JP5207441B2 - Hydrogen generator and fuel cell system - Google Patents

Hydrogen generator and fuel cell system Download PDF

Info

Publication number
JP5207441B2
JP5207441B2 JP2007211110A JP2007211110A JP5207441B2 JP 5207441 B2 JP5207441 B2 JP 5207441B2 JP 2007211110 A JP2007211110 A JP 2007211110A JP 2007211110 A JP2007211110 A JP 2007211110A JP 5207441 B2 JP5207441 B2 JP 5207441B2
Authority
JP
Japan
Prior art keywords
reaction
hydrogen
solution
container
remaining amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007211110A
Other languages
Japanese (ja)
Other versions
JP2009046321A (en
Inventor
孝史 皿田
考応 柳瀬
徹 尾崎
恒昭 玉地
一貴 譲原
文晴 岩崎
昇 石曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2007211110A priority Critical patent/JP5207441B2/en
Publication of JP2009046321A publication Critical patent/JP2009046321A/en
Application granted granted Critical
Publication of JP5207441B2 publication Critical patent/JP5207441B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、例えば、金属水素化物を分解して水素を発生させる水素発生装置及び水素発生装置で発生した水素を燃料とする燃料電池システムに関する。   The present invention relates to, for example, a hydrogen generator that decomposes a metal hydride to generate hydrogen and a fuel cell system that uses hydrogen generated by the hydrogen generator as fuel.

近年のエネルギー問題の高まりから、より高いエネルギー密度で、排出物がクリーンな電源が要求されている。燃料電池は、既存電池の数倍のエネルギー密度を有する発電機であり、エネルギー効率が高く、また、排出ガスに含まれる窒素酸化物や硫黄酸化物がない、もしくは、少ないといった特徴がある。従って、次世代の電源デバイスとしての要求に合った極めて有効なデバイスであるといえる。   Due to the recent increase in energy problems, there is a demand for a power source with higher energy density and clean emissions. A fuel cell is a generator having an energy density several times that of an existing cell, has high energy efficiency, and is characterized by no or little nitrogen oxides and sulfur oxides contained in exhaust gas. Therefore, it can be said that it is a very effective device that meets the demand as a next-generation power supply device.

水素と酸素の電気化学反応により起電力を得る燃料電池では、燃料として水素が必要となる。水素ガスを生成する装置の一例としては、例えば、金属水素化物(水素化ホウ素塩)等の反応物固体が収容された反応容器と、水等の反応溶液が収容された溶液容器とを有し、反応容器内の圧力が溶液容器内の圧力よりも低下した場合に溶液容器内の反応溶液を反応容器に送液し、金属水素化物と反応溶液との反応(水素発生反応)により水素を発生させる水素発生装置がある(例えば、特許文献1参照)。   In a fuel cell that obtains an electromotive force by an electrochemical reaction between hydrogen and oxygen, hydrogen is required as a fuel. An example of an apparatus for generating hydrogen gas includes, for example, a reaction vessel containing a reactant solid such as a metal hydride (borohydride salt) and a solution vessel containing a reaction solution such as water. When the pressure in the reaction vessel drops below the pressure in the solution vessel, the reaction solution in the solution vessel is sent to the reaction vessel and hydrogen is generated by the reaction between the metal hydride and the reaction solution (hydrogen generation reaction). There is a hydrogen generator to be used (for example, see Patent Document 1).

このような燃料電池等に用いられる水素発生装置においては、燃料(水素)の残量を検出する必要がある。水素発生装置で発生する水素(燃料)の残量を目視によって確認することは難しいため、目視以外の方法が各種提案されている。例えば、水素吸蔵合金が充填されているタンク内の圧力を検出し、この圧力に基づいて燃料の残量を検出するようにしたものがある(例えば、特許文献2参照)。   In a hydrogen generator used in such a fuel cell or the like, it is necessary to detect the remaining amount of fuel (hydrogen). Since it is difficult to visually confirm the remaining amount of hydrogen (fuel) generated in the hydrogen generator, various methods other than visual inspection have been proposed. For example, there is one in which the pressure in a tank filled with a hydrogen storage alloy is detected, and the remaining amount of fuel is detected based on this pressure (see, for example, Patent Document 2).

特開2006−160545号公報JP 2006-160545 A 特開2007−80632号公報JP 2007-80632 A

例えば、特許文献1の装置において反応容器内の圧力を常時検出すれば、その圧力から燃料(水素)の残量を求めることができるかもしれないが、反応容器内の圧力検出に使用される消費電力が大きいという問題がある。水素発生装置を用いた燃料電池では、水素発生装置の燃料残量検出を常時行うと、その検出に使用される消費電力が大きく、燃料電池に接続されている電子機器に使用される電力量が少なくなってしまうという問題がある。   For example, if the pressure in the reaction vessel is always detected in the apparatus of Patent Document 1, the remaining amount of fuel (hydrogen) may be obtained from the pressure, but the consumption used for detecting the pressure in the reaction vessel There is a problem that electric power is large. In a fuel cell using a hydrogen generator, if the remaining amount of fuel in the hydrogen generator is constantly detected, the power consumption used for the detection is large, and the amount of power used for the electronic device connected to the fuel cell is small. There is a problem that it will decrease.

燃料残量検出(圧力検出)に使用される消費電力を抑えるために、例えば、一定時間毎に圧力検出を行うことが考えられる。しかしながら、反応容器内の圧力は常に一定の変化をするわけではない。例えば、特許文献1の装置においては、反応容器内の圧力は減少と増加とを繰り返すがそのタイミングは一定ではない。このため、一定時間毎に圧力検出を行うと正確な燃料残量を求めるのは難しい。   In order to suppress the power consumption used for fuel remaining amount detection (pressure detection), for example, it is conceivable to perform pressure detection at regular intervals. However, the pressure in the reaction vessel does not always change constantly. For example, in the apparatus of Patent Document 1, the pressure in the reaction vessel repeatedly decreases and increases, but the timing is not constant. For this reason, it is difficult to obtain an accurate fuel remaining amount if pressure is detected at regular intervals.

さらに、上述した水素発生反応により水素を発生する装置の場合、水素発生反応時に生成される水素以外の生成物が反応物固体に付着し、この生成物の付着の度合によって水素の発生量、つまり反応容器内の圧力に変化が生じる場合がある。このため、反応容器内の圧力を検出するだけでは、燃料残量を正確に求めることができない虞がある。   Further, in the case of an apparatus that generates hydrogen by the hydrogen generation reaction described above, products other than hydrogen generated during the hydrogen generation reaction adhere to the reactant solid, and the amount of hydrogen generated, that is, depending on the degree of adhesion of this product, that is, There may be a change in the pressure in the reaction vessel. For this reason, there is a possibility that the remaining amount of fuel cannot be accurately obtained only by detecting the pressure in the reaction vessel.

本発明は、このような事情に鑑みてなされたものであり、少ない消費電力量で燃料残量(水素の残量)を正確に把握することができる水素発生装置及び燃料電池システムを提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a hydrogen generator and a fuel cell system capable of accurately grasping the remaining amount of fuel (remaining amount of hydrogen) with less power consumption. With the goal.

上記課題を解決する本発明の第1の態様は、反応溶液が収容される溶液容器と、前記反応溶液との反応により水素を生成する反応物固体が収容される反応容器と、前記溶液容器と前記反応容器とを連通する送液路とを有し、前記反応容器の内圧が前記溶液容器の内圧以下である場合に前記反応溶液が前記溶液容器から前記反応容器に送液される水素発生装置であって、前記溶液容器から前記反応容器への前記反応溶液の送液開始及び送液停止を検出する検出手段と、該検出手段による検出をトリガとして前記反応溶液の送液期間の長さを測定する測定手段と、該測定手段による測定値に基づいて前記反応物固体と前記反応溶液との反応により生成される水素残量を算出する残量算出手段と、を具備すると共に、前記送液路に設けられ、前記反応容器の内圧が所定圧力以下である場合に当該送液路を開放して前記反応容器から前記反応物溶液への前記反応溶液の送液を許容する逆止弁である開閉手段を有し、且つ該開閉手段は、前記検出手段を兼ねており、前記逆止弁を構成する弁体が閉状態である場合に接触する導電部と接点部を有し、前記導電部と前記接点部との導通状態から前記反応溶液の送液開始及び送液停止を検出することを特徴とする水素発生装置にある。 A first aspect of the present invention that solves the above problems includes a solution container that contains a reaction solution, a reaction container that contains a reactant solid that generates hydrogen by reaction with the reaction solution, and the solution container. A hydrogen generation apparatus having a liquid supply path communicating with the reaction container, wherein the reaction solution is supplied from the solution container to the reaction container when an internal pressure of the reaction container is equal to or lower than an internal pressure of the solution container A detection means for detecting the start and stop of the supply of the reaction solution from the solution container to the reaction container, and the length of the reaction solution supply period triggered by the detection by the detection means. Measuring means for measuring, and remaining amount calculating means for calculating the remaining amount of hydrogen generated by the reaction between the reactant solid and the reaction solution based on the measurement value by the measuring means, and the liquid feeding Provided on the road Open / close means that is a check valve that opens the liquid supply path and allows the reaction solution to be transferred from the reaction container to the reactant solution when the internal pressure of the container is equal to or lower than a predetermined pressure; and The opening / closing means also serves as the detecting means, and has a conductive portion and a contact portion that contact when the valve body constituting the check valve is in a closed state, and the conductive portion and the contact portion are electrically connected. The hydrogen generating apparatus is characterized in that the start and stop of liquid feeding of the reaction solution are detected from the state .

かかる第1の態様では、反応溶液の送液期間の長さから水素残量(燃料残量)を算出しているため、燃料残量を取得するのに必要な消費電力量が大幅に抑えられる。また反応溶液の送液開始及び送液停止を検出することで、燃料残量を取得するのに必要な消費電力量をさらに削減することができる。また反応溶液の送液開始及び送液停止の検出には電力を必要としないため、燃料残量を取得するのに必要な消費電力量をさらに削減することができる。 In the first aspect, since the remaining amount of hydrogen (remaining amount of fuel) is calculated from the length of the reaction solution feeding period, the power consumption required to acquire the remaining amount of fuel can be greatly reduced. . Further, by detecting the start and stop of liquid supply of the reaction solution, it is possible to further reduce the power consumption necessary for acquiring the remaining fuel amount. In addition, since electric power is not required for detecting the start and stop of liquid supply of the reaction solution, the amount of power consumption required to acquire the remaining amount of fuel can be further reduced.

本発明の第2の態様は、前記送液期間の長さと前記水素残量とを関連付けたテーブルが予め記憶された記憶部をさらに有し、前記残量算出手段は、前記測定手段による測定値と前記テーブルとから前記水素残量を算出することを特徴とする第1の態様の水素発生装置にある。   The second aspect of the present invention further includes a storage unit in which a table in which the length of the liquid feeding period and the remaining amount of hydrogen are associated with each other is stored in advance, and the remaining amount calculating unit is a measurement value by the measuring unit. The remaining amount of hydrogen is calculated from the table and the table.

かかる第2の態様では、上記のようなテーブルを参照することで、燃料残量をより正確且つ容易に求めることができる。   In the second aspect, the remaining fuel amount can be obtained more accurately and easily by referring to the table as described above.

本発明の第3の態様は、前記測定手段の測定値を記憶する記憶部をさらに有し、前記残量算出手段は、前記測定手段による最新の測定値と、前記記憶部に記憶されている前回の測定値との差に基づいて前記水素残量を算出することを特徴とする第1又は2の態様の水素発生装置にある。   The third aspect of the present invention further includes a storage unit that stores the measurement value of the measurement unit, and the remaining amount calculation unit is stored in the storage unit with the latest measurement value by the measurement unit. The hydrogen generator according to the first or second aspect is characterized in that the hydrogen remaining amount is calculated based on a difference from a previous measurement value.

かかる第3の態様では、反応溶液の送液期間の長さの変化量に基づいて燃料残量が算出される。これにより、燃料残量をさらに正確に算出することができる。   In the third aspect, the remaining amount of fuel is calculated based on the amount of change in the length of the reaction solution feeding period. Thereby, the remaining amount of fuel can be calculated more accurately.

本発明の第の態様は、前記反応溶液が一定流量で前記反応容器に送液されることを特徴とする第1〜3の何れか一つの態様の水素発生装置にある。 A fourth aspect of the present invention is the hydrogen generator according to any one of the first to third aspects, wherein the reaction solution is fed to the reaction vessel at a constant flow rate.

かかる第の態様では、燃料残量の変化が安定するため、燃料残量をより正確に求めることができる。 In the fourth aspect, since the change in the remaining amount of fuel is stable, the remaining amount of fuel can be obtained more accurately.

本発明の第の態様は、水素が供給されるアノード室を有すると共に、該アノード室への水素供給手段として第1〜の何れか一つの態様の水素発生装置を具備することを特徴とする燃料電池システムにある。 A fifth aspect of the present invention includes an anode chamber to which hydrogen is supplied, and the hydrogen generator according to any one of the first to fourth aspects is provided as means for supplying hydrogen to the anode chamber. In the fuel cell system.

かかる第の態様では、発電量を向上することができる。また、燃料残量が正確に分かることで、燃料を最後まで使用することができるようになる。 In the fifth aspect, the power generation amount can be improved. In addition, since the remaining amount of fuel is accurately known, the fuel can be used to the end.

本発明の水素発生装置は、水素発生により発生する水素残量(燃料残量)を比較的容易且つ正確に求めることができる。また燃料残量を求める際に使用する消費電力を極めて少なく抑えることができる。したがって、本発明の燃料電池システムでは、発電量を向上させることができる。また、燃料残量を正確に把握することで、燃料を最後まで使用することができるようになり、経済性が向上する。   The hydrogen generator of the present invention can determine the remaining amount of hydrogen (remaining amount of fuel) generated by hydrogen generation relatively easily and accurately. Moreover, the power consumption used when calculating | requiring the fuel remaining amount can be suppressed very little. Therefore, in the fuel cell system of the present invention, the power generation amount can be improved. Further, by accurately grasping the remaining amount of fuel, it becomes possible to use the fuel to the end, and the economic efficiency is improved.

以下、本発明を実施形態に基づいて詳細に説明する。   Hereinafter, the present invention will be described in detail based on embodiments.

(実施形態1)
図1は本発明の実施形態1に係る水素発生装置の概略構成を示す図である。
(Embodiment 1)
FIG. 1 is a diagram showing a schematic configuration of a hydrogen generator according to Embodiment 1 of the present invention.

図1に示すように、本実施形態に係る水素発生装置10は、水素発生物質である反応物固体11が格納される反応容器12と、反応溶液13が収容された溶液容器14と、この溶液容器14と反応容器12とを連通する送液路である送液管15とを有する。そして、溶液容器14内の反応溶液13が、送液管15を介して反応容器12内の反応物固体11に送液され、この反応物固体11と反応溶液13とが反応(水素発生反応)することで燃料である水素が生成される。   As shown in FIG. 1, a hydrogen generator 10 according to this embodiment includes a reaction vessel 12 that stores a reactant solid 11 that is a hydrogen generating material, a solution vessel 14 that contains a reaction solution 13, and this solution. A liquid supply pipe 15 that is a liquid supply path for communicating the container 14 and the reaction container 12 is provided. Then, the reaction solution 13 in the solution container 14 is sent to the reactant solid 11 in the reaction container 12 through the liquid feeding tube 15, and the reactant solid 11 and the reaction solution 13 react (hydrogen generation reaction). By doing so, hydrogen as a fuel is generated.

ここで、反応容器12内に保持された反応物固体(水素発生物質)11としては、金属水素化合物、例えば、水酸化ホウ素ナトリウム、水酸化ホウ素カリウム、水酸化リチウムアルミニウム等が挙げられ、本実施形態では、水素化ホウ素ナトリウム(NaBH4)を用いている。一方、反応物固体に供給される反応溶液としては、促進剤水溶液、例えば、リンゴ酸、クエン酸、コハク酸等の水溶液が好適に用いられるが、水を用いることもできる。本実施形態では、リンゴ酸水溶液を用いている。なおこれら反応物固体11及び反応溶液13は、特に限定されるものではなく、反応物固体11は加水分解型の金属水素化物であれば全て適用可能であり、反応溶液13としては、例えば、有機酸及び無機酸あるいはルテニウム等、水素発生触媒であれば全て適用可能である。また例えば、水素発生触媒であるリンゴ酸粉末を反応容器12内に保持し、水素発生物質である水素化ホウ素ナトリウムの水溶液を反応容器12に供給することで水素発生反応させるようにしてもよい。さらに、水素発生物質として卑金属を用いることもでき、この場合、反応溶液13としては、塩基性あるいは酸性水溶液、あるいは水を用いればよい。 Here, examples of the reactant solid (hydrogen generating substance) 11 held in the reaction vessel 12 include metal hydride compounds such as sodium borohydride, potassium borohydride, lithium aluminum hydroxide, and the like. In the form, sodium borohydride (NaBH 4 ) is used. On the other hand, as the reaction solution supplied to the reactant solid, an aqueous solution of an accelerator, for example, an aqueous solution of malic acid, citric acid, succinic acid or the like is preferably used, but water can also be used. In this embodiment, malic acid aqueous solution is used. The reactant solid 11 and the reaction solution 13 are not particularly limited, and any reactant solid 11 can be applied as long as it is a hydrolyzable metal hydride. Any hydrogen generation catalyst such as acid and inorganic acid or ruthenium is applicable. Further, for example, malic acid powder that is a hydrogen generation catalyst may be held in the reaction vessel 12, and an aqueous solution of sodium borohydride that is a hydrogen generation material may be supplied to the reaction vessel 12 to cause a hydrogen generation reaction. Furthermore, a base metal can be used as the hydrogen generating material. In this case, the reaction solution 13 may be a basic or acidic aqueous solution or water.

なお、反応容器12には、このような反応物固体11と反応溶液13との反応(水素発生反応)により発生した水素を外部に排出するための排出管16の一端側が接続され、この排出管16の他端側は、図示しないが、例えば、燃料電池の発電部等に接続される。   The reaction vessel 12 is connected to one end of a discharge pipe 16 for discharging the hydrogen generated by the reaction between the reactant solid 11 and the reaction solution 13 (hydrogen generation reaction) to the outside. Although the other end side of 16 is not shown in figure, it is connected to the electric power generation part etc. of a fuel cell, for example.

また溶液容器14内の反応溶液13は、図示しない加圧手段によって常に所定の圧力が付与されている。そして、反応容器12の内圧が溶液容器14の内圧を下回ると、溶液容器14から送液管15を介して反応容器12内に反応溶液13が一定流量で送液されるようになっている。つまり、反応容器12における水素の発生量が常に所定範囲となるように反応溶液13の送液量が制御されている。なお送液管15には、反応容器12の内圧が溶液容器14の内圧以下になった時に送液管15の流路を開放する圧力調整弁等の開閉手段を設けるようにしてもよい。   The reaction solution 13 in the solution container 14 is always given a predetermined pressure by a pressurizing means (not shown). When the internal pressure of the reaction container 12 falls below the internal pressure of the solution container 14, the reaction solution 13 is fed from the solution container 14 into the reaction container 12 through the liquid feeding tube 15 at a constant flow rate. That is, the feed amount of the reaction solution 13 is controlled so that the amount of hydrogen generated in the reaction vessel 12 is always within a predetermined range. The liquid supply pipe 15 may be provided with opening / closing means such as a pressure adjusting valve that opens the flow path of the liquid supply pipe 15 when the internal pressure of the reaction container 12 becomes equal to or lower than the internal pressure of the solution container 14.

ここで、例えば、一定量の水素が反応容器12から排出管16を介して外部に排出されている場合、水素発生反応は断続的に行われるため、反応溶液13も水素発生反応に伴って断続的に反応容器12に送液される。図2は、このような断続的な水素発生反応を生じさせた場合の反応容器内の圧力変化、及び燃料残量(発生する水素の残量)の変化を示すグラフである。   Here, for example, when a certain amount of hydrogen is discharged from the reaction vessel 12 to the outside through the discharge pipe 16, the hydrogen generation reaction is intermittently performed, so that the reaction solution 13 is also intermittently accompanied by the hydrogen generation reaction. Then, the solution is sent to the reaction vessel 12. FIG. 2 is a graph showing changes in pressure in the reaction vessel and changes in the remaining amount of fuel (remaining amount of generated hydrogen) when such an intermittent hydrogen generation reaction is caused.

本実施形態では、一定流量で水素が排出されているため、反応容器12の内圧は水素の排出に伴って一定の勾配で低下し、図2に示すように、反応容器12の内圧が基準圧力、本実施形態では、溶液容器14の内圧を下回ると上昇に転じる。つまり、反応容器12に反応溶液13が送液されて水素発生反応により水素が発生することで、反応容器12の内圧が上昇に転じる。そして、反応容器12の内圧が基準圧力を上回ると反応溶液13の送液が停止する。送液が停止した後も、しばらくの間は水素発生反応が継続されるため反応容器12の内圧は上昇し続ける。そして、水素発生反応が停止すると、反応容器12の内圧は再び一定の勾配で減少する。このように反応溶液13は、断続的、つまり図2中の期間T1〜T4において反応容器12に送液され、反応容器12の内圧はそれに伴って増減を繰り返すことになる。   In this embodiment, since hydrogen is discharged at a constant flow rate, the internal pressure of the reaction vessel 12 decreases with a constant gradient as the hydrogen is discharged, and the internal pressure of the reaction vessel 12 is the reference pressure as shown in FIG. In this embodiment, when the pressure falls below the internal pressure of the solution container 14, it starts to rise. That is, when the reaction solution 13 is sent to the reaction vessel 12 and hydrogen is generated by the hydrogen generation reaction, the internal pressure of the reaction vessel 12 starts to increase. When the internal pressure of the reaction vessel 12 exceeds the reference pressure, the feeding of the reaction solution 13 is stopped. Even after the liquid feeding is stopped, the hydrogen generation reaction is continued for a while, so that the internal pressure of the reaction vessel 12 continues to rise. When the hydrogen generation reaction is stopped, the internal pressure of the reaction vessel 12 again decreases with a constant gradient. As described above, the reaction solution 13 is intermittently fed, that is, in the period T1 to T4 in FIG. 2, and the internal pressure of the reaction vessel 12 repeatedly increases and decreases accordingly.

反応溶液13が反応容器12に送液されて水素発生反応が生じると、この水素発生反応により生成される水素の残量(燃料残量)は徐々に減少する。つまり、水素発生反応が生じている間は、燃料残量は所定の勾配で減少する。また水素発生反応が進むにつれて、反応物固体11の濃度は徐々に減少するため水素発生反応の反応速度が低下する。このため、反応容器12内の圧力が基準圧力に達するまでの時間は徐々に長くなる。例えば、図2中の各期間T1〜T4の長さは、T1<T2<T3<T4となり、反応溶液13の送液時間は徐々に長くなる。   When the reaction solution 13 is sent to the reaction vessel 12 and a hydrogen generation reaction occurs, the remaining amount of hydrogen (remaining fuel) generated by the hydrogen generation reaction gradually decreases. That is, while the hydrogen generation reaction is occurring, the remaining amount of fuel decreases with a predetermined gradient. Further, as the hydrogen generation reaction proceeds, the concentration of the reactant solid 11 gradually decreases, so the reaction rate of the hydrogen generation reaction decreases. For this reason, the time until the pressure in the reaction vessel 12 reaches the reference pressure gradually increases. For example, the lengths of the periods T1 to T4 in FIG. 2 are T1 <T2 <T3 <T4, and the time for feeding the reaction solution 13 is gradually increased.

なお本実施形態では、反応物固体11として水素化ホウ素ナトリウムを用いているため、水素発生反応時に水素以外の反応生成物が生じる。この反応生成物は、反応物固体11の表面に付着して水素発生反応を阻害する。このため、反応生成物の付着の度合にもよるが、水素発生反応の反応速度は徐々に低下してしまう。つまり、反応物固体11の濃度低下だけでなく、他の要因によっても反応溶液13の送液時間は徐々に長くなる場合がある。   In this embodiment, since sodium borohydride is used as the reactant solid 11, a reaction product other than hydrogen is generated during the hydrogen generation reaction. This reaction product adheres to the surface of the reactant solid 11 and inhibits the hydrogen generation reaction. For this reason, although depending on the degree of adhesion of the reaction product, the reaction rate of the hydrogen generation reaction gradually decreases. That is, not only the decrease in the concentration of the reactant solid 11 but also the liquid feeding time of the reaction solution 13 may become longer gradually due to other factors.

本発明は、このような知見に基づき、反応溶液の送液期間の長さから燃料残量を算出するようにした点に特徴がある。具体的には、送液管15に反応溶液13の送液開始及び送液停止を検出する検出手段としての検出部17が設けられており、この検出部17による検出をトリガとして反応溶液の送液期間の長さを測定する測定手段18と、測定手段18による測定値に基づいて水素発生反応により生成される燃料残量(水素残量)を算出する残量算出手段19とを有する。   The present invention is characterized in that the remaining amount of fuel is calculated from the length of the reaction solution feeding period based on such knowledge. Specifically, a detection unit 17 as a detection unit that detects the start and stop of the supply of the reaction solution 13 is provided in the liquid supply tube 15, and the detection of the reaction solution is triggered by the detection by the detection unit 17. Measuring means 18 for measuring the length of the liquid period, and remaining amount calculating means 19 for calculating the remaining amount of fuel (remaining hydrogen amount) generated by the hydrogen generation reaction based on the measurement value by the measuring means 18.

検出部17は、反応溶液13の送液開始及び送液停止を検出できるものであれば、その構成は特に限定されるものではない。具体的には、例えば、送液管15内にピトー管を配してその圧力差によって送液開始及び送液停止を検出するものが挙げられる。また、例えば、送液管15を挟んで配される一対の電磁コイルで構成され、導電性を有する反応溶液13が送液管15を流れることにより発生する起電力から送液開始及び送液停止を検出するものであってもよい。さらに、送液管15内の反応溶液13に超音波を伝搬させ流れにより生じる時間差から送液開始及び送液停止を検出するものであってもよい。   If the detection part 17 can detect the liquid feeding start and liquid feeding stop of the reaction solution 13, the structure will not be specifically limited. Specifically, for example, a pitot tube is arranged in the liquid feeding tube 15 and the liquid feeding start and the liquid feeding stop are detected by the pressure difference. Further, for example, a liquid feeding start and stop is made from an electromotive force generated by a conductive reaction solution 13 flowing through the liquid feeding pipe 15, which is composed of a pair of electromagnetic coils arranged with the liquid feeding pipe 15 interposed therebetween. May be detected. Further, the start and stop of liquid feeding may be detected from the time difference caused by the flow of ultrasonic waves propagating to the reaction solution 13 in the liquid feeding pipe 15.

測定手段18は、検出部17が送液開始を検出すると、その検出をトリガとして時間の計測を開始し、検出部17が送液停止を検出すると、その検出をトリガとして時間の計測を停止する。これにより、反応溶液13の送液期間の長さが測定されることになる。   When the detection unit 17 detects the start of liquid feeding, the measurement unit 18 starts measuring time using the detection as a trigger. When the detection unit 17 detects liquid feeding stop, the measurement unit 18 stops measuring time using the detection as a trigger. . Thereby, the length of the liquid feeding period of the reaction solution 13 is measured.

上述したように、この反応溶液13の送液期間の長さと燃料残量との間には図2に示したような関係を有しており、本実施形態では、この送液期間の長さと燃料残量(水素残量)とを関連付けたテーブルが予め記憶された記憶部20をさらに有する。そして、残量算出手段19は、測定手段18による測定値と、この記憶部20に記憶されているテーブルとから燃料残量を算出する。なお、この記憶部20に記憶されているテーブルは、例えば、水素発生反応による反応生成物が反応物固体11に付着することによる反応速度の低下等を適宜考慮して作成されている。また、水素発生反応の反応速度は、反応溶液13の流量によっても変化するため、反応溶液の流量が一定でない場合には、この点も考慮する必要がある。   As described above, there is a relationship as shown in FIG. 2 between the length of the liquid feeding period of the reaction solution 13 and the remaining amount of fuel. In this embodiment, the length of the liquid feeding period is The storage unit 20 further stores in advance a table that associates the remaining fuel amount (remaining hydrogen amount). The remaining amount calculating unit 19 calculates the remaining amount of fuel from the measurement value obtained by the measuring unit 18 and the table stored in the storage unit 20. The table stored in the storage unit 20 is created taking into account, for example, a decrease in the reaction rate due to the reaction product resulting from the hydrogen generation reaction adhering to the reactant solid 11. In addition, since the reaction rate of the hydrogen generation reaction also changes depending on the flow rate of the reaction solution 13, this point needs to be taken into consideration when the flow rate of the reaction solution is not constant.

このように反応溶液13の送液期間の長さから燃料残量を算出することで、燃料残量を比較的容易に且つ正確に取得することができる。また検出部17の検出をトリガとして、測定手段18が反応溶液13の送液期間の長さを測定するようにしているため、この測定による消費電力量が極めて少なく抑えることができる。例えば、反応容器12の内圧を常時測定することで燃料残量を求める場合などと比べて、消費電力量は大幅に抑えられる。   Thus, by calculating the remaining amount of fuel from the length of the liquid feeding period of the reaction solution 13, the remaining amount of fuel can be acquired relatively easily and accurately. Moreover, since the measurement means 18 measures the length of the liquid feeding period of the reaction solution 13 using the detection of the detection unit 17 as a trigger, the power consumption by this measurement can be suppressed to an extremely low level. For example, compared with the case where the remaining amount of fuel is obtained by constantly measuring the internal pressure of the reaction vessel 12, the power consumption can be greatly reduced.

本実施形態では、残量算出手段19が送液期間の長さから燃料残量を算出するようにしたが、算出方法は、これに限定されるものではない。例えば、測定手段18によって測定された各送液期間の長さをそれぞれ記憶部20に記憶しておき、残量算出手段19が、測定手段18による最新の測定値と、記憶部20に記憶されている前回の測定値との差に基づいて燃料残量を算出するようにしてもよい。例えば、図2のグラフを例に挙げると、最新の測定値である送液期間T4の長さと、前回の測定値である送液期間T3の長さとの差に基づいて燃料残量を算出するようにしてもよい。このように燃料残量を算出するようにしても、比較的容易且つ正確に燃料残量を取得することができる。   In the present embodiment, the remaining amount calculation means 19 calculates the remaining amount of fuel from the length of the liquid feeding period, but the calculation method is not limited to this. For example, the length of each liquid delivery period measured by the measuring unit 18 is stored in the storage unit 20, and the remaining amount calculating unit 19 is stored in the storage unit 20 with the latest measured value by the measuring unit 18. The remaining fuel amount may be calculated based on the difference from the previous measured value. For example, taking the graph of FIG. 2 as an example, the remaining amount of fuel is calculated based on the difference between the length of the liquid feeding period T4 that is the latest measured value and the length of the liquid feeding period T3 that is the previous measured value. You may do it. Even if the remaining fuel amount is calculated in this way, the remaining fuel amount can be acquired relatively easily and accurately.

(実施形態2)
図3は、実施形態2に係る水素発生装置の概略構成を示す断面図であり、図4は、水素発生装置の送液管部分を示す断面図である。なお、本実施形態は、検出手段を変更した例であり、それ以外の構成は実施形態1と同様である。このため、同一部材には同一符号を付し重複する説明は省略する。
(Embodiment 2)
FIG. 3 is a cross-sectional view illustrating a schematic configuration of the hydrogen generator according to Embodiment 2, and FIG. 4 is a cross-sectional view illustrating a liquid feeding pipe portion of the hydrogen generator. The present embodiment is an example in which the detection means is changed, and the other configuration is the same as that of the first embodiment. For this reason, the same code | symbol is attached | subjected to the same member and the overlapping description is abbreviate | omitted.

図示するように、溶液容器14と反応容器12とを繋ぐ送液管15に、開閉手段としての逆止弁21が設けられている。これにより、溶液容器14から反応容器12への反応溶液13の流れのみが許容され、反応容器12から溶液容器14への逆流が防止されている。そして、本実施形態では、この逆止弁21が検出手段を兼ねるようにした例であり、逆止弁21の開閉状態から反応溶液13の反応容器12への送液開始及び送液停止を検出している。具体的には、図4に示すように、本実施形態に係る逆止弁21は、弾性部材、例えば、ブチルゴム、ニトリルゴム等のゴム材料、ポリエチレンテレフタラート(PET)、シリコーンなど、からなる筒状の弁体22で構成されている。この弁体22は、その一端側にから流路の厚さが徐々に減少するテーパ状に形成されており、他端側開口22aがスリット状に形成されている。そして、スリット状の端部側開口22aが反応容器12側となるように、弁体22の一端部側が送液管15内に固定されて逆止弁21が構成されている。   As shown in the figure, a check valve 21 as an opening / closing means is provided in the liquid feeding pipe 15 that connects the solution container 14 and the reaction container 12. Thereby, only the flow of the reaction solution 13 from the solution container 14 to the reaction container 12 is allowed, and the backflow from the reaction container 12 to the solution container 14 is prevented. In this embodiment, the check valve 21 is also an example of detecting means, and the start and stop of liquid feeding of the reaction solution 13 to the reaction container 12 are detected from the open / closed state of the check valve 21. doing. Specifically, as shown in FIG. 4, the check valve 21 according to the present embodiment is a cylinder made of an elastic member, for example, a rubber material such as butyl rubber or nitrile rubber, polyethylene terephthalate (PET), silicone, or the like. It is comprised by the shaped valve body 22. FIG. The valve body 22 is formed in a tapered shape in which the thickness of the flow path gradually decreases from one end side thereof, and the other end side opening 22a is formed in a slit shape. And the one end part side of the valve body 22 is fixed in the liquid feeding pipe | tube 15 so that the slit-shaped edge part side opening 22a may become the reaction container 12 side, and the non-return valve 21 is comprised.

この逆止弁21は、反応溶液13が送液されていない状態では、図4(a)に示すように、弁体22の他端側開口22aが閉じられており、溶液容器14から反応容器12に反応溶液が送液されると、図4(b)に示すように、その流れによって弁体22が弾性変形して他端側開口22aが開いた状態となる。なお、反応容器12から溶液容器14に向かう流れでは弁体22の開口22aが開くことはない。   In the state where the reaction solution 13 is not fed, the check valve 21 has the other end side opening 22a of the valve body 22 closed as shown in FIG. When the reaction solution is fed to 12, the valve body 22 is elastically deformed by the flow and the other end side opening 22a is opened as shown in FIG. 4 (b). Note that the opening 22 a of the valve body 22 does not open in the flow from the reaction vessel 12 toward the solution vessel 14.

この弁体22の開口22aの縁部には、例えば、金属材料等の導電性を有する材料からなる一対の導電部23及び接点部24が設けられている。そして、これら導電部23と接点部24とは、弁体22開口22aが閉じられた状態で接触し、開口22aが開いた状態では離間するように設けられている。また、導電部23及び接点部24は、送液管15に設けられた一対の端子部25,26と配線27によってそれぞれ接続されている。   A pair of conductive portions 23 and contact portions 24 made of a conductive material such as a metal material are provided at the edge of the opening 22a of the valve body 22, for example. The conductive portion 23 and the contact portion 24 are provided so as to be in contact with each other when the valve body 22 opening 22a is closed and to be separated when the opening 22a is opened. In addition, the conductive portion 23 and the contact portion 24 are connected to a pair of terminal portions 25 and 26 provided in the liquid feeding tube 15 by a wiring 27, respectively.

そして、例えば、これら端子部25,26間の抵抗値から導電部23と接点部24との導通状態によって反応溶液13の送液開始及び送液停止が検出される。つまり、これら導電部23と接点部24とが接触した状態から離間することで送液開始が検出され、その後、導電部23と接点部24とが接触することで送液停止が検出される。そして、測定手段18は、この送液開始及び送液停止の検出をトリガとして反応溶液13の送液期間の長さを測定し、残量算出手段19がこの測定結果と記憶部20のテーブルとに基づいて燃料残量を算出する。   For example, from the resistance value between these terminal portions 25 and 26, the start and stop of the feeding of the reaction solution 13 are detected by the conduction state between the conductive portion 23 and the contact portion 24. That is, the start of liquid feeding is detected by separating from the state in which the conductive portion 23 and the contact portion 24 are in contact with each other, and then the stop of liquid feeding is detected by the contact between the conductive portion 23 and the contact portion 24. Then, the measuring means 18 measures the length of the liquid feeding period of the reaction solution 13 triggered by the detection of the liquid feeding start and the liquid feeding stop, and the remaining amount calculating means 19 uses the measurement result and the table of the storage unit 20. Based on the above, the remaining fuel amount is calculated.

このような本実施形態の構成では、送液開始及び送液停止の検出が明確になるため、送液期間の長さをさらに正確に測定することができる。したがって、その測定結果に基づいて燃料残量を算出することで、極めて正確な燃料残量を取得することができる。また、検出手段の構成が簡略化されるため、燃料残量の取得に必要な消費電力量をさらに少なく抑えることができる。さらに送液管15内に逆止弁21が設けられていることで、反応容器12から溶液容器14への反応溶液13の逆流を防止して、反応溶液13の送液安定性を向上することもできる。   In such a configuration of the present embodiment, since the detection of the liquid feeding start and the liquid feeding stop is clarified, the length of the liquid feeding period can be measured more accurately. Therefore, by calculating the fuel remaining amount based on the measurement result, it is possible to obtain a very accurate fuel remaining amount. In addition, since the configuration of the detection unit is simplified, it is possible to further reduce the amount of power consumption necessary for obtaining the remaining amount of fuel. Furthermore, by providing the check valve 21 in the liquid feeding pipe 15, the backflow of the reaction solution 13 from the reaction container 12 to the solution container 14 is prevented, and the liquid feeding stability of the reaction solution 13 is improved. You can also.

なお、図4に逆止弁の一例を示したが、この逆止弁の構成は、特に限定されるものではない。例えば、図5に示すように、逆止弁21Aは、送液管15内に弁体22Aの一端側が弁軸28によって回動可能に支持されてなるものであってもよい。この例では、送液管15が、小径部15aと小径部15aよりも内径の大きい大径部15bとを有し、この小径部15aと大径部15bとの境界部分に弁体22Aが配されている。そして、この逆止弁21Aは、反応溶液13が送液されていない状態では、図5(a)に示すように、小径部15aと大径部15bとの境界部分の段差である干渉部15cに弁体22Aが当接した状態で流路が塞がれており、溶液容器14から反応容器12に反応溶液13が送液されると、図5(b)に示すように、その流れによって弁体22Aが弁軸28を中心として回動して流路が開かれた状態となる。   In addition, although an example of the check valve was shown in FIG. 4, the structure of this check valve is not specifically limited. For example, as shown in FIG. 5, the check valve 21 </ b> A may be configured such that one end side of the valve body 22 </ b> A is rotatably supported by the valve shaft 28 in the liquid feeding pipe 15. In this example, the liquid feeding pipe 15 has a small diameter portion 15a and a large diameter portion 15b having an inner diameter larger than that of the small diameter portion 15a, and a valve body 22A is arranged at a boundary portion between the small diameter portion 15a and the large diameter portion 15b. Has been. The check valve 21A has an interference portion 15c that is a step at the boundary between the small diameter portion 15a and the large diameter portion 15b as shown in FIG. 5A when the reaction solution 13 is not being fed. When the reaction solution 13 is fed from the solution container 14 to the reaction container 12 as shown in FIG. The valve body 22A rotates about the valve shaft 28, and the flow path is opened.

このような逆止弁21Aを用いる場合、弁体22A自体が導電性を有する材料で形成されて導電部23Aとなっている。そして、弁体22Aの弁軸28側の端部が送液管15に設けられる一方の端子部25Aに接続されており、他方の端子部26Aは、導電部23Aである弁体22Aが干渉部15cに当接した状態で電気的に接続される接点部24Aを兼ねている。そして、このような構成においても、上述したように導電部23Aと接点部24Aとの接触状態から反応溶液13の送液開始及び送液停止が検出される。   When such a check valve 21A is used, the valve body 22A itself is formed of a conductive material to form a conductive portion 23A. The end of the valve body 22A on the valve shaft 28 side is connected to one terminal portion 25A provided in the liquid feeding pipe 15, and the other terminal portion 26A is configured such that the valve body 22A which is the conductive portion 23A is an interference portion. It also serves as a contact portion 24A that is electrically connected in contact with 15c. Even in such a configuration, as described above, the start and stop of the feeding of the reaction solution 13 are detected from the contact state between the conductive portion 23A and the contact portion 24A.

(実施形態3)
図6は、実施形態3に係る水素発生装置の概略構成を示す断面図であり、図7は、送液管部分を示す断面図である。なお、本実施形態は、検出手段を変更した例であり、それ以外の構成は実施形態1と同様である。このため、同一部材には同一符号を付し重複する説明は省略する。
(Embodiment 3)
FIG. 6 is a cross-sectional view showing a schematic configuration of the hydrogen generator according to Embodiment 3, and FIG. 7 is a cross-sectional view showing a liquid feed pipe portion. The present embodiment is an example in which the detection means is changed, and the other configuration is the same as that of the first embodiment. For this reason, the same code | symbol is attached | subjected to the same member and the overlapping description is abbreviate | omitted.

本実施形態は、図示するように、送液管15に圧力調整弁29が設けられていると共に、圧力調整弁29に近接してスイッチ部材30が配されており、検出手段がこれら圧力調整弁29とスイッチ部材30とで構成された例である。そして、圧力調整弁29によるスイッチ部材30の押圧状態から、反応溶液13の送液開始及び送液停止を検出するようにした例である。   In the present embodiment, as shown in the figure, a pressure adjusting valve 29 is provided in the liquid feeding pipe 15, and a switch member 30 is disposed in the vicinity of the pressure adjusting valve 29, and the detecting means is used for these pressure adjusting valves. 29 and an example of a switch member 30. In this example, the start and stop of the feeding of the reaction solution 13 are detected from the pressed state of the switch member 30 by the pressure regulating valve 29.

圧力調整弁29は、基体31に設けられた貫通部32の基体31の厚さ方向両側を塞ぐように、可撓性のシートからなり厚さ方向に変形可能な第1の圧力変形部33及び第2の圧力変形部34が設けられている。この第1の圧力変形部33の外側は反応容器12に連通される連通路35が設けられており、第1の圧力変形部33は、その外側から反応容器12の内圧を受けている。一方、第2の圧力変形部34の外側は外部に開放されており、第2の圧力変形部34はその外側から大気圧を受けている。   The pressure regulating valve 29 includes a first pressure deforming portion 33 made of a flexible sheet and deformable in the thickness direction so as to close both sides in the thickness direction of the base 31 of the through portion 32 provided in the base 31. A second pressure deforming portion 34 is provided. A communication passage 35 communicating with the reaction vessel 12 is provided outside the first pressure deformation portion 33, and the first pressure deformation portion 33 receives the internal pressure of the reaction vessel 12 from the outside. On the other hand, the outside of the second pressure deforming portion 34 is open to the outside, and the second pressure deforming portion 34 receives atmospheric pressure from the outside.

また、貫通部32の第1及び第2の圧力変形部33,34の間の空間は、基体31の厚さ方向の中間に設けられた仕切部材36により区画され、第1の圧力変形部33側が第1の流路37、第2の圧力変形部34側が第2の流路38となり、それぞれ基体31の平面方向に延設されており、これら第1の流路37と第2の流路38とは、仕切部材36に設けられた貫通孔39によって連通されている。これら第1の流路37及び第2の流路38は、送液管15の一部を構成しており、第1の流路37が反応容器12に連通し、第2の流路38が溶液容器14に連通している。   The space between the first and second pressure deformation portions 33 and 34 of the penetrating portion 32 is partitioned by a partition member 36 provided in the middle in the thickness direction of the base 31, and the first pressure deformation portion 33. The first flow path 37 and the second pressure deforming portion 34 side become the second flow path 38, respectively, extending in the plane direction of the base 31, and the first flow path 37 and the second flow path 38 is communicated with a through hole 39 provided in the partition member 36. The first flow path 37 and the second flow path 38 constitute a part of the liquid feeding pipe 15, the first flow path 37 communicates with the reaction vessel 12, and the second flow path 38 is It communicates with the solution container 14.

また、貫通部32の第1及び第2の圧力変形部33,34の間の空間には、第1及び第2の圧力変形部33,34に連結された状態でこれら第1及び第2の圧力変形部33,34と共に図中上下方向に2点間で移動する弁部材40が設けられている。弁部材40は、第1及び第2の圧力変形部33,34を連結すると共に貫通孔39を貫通して配置された連結部41と連結部41の第1の圧力変形部33側に設けられて貫通孔39を開閉可能な弁部42とを具備する。   Further, in the space between the first and second pressure deforming portions 33 and 34 of the penetrating portion 32, the first and second pressure deforming portions 33 and 34 are connected to the first and second pressure deforming portions 33 and 34. A valve member 40 that moves between two points in the vertical direction in the figure is provided together with the pressure deforming portions 33 and 34. The valve member 40 connects the first and second pressure deforming portions 33 and 34 and is provided on the first pressure deforming portion 33 side of the connecting portion 41 disposed through the through hole 39 and the connecting portion 41. And a valve portion 42 that can open and close the through hole 39.

また本実施形態では、このような圧力調整弁29の貫通部32に対向する位置に、圧力調整弁29に近接してスイッチ部材30が配されている。以下に説明するように、圧力調整弁29の弁部材40が所定位置にある場合にこのスイッチ部材30を押圧するようになっている。そして、弁部材40がスイッチ部材30を押圧しているか否かを電気的に検出することで、反応溶液13の送液開始及び送液停止が検出されるようになっている。   In the present embodiment, the switch member 30 is disposed adjacent to the pressure regulating valve 29 at a position facing the penetrating portion 32 of the pressure regulating valve 29. As will be described below, the switch member 30 is pressed when the valve member 40 of the pressure regulating valve 29 is in a predetermined position. Then, by electrically detecting whether or not the valve member 40 is pressing the switch member 30, the liquid feeding start and the liquid feeding stop of the reaction solution 13 are detected.

具体的には、まず第1の圧力変形部33が受ける反応容器12の内圧が第2の圧力変形部34が受ける大気圧より高い状態においては、図7(a)に示すように、第1及び第2の圧力変形部33,34は弁部材40と共に図中上方に移動して弁部42が仕切部材36に当接して貫通孔39が閉じられた状態、すなわち、第1の流路37と第2の流路38との連通が遮断された状態となる。また弁部材40の連結部41によってスイッチ部材30が押圧された状態となる。   Specifically, first, in a state where the internal pressure of the reaction vessel 12 received by the first pressure deformation section 33 is higher than the atmospheric pressure received by the second pressure deformation section 34, as shown in FIG. The second pressure deforming portions 33 and 34 together with the valve member 40 move upward in the figure, the valve portion 42 contacts the partition member 36, and the through hole 39 is closed, that is, the first flow path 37. And the communication between the second flow path 38 and the second flow path 38 are blocked. Further, the switch member 30 is pressed by the connecting portion 41 of the valve member 40.

一方、第1の圧力変形部33が受ける反応容器12の内圧が、第2の圧力変形部34が受ける大気圧より低い状態となると、図7(b)に示すように、第1及び第2の圧力変形部33,34は弁部材40と共に図中下方に移動して弁部42が仕切部材36から離間して貫通孔39が開かれた状態、すなわち、第1の流路37と第2の流路38とが連通された状態となる。また弁部材40の連結部41がスイッチ部材30から離れた状態となる。この状態では、反応溶液13が溶液容器14から送液管15の一部である第2の流路38及び第1の流路37を介して反応容器12に送液される。そして、反応溶液13の送液により水素発生反応が生じ反応容器12の内圧が大気圧より高くなると、上述したように再び閉状態となる。なお、本実施形態では、第2の圧力変形部34が大気圧を受けるようにしたが、例えば、この第2の圧力変形部34をバネ部材等によって付勢するようにし、反応溶液13が送液される圧力を調整してもよい。   On the other hand, when the internal pressure of the reaction vessel 12 received by the first pressure deformation section 33 is lower than the atmospheric pressure received by the second pressure deformation section 34, as shown in FIG. The pressure deformation portions 33 and 34 are moved downward in the figure together with the valve member 40 so that the valve portion 42 is separated from the partition member 36 and the through-hole 39 is opened, that is, the first flow path 37 and the second flow passage. The flow path 38 is in communication with each other. Further, the connecting portion 41 of the valve member 40 is in a state separated from the switch member 30. In this state, the reaction solution 13 is fed from the solution container 14 to the reaction container 12 through the second flow path 38 and the first flow path 37 that are part of the liquid feed pipe 15. When the hydrogen generation reaction occurs due to the feeding of the reaction solution 13 and the internal pressure of the reaction vessel 12 becomes higher than the atmospheric pressure, the closed state is again established as described above. In the present embodiment, the second pressure deforming portion 34 is subjected to atmospheric pressure. However, for example, the second pressure deforming portion 34 is biased by a spring member or the like so that the reaction solution 13 is fed. The liquid pressure may be adjusted.

このように本実施形態では、弁部材40がスイッチ部材30から離れた場合に反応溶液13の送液開始が検出され、弁部材40がスイッチ部材30を押圧した場合に送液停止が検出される。そして、測定手段18は、この送液開始及び送液停止の検出をトリガとして反応溶液13の送液期間の長さを測定し、残量算出手段19がその測定結果に基づいて燃料残量を算出する。   As described above, in this embodiment, when the valve member 40 is separated from the switch member 30, the start of the liquid supply of the reaction solution 13 is detected, and when the valve member 40 presses the switch member 30, the liquid supply stop is detected. . Then, the measuring means 18 measures the length of the liquid feeding period of the reaction solution 13 triggered by the detection of the liquid feeding start and the liquid feeding stop, and the remaining amount calculating means 19 determines the remaining fuel amount based on the measurement result. calculate.

このような本実施形態の構成では、弁部材40の開閉制御に電力を必要としない。そしてこの弁部材40によってスイッチ部材30を機械的に押圧されているか否かによって反応溶液13の送液開始及び送液停止を検出しているため、その検出にも電力を必要としない。したがって、燃料残量の取得に必要な消費電力量をさらに少なく抑えることができる。また、スイッチ部材30が送液管15の外側に配されているため、スイッチ部材30から電気信号を送る配線等の腐食を防止することができるという効果もある。   In such a configuration of the present embodiment, no electric power is required for opening / closing control of the valve member 40. Since the start and stop of the feeding of the reaction solution 13 are detected depending on whether or not the switch member 30 is mechanically pressed by the valve member 40, no electric power is required for the detection. Therefore, it is possible to further reduce the amount of power consumption necessary for obtaining the remaining amount of fuel. In addition, since the switch member 30 is disposed outside the liquid feeding pipe 15, there is also an effect that corrosion of wiring and the like for sending an electric signal from the switch member 30 can be prevented.

(実施形態4)
図8は、本発明の実施形態4に係る水素発生装置の概略構成を示す断面図である。なお、本実施形態は、溶液容器を反応容器内に配置した例であり、同一部材には同一符号を付し重複する説明は省略する。
(Embodiment 4)
FIG. 8 is a cross-sectional view showing a schematic configuration of a hydrogen generator according to Embodiment 4 of the present invention. In addition, this embodiment is an example which has arrange | positioned the solution container in reaction container, The same code | symbol is attached | subjected to the same member and the overlapping description is abbreviate | omitted.

本実施形態では、図8に示すように、反応容器12Aの内部に溶液容器14Aが備えられており、反応容器12Aと溶液容器14Aは、反応容器12A内に配された送液管15Aにより接続されている。この送液管15Aは、その先端部が反応容器12A内に保持されている反応物固体11に向かうように配されており、送液管15Aを介して送液された反応溶液13は反応物固体11に直接噴射されるようになっている。   In the present embodiment, as shown in FIG. 8, a solution container 14A is provided in the reaction container 12A, and the reaction container 12A and the solution container 14A are connected by a liquid feeding pipe 15A arranged in the reaction container 12A. Has been. The liquid feeding pipe 15A is arranged so that the tip thereof faces the reactant solid 11 held in the reaction vessel 12A, and the reaction solution 13 fed through the liquid feeding pipe 15A is a reactant. The solid 11 is directly injected.

本実施形態に係る溶液容器14Aは、例えば、樹脂材料やゴム等の可撓性材料の袋部材からなり、その底部が反応容器12A内に固定されている。なお、溶液容器14Aの材料としては、具体的には、例えば、ポリプロピレン、PET、シリコーン、シリコーンゴム、ブチルゴム、イソプレンゴム等が挙げられる。溶液容器14Aの上面側と反応容器12Aの上部壁面との間には、例えば、ばね部材からなる付勢部材43が設けられており、この付勢部材43によって溶液容器14Aが付勢されている。なお、付勢部材43を構成するばね部材としては、例えば、定荷重ばね、圧縮コイルばね等が好適に用いられる。勿論、付勢部材43は、溶液容器14Aを付勢できるものであれば、ばね部材に限定されるものではない。   14 A of solution containers which concern on this embodiment consist of a bag member of flexible materials, such as a resin material and rubber | gum, for example, The bottom part is being fixed in 12 A of reaction containers. Specific examples of the material for the solution container 14A include polypropylene, PET, silicone, silicone rubber, butyl rubber, and isoprene rubber. An urging member 43 made of, for example, a spring member is provided between the upper surface side of the solution container 14A and the upper wall surface of the reaction container 12A, and the urging member 43 urges the solution container 14A. . In addition, as a spring member which comprises the urging | biasing member 43, a constant load spring, a compression coil spring, etc. are used suitably, for example. Of course, the biasing member 43 is not limited to a spring member as long as it can bias the solution container 14A.

そして、上述したように送液管15Aには検出部17が設けられており、測定手段18がこの検出部17の検出をトリガとして反応溶液13の送液期間の長さを測定し、残量算出手段19が、その測定結果と記憶部20のテーブルとに基づいて燃料残量を算出する。   As described above, the liquid feeding tube 15A is provided with the detection unit 17, and the measurement means 18 measures the length of the liquid feeding period of the reaction solution 13 using the detection of the detection unit 17 as a trigger, and the remaining amount. The calculation means 19 calculates the remaining fuel amount based on the measurement result and the table in the storage unit 20.

このような本実施形態の構成においても、上述の実施形態と同様に、燃料残量を比較的容易且つ正確に取得することができる。また、本実施形態の構成では、溶液容器14A内の反応溶液13が反応容器12Aの反応物固体11に供給されるにしたがって、付勢部材43の付勢力により溶液容器14Aが付勢されてその体積が減少する。このため、反応容器12Aの容積は溶液容器14Aの体積減少分だけ増加することになる。したがって、デッドスペースがなくなり、少ないスペースで水素の発生を行う領域を増加させることができ、水素発生量を減らすことなく省スペース化が可能になる。また、スペースを増加させることなく水素発生量を増加させることが可能になる。   In such a configuration of the present embodiment, the remaining amount of fuel can be acquired relatively easily and accurately as in the above-described embodiment. In the configuration of the present embodiment, as the reaction solution 13 in the solution container 14A is supplied to the reactant solid 11 in the reaction container 12A, the solution container 14A is urged by the urging force of the urging member 43. Volume decreases. For this reason, the volume of the reaction container 12A increases by the volume decrease of the solution container 14A. Therefore, there is no dead space, the area where hydrogen is generated in a small space can be increased, and space can be saved without reducing the amount of hydrogen generation. In addition, the amount of hydrogen generation can be increased without increasing the space.

(実施形態5)
図9は、本発明の実施形態5に係る燃料電池システムの一例を示す概略構成図である。なお、同一部材には同一部号を付し、重複する説明は省略する。
(Embodiment 5)
FIG. 9 is a schematic configuration diagram showing an example of a fuel cell system according to Embodiment 5 of the present invention. In addition, the same part is attached | subjected to the same member and the overlapping description is abbreviate | omitted.

図9に示す本実施形態に係る燃料電池システムは、図1に示した水素発生装置10を燃料電池に接続したシステムである。すなわち、燃料電池50にはアノードチャンバ51が備えられ、アノードチャンバ51は燃料電池セル52のアノード室に接する空間を構成している。アノード室は、アノードで消費する水素を一時的に保持する空間である。アノードチャンバ51と反応容器12とは、排出管16により接続されており、反応容器12で発生した水素がアノードチャンバ51のアノード室に供給される。アノード室に供給された水素は、アノードでの燃料電池反応で消費される。アノードでの水素の消費量は、燃料電池50の出力電流に応じて決定される。   The fuel cell system according to this embodiment shown in FIG. 9 is a system in which the hydrogen generator 10 shown in FIG. 1 is connected to a fuel cell. That is, the fuel cell 50 is provided with an anode chamber 51, and the anode chamber 51 constitutes a space in contact with the anode chamber of the fuel cell 52. The anode chamber is a space that temporarily holds hydrogen consumed by the anode. The anode chamber 51 and the reaction vessel 12 are connected by a discharge pipe 16, and hydrogen generated in the reaction vessel 12 is supplied to the anode chamber of the anode chamber 51. The hydrogen supplied to the anode chamber is consumed by the fuel cell reaction at the anode. The amount of hydrogen consumed at the anode is determined according to the output current of the fuel cell 50.

このような構成の燃料電池システムでは、燃料カートリッジ等である水素発生装置10の燃料残量を正確に把握することができ、また燃料残量の検出のための消費電力量が抑えられているため、発電量を向上することができる。また、燃料を最後まで使い切ることができるようになり、経済性が向上する。   In the fuel cell system having such a configuration, the remaining amount of fuel of the hydrogen generator 10 such as a fuel cartridge can be accurately grasped, and power consumption for detecting the remaining amount of fuel is suppressed. The power generation amount can be improved. In addition, the fuel can be used up to the end, and the economy is improved.

以上、本発明の各実施形態について説明したが、本発明はこれらの実施形態に限定されるまでもない。また上述の各実施形態の構成を組み合わせてもよいことは言うまでもない。   As mentioned above, although each embodiment of this invention was described, this invention does not need to be limited to these embodiment. Moreover, it cannot be overemphasized that the structure of each above-mentioned embodiment may be combined.

本発明の実施形態1に係る水素発生装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the hydrogen generator which concerns on Embodiment 1 of this invention. 時間経過と燃料残量及び反応容器の内圧との関係を示すグラフである。It is a graph which shows the relationship between time passage, fuel remaining amount, and the internal pressure of reaction container. 本発明の実施形態2に係る水素発生装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the hydrogen generator which concerns on Embodiment 2 of this invention. 本発明の実施形態2に係る送液管部分を示す断面図である。It is sectional drawing which shows the liquid feeding pipe part which concerns on Embodiment 2 of this invention. 本発明の実施形態2に係る送液管部分の変形例を示す断面図である。It is sectional drawing which shows the modification of the liquid feeding pipe part which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係る水素発生装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the hydrogen generator which concerns on Embodiment 3 of this invention. 本発明の実施形態3に係る送液管部分を示す断面図である。It is sectional drawing which shows the liquid feeding pipe part which concerns on Embodiment 3 of this invention. 本発明の実施形態4に係る水素発生装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the hydrogen generator which concerns on Embodiment 4 of this invention. 本発明の実施形態5に係る燃料電池システムの一例を示す概略構成図である。It is a schematic block diagram which shows an example of the fuel cell system which concerns on Embodiment 5 of this invention.

符号の説明Explanation of symbols

10 水素発生装置
11 反応物固体
12 反応容器
13 反応溶液
14 溶液容器
15 送液管
16 排出管
17 検出部
18 測定手段
19 残量算出手段
20 記憶部
21 逆止弁
22 弁体
23 導電部
24 接点部
25,26 端子部
27 配線
28 弁軸
29 圧力調整弁
30 スイッチ部材
31 基体
32 貫通部
33 第1の圧力変形部
34 第2の圧力変形部
35 連通路
36 仕切部材
37 第1の流路
38 第2の流路
39 貫通孔
40 弁部材
41 連結部
42 弁部
43 付勢部材
50 燃料電池
DESCRIPTION OF SYMBOLS 10 Hydrogen generator 11 Reactant solid 12 Reaction container 13 Reaction solution 14 Solution container 15 Liquid supply pipe 16 Discharge pipe 17 Detection part 18 Measurement means 19 Remaining amount calculation means 20 Storage part 21 Check valve 22 Valve body 23 Conductive part 24 Contact Portions 25 and 26 Terminal portion 27 Wiring 28 Valve shaft 29 Pressure regulating valve 30 Switch member 31 Base body 32 Penetration portion 33 First pressure deformation portion 34 Second pressure deformation portion 35 Communication passage 36 Partition member 37 First flow passage 38 Second flow path 39 Through hole 40 Valve member 41 Connecting portion 42 Valve portion 43 Energizing member 50 Fuel cell

Claims (5)

反応溶液が収容される溶液容器と、前記反応溶液との反応により水素を生成する反応物固体が収容される反応容器と、前記溶液容器と前記反応容器とを連通する送液路とを有し、前記反応容器の内圧が前記溶液容器の内圧以下である場合に前記反応溶液が前記溶液容器から前記反応容器に送液される水素発生装置であって、
前記溶液容器から前記反応容器への前記反応溶液の送液開始及び送液停止を検出する検出手段と、該検出手段による検出をトリガとして前記反応溶液の送液期間の長さを測定する測定手段と、該測定手段による測定値に基づいて前記反応物固体と前記反応溶液との反応により生成される水素残量を算出する残量算出手段と、を具備すると共に、
前記送液路に設けられ、前記反応容器の内圧が所定圧力以下である場合に当該送液路を開放して前記反応容器から前記反応物溶液への前記反応溶液の送液を許容する逆止弁である開閉手段を有し、
且つ該開閉手段は、前記検出手段を兼ねており、前記逆止弁を構成する弁体が閉状態である場合に接触する導電部と接点部を有し、前記導電部と前記接点部との導通状態から前記反応溶液の送液開始及び送液停止を検出することを特徴とする水素発生装置。
A solution container in which a reaction solution is stored; a reaction container in which a reactant solid that generates hydrogen by reaction with the reaction solution is stored; and a liquid supply path that connects the solution container and the reaction container. A hydrogen generating apparatus in which the reaction solution is fed from the solution container to the reaction container when the internal pressure of the reaction container is equal to or lower than the internal pressure of the solution container,
Detection means for detecting the start and stop of the supply of the reaction solution from the solution container to the reaction container, and a measurement means for measuring the length of the reaction solution supply period triggered by detection by the detection means And a remaining amount calculating means for calculating the remaining amount of hydrogen generated by the reaction between the reactant solid and the reaction solution based on the measurement value by the measuring means ,
A check that is provided in the liquid feeding path and allows the liquid feeding of the reaction solution from the reaction container to the reactant solution by opening the liquid feeding path when the internal pressure of the reaction container is equal to or lower than a predetermined pressure. Having an opening and closing means that is a valve;
The opening / closing means also serves as the detection means, and has a conductive portion and a contact portion that contact when the valve body constituting the check valve is in a closed state. A hydrogen generating apparatus, wherein the start and stop of liquid supply of the reaction solution are detected from a conductive state .
前記送液期間の長さと前記水素残量とを関連付けたテーブルが予め記憶された記憶部をさらに有し、
前記残量算出手段は、前記測定手段による測定値と前記テーブルとから前記水素残量を算出することを特徴とする請求項1に記載の水素発生装置。
A table that associates the length of the liquid feeding period with the remaining amount of hydrogen is further stored in advance,
2. The hydrogen generation apparatus according to claim 1, wherein the remaining amount calculating unit calculates the hydrogen remaining amount from a measurement value obtained by the measuring unit and the table.
前記測定手段の測定値を記憶する記憶部をさらに有し、
前記残量算出手段は、前記測定手段による最新の測定値と、前記記憶部に記憶されている前回の測定値との差に基づいて前記水素残量を算出することを特徴とする請求項1又は2に記載の水素発生装置。
A storage unit for storing a measurement value of the measurement unit;
2. The remaining amount calculating unit calculates the remaining hydrogen amount based on a difference between a latest measured value obtained by the measuring unit and a previous measured value stored in the storage unit. Or the hydrogen generator of 2.
前記反応溶液が一定流量で前記反応容器に送液されることを特徴とする請求項1〜3の何れか一項に記載の水素発生装置。 The hydrogen generating apparatus according to any one of claims 1 to 3 , wherein the reaction solution is sent to the reaction vessel at a constant flow rate. 水素が供給されるアノード室を有すると共に、該アノード室への水素供給手段として請求項1〜4の何れか一項に記載の水素発生装置を具備することを特徴とする燃料電池システム。 A fuel cell system comprising an anode chamber to which hydrogen is supplied and the hydrogen generator according to any one of claims 1 to 4 as means for supplying hydrogen to the anode chamber.
JP2007211110A 2007-08-13 2007-08-13 Hydrogen generator and fuel cell system Expired - Fee Related JP5207441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007211110A JP5207441B2 (en) 2007-08-13 2007-08-13 Hydrogen generator and fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007211110A JP5207441B2 (en) 2007-08-13 2007-08-13 Hydrogen generator and fuel cell system

Publications (2)

Publication Number Publication Date
JP2009046321A JP2009046321A (en) 2009-03-05
JP5207441B2 true JP5207441B2 (en) 2013-06-12

Family

ID=40498915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007211110A Expired - Fee Related JP5207441B2 (en) 2007-08-13 2007-08-13 Hydrogen generator and fuel cell system

Country Status (1)

Country Link
JP (1) JP5207441B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102137810A (en) * 2008-09-02 2011-07-27 日立麦克赛尔株式会社 Hydrogen generation device and fuel cell system equipped with same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088415Y2 (en) * 1988-01-22 1996-03-06 武晴 恵良 Flow rate detector
JPH03172766A (en) * 1989-11-30 1991-07-26 Ngk Spark Plug Co Ltd Liquid flow detecting device for conduit
JP2002071403A (en) * 2000-08-31 2002-03-08 Mitsubishi Rayon Co Ltd Fluid detector and water purifier using it and purified water shower
US7438732B2 (en) * 2003-06-11 2008-10-21 Trulite, Inc Hydrogen generator cartridge
JP2006077822A (en) * 2004-09-07 2006-03-23 Saginomiya Seisakusho Inc Pressure-operated valve with switching function
JP2007058011A (en) * 2005-08-26 2007-03-08 Kyocera Mita Corp Fixing device
JP4868352B2 (en) * 2005-12-27 2012-02-01 セイコーインスツル株式会社 Hydrogen generation facility and fuel cell system

Also Published As

Publication number Publication date
JP2009046321A (en) 2009-03-05

Similar Documents

Publication Publication Date Title
JP4840781B2 (en) Hydrogen generating method, hydrogen generating apparatus and fuel cell equipment
US20100151338A1 (en) Hydrogen Generation Equipment and Fuel Cell System
AU2018231515B2 (en) Metal anode cell
US8415066B2 (en) Pressure regulating valve, fuel cell system using same, and hydrogen generating facility
CA2911957A1 (en) Control of fuel discharge of a fuel cell
CN102893436A (en) Fuel cell system with calculation of liquid water volume
JP5207441B2 (en) Hydrogen generator and fuel cell system
JP4868352B2 (en) Hydrogen generation facility and fuel cell system
KR101765395B1 (en) Fuel cell system
JP7351607B2 (en) Fuel cell system and fuel gas quality determination method
JP5365942B2 (en) Hydrogen generation facility and fuel cell system
KR101838357B1 (en) Fuel cell system
JP5137111B2 (en) Hydrogen generator and fuel cell system
JP5064118B2 (en) Liquid level detection device, fuel cell, liquid level detection method, and liquid level detection program
JP2012093032A (en) Mist generator
JP2009046333A (en) Hydrogen generating apparatus and fuel cell system
JP2007047044A (en) Metering apparatus and metering tank for liquid metal
JP3127410U (en) Liquid fuel storage device for fuel cell having liquid level detection function
JP5135581B2 (en) Hydrogen generator and fuel cell system
JP2015175820A (en) Concentration measurement method and fuel battery system
JPWO2008129801A1 (en) measuring device
JP2015225795A (en) Concentration measuring method and fuel battery system
JP2013198296A (en) Moving body
JP2009143791A (en) Apparatus for generating hydrogen and fuel battery system
KR20060135388A (en) Fuel level detecting apparatus and fuel cell system using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130206

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5207441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees