,62にコントローラ63が接続されるとともに、コントローラ63に、吸収器5からの混合液を再生器1に供給する混合液ポンプ21が接続されている。   FIG. 9 is a block diagram of a control system according to the fourth embodiment of the regenerator for an absorption refrigerator according to the present invention. The temperature of the engine coolant is supplied to the heating medium supply pipe 30 that supplies the engine coolant to the regenerator 1. A first cooling water temperature sensor 61 for measuring is provided, and a second cooling water temperature sensor for measuring the temperature of the engine cooling water after heat exchange is provided in the heating medium take-out pipe 31 for taking out the engine cooling water from the regenerator 1. 62 is provided, and the controller 63 is connected to the first and second cooling water temperature sensors 61 and 62, and the liquid mixture pump 21 that supplies the liquid mixture from the absorber 5 to the regenerator 1 is connected to the controller 63. It is connected.

コントローラ63には、温度差算出手段64、温度差比較手段65および混合液供給量増加手段66が備えられている。
温度差算出手段64では、第1の冷却水温度センサ61で測定されるエンジン冷却水の温度と、第2の冷却水温度センサ62で測定される熱交換後のエンジン冷却水の温度との温度差を算出するようになっている。
温度差比較手段65では、温度差算出手段64で算出された温度差と設定値(例えば、3.0℃)とを比較し、温度差が設定値よりも小さくなったときに増液信号を出力するようになっている。
混合液供給量増加手段66では、温度差比較手段65からの増液信号に応答してトレイ32に混合液を供給する混合液ポンプ21の吐出量を設定時間(例えば、5分)だけ増加するようになっている。他の構成は実施例3と同じであり、同じ番号を付すことにより、その説明は省略する。
The controller 63 includes a temperature difference calculating unit 64, a temperature difference comparing unit 65, and a mixed liquid supply amount increasing unit 66.
In the temperature difference calculation means 64, the temperature between the engine coolant temperature measured by the first coolant temperature sensor 61 and the engine coolant temperature after heat exchange measured by the second coolant temperature sensor 62. The difference is calculated.
The temperature difference comparison means 65 compares the temperature difference calculated by the temperature difference calculation means 64 with a set value (for example, 3.0 ° C.), and outputs a liquid increase signal when the temperature difference becomes smaller than the set value. It is designed to output.
The mixed liquid supply amount increasing means 66 increases the discharge amount of the mixed liquid pump 21 that supplies the mixed liquid to the tray 32 in response to the liquid increase signal from the temperature difference comparing means 65 by a set time (for example, 5 minutes). It is like that. Other configurations are the same as those of the third embodiment, and the description thereof is omitted by giving the same numbers.

この実施例4による効果は実施例3と同様の作用により、伝熱部材29の伝熱面に広い濡れ壁を形成し、液膜の形成範囲の減少状態が継続することを防止できる。   The effect of the fourth embodiment is the same as that of the third embodiment, so that a wide wetted wall is formed on the heat transfer surface of the heat transfer member 29, and the reduced state of the liquid film formation range can be prevented from continuing.

図10は、本発明に係る吸収冷凍機用再生器の実施例5の制御系のブロック図であり、実施例4と異なるところは、次の通りである。
すなわち、再生器1から吸収液を取り出す第6の配管26に、吸収液の温度を測定する吸収液温度センサ71が設けられるとともに、再生器1に混合液を供給する第5の配管25に、混合液の温度を測定する混合液温度センサ72が設けられ、吸収液温度センサ71および混合液温度センサ72にコントローラ63が接続され、コントローラ63に混合液ポンプ21が接続されている。
コントローラ63の構成、ならびに、他の構成は実施例4と同じであり、同じ番号を付すことにより、その説明は省略する。なお、温度差比較手段64に入力される設定値は、例えば、11.0℃である。
FIG. 10 is a block diagram of the control system of the fifth embodiment of the refrigerating machine for absorption refrigerator according to the present invention. The difference from the fourth embodiment is as follows.
That is, the sixth pipe 26 for taking out the absorbing liquid from the regenerator 1 is provided with the absorbing liquid temperature sensor 71 for measuring the temperature of the absorbing liquid, and the fifth pipe 25 for supplying the mixed liquid to the regenerator 1 A liquid mixture temperature sensor 72 for measuring the temperature of the liquid mixture is provided, the controller 63 is connected to the absorption liquid temperature sensor 71 and the liquid mixture temperature sensor 72, and the liquid mixture pump 21 is connected to the controller 63.
The configuration of the controller 63 and the other configurations are the same as those in the fourth embodiment, and the description thereof will be omitted by giving the same numbers. The set value input to the temperature difference comparison means 64 is 11.0 ° C., for example.

この実施例5による効果も実施例3と同様の作用により、伝熱部材29の伝熱面に広い濡れ壁を形成し、液膜の形成範囲の減少状態が継続することを防止できる。   The effect of the fifth embodiment is the same as that of the third embodiment, so that a wide wetted wall can be formed on the heat transfer surface of the heat transfer member 29 and the liquid film formation range can be prevented from continuing to be reduced.

上述実施例3における温度センサ51と温度比較手段53から成る構成、実施例4における第1および第2の冷却水温度センサ61,62、温度差算出手段64および温度差比較手段65から成る構成、実施例5における吸収液温度センサ71、混合液温度センサ72、温度差算出手段64および温度差比較手段65から成る構成それぞれをして伝熱効率の設定以上の低下を検出して増液信号を出力する伝熱効率低下検出手段と称する。   A configuration comprising the temperature sensor 51 and the temperature comparison means 53 in the third embodiment, a configuration comprising the first and second cooling water temperature sensors 61 and 62, the temperature difference calculation means 64 and the temperature difference comparison means 65 in the fourth embodiment; Each of the configurations of the absorption liquid temperature sensor 71, the mixed liquid temperature sensor 72, the temperature difference calculation means 64, and the temperature difference comparison means 65 in the fifth embodiment is used to detect a decrease in heat transfer efficiency or more and output a liquid increase signal. This is referred to as heat transfer efficiency reduction detecting means.

上記実施例では、第2の散布孔36,43から、そのトレイ32にガイド板33を介して連結された伝熱部材29の傾斜伝熱面Fに液滴状に混合液を散布供給するように構成しているが、本発明としては、第2の散布孔を、例えば、先端側ほど下方に位置するように傾斜させて水平方向への流動力を付与し、隣の伝熱部材29の伝熱面に液滴状に混合液を散布供給できるように構成するものでも良い。   In the above embodiment, the mixed liquid is sprayed and supplied from the second spray holes 36 and 43 to the inclined heat transfer surface F of the heat transfer member 29 connected to the tray 32 via the guide plate 33. In the present invention, for example, the second spray hole is inclined so as to be positioned downward toward the distal end side to apply a horizontal flow force, and the adjacent heat transfer member 29 It may be configured such that the mixed liquid can be sprayed and supplied to the heat transfer surface in the form of droplets.

また、本発明としては、高温再生器と低温再生器とから成る吸収冷凍機における低温再生器にも適用できる。   Further, the present invention can also be applied to a low temperature regenerator in an absorption refrigerator comprising a high temperature regenerator and a low temperature regenerator.

本発明に係る吸収冷凍機用再生器の実施例1を示す吸収冷凍機の全体概略構成図である。1 is an overall schematic configuration diagram of an absorption refrigerator showing Example 1 of an absorption refrigerator regenerator according to the present invention. 吸収冷凍機用再生器の一部省略正面図である。It is a partially omitted front view of a regenerator for an absorption refrigerator. 吸収冷凍機用再生器の一部省略側面図である。It is a partially omitted side view of a regenerator for an absorption refrigerator. 要部の拡大正面断面図である。It is an expanded front sectional view of the principal part. 交換熱量の経時的変化を示すグラフである。It is a graph which shows a time-dependent change of the amount of exchange heat. 本発明に係る吸収冷凍機用再生器の実施例2の要部の拡大正面断面である。It is an expansion front cross section of the principal part of Example 2 of the regenerator for absorption refrigerators which concerns on this invention. 本発明に係る吸収冷凍機用再生器の実施例3の概略構成図である。It is a schematic block diagram of Example 3 of the regenerator for absorption refrigerators which concerns on this invention. 実施例3の制御系を示すブロック図である。FIG. 10 is a block diagram illustrating a control system according to a third embodiment. 実施例4の制御系を示すブロック図である。FIG. 10 is a block diagram illustrating a control system according to a fourth embodiment. 実施例5の制御系を示すブロック図である。FIG. 10 is a block diagram illustrating a control system according to a fifth embodiment.

符号の説明Explanation of symbols

1…再生器
21…混合液ポンプ
28…再生器本体
29…伝熱部材
32…トレイ(液溜め部)
35…第1の散布孔(第1の混合液供給部)
36…第2の散布孔(第2の混合液供給部)
41…広幅樋部分
42…樋部分
43…第1の散布孔(第1の混合液供給部)
44…第2の散布孔(第2の混合液供給部)
51…温度センサ(伝熱効率低下検出手段)
53…温度比較手段(伝熱効率低下検出手段)
54…混合液供給量増加手段
61…第1の冷却水温度センサ(伝熱効率低下検出手段)
62…第2の冷却水温度センサ(伝熱効率低下検出手段)
64…温度差算出手段(伝熱効率低下検出手段)
65…温度差比較手段(伝熱効率低下検出手段)
66…混合液供給量増加手段
71…吸収液温度センサ(伝熱効率低下検出手段)
72…混合液温度センサ(伝熱効率低下検出手段)
F…傾斜伝熱面
DESCRIPTION OF SYMBOLS 1 ... Regenerator 21 ... Mixed liquid pump 28 ... Regenerator main body 29 ... Heat-transfer member 32 ... Tray (liquid storage part)
35 ... 1st spraying hole (1st liquid mixture supply part)
36 ... 2nd spraying hole (2nd liquid mixture supply part)
41 ... Wide heel part
42 ... ridge part 43 ... 1st spraying hole (1st liquid mixture supply part)
44 ... 2nd spraying hole (2nd liquid mixture supply part)
51 ... Temperature sensor (heat transfer efficiency drop detecting means)
53. Temperature comparison means (heat transfer efficiency decrease detection means)
54 ... Mixed liquid supply amount increasing means 61 ... First cooling water temperature sensor (heat transfer efficiency decrease detecting means)
62 ... 2nd cooling water temperature sensor (heat transfer efficiency fall detection means)
64 ... Temperature difference calculation means (heat transfer efficiency decrease detection means)
65 ... Temperature difference comparison means (heat transfer efficiency decrease detection means)
66 ... Mixed liquid supply amount increasing means 71 ... Absorbing liquid temperature sensor (heat transfer efficiency decrease detecting means)
72 ... Mixed liquid temperature sensor (heat transfer efficiency decrease detecting means)
F ... Inclined heat transfer surface

Claims (3)

再生器本体内に、加熱媒体を通すとともに外面を伝熱面に形成した伝熱部材を設け、前記伝熱部材の上部に、吸収液と冷媒との混合液を前記伝熱面に液膜状に自然流下によって供給する混合液供給部を設け、混合液を加熱沸騰させて冷媒蒸気を発生させる吸収冷凍機用再生器において、
前記伝熱部材の上端側に、前記伝熱部材の水平方向の幅が下方側程幅広になるように傾斜伝熱面を形成し、
前記混合液供給部を、
混合液を溜める液溜め部と、
前記液溜め部に前記伝熱面に沿う方向に所定間隔を隔てて設けられて前記伝熱面に混合液を接触供給する第1の混合液供給部と、
前記液溜め部に前記第1の混合液供給部よりも上方に位置してその先端を前記第1の混合液供給部の先端よりも突出させるとともに前記傾斜伝熱面の鉛直上方に位置させる状態で設けられて、混合液の供給量が増加したときに前記傾斜伝熱面の表面に混合液を液滴状に散布供給する第2の混合液供給部と、
から構成したことを特徴とする吸収冷凍機用再生器。
In the regenerator main body, a heat transfer member that passes a heating medium and has an outer surface formed as a heat transfer surface is provided, and a liquid mixture of an absorbing liquid and a refrigerant is formed on the heat transfer surface above the heat transfer member. In a regenerator for an absorption refrigeration machine that is provided with a liquid mixture supply unit that is supplied by natural flow to generate a refrigerant vapor by heating and boiling the liquid mixture,
On the upper end side of the heat transfer member, an inclined heat transfer surface is formed so that the horizontal width of the heat transfer member is wider toward the lower side,
The mixed liquid supply unit,
A liquid reservoir for storing the liquid mixture;
A first mixed liquid supply unit that is provided in the liquid reservoir part at a predetermined interval in a direction along the heat transfer surface and supplies the mixed liquid to the heat transfer surface in contact with the first liquid supply part;
A state in which the liquid reservoir is positioned above the first mixed liquid supply unit and has a tip protruding from the front end of the first mixed liquid supply unit and positioned vertically above the inclined heat transfer surface. A second mixed liquid supply unit that supplies the mixed liquid in droplets to the surface of the inclined heat transfer surface when the supply amount of the mixed liquid increases,
A regenerator for an absorption refrigerator characterized by comprising:
再生器本体内に、加熱媒体を通すとともに外面を伝熱面に形成した伝熱部材を設け、前記伝熱部材の上部に、吸収液と冷媒との混合液を前記伝熱面に液膜状に自然流下によって供給する混合液供給部を設け、混合液を加熱沸騰させて冷媒蒸気を発生させる吸収冷凍機用再生器において、In the regenerator main body, a heat transfer member that passes a heating medium and has an outer surface formed as a heat transfer surface is provided, and a liquid mixture of an absorbing liquid and a refrigerant is formed on the heat transfer surface above the heat transfer member. In a regenerator for an absorption refrigeration machine that is provided with a liquid mixture supply unit that is supplied by natural flow to generate a refrigerant vapor by heating and boiling the liquid mixture,
前記伝熱部材の上端側に、前記伝熱部材の水平方向の幅が下方側程幅広になるように傾斜伝熱面を形成し、On the upper end side of the heat transfer member, an inclined heat transfer surface is formed so that the horizontal width of the heat transfer member is wider toward the lower side,
前記混合液供給部を、The mixed liquid supply unit,
上端側に水平方向に広幅の樋部分を形成するとともにその広幅樋部分の中央部に下方に連ねて前記伝熱部材の上端と同じ幅の樋部分を形成して混合液を溜める液溜め部と、A liquid reservoir portion that forms a wide ridge portion in the horizontal direction on the upper end side, and forms a ridge portion having the same width as that of the upper end of the heat transfer member in a lower portion at the center of the wide ridge portion to store a mixed liquid; ,
前記樋部分の両横側面に前記伝熱面に沿う方向に所定間隔を隔てて設けられて前記伝熱面に混合液を接触供給する第1の混合液供給部と、A first mixed liquid supply section that is provided on both lateral side surfaces of the flange portion at a predetermined interval in a direction along the heat transfer surface and supplies the liquid mixture in contact with the heat transfer surface;
前記広幅樋部分の幅方向の端部に下向きに設けられて、混合液の供給量が増加したときに前記傾斜伝熱面の表面に混合液を液滴状に散布供給する第2の混合液供給部と、A second mixed liquid that is provided downward at the end in the width direction of the wide flange portion and supplies the mixed liquid in droplets onto the surface of the inclined heat transfer surface when the supply amount of the mixed liquid increases. A supply section;
から構成したことを特徴とする吸収冷凍機用再生器。A regenerator for an absorption refrigerator characterized by comprising:
請求項1または2に記載の吸収冷凍機用再生器において、In the absorption refrigerator regenerator according to claim 1 or 2,
伝熱効率の設定以上の低下を検出して増液信号を出力する伝熱効率低下検出手段と、A heat transfer efficiency decrease detecting means for detecting a decrease in heat transfer efficiency or more and outputting a liquid increase signal;
前記伝熱効率低下検出手段からの増液信号に応答して混合液供給部に混合液を供給する混合液ポンプの吐出量を設定時間だけ増加する混合液供給量増加手段とを備えてある吸収冷凍機用再生器。Absorption refrigeration comprising a mixed liquid supply amount increasing means for increasing a discharge amount of a mixed liquid pump for supplying a mixed liquid to a mixed liquid supply section in response to a liquid increase signal from the heat transfer efficiency decrease detecting means for a set time. Regenerator for machine.
JP2007234169A 2007-09-10 2007-09-10 Absorber refrigerator regenerator Expired - Fee Related JP5209920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007234169A JP5209920B2 (en) 2007-09-10 2007-09-10 Absorber refrigerator regenerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007234169A JP5209920B2 (en) 2007-09-10 2007-09-10 Absorber refrigerator regenerator

Publications (2)

Publication Number Publication Date
JP2009068722A JP2009068722A (en) 2009-04-02
JP5209920B2 true JP5209920B2 (en) 2013-06-12

Family

ID=40605173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007234169A Expired - Fee Related JP5209920B2 (en) 2007-09-10 2007-09-10 Absorber refrigerator regenerator

Country Status (1)

Country Link
JP (1) JP5209920B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011105742A1 (en) * 2011-06-24 2012-12-27 Viessmann Werke Gmbh & Co Kg Periodic sorption device
CN108072212A (en) * 2017-11-04 2018-05-25 上海佑伏吸附制冷有限公司 Gas-liquid separation and pressure equaliser occur for a kind of ammonium hydroxide for spraying generator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4132655B2 (en) * 2000-12-21 2008-08-13 リンナイ株式会社 Absorption refrigeration system
JP4376108B2 (en) * 2004-03-31 2009-12-02 大阪瓦斯株式会社 Absorption refrigerator

Also Published As

Publication number Publication date
JP2009068722A (en) 2009-04-02

Similar Documents

Publication Publication Date Title
EP2399089B1 (en) Heat exchanger
WO2011048891A1 (en) Heat exchanger and air conditioner equipped therewith
JP5868088B2 (en) Cooling unit for vehicle air conditioner
JP3932241B2 (en) Absorption refrigerator
JP5274175B2 (en) Cold storage heat exchanger
US5435154A (en) High temperature regenerator of an absorption type hot and cold water generator and absorption type hot and cold water generator
JP3591356B2 (en) Absorption refrigerator and method of manufacturing the same
US20110061845A1 (en) Heat exchanger
JP4701147B2 (en) 2-stage absorption refrigerator
JP5019920B2 (en) Absorber refrigerator regenerator
JP3445941B2 (en) Multi-stage evaporative absorption type absorption chiller / heater and large temperature difference air conditioning system equipped with the same
JP5209920B2 (en) Absorber refrigerator regenerator
JP4881820B2 (en) Absorption refrigerator
JP4903743B2 (en) Absorption refrigerator
JP5202291B2 (en) Air conditioner for vehicles
JP4376108B2 (en) Absorption refrigerator
JP2012167854A (en) Heat transfer tube for falling liquid film evaporator, and turbo refrigerator using the same
JP4297822B2 (en) Absorption refrigerator
JP5036360B2 (en) Absorption refrigerator
JP2007071475A (en) Triple-effect absorption refrigerating machine
JP5075346B2 (en) Absorption refrigerator
JP2005207621A (en) Dropping device
JP2009068723A (en) Absorption refrigerator
JP5848977B2 (en) Absorption refrigerator
CN101852518B (en) Absorber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5209920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees