JP5208647B2 - Manufacturing method of sintered valve guide - Google Patents

Manufacturing method of sintered valve guide Download PDF

Info

Publication number
JP5208647B2
JP5208647B2 JP2008249875A JP2008249875A JP5208647B2 JP 5208647 B2 JP5208647 B2 JP 5208647B2 JP 2008249875 A JP2008249875 A JP 2008249875A JP 2008249875 A JP2008249875 A JP 2008249875A JP 5208647 B2 JP5208647 B2 JP 5208647B2
Authority
JP
Japan
Prior art keywords
powder
mass
iron
less
valve guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008249875A
Other languages
Japanese (ja)
Other versions
JP2010077515A (en
Inventor
裕樹 藤塚
克直 近畑
英昭 河田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Powdered Metals Co Ltd
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2008249875A priority Critical patent/JP5208647B2/en
Priority to US12/585,246 priority patent/US20100080725A1/en
Priority to DE102009041940A priority patent/DE102009041940A1/en
Publication of JP2010077515A publication Critical patent/JP2010077515A/en
Application granted granted Critical
Publication of JP5208647B2 publication Critical patent/JP5208647B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/008Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of engine cylinder parts or of piston parts other than piston rings
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • C22C33/0214Using a mixture of prealloyed powders or a master alloy comprising P or a phosphorus compound
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0264Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements the maximum content of each alloying element not exceeding 5%

Description

本発明は、内燃機関の吸気弁あるいは排気弁に使用されるバルブガイドに関し、特に、粉末冶金法で製造され、高い強度を有する焼結バルブガイドの製造方法に関する。   The present invention relates to a valve guide used for an intake valve or an exhaust valve of an internal combustion engine, and more particularly to a method for manufacturing a sintered valve guide manufactured by powder metallurgy and having high strength.

バルブガイドは、エンジンのシリンダヘッドに圧入され、内燃機関の燃焼室への燃料ガスの吸気および燃焼ガスの排気を行うため駆動されるバルブをその内周面で摺動保持するものであり、バルブとの摺動において摩耗が少ない高い耐摩耗性と、摺動相手となるバルブを摩耗させない良好な摺動特性が要求される。   The valve guide press-fits into the cylinder head of the engine and slides and holds a valve driven on the inner peripheral surface thereof for intake of fuel gas into the combustion chamber of the internal combustion engine and exhaust of the combustion gas. High wear resistance with little wear during sliding and good sliding characteristics that do not wear the valve that is the sliding partner are required.

従来、バルブガイドとしては鋳鉄製のものが使用されてきたが、溶製材料では得られない金属組織の合金を得られ耐摩耗性等の特性を向上できること、ニアネットシェイプに造形でき加工の手間や材料ロスが少ないこと、一度金型を作製すれば同じ形状の製品が多量に生産できること等の利点により粉末冶金法により製造されるようになってきている。本願出願人も、例えば下記の公報(特許文献1〜4等)において、耐摩耗性に優れた焼結バルブガイド材を提案している。   Conventionally, cast irons have been used as valve guides, but it is possible to obtain alloys with a metal structure that cannot be obtained with melted materials and to improve characteristics such as wear resistance, and to be able to form a near net shape and work Due to advantages such as low material loss and the ability to produce a large number of products of the same shape once a mold is produced, it has been manufactured by powder metallurgy. The applicant of the present application has also proposed a sintered valve guide material having excellent wear resistance in, for example, the following publications (Patent Documents 1 to 4, etc.).

特許文献1で開示する焼結バルブガイド材は、組成が、質量比で、C:1.5〜4%、Cu:1〜5%、Sn:0.1〜2%、P:0.1〜0.3%未満およびFe残部であり、パーライトとフェライトの混合基地中に硬質なFe−P−Cの共晶化合物である鉄−リン−炭素化合物相(ステダイト相)と、軟質なCu−Sn相(銅合金相)と固体潤滑剤として機能する遊離黒鉛相が分散する組織を呈するもので、鋳鉄製のものよりも優れた耐摩耗性と、鋳鉄製のものに比べれば削り難いものの、従来の鉄系焼結合金よりも改良された被削性を有する点が評価され、自動車メーカー各社において採用されてきた。   The sintered valve guide material disclosed in Patent Document 1 has a mass ratio of C: 1.5 to 4%, Cu: 1 to 5%, Sn: 0.1 to 2%, P: 0.1. Fe-P—C eutectic compound that is hard Fe—P—C in a mixed matrix of pearlite and ferrite and less than 0.3% and Fe balance, and a soft Cu— It exhibits a structure in which a free graphite phase that functions as a Sn phase (copper alloy phase) and a solid lubricant is dispersed. It has been evaluated by the car manufacturers for its improved machinability compared to conventional iron-based sintered alloys.

また、特許文献2で開示する焼結バルブガイド材は、特許文献1で開示する焼結バルブガイド材を改良したもので、上記の金属組織中の粒間に珪酸マグネシウム鉱物を分散させて耐摩耗性を損なうことなく被削性を改善したものである。特許文献2で開示する焼結バルブガイド材は、特許文献1で開示する焼結バルブガイド材と同等の優れた耐摩耗性を示し、被削性について改善されているものの、被削性は鋳鉄製のものには及ばず、より一層の被削性の改善が望まれている。そこで、本出願人は耐摩耗性を多少犠牲にしてでも被削性の改良を主眼として開発を行い、下記の公報(特許文献3、4)で開示する焼結バルブガイド材を開発している。   Further, the sintered valve guide material disclosed in Patent Document 2 is an improvement of the sintered valve guide material disclosed in Patent Document 1, and the magnesium silicate mineral is dispersed between the grains in the metal structure described above, thereby providing wear resistance. The machinability is improved without impairing the workability. The sintered valve guide material disclosed in Patent Document 2 exhibits excellent wear resistance equivalent to that of the sintered valve guide material disclosed in Patent Document 1 and has improved machinability, but the machinability is cast iron. There is a demand for further improvement in machinability, not limited to those made of steel. Therefore, the present applicant has developed with a focus on improving machinability even at the expense of wear resistance, and has developed a sintered valve guide material disclosed in the following publications (Patent Documents 3 and 4). .

特許文献3、4で開示する焼結バルブガイド材は、特許文献1で開示する焼結バルブガイド材のP量を低減させて被削性の改良を行ったものであり、特許文献3で開示するバルブガイド材は、組成が、質量比で、C:1.5〜4%、Cu:1〜5%、Sn:0.1〜2%、P:0.01〜0.1%未満およびFe残部であり、パーライトを主体とする基地中に銅合金相および遊離黒鉛が分散する組織を呈するものである。また、特許文献4で開示する焼結バルブガイド材は、組成が、質量比で、C:1.5〜2.5%、Cu:3.5〜5%、Sn:0.3〜0.6%、P:0.04〜0.15%、およびFe残部であり、パーライト相、ステダイト相及び銅合金相を有する基地と、気孔と、黒鉛相とからなる金属組織を呈するものであり、パーライト相、銅合金相およびステダイト相の各面積比、さらにステダイト相の厚さを限定したものである。このような特許文献3、4の焼結バルブガイド材は、実用上問題ない充分な耐摩耗性と、特許文献2よりも改良された被削性を有する優れた焼結バルブガイド材である。   The sintered valve guide material disclosed in Patent Documents 3 and 4 is an improvement in machinability by reducing the P amount of the sintered valve guide material disclosed in Patent Document 1, and disclosed in Patent Document 3 The valve guide material has a composition by mass ratio of C: 1.5 to 4%, Cu: 1 to 5%, Sn: 0.1 to 2%, P: 0.01 to less than 0.1%, and It is the balance of Fe and exhibits a structure in which a copper alloy phase and free graphite are dispersed in a base mainly composed of pearlite. Moreover, the sintered valve guide material disclosed in Patent Document 4 has a mass ratio of C: 1.5 to 2.5%, Cu: 3.5 to 5%, Sn: 0.3 to 0.00. 6%, P: 0.04 to 0.15%, and the balance of Fe, exhibiting a metal structure consisting of a matrix having a pearlite phase, a stellite phase and a copper alloy phase, pores, and a graphite phase, Each area ratio of the pearlite phase, the copper alloy phase, and the steadite phase, and the thickness of the steadite phase are limited. Such sintered valve guide materials of Patent Documents 3 and 4 are excellent sintered valve guide materials having sufficient wear resistance with no practical problems and improved machinability as compared with Patent Document 2.

特許文献1〜4の焼結バルブガイド材は、銅合金相および遊離黒鉛相により良好な摺動特性を付与するものであるが、この銅合金相および遊離黒鉛相は、鉄粉末を主とする原料粉末に銅合金粉末および黒鉛粉末を添加し、銅合金粉末および黒鉛粉末が完全に鉄基地に拡散しない温度(950〜1050℃)で焼結することで形成している。   The sintered valve guide materials of Patent Documents 1 to 4 give good sliding characteristics to the copper alloy phase and the free graphite phase, and the copper alloy phase and the free graphite phase mainly include iron powder. The copper alloy powder and the graphite powder are added to the raw material powder, and the copper alloy powder and the graphite powder are sintered at a temperature (950 to 1050 ° C.) that does not completely diffuse into the iron base.

特公昭55−034858号公報Japanese Patent Publication No. 55-034858 特許第2680927号公報Japanese Patent No. 2680927 特開2002−069597号公報JP 2002-069597 A 特開2006−052468号公報JP 2006-052468 A

近年、内燃機関のフリクション低減のため、バルブガイドと摺動するバルブの駆動機構が直動式の機構から、ローラロッカーアームを用いる機構になってきている。このためバルブを摺動保持するバルブガイドにおいては、軸に対して交差する方向の荷重すなわち曲げ荷重が負荷されるようになってきている。その上、近年の内燃機関の高出力化により内燃機関の負荷が増大してきており、バルブガイドにかかる曲げ荷重が増大している。   In recent years, in order to reduce the friction of an internal combustion engine, the drive mechanism of a valve that slides with a valve guide has been changed from a direct acting mechanism to a mechanism that uses a roller rocker arm. For this reason, in the valve guide for slidingly holding the valve, a load in a direction intersecting the axis, that is, a bending load is applied. Moreover, the load on the internal combustion engine has increased due to the recent increase in output of the internal combustion engine, and the bending load applied to the valve guide has increased.

特許文献1〜4等の焼結バルブガイド材は高い耐摩耗性と良好な摺動特性を有する優れたものであるが、上記のように銅合金粉末および黒鉛粉末が完全に鉄基地に拡散しないよう950〜1050℃で焼結するため、1080〜1200℃で焼結する一般の構造部材用焼結材に比して鉄粉末どうしの相互拡散が進んでおらず、一般の構造部材用焼結材に比して機械的強さが低い。このため、上記のような焼結バルブガイドにかかる曲げ荷重の増大に対して、機械的強さの向上が望まれている。   Sintered valve guide materials such as Patent Documents 1 to 4 have excellent wear resistance and good sliding properties, but as described above, copper alloy powder and graphite powder do not completely diffuse into the iron base. Since sintering is performed at 950 to 1050 ° C., the interdiffusion between the iron powders does not proceed as compared with a general sintered material for structural members that is sintered at 1800 to 1200 ° C. Mechanical strength is low compared to the material. For this reason, improvement of mechanical strength is desired with respect to the increase of the bending load concerning the above sintered valve guides.

したがって、本発明は、950〜1050℃で焼結して銅合金相および遊離黒鉛相を有する焼結バルブガイドの機械的強さを向上する製造方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a production method for improving the mechanical strength of a sintered valve guide that is sintered at 950 to 1050 ° C. and has a copper alloy phase and a free graphite phase.

上記課題を解決する本発明の焼結バルブガイドの製造方法は、鉄粉末を主とし、少なくとも銅合金粉末および黒鉛粉末を含有する原料粉末を、略円筒状に圧粉成形し、得られた圧粉体を950〜1050℃で焼結する焼結バルブガイドの製造方法において、鉄粉末が、アトマイズ鉄粉末の微粉を焼成して各鉄微粉末を互いに拡散接合させ、得られた塊を粉砕した後、粒度調整して、240メッシュの篩を通過しない粉末が40質量%以上含まれ、前記240メッシュの篩を通過しない粉末のうち70質量%以上のものの円形度が0.5以下としたものであり、Fe以外の不純物成分(O(酸素)含む)が0.4質量%以下であるとともに、O量が0.2質量%以下であることを特徴とする。 The manufacturing method of the sintered valve guide of the present invention that solves the above-mentioned problems is obtained by compacting a raw material powder mainly containing iron powder and containing at least a copper alloy powder and a graphite powder into a substantially cylindrical shape. In the method for producing a sintered valve guide for sintering powder at 950 to 1050 ° C., the iron powder baked the fine powder of atomized iron powder, diffused and bonded each iron fine powder to each other, and pulverized the resulting mass after, and particle size control, 240 powder which does not pass through the sieve of mesh contains more than 40 wt%, which circularity of 70 mass% or more ones of the powder which does not pass through the sieve of the 240 mesh was 0.5 or less The impurity component (including O (oxygen)) other than Fe is 0.4 mass% or less, and the amount of O is 0.2 mass% or less .

本発明の焼結バルブガイドの製造方法において用いる鉄粉末は、一般の水アトマイズ鉄粉末より不規則形状であるため圧粉成形した際に鉄粉末どうしのからみ合いが多くなり、鉄粉末どうしの接触面積を大きくすることができる。このため、従来と同じ950〜1050℃で焼結しても鉄粉末どうしの相互拡散が進行し、従来のものより機械的強さの高い焼結バルブガイドを得ることができる。   The iron powder used in the manufacturing method of the sintered valve guide of the present invention has an irregular shape as compared with a general water atomized iron powder, so that the iron powder becomes more entangled when compacted and contacted between the iron powders. The area can be increased. For this reason, even if it sinters at 950-1050 degreeC which is the same as the past, mutual diffusion of iron powder advances, and the sintered valve guide whose mechanical strength is higher than the conventional one can be obtained.

950〜1050℃で焼結する銅合金相および遊離黒鉛相を有する焼結バルブガイドの機械的強さを向上させる方法について発明者らが鋭意研究を重ねたところ、圧粉成形時の鉄粉末どうしのからみ合いを多くすれば、鉄粉末どうしの相互拡散に伴うネック成長の起点となる粉末どうしの接触部位が多くなり、この温度であっても鉄粉末どうしの相互拡散量が増加して焼結体の機械的強さが向上することを見出した。また、鉄粉末を主体とする原料粉末を圧粉成形する場合、鉄粉末どうしのからみ合いを発生させるため通常はガスアトマイズ粉末に比して形状が不規則な水アトマイズ鉄粉末を用いるが、実際に鉄粉末どうしのからみ合いに寄与するのはある程度の大きさの粉末であること、およびこの鉄粉末どうしのからみ合いに寄与するある程度の大きさの粉末について、より不規則形状の粉末を用いれば、圧粉成形時の鉄粉末どうしのからみ合いを多く形成できることを見出した結果なされたものである。   The inventors have conducted extensive research on a method for improving the mechanical strength of a sintered valve guide having a copper alloy phase sintered at 950 to 1050 ° C. and a free graphite phase. If the entanglement is increased, the number of contact sites between the powders that become the starting point of neck growth associated with the mutual diffusion between the iron powders increases. Even at this temperature, the amount of mutual diffusion between the iron powders increases and sintering occurs. It has been found that the mechanical strength of the body is improved. In addition, when compacting a raw material powder mainly composed of iron powder, water atomized iron powder having an irregular shape as compared with gas atomized powder is usually used in order to generate entanglement between iron powders. It is a powder of a certain size that contributes to the entanglement between the iron powders, and for a powder of a certain size that contributes to the entanglement between the iron powders, if a more irregularly shaped powder is used, This is a result of finding that many entanglements between iron powders at the time of compacting can be formed.

すなわち、本発明の焼結バルブガイドの製造方法において用いる鉄粉末は、240メッシュ(63μm)の篩を通過しない粉末を40%以上、好ましくは50%以上とする。240メッシュの篩を通過しない粉末の量が鉄粉末全量の40%を下回ると、鉄粉末どうしのからみ合いが少なく、ネック成長の起点となる粉末どうしの接触部位が少なくなる。また相対的に微粉の量が多くなる結果、原料粉末の流動性が低下するとともに、ブリッジングが生じ易くなって充填密度が低下する。   That is, the iron powder used in the method for producing a sintered valve guide of the present invention is 40% or more, preferably 50% or more, of powder that does not pass through a 240 mesh (63 μm) sieve. If the amount of the powder that does not pass through the 240 mesh sieve is less than 40% of the total amount of the iron powder, the iron powder is less entangled, and the number of contact sites between the powders that are the starting points for neck growth is reduced. Further, as a result of the relatively large amount of fine powder, the flowability of the raw material powder is lowered, and bridging is likely to occur and the packing density is lowered.

また、上記の240メッシュの篩を通過しない鉄粉末のうち70%以上を円形度で0.5以下とすることが望ましい。粉末の円形度は、粉末のSEM写真等を観察して粉末の周囲長より求められる仮想円の面積に対する粉末の実際の面積の比であり、粉末の周囲長をL、粉末の面積をSとしたとき、円形度=4πS/Lで表される、0<円形度≦1(真円)の範囲の値である。円形度が1に近いものほど真円に近く、粉末が丸みを帯びた形状であることを示し、円形度が小さいものほど不規則形状であることを示す。このような円形度は、三谷商事株式会社製Win ROOF等の画像解析ソフトを用いて求めることができる。 Moreover, it is desirable that 70% or more of the iron powder that does not pass through the 240 mesh sieve is 0.5 or less in circularity. The circularity of the powder is the ratio of the actual area of the powder to the area of the virtual circle obtained from the powder perimeter by observing an SEM photograph of the powder, where L is the powder perimeter and S is the area of the powder. In this case, the circularity = 4πS / L 2 , which is a value in the range of 0 <circularity ≦ 1 (perfect circle). The closer the circularity is to 1, the closer to a perfect circle, and the powder has a rounded shape. The smaller the circularity, the more irregular the shape. Such circularity can be obtained using image analysis software such as Win ROOF manufactured by Mitani Corporation.

通常用いられる水アトマイズ粉末は、240メッシュの篩を通過しない鉄粉末のうち円形度が0.5以下のものは50〜60%程度しか含まないが、本発明においては、上記の240メッシュの篩を通過しない鉄粉末が円形度で0.5以下の不規則形状の粉末を70%以上とすることで圧粉成形時の鉄粉末どうしのからみ合いを多く形成して、ネック成長の起点となる粉末どうしの接触部位を多くすることで、焼結時に粉末どうしの相互拡散量を多くすることができる。したがって、従来と同じ950〜1050℃で焼結しても鉄粉末どうしの相互拡散が進行し、従来のものより機械的強さの高い焼結バルブガイドを得ることができる。   The normally used water atomized powder contains only about 50 to 60% of the iron powder that does not pass through the 240 mesh sieve and has a circularity of 0.5 or less. In the present invention, the above 240 mesh sieve is used. The iron powder that does not pass through is formed with an irregular shape powder with a circularity of 0.5 or less, and 70% or more of the powder forms a lot of entanglement between the iron powders at the time of compacting, and becomes the starting point of neck growth By increasing the contact area between the powders, the amount of mutual diffusion between the powders can be increased during sintering. Therefore, even if it sinters at 950-1050 degreeC which is the same as the past, the mutual diffusion of iron powder advances, and the sintered valve guide whose mechanical strength is higher than the conventional one can be obtained.

本発明においては、上記の鉄粉末として、Fe以外のC、Si、Mn、P、SおよびO(酸素)等の不可避不純物成分が0.4質量%以下であるとともに、これらの不可避不純物成分のうちO(酸素)量が0.2質量%以下である純度の高い鉄粉末を用いることが好ましい。このような純度の高い鉄粉末は、鉄粉末の圧縮性が良好であるため、圧粉成形した際に粉末が変形して上記の鉄粉末どうしの接点における鉄粉末どうしの接触面積が大きくなり、焼結時のネック成長がより進行し易くなる。   In the present invention, as the above iron powder, inevitable impurity components such as C, Si, Mn, P, S and O (oxygen) other than Fe are 0.4 mass% or less, and these inevitable impurity components Among them, it is preferable to use high-purity iron powder having an O (oxygen) amount of 0.2 mass% or less. Such high-purity iron powder has good compressibility of the iron powder, so the powder deforms when compacted and the contact area between the iron powders at the contact point between the iron powders increases. Neck growth during sintering is more likely to proceed.

上記の不規則形状の鉄粉末は、例えば不純物が少ないアトマイズ鉄粉末の微粉を焼成して各鉄微粉末を互いに拡散接合させ、得られた塊を粉砕した後、粒度調整することで得る。すなわち、不純物の少ないアトマイズ微粉末どうしが拡散接合して一個の鉄粉末を形成するため、単一のアトマイズ鉄粉に比して表面積が多くなる。アトマイズ鉄粉末の微粉末は、普通にアトマイズした鉄粉末を分級して微粉末を回収しても良く、アトマイズ時に微粉が得られるよう調整してアトマイズしても良い。また、アトマイズ鉄粉末の微粉の焼成に際しては還元性ガス中で行えば、焼成中に粉末中の酸化物の還元が行われて、酸化物の量をよりいっそう低減することもできる。 Iron powder of the irregular shape, for example, impurities were mutually diffusion bonding each iron powder by sintering a fine powder of less atomized iron powder, after grinding the resulting mass, Ru obtained by particle size control. That is, since atomized fine powders with few impurities are diffusion-bonded to form one iron powder, the surface area is larger than that of a single atomized iron powder. The fine powder of atomized iron powder may be obtained by classifying normally atomized iron powder and collecting the fine powder, or may be adjusted and atomized so as to obtain fine powder during atomization. Further, if the atomized iron powder is fired in a reducing gas, the oxide in the powder is reduced during the firing, so that the amount of oxide can be further reduced.

一方、鉱石還元鉄粉末は、良質な鉄鉱石を還元して純度を高めた粉末であり、このため多孔質となり不規則形状を呈するが、アトマイズ鉄粉末に比して不純物成分が多く、酸化物が多量に残留しているため圧縮性が低く、圧縮成形において粉末の変形量が少ないため粉末どうしの接触面積が増加せず好ましくない。   On the other hand, ore-reduced iron powder is a powder obtained by reducing the quality of iron ore and increasing its purity, and thus becomes porous and exhibits an irregular shape. Therefore, the compressibility is low, and the amount of deformation of the powder is small in compression molding, so the contact area between the powders does not increase, which is not preferable.

本発明においては、鉄粉末として上記のものを用いることで焼結バルブガイドの機械的強さを向上させることができるため、その他の銅合金粉末や黒鉛粉末等の原料粉末は従来と同じものを用いることができる。すなわち、従来の原料粉末中の鉄粉のみを本発明の鉄粉末に替え、他の原料粉末については従来のものを用い混合した原料粉末を圧粉成形して、従来と同じ950〜1050℃で焼結することにより従来と同様の金属組織を呈し、従来と同様の耐摩耗性および摺動特性を発揮しつつ、機械的特性を向上させた焼結バルブガイドを得ることができる。   In the present invention, since the mechanical strength of the sintered valve guide can be improved by using the above iron powder, the other raw material powders such as copper alloy powder and graphite powder are the same as the conventional powders. Can be used. That is, only the iron powder in the conventional raw material powder is replaced with the iron powder of the present invention, and the other raw material powders are compacted by mixing the raw material powder using the conventional one at 950 to 1050 ° C., which is the same as before. By sintering, it is possible to obtain a sintered valve guide that exhibits a metal structure similar to that of the prior art and that exhibits the same wear resistance and sliding characteristics as those of the prior art while improving the mechanical characteristics.

すなわち、原料粉末中の銅合金粉末の添加量を全体組成中のCu量が1〜5質量%となる量とすることで、焼結バルブガイド中に適正量の銅合金相を分散させることができ、原料粉末中の黒鉛粉末の添加量を1.5〜4質量%とすることで、焼結バルブガイド中に適正量の遊離黒鉛相を分散させることができる。   That is, an appropriate amount of the copper alloy phase can be dispersed in the sintered valve guide by setting the amount of the copper alloy powder in the raw material powder to an amount such that the amount of Cu in the overall composition is 1 to 5% by mass. In addition, an appropriate amount of the free graphite phase can be dispersed in the sintered valve guide by setting the amount of the graphite powder in the raw material powder to 1.5 to 4% by mass.

また、原料粉末中に全体組成中のP量が0.01〜0.1質量%未満となる量の鉄−リン合金粉末を含有させれば特許文献3に相当する量の鉄−リン−炭素化合物相(ステダイト相)が分散する焼結バルブガイドが得られ、全体組成中のP量が0.1〜0.3質量%未満となる量の鉄−リン合金粉末を含有させれば特許文献1に相当する量の鉄−リン−炭素化合物相(ステダイト相)が分散する焼結バルブガイドが得られる。   Moreover, if the amount of iron-phosphorus alloy powder in which the amount of P in the entire composition is 0.01 to less than 0.1% by mass is contained in the raw material powder, the amount of iron-phosphorus-carbon corresponding to Patent Document 3 If a sintered valve guide in which a compound phase (steadite phase) is dispersed is obtained, and an iron-phosphorus alloy powder is contained in an amount such that the amount of P in the overall composition is less than 0.1 to 0.3% by mass, Patent Literature A sintered valve guide in which an amount of iron-phosphorus-carbon compound phase (steadite phase) corresponding to 1 is dispersed is obtained.

さらに、原料粉末に、硫化マンガン粉末および珪酸マグネシウム鉱物粉末から選択される少なくとも1種の粉末を1.6質量%以下含有させることにより特許文献2〜4に記載されているように焼結バルブガイドの被削性を改良することができる。   Furthermore, as described in Patent Documents 2 to 4, the raw material powder contains 1.6% by mass or less of at least one powder selected from manganese sulfide powder and magnesium silicate mineral powder. The machinability of can be improved.

水アトマイズ鉄粉末の微粉を焼成して各鉄微粉末を互いに拡散接合させ、得られた塊を粉砕して得られた試作粉末と、市販の水アトマイズ粉末を用意した。試作粉末と市販の水アトマイズ粉末の240メッシュの篩を通過しない粉末のうちの円形度が0.5以下の粉末の量は、それぞれ80%と52%であった。試作粉末と市販の水アトマイズ粉末のSEM写真を図1に示す。図1(a)が試作粉末、図1(b)が市販の水アトマイズ粉末である。試作粉末は、市販の水アトマイズ粉末に比して粉末表面の凹凸が大きくなっている。なお、試作粉末の不純物量は0.29質量%であり、そのうちO量は0.07質量%であり、市販の水アトマイズ粉末の不純物量は3.3質量%であり、そのうちO量は0.12質量%であった。   A prototype powder obtained by firing fine particles of water atomized iron powder, diffusion bonding the respective iron fine powders to each other, and pulverizing the resulting mass, and a commercially available water atomized powder were prepared. The amount of the powder having a circularity of 0.5 or less among the prototype powder and the commercially available water atomized powder that does not pass through the 240-mesh sieve was 80% and 52%, respectively. SEM photographs of the prototype powder and commercially available water atomized powder are shown in FIG. FIG. 1A shows a prototype powder, and FIG. 1B shows a commercially available water atomized powder. Prototype powder has larger irregularities on the surface of the powder than commercially available water atomized powder. The amount of impurities in the prototype powder is 0.29% by mass, of which the amount of O is 0.07% by mass, the amount of impurities in the commercially available water atomized powder is 3.3% by mass, and the amount of O is 0%. It was 12 mass%.

上記の試作粉末の240メッシュの篩を通過しない粉末と、240メッシュの篩を通過した粉末を配合量を変えて混合するとともに、上記の試作粉と市販の水アトマイズ粉を混合して、240メッシュの篩を通過しない粉末のうち円形度が0.5以下の粉末の割合を変えて、240メッシュ(63μm)の篩を通過しない粉末の量(+#240の量)と、240メッシュの篩を通過しない粉末のうちの円形度が0.5以下の粉末の量(円形度0.5以下の量)が表1のように異なる鉄粉末を用意した。   The above-mentioned prototype powder that does not pass through the 240 mesh sieve and the powder that passes through the 240 mesh sieve are mixed at different blending amounts, and the above prototype powder and commercially available water atomized powder are mixed together to obtain 240 mesh. By changing the ratio of the powder whose circularity is 0.5 or less among the powders that do not pass through the sieve, the amount of powder that does not pass through the 240 mesh (63 μm) sieve (the amount of + # 240) and the 240 mesh sieve Among the powders that do not pass, iron powders having different circularity of 0.5 or less (amount of circularity of 0.5 or less) as shown in Table 1 were prepared.

このような鉄粉末に、黒鉛粉末を1.8質量%、Sn量が10質量%で残部が実質的にCuの銅合金粉末を5質量%、P量が20質量%で残部が実質的にFeの鉄リン合金金粉末を0.4質量%および硫化マンガン粉末1質量%を添加混合した原料を用い、外径18mm、内径10mm、高さ10mmの円筒形状に成形圧力650MPaで成形した後、アンモニア分解ガス雰囲気中1000℃で焼結して試料01〜08の特許文献4に記載の焼結バルブガイドに相当する試料を作製した。得られた試料について、圧環試験を行い圧環強さを測定した。この結果を表1に併せて示す。なお、試料番号06の試料は、市販の水アトマイズ粉末のみを用いた場合の例、すなわち従来例である。   In such iron powder, graphite powder is 1.8% by mass, Sn amount is 10% by mass and the balance is substantially Cu copper alloy powder of 5% by mass, P amount is 20% by mass and the balance is substantially After using a raw material obtained by adding and mixing 0.4 mass% of iron-phosphorus alloy gold powder of Fe and 1 mass% of manganese sulfide powder, after forming into a cylindrical shape having an outer diameter of 18 mm, an inner diameter of 10 mm, and a height of 10 mm at a molding pressure of 650 MPa, A sample corresponding to the sintered valve guide described in Patent Document 4 of Samples 01 to 08 was prepared by sintering at 1000 ° C. in an ammonia decomposition gas atmosphere. The obtained sample was subjected to a crush test to measure crush strength. The results are also shown in Table 1. In addition, the sample of sample number 06 is an example at the time of using only commercially available water atomized powder, ie, a prior art example.

Figure 0005208647
Figure 0005208647

表1の試料番号01〜03および07、08の試料を比較することにより、鉄粉末の240メッシュの篩を通過しない粉末の割合の影響を調べることができる。これらの試料は、いずれも240メッシュの篩を通過しない粉末のうちの円形度が0.5以下の粉末が80%の粉末である。240メッシュの篩を通過しない粉末の割合が40%に満たない試料番号01および02の試料では、鉄粉末どうしのからみ合いに寄与する240メッシュの篩を通過しない粉末の割合が少なく、240メッシュの篩を通過する粉末の量が過多となる。このため、原料粉末の流動性が低下するとともに、ブリッジングが生じやすくなって充填性が低下した。その結果、試料番号01および02の試料では圧環強さが低い値となっている。一方、240メッシュの篩を通過しない粉末の割合が40%を超える試料番号03、07および08の試料では、鉄粉末どうしのからみ合いに寄与する240メッシュの篩を通過しない粉末の割合が十分となり、粉末の接触面積が増大した結果、焼結による拡散量が増加して圧環強さが向上している。   By comparing the samples Nos. 01 to 03 and 07 and 08 in Table 1, the influence of the proportion of powder that does not pass through a 240 mesh sieve of iron powder can be examined. These samples are 80% powders having a circularity of 0.5 or less among the powders that do not pass through a 240 mesh sieve. In the samples of Sample Nos. 01 and 02 in which the ratio of the powder that does not pass through the 240 mesh sieve is less than 40%, the ratio of the powder that does not pass through the 240 mesh sieve that contributes to the entanglement between the iron powders is small. The amount of powder passing through the sieve becomes excessive. For this reason, while the fluidity | liquidity of the raw material powder fell, bridging became easy to produce and the filling property fell. As a result, the crushing strength is low in the samples of sample numbers 01 and 02. On the other hand, in the samples Nos. 03, 07 and 08 in which the ratio of the powder that does not pass through the 240 mesh sieve exceeds 40%, the ratio of the powder that does not pass through the 240 mesh sieve that contributes to the entanglement between the iron powders becomes sufficient. As a result of increasing the contact area of the powder, the amount of diffusion due to sintering is increased, and the crushing strength is improved.

表1の試料番号03〜06の試料を比較することにより、240メッシュの篩を通過しない粉末が40質量%であって、その円形度が0.5以下の粉末の量の影響を調べることができる。これらの試料より、円形度が0.5以下の粉末の量が70%に満たない試料番号05および06の試料では、鉄粉末どうしのからみ合いが少ないことから圧環強さが低い値となっている。一方、円形度が0.5以下の粉末の量が70%以上の試料番号03、04の粉末では、粉末どうしのからみ合いが増加し焼結による拡散量が増加して圧環強さが向上している。   By comparing the samples of sample numbers 03 to 06 in Table 1, the effect of the amount of powder having 40% by mass of powder that does not pass through a 240 mesh sieve and having a circularity of 0.5 or less can be examined. it can. Compared with these samples, in the samples of sample numbers 05 and 06 in which the amount of the powder having a circularity of 0.5 or less is less than 70%, the crushing strength is lower because the entanglement between the iron powders is less. Yes. On the other hand, in the powders of sample numbers 03 and 04 in which the amount of the powder having a circularity of 0.5 or less is 70% or more, the entanglement between the powders increases, the amount of diffusion due to sintering increases, and the crushing strength improves. ing.

以上より、鉄粉末を主とし、少なくとも銅合金粉末および黒鉛粉末を含有する原料粉末を、略円筒状に圧粉成形し、得られた圧粉体を950〜1050℃で焼結する焼結バルブガイドの製造方法において、鉄粉末に、240メッシュの篩を通過しない粉末が40質量%以上含まれ、240メッシュの篩を通過しない粉末のうち70質量%以上のものの円形度が0.5以下であることにより、焼結バルブガイドの機械的強さを向上できることが確認された。   As mentioned above, the sintering valve which mainly compacts the raw material powder which mainly contains iron powder, and contains at least copper alloy powder and graphite powder in a substantially cylindrical shape, and sinters the obtained green compact at 950-1050 degreeC. In the guide manufacturing method, the iron powder contains 40% by mass or more of powder that does not pass through the 240 mesh sieve, and the circularity of the powder that does not pass through the 240 mesh sieve exceeds 70% by mass is 0.5 or less. It was confirmed that the mechanical strength of the sintered valve guide can be improved.

本発明の実施例で用いた試作粉末の外観を示すSEM写真(a)と市販の水アトマイズ粉末の外観を示すSEM写真(b)である。It is the SEM photograph (a) which shows the external appearance of the prototype powder used in the Example of this invention, and the SEM photograph (b) which shows the external appearance of commercially available water atomized powder.

Claims (5)

鉄粉末を主とし、少なくとも銅合金粉末および黒鉛粉末を含有する原料粉末を、略円筒状に圧粉成形し、得られた圧粉体を950〜1050℃で焼結する焼結バルブガイドの製造方法において、
前記鉄粉末が、アトマイズ鉄粉末の微粉を焼成して各鉄微粉末を互いに拡散接合させ、得られた塊を粉砕した後、粒度調整して、240メッシュの篩を通過しない粉末が40質量%以上含まれ、前記240メッシュの篩を通過しない粉末のうち70質量%以上のものの円形度が0.5以下としたものであり、
Fe以外の不純物成分(O(酸素)含む)が0.4質量%以下であるとともに、O量が0.2質量%以下であることを特徴とする焼結バルブガイドの製造方法。
Manufacture of a sintered valve guide that is mainly made of iron powder, and at least a copper alloy powder and graphite powder are compacted into a substantially cylindrical shape, and the resulting green compact is sintered at 950 to 1050 ° C. In the method
The iron powder baked fine particles of atomized iron powder, diffusion-bonded the iron fine powders to each other, pulverized the resulting mass, adjusted the particle size, and 40% by mass of the powder not passing through a 240 mesh sieve The circularity of 70% by mass or more of the powder that does not pass through the 240 mesh sieve is 0.5 or less ,
A method for producing a sintered valve guide, wherein an impurity component other than Fe (including O (oxygen)) is 0.4 mass% or less and an O content is 0.2 mass% or less .
鉄粉末を主とし、少なくとも銅合金粉末および黒鉛粉末を含有する原料粉末を、略円筒状に圧粉成形し、得られた圧粉体を950〜1050℃で焼結する焼結バルブガイドの製造方法において、
前記鉄粉末が、アトマイズ鉄粉末の微粉を焼成して各鉄微粉末を互いに拡散接合させ、得られた塊を粉砕した粉末を、アトマイズ鉄粉末に添加し、粒度調整して、240メッシュの篩を通過しない粉末が40質量%以上含まれ、前記240メッシュの篩を通過しない粉末のうち70質量%以上のものの円形度が0.5以下としたものであり、
Fe以外の不純物成分(O(酸素)含む)が0.4質量%以下であるとともに、O量が0.2質量%以下であることを特徴とする焼結バルブガイドの製造方法。
Manufacture of a sintered valve guide that is mainly made of iron powder, and at least a copper alloy powder and graphite powder are compacted into a substantially cylindrical shape, and the resulting green compact is sintered at 950 to 1050 ° C. In the method
The iron powder is obtained by baking fine powder of atomized iron powder, diffusion-bonding each iron fine powder to each other, and adding the powder obtained by pulverizing the obtained lump to the atomized iron powder, adjusting the particle size, and 240 mesh sieve 40% by weight or more of the powder that does not pass through, and the circularity of 70% by weight or more of the powder that does not pass through the 240 mesh sieve is 0.5 or less ,
A method for producing a sintered valve guide, wherein an impurity component other than Fe (including O (oxygen)) is 0.4 mass% or less and an O content is 0.2 mass% or less .
前記銅合金粉末の添加量は、全体組成中のCu量が1〜5質量%となる量であり、前記黒鉛粉末の添加量は、1.5〜4質量%であることを特徴とする請求項1または2に記載の焼結バルブガイドの製造方法。   The addition amount of the copper alloy powder is such that the amount of Cu in the entire composition is 1 to 5 mass%, and the addition amount of the graphite powder is 1.5 to 4 mass%. Item 3. A method for producing a sintered valve guide according to Item 1 or 2. 前記原料粉末は、全体組成中のP量が0.01〜0.3質量%となる鉄−リン合金粉末を含有することを特徴とする請求項1〜3のいずれかに記載の焼結バルブガイドの製造方法。   4. The sintered valve according to claim 1, wherein the raw material powder contains an iron-phosphorus alloy powder having a P content of 0.01 to 0.3 mass% in the entire composition. Guide manufacturing method. 前記原料粉末は、硫化マンガン粉末および珪酸マグネシウム鉱物粉末から選択される少なくとも1種の粉末を1.6質量%以下含有することを特徴とする請求項1〜4のいずれかに記載の焼結バルブガイドの製造方法。   5. The sintered valve according to claim 1, wherein the raw material powder contains 1.6% by mass or less of at least one powder selected from manganese sulfide powder and magnesium silicate mineral powder. Guide manufacturing method.
JP2008249875A 2008-09-29 2008-09-29 Manufacturing method of sintered valve guide Active JP5208647B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008249875A JP5208647B2 (en) 2008-09-29 2008-09-29 Manufacturing method of sintered valve guide
US12/585,246 US20100080725A1 (en) 2008-09-29 2009-09-09 Production method for sintered valve guide
DE102009041940A DE102009041940A1 (en) 2008-09-29 2009-09-17 Manufacturing method for sintered valve guide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008249875A JP5208647B2 (en) 2008-09-29 2008-09-29 Manufacturing method of sintered valve guide

Publications (2)

Publication Number Publication Date
JP2010077515A JP2010077515A (en) 2010-04-08
JP5208647B2 true JP5208647B2 (en) 2013-06-12

Family

ID=42057713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008249875A Active JP5208647B2 (en) 2008-09-29 2008-09-29 Manufacturing method of sintered valve guide

Country Status (3)

Country Link
US (1) US20100080725A1 (en)
JP (1) JP5208647B2 (en)
DE (1) DE102009041940A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2436463B1 (en) * 2010-09-30 2013-07-10 Hitachi Powdered Metals Co., Ltd. Sintered materials for valve guides and production methods therefor
US8617288B2 (en) * 2010-09-30 2013-12-31 Hitachi Powdered Metals Co., Ltd. Sintered material for valve guides and production method therefor
US8876935B2 (en) * 2010-09-30 2014-11-04 Hitachi Powdered Metals Co., Ltd. Sintered material for valve guides and production method therefor
CN103028730B (en) * 2012-10-25 2015-07-15 安徽蓝博旺机械集团合诚机械有限公司 Powder metallurgy preparation method of valve clack of membrane valve
JP6056862B2 (en) * 2013-04-19 2017-01-11 Jfeスチール株式会社 Iron powder for dust core and insulation coated iron powder for dust core
CA2992092C (en) * 2015-09-18 2020-04-07 Jfe Steel Corporation Mixed powder for powder metallurgy, sintered body, and method of manufacturing sintered body
CN107552800B (en) * 2017-07-27 2019-07-26 宁波金钟粉末冶金有限公司 A kind of gear bush
CN107685147B (en) * 2017-07-27 2019-08-23 宁波金钟粉末冶金有限公司 A kind of high-precision guider of shock absorber
CN107470632B (en) * 2017-07-27 2019-07-26 宁波金钟粉末冶金有限公司 A kind of guider of shock absorber
US11884996B2 (en) 2019-05-24 2024-01-30 Jfe Steel Corporation Iron-based alloy sintered body and iron-based mixed powder for powder metallurgy
DE102020202739A1 (en) 2020-03-04 2021-09-09 Mahle International Gmbh Sintered bearing bushing material, plain bearings, internal combustion engines and electrical machines

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3325277A (en) * 1965-02-01 1967-06-13 Smith Corp A O Method of making metal powder
JPS5534858A (en) 1978-09-04 1980-03-11 Hitachi Ltd Open ventilation type rotary motor with inertia separator
JPS5672154A (en) * 1979-11-15 1981-06-16 Hitachi Powdered Metals Co Ltd Sintered iron sliding member
JPS5881901A (en) * 1981-11-06 1983-05-17 Kawasaki Steel Corp Method of making atomized iron powder having excellent formability and low apparent density for use in powder metallurgy
JPS62278201A (en) * 1986-02-20 1987-12-03 Sumitomo Metal Ind Ltd Production of metallic powder for powder metallurgy
JP2680927B2 (en) 1990-10-18 1997-11-19 日立粉末冶金株式会社 Iron-based sintered sliding member
US5259860A (en) * 1990-10-18 1993-11-09 Hitachi Powdered Metals Co., Ltd. Sintered metal parts and their production method
US5328500A (en) * 1992-06-22 1994-07-12 Beltz Robert J Method for producing metal powders
JP4323069B2 (en) * 2000-08-31 2009-09-02 日立粉末冶金株式会社 Valve guide material
GB2368348B (en) * 2000-08-31 2003-08-06 Hitachi Powdered Metals Material for valve guides
JP2004002964A (en) * 2002-04-01 2004-01-08 Jfe Steel Kk Iron-based powder mixture
JP4441173B2 (en) * 2002-12-26 2010-03-31 日本碍子株式会社 Manufacturing method of ceramic structure
US20060032328A1 (en) * 2004-07-15 2006-02-16 Katsunao Chikahata Sintered valve guide and manufacturing method thereof
JP4323467B2 (en) * 2004-07-15 2009-09-02 日立粉末冶金株式会社 Sintered valve guide and manufacturing method thereof

Also Published As

Publication number Publication date
JP2010077515A (en) 2010-04-08
US20100080725A1 (en) 2010-04-01
DE102009041940A1 (en) 2010-07-08

Similar Documents

Publication Publication Date Title
JP5208647B2 (en) Manufacturing method of sintered valve guide
JP5613049B2 (en) Iron-based composite powder
JP5108531B2 (en) Iron-based composite powder
JP6026015B2 (en) Sintered valve seat and manufacturing method thereof
KR102350989B1 (en) A method for producing a sintered component and a sintered component
WO2017057464A1 (en) Sintered valve seat
JP2015193886A (en) Iron-based sinter alloy material for valve seat and manufacturing method therefor
JP2011157845A (en) Valve seat for internal combustion engine, superior in cooling power
CN104032153A (en) Production method of high-toughness microcrystal hard alloys
WO2018179590A1 (en) Sintered valve seat
JP5125488B2 (en) Hard particle powder for sintered body and sintered body
JP2015127520A (en) Internal combustion engine valve seat made of an iron base sinter alloy with excellent thermal conductivity and its process of manufacture
SE541758C2 (en) Iron-based alloy powder for powder metallurgy, and sinter-forged member
JP2016069734A (en) Iron-based sintered alloy material for sliding member and method for producing the same
JP6315241B2 (en) Wear-resistant copper-based sintered alloy
JP6290107B2 (en) Valve seat for internal combustion engine having excellent wear resistance and method for producing the same
JP4121383B2 (en) Iron-base metal bond excellent in dimensional accuracy, strength and sliding characteristics and method for manufacturing the same
JP5997075B2 (en) Alloy powder for blending sintered alloy and method for producing sintered alloy using the same
WO2017131224A1 (en) Cobalt-free heat-resistant sintering material having superior high-temperature wear resistance and high-temperature strength, and method for producing same
JP3675299B2 (en) Connecting rod made of Fe-based sintered alloy with high strength and toughness
JP2606335B2 (en) High-strength, high-toughness Cu-based sintered alloy with excellent wear resistance
JP2000054087A (en) Iron-base sintered alloy material for valve seat, and its manufacture
JP3104309B2 (en) Manufacturing method of hot forged member made of Al-Si alloy with excellent toughness
JPH0641699A (en) Valve guide member made of fe-base sintered alloy excellent in wear resistance
JP2606327B2 (en) High-strength, high-toughness Cu-based sintered alloy with excellent wear resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5208647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350