JP5205690B2 - Revegetation material using heat-treated wood and method for producing and using the same - Google Patents

Revegetation material using heat-treated wood and method for producing and using the same Download PDF

Info

Publication number
JP5205690B2
JP5205690B2 JP2005266855A JP2005266855A JP5205690B2 JP 5205690 B2 JP5205690 B2 JP 5205690B2 JP 2005266855 A JP2005266855 A JP 2005266855A JP 2005266855 A JP2005266855 A JP 2005266855A JP 5205690 B2 JP5205690 B2 JP 5205690B2
Authority
JP
Japan
Prior art keywords
fungi
heat
acidic
mycorrhizal
greening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005266855A
Other languages
Japanese (ja)
Other versions
JP2007074986A (en
Inventor
敏浩 栗栖
研介 木村
洋一 村尾
眞司 波多野
俊幸 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
General Environmental Technos Co Ltd
Original Assignee
Kansai Electric Power Co Inc
General Environmental Technos Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, General Environmental Technos Co Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2005266855A priority Critical patent/JP5205690B2/en
Publication of JP2007074986A publication Critical patent/JP2007074986A/en
Application granted granted Critical
Publication of JP5205690B2 publication Critical patent/JP5205690B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cultivation Of Plants (AREA)

Description

本発明は、弱酸性乃至酸性である木質熱処理物に有用微生物を保持してなる緑化資材並びにその製造方法及び使用方法に関する。   The present invention relates to a greening material obtained by holding useful microorganisms in a slightly acidic or acidic woody heat-treated product, and a method for producing and using the same.

木炭、竹炭などの植物炭化物は、園芸及び農業分野では古くから利用されているが、有用微生物、特に外生菌根菌、VA菌根菌、エリコイド菌根菌などと組み合わせた利用例は数少なく、これらの有用微生物を作物の栽培に利用した代表的な例としては、ダイズの栽培に木炭とマメ科植物固有の根粒菌(リゾビウム(Rhizobium)属)を利用した栽培例がみられる(例えば、特許文献1参照。)。また、植物炭化物が土壌中における有用微生物の保持及び増殖に適切な素材であることは知られているが(例えば、特許文献2、特許文献3、非特許文献1及び非特許文献2など参照。)、微生物に応じた適切な特性を有する植物炭化物と上記の有用微生物とを組み合わせて、予め有用微生物を増殖させた製品については知られていない。すなわち、植物炭化物を有用微生物の保持ではなく、増殖のための素材として利用した例は見当たらない。   Plant charcoal such as charcoal and bamboo charcoal has been used for a long time in the horticulture and agriculture fields, but there are few examples of use in combination with useful microorganisms, especially ectomycorrhizal fungi, VA mycorrhizal fungi, ericoidal mycorrhizal fungi, Typical examples of the use of these useful microorganisms for cultivation of crops include the cultivation of soybeans using charcoal and legume-specific rhizobia (genus Rhizobium) (for example, patents). Reference 1). In addition, it is known that plant carbide is a material suitable for the retention and growth of useful microorganisms in soil (see, for example, Patent Document 2, Patent Document 3, Non-Patent Document 1, and Non-Patent Document 2). ), A product obtained by proliferating useful microorganisms in advance by combining plant charcoal having appropriate characteristics according to microorganisms and the above-mentioned useful microorganisms is not known. In other words, there is no example of using plant charcoal as a material for growth, not for holding useful microorganisms.

有用微生物の働きを利用した緑化資材及び園芸資材は既に開発され、商品化されているが(例えば、特許文献4、特許文献5及び特許文献6など参照。)、特に外生菌根菌やVA菌根菌のような共生微生物を用いた共生微生物資材では、土壌に施用した場合、安定した効果が得られていない。これは、施用した土壌中にもともと存在する土壌微生物の影響や土壌そのものの特性によって、施用した共生微生物が十分に作用できる環境が整わないためである(例えば、非特許文献3など参照。)。すなわち、これらの共生微生物が土壌中で植物と共生関係を結ぶためには、ある程度以上の菌密度が必要であるが、土壌中では他の微生物の菌密度の方が遙かに高く、施用した有用微生物が上手く機能しないためである。   Greening materials and horticultural materials utilizing the action of useful microorganisms have already been developed and commercialized (see, for example, Patent Document 4, Patent Document 5, and Patent Document 6), but especially ectomycorrhizal fungi and VA. A symbiotic microorganism material using a symbiotic microorganism such as a mycorrhizal fungus does not provide a stable effect when applied to soil. This is because the environment in which the applied symbiotic microorganisms can sufficiently act is not prepared due to the influence of the soil microorganisms originally present in the applied soil and the characteristics of the soil itself (see, for example, Non-Patent Document 3). In other words, in order for these symbiotic microorganisms to establish a symbiotic relationship with plants in the soil, the density of bacteria above a certain level is necessary, but the density of other microorganisms in the soil is much higher, and it was applied. This is because useful microorganisms do not function well.

従来の緑化技術では、施工場所の土壌養水分条件が劣悪であったり、施工場所が急斜面である場合には、植物の生長が遅く、土壌も流亡しやすいため、植物の定着が難しく、そのような場所での植物の生育には肥料分の補給が不可欠であるが、緑化の場合には、特に施肥管理を行うことが難しく、園芸や造園の場合でも、その効果は長くても1年以内であった。また、肥料を大量に施用することは、雨水の流出により周辺水源の汚染にもつながるため、周囲の環境に対して負荷の少ない栽培管理方法が望まれている。さらに、施肥時に窒素成分が多いと雑草が繁茂するため、除草などの管理が必要以上に増えるばかりか、土壌中の硝化細菌などの土壌微生物相が攪乱され、生態系の早期回復も遅れる要因となる。また、窒素成分は、特に流亡し、分解されやすく、何らかの方法による継続的な補給が不可欠である。   With conventional tree planting technology, if the soil moisture condition at the construction site is poor or the construction site is a steep slope, the plant growth is slow and the soil is likely to be washed away. However, in the case of greening, it is difficult to manage fertilization, especially in the case of horticulture and landscaping. Met. Moreover, since applying fertilizer in large quantities also leads to contamination of surrounding water sources due to the outflow of rainwater, a cultivation management method with a low load on the surrounding environment is desired. Furthermore, weeds grow when there are many nitrogen components at the time of fertilization, which not only increases the management of weeding more than necessary, but also disturbs the soil microflora such as nitrifying bacteria in the soil and delays the early recovery of the ecosystem. Become. In addition, the nitrogen component is particularly easily washed away and decomposed, and it is indispensable to continuously replenish it by some method.

特開平3−266915号公報JP-A-3-266915 特開平8−109109号公報JP-A-8-109109 特開2001−199782号公報JP 2001-199782 A 特開平8−109110号公報JP-A-8-109110 特開平10−98938号公報Japanese Patent Laid-Open No. 10-98938 特開2002−97093号公報JP 2002-97093 A 小川眞、共生微生物、菌根菌の利用と新資材の開発、日本土壌肥料学会誌、1987年58巻4号500〜504頁Satoshi Ogawa, utilization of symbiotic microorganisms, mycorrhizal fungi and development of new materials, Journal of Japanese Society of Soil Fertilizer, Vol. 58, No. 4, pp. 500-504, 1987 小川眞、Symbiosis of People and Nature in the Tropics、Farming Japan,1994,vol.28,No.5,p10- p34.Satoshi Ogawa, Symbiosis of People and Nature in the Tropics, Farming Japan, 1994, vol. 28, No. 5, p10- p34. 梅谷献二、加藤肇共編、農業有用微生物、第1版、養賢堂、1990年3月31日、539〜550頁Umeda, Seiji, Kato, K., Agricultural microorganisms, 1st edition, Yokendo, March 31, 1990, pp. 539-550

通常、植物炭化物は含まれる灰分によって化学的特性が弱アルカリ性〜アルカリ性となるため、有用微生物の中でも弱酸性〜酸性の条件を好む外生菌根菌、VA菌根菌、エリコイド菌根菌などの共生微生物にとって、増殖素材としての適性は低く、土壌中に植物炭化物を少量施用することにより、雨水によって中和されることにより、有用微生物の効果が得られることを期待して使用していたが、土壌中にもともと生息する土壌微生物の影響や土壌そのものの特性によって、安定した効果を得ることが難しかった。従って、外生菌根菌、VA菌根菌、エリコイド菌根菌などの共生微生物の増殖が容易な素材を見出し、これらの菌を高密度に保持した資材を作出することが緑化資材の開発にとっての課題であった。   Usually, plant charcoal has chemical properties that are weakly alkaline to alkaline depending on the ash contained in it. Therefore, among useful microorganisms, ectomycorrhizal fungi, VA mycorrhizal fungi, ericoidal mycorrhizal fungi that prefer weakly acidic to acidic conditions, etc. For symbiotic microorganisms, the suitability as a propagation material is low, and it was used with the expectation that the effects of useful microorganisms could be obtained by neutralizing with rainwater by applying a small amount of plant carbide to the soil. It was difficult to obtain a stable effect due to the influence of soil microorganisms originally inhabiting in the soil and the characteristics of the soil itself. Therefore, finding materials that allow easy growth of symbiotic microorganisms such as ectomycorrhizal fungi, VA mycorrhizal fungi, and ericoidal mycorrhizal fungi, and creating materials that retain these fungi at a high density is essential for the development of greening materials. It was an issue.

本発明者らは、上記課題を解決するために種々の検討を行った結果、弱酸性乃至酸性である炭化物すなわち木質熱処理物に共生微生物を高密度に保持することを見出し、本発明を提供するに至った。   As a result of various studies to solve the above-mentioned problems, the present inventors have found that symbiotic microorganisms are retained at a high density in a weakly acidic or acidic carbide, that is, a wood heat treatment, and provide the present invention. It came to.

すなわち、弱酸性乃至酸性である木質熱処理物にVA菌根菌を保持してなることを特徴とする緑化資材であって、VA菌根菌が、ジャイガスポーラ(Gigaspora)属、ステクロスポーラ(Scutellospora)属、グロマス(Glomus)属、アカウロスポーラ(Acaulospora)属、スクレロシスチス(Sclerocystis)属およびエンテロスポーラ(Entrophospora)属のいずれか1種または2種以上であることが好ましい。   That is, a revegetation material characterized by holding a VA mycorrhizal fungus in a slightly acidic or acidic woody heat-treated product, wherein the VA mycorrhizal fungus is a genus Gigaspora, It is preferably one or more of any of the genus Scutellospora, the genus Gromus, the genus Acaulospora, the genus Sclerocystis, and the genus Enterophospora.

本発明の第二は、弱酸性乃至酸性である木質熱処理物に外生菌根菌を保持してなることを特徴とする緑化資材であって、外生菌根菌が、キシメジ(Tricholomataceae)科、イグチ(Boletaceae)科、テングタケ(Amanitaceae)科、フウセンタケ(Cortinariaceae)科、ヒダハタケ(Paxillaceae)科、ベニタケ(Russulaceae)科、オニイグチ(Strobilomycetaceae)科、アンズタケ(Cantharellaceae)科、イボタケ(Thelephoraceae)科、コツブタケ(Pisolithaceae)科、ニセショウロ(Sclerodermataceae)科およびイモタケ(Terfeziaceae)科のいずれか1種または2種以上であることが好ましい。   A second aspect of the present invention is a greening material characterized in that ectomycorrhizal fungi are retained in a woody heat-treated product that is weakly acidic to acidic, and the ectomycorrhizal fungi are the family of Tricholomataceae , Boletaceae, Amanitaceae, Cortinariaceae, Paxillaceae, Russulaceae, Strobilomycetaceae, phoranthaceae, It is preferable that there is one or more of (Pisolithaceae) family, Sclerodermataceae family and Terfeziaceae family.

本発明の第三は、弱酸性乃至酸性である木質熱処理物にエリコイド菌根菌を保持してなることを特徴とする緑化資材であって、エリコイド菌根菌が、子嚢菌類、不完全菌類及び担子菌類のいずれか1種または2種以上であることが好ましく、子嚢菌類が、Hymenoscyphus属、Gymnascella属、Pseudogymnascus属及びMyxotrichum属のいずれか1種または2種以上であることが特に好ましく、不完全菌類が、Oidiodendron属であることが特に好ましい。   A third aspect of the present invention is a greening material characterized by holding ericoidal mycorrhizal fungi in a slightly acidic or acidic woody heat-treated product, wherein the ericoidal mycorrhizal fungi are ascomycetous fungi, incomplete fungi It is preferable that any one or two or more of Basidiomycetes, and it is particularly preferable that the ascomycetes be any one or more of Hygenoscyphus, Gymnascella, Pseudogymnascus and Myxotrichum. It is particularly preferred that the incomplete fungus is of the genus Oidiodendron.

本発明の第四は、弱酸性乃至酸性である木質熱処理物にVA菌根菌、外生菌根菌およびエリコイド菌根菌のいずれか1種または2種以上を保持してなることを特徴とする緑化資材であって、VA菌根菌が、ジャイガスポーラ(Gigaspora)属、ステクロスポーラ(Scutellospora)属、グロマス(Glomus)属、アカウロスポーラ(Acaulospora)属、スクレロシスチス(Sclerocystis)属およびエンテロスポーラ(Entrophospora)属のいずれか1種または2種以上であることが好ましく、外生菌根菌が、キシメジ(Tricholomataceae)科、イグチ(Boletaceae)科、テングタケ(Amanitaceae)科、フウセンタケ(Cortinariaceae)科、ヒダハタケ(Paxillaceae)科、ベニタケ(Russulaceae)科、オニイグチ(Strobilomycetaceae)科、アンズタケ(Cantharellaceae)科、イボタケ(Thelephoraceae)科、コツブタケ(Pisolithaceae)科、ニセショウロ(Sclerodermataceae)科およびイモタケ(Terfeziaceae)科のいずれか1種または2種以上であることが好ましく、エリコイド菌根菌が、子嚢菌類、不完全菌類及び担子菌類のいずれか1種または2種以上であることが好ましく、子嚢菌類が、Hymenoscyphus属、Gymnascella属、Pseudogymnascus属及びMyxotrichum属のいずれか1種または2種以上であることが特に好ましく、不完全菌類が、Oidiodendron属であることが特に好ましい。   A fourth aspect of the present invention is characterized in that any one or more of VA mycorrhizal fungi, ectomycorrhizal fungi and ericoid mycorrhizal fungi are retained in a slightly heat-treated or heat-treated woody heat-treated product. VA mycorrhizal fungi are genus Gigaspora, Scutellospora, Glomus, Acaulospora, Sclerocystis and Enter Any one or more of the genus Rospora (Entrophospora) is preferred, and the ectomycorrhizal fungi are Tricholomataceae, Boletaceae, Amanitaceae, Cortinariaceae Family, Paxillaceae, Russulaceae, Strobilomycetaceae, Cantharellaceae, Thelephoraceae, Pisolithaceae, Scleroderma taceae) and moss (Terfeziaceae) are preferably one or more, and the ericoid mycorrhizal fungi are any one or more of ascomycetes, imperfect fungi and basidiomycetes It is particularly preferable that the ascomycete is one or more of Hygenoscyphus genus, Gymnascella genus, Pseudogymnascus genus and Myxotrichum genus, and the incomplete fungus is particularly preferably Oidiodendron genus. .

本発明の第五は、 木質熱処理物に等容量の川砂を混合した混合物を高圧滅菌処理した後、予めVA菌根菌を感染させた宿主植物を該混合物に植え付け、25℃〜28℃で該混合物中に菌糸を充分に伸長させることを特徴とする弱酸性乃至酸性である木質熱処理物にVA菌根菌を保持してなる緑化資材の製造方法である。   In the fifth aspect of the present invention, after a mixture of an equal volume of river sand mixed with a heat-treated wood product is autoclaved, a host plant previously infected with VA mycorrhizal fungi is planted in the mixture, and the mixture is treated at 25 to 28 ° C. It is a method for producing a greening material obtained by holding VA mycorrhizal fungi in a slightly acidic or acidic woody heat-treated product characterized by sufficiently extending mycelia in a mixture.

本発明の第六は、木質熱処理物にポテト・デキストロース液体培地(PDB培地)を添加して高圧滅菌処理した後、予め外生菌根菌をポテト・デキストロース寒天培地(PDA培地)で平板培養し、その所要量を該木質熱処理物に接種し、25℃〜28℃で培養し、菌糸を充分に伸長させることを特徴とする弱酸性乃至酸性である木質熱処理物に外生菌根菌を保持してなる緑化資材の製造方法である。   In the sixth aspect of the present invention, a potato-dextrose liquid medium (PDB medium) is added to a heat-treated wood and subjected to high-pressure sterilization, and then the ectomycorrhizal fungi are plated in advance on a potato-dextrose agar medium (PDA medium). Inoculate the wood heat-treated product with the required amount, culture at 25 ° C to 28 ° C, and maintain the ectomycorrhizal fungus in a slightly acidic or acidic wood-treated material that is sufficiently acidic. It is the manufacturing method of the greening material formed.

本発明の第七は、木質熱処理物にポテト・デキストロース液体培地(PDB培地)を添加して高圧滅菌処理した後、予めエリコイド菌根菌のいずれか1種をポテト・デキストロース寒天培地(PDA培地)で平板培養し、その所要量を該木質熱処理物に接種し、25℃〜28℃で培養し、菌糸を充分に伸長させることを特徴とする弱酸性乃至酸性である木質熱処理物にエリコイド菌根菌を保持してなる緑化資材の製造方法である。   In the seventh aspect of the present invention, a potato-dextrose liquid medium (PDB medium) is added to a heat-treated wood and subjected to high-pressure sterilization, and then any one of ericoidal mycorrhizal fungi is preliminarily added to a potato-dextrose agar medium (PDA medium). Plate, and inoculate the heat-treated product with wood, incubate at 25-28 ° C., and sufficiently elongate the mycelium. It is a manufacturing method of the greening material which hold | maintains a microbe.

本発明の第八は、本発明の第五に記載した製造方法で製造したVA菌根菌を保持してなる緑化資材、本発明の第六に記載した製造方法で製造した外生菌根菌を保持してなる緑化資材、及び本発明の第七に記載した製造方法で製造したエリコイド菌根菌を保持してなる緑化資材、のいずれか2種以上を混合することを特徴とする緑化資材の製造方法である。   The eighth aspect of the present invention is a greening material obtained by holding the VA mycorrhizal fungus produced by the production method described in the fifth aspect of the present invention, and an ectomycorrhizal fungus produced by the production method described in the sixth aspect of the present invention. A greening material obtained by mixing any two or more of a greening material that retains erythroid mycorrhizal fungi produced by the production method according to the seventh aspect of the present invention It is a manufacturing method.

本発明の第九は、弱酸性乃至酸性である木質熱処理物にVA菌根菌、外生菌根菌及びエリコイド菌根菌のいずれか1種または2種以上を保持してなる緑化資材を、苗木を植裁する緑化工事または造園工事において、肥料の代替または肥料の一部の代替として施用することを特徴とする緑化資材の使用方法である。   According to a ninth aspect of the present invention, there is provided a greening material obtained by holding one or more of VA mycorrhizal fungi, ectomycorrhizal fungi and ericoid mycorrhizal fungi on a weakly acidic to acidic woody heat-treated product, This is a method of using a greening material characterized by being applied as a substitute for a fertilizer or a part of a fertilizer in a greening or landscaping work for planting a seedling.

本発明の第十は、弱酸性乃至酸性である木質熱処理物にVA菌根菌、外生菌根菌及びエリコイド菌根菌のいずれか1種または2種以上を保持してなる緑化資材を、花卉、野菜、果樹などのいずれか1種または2種以上の育苗時に肥料の代替または肥料の一部の代替として施用することを特徴とする緑化資材の使用方法である。   According to a tenth aspect of the present invention, there is provided a greening material obtained by holding any one or more of VA mycorrhizal fungi, ectomycorrhizal fungi and ericoid mycorrhizal fungi on a mildly acidic to acidic woody heat-treated product, It is a method of using a greening material characterized by being applied as a substitute for a fertilizer or a part of a fertilizer when raising one or more seedlings such as a flower bud, a vegetable, a fruit tree and the like.

本発明の第十一は、弱酸性乃至酸性である木質熱処理物にVA菌根菌、外生菌根菌及びエリコイド菌根菌のいずれか1種または2種以上を保持してなる緑化資材を、樹勢の衰えた樹木または果樹に、樹勢回復資材として施用することを特徴とする緑化資材の使用方法である。   In an eleventh aspect of the present invention, there is provided a greening material obtained by holding one or more of VA mycorrhizal fungi, ectomycorrhizal fungi and ericoid mycorrhizal fungi on a mildly acidic to acidic woody heat-treated product. This is a method for using a greening material characterized in that it is applied to a tree or fruit tree with a decline in vigor as a vigor recovery material.

共生微生物であるVA菌根菌、外生菌根菌およびエリコイド菌根菌を保持すべき担体としては、従来の植物炭化物による担体では、その特性がアルカリ性であるため、洗浄したり、薬品などでpHを調整しない限り、対象となる共生微生物の菌糸が増殖し、資材とすることは望めなかったが、本発明の緑化資材は、多くの微細な孔をもつ多孔質素材である木質熱処理物の表面に形成した空隙に、対象となる共生微生物の菌糸が吸着され、保持された資材であるため、菌体の保持量が非常に多く、土壌に施用した場合に対象となる植物の根と効率よく、共生関係を成立させ、共生微生物が有する効果を確実にもたらすことができる。また、本発明の緑化資材は選択された菌株のみを高密度に保持しているため、土壌に元来生息している土壌微生物の影響を受けずに作用することができる。さらに、木質熱処理物は軽量であるため、本発明の緑化資材は運搬及び保管が従来の資材よりも容易に取り扱うことができる。   As a carrier to hold VA mycorrhizal fungi, ectomycorrhizal fungi and ericoidal mycorrhizal fungi that are symbiotic microorganisms, conventional plant charcoal carriers have alkaline characteristics, so they can be washed or used with chemicals, etc. Unless the pH was adjusted, the hyphae of the target symbiotic microorganisms grew and could not be used as a material, but the greening material of the present invention was made of a heat-treated wood material that is a porous material with many fine pores. Since the hyphae of the target symbiotic microorganisms are adsorbed and retained in the voids formed on the surface, the amount of cells retained is extremely high, and the root and efficiency of the target plant when applied to soil Well, a symbiotic relationship can be established, and the effects of symbiotic microorganisms can be reliably brought about. In addition, since the greening material of the present invention holds only the selected strain at a high density, it can act without being affected by soil microorganisms originally inhabiting the soil. Furthermore, since the heat treated wood is light, the greening material of the present invention can be handled and transported more easily than conventional materials.

本発明における弱酸性乃至酸性である木質熱処理物とは、木質材料を150〜350℃の低温度で、軽度の加熱処理することによって得られるものであって、特許第3057561号に記載の製造方法、すなわち木質系粉砕物、廃棄物などの木質材料を150〜350℃の低温度で、軽度の加熱処理することによって、木炭のような著しい強度低下を防ぎながら、微生物、腐朽菌による分解、腐朽性を抑止するよう構成したことを特徴とする木質熱処理物の製造法によって得られた木質熱処理物が、本発明を実施する上で最も好ましいものである。   The woody heat-treated product that is weakly acidic to acidic in the present invention is obtained by subjecting a woody material to a mild heat treatment at a low temperature of 150 to 350 ° C., and the production method described in Japanese Patent No. 3057561 In other words, wood materials such as wood-based pulverized materials and wastes are heated at a low temperature of 150-350 ° C and mildly heated, preventing degradation and decay by microorganisms and decaying fungi while preventing a significant decrease in strength like charcoal. The wood heat-treated product obtained by the method for producing a wood heat-treated product, which is characterized in that the property is suppressed, is most preferable in carrying out the present invention.

本発明にいうポテト・デキストロース寒天培地(PDA培地)とは、ポテトスターチ4g、デキストロース20g及び寒天20gを精製水1000mlに溶解したものであり、ポテト・デキストロース液体培地(PDB培地)とは、ポテトスターチ4g及びデキストロース20gを精製水1000mlに溶解したものである。   The potato dextrose agar medium (PDA medium) referred to in the present invention is obtained by dissolving 4 g of potato starch, 20 g of dextrose and 20 g of agar in 1000 ml of purified water, and the potato dextrose liquid medium (PDB medium) is a potato starch 4 g and 20 g of dextrose are dissolved in 1000 ml of purified water.

本発明にいう高圧滅菌処理とは、11.8×104Pa(1.2kgf/cm2)において温度121℃の過熱蒸気により殺菌処理することをいい、処理時間は滅菌処理を行う対象とする物質により異なり、木質熱処理物と川砂の等量(容積量)混合物などの培土を高圧滅菌処理する場合には、培土の変質の問題が少なく、滅菌が難しいので、通常、処理時間を30分とし、ポテト・デキストロース液体培地(PDB培地)もしくはポテト・デキストロース寒天培地(PDA培地)などの培地を高圧滅菌処理する場合には、処理時間を長くすると培地成分の変質が起こるため、通常、処理時間を15分とする。 The high-pressure sterilization referred to in the present invention refers to sterilization with superheated steam at a temperature of 121 ° C. at 11.8 × 10 4 Pa (1.2 kgf / cm 2 ), and the processing time is an object for sterilization. Depending on the substance, when cultivating a soil such as a mixture of wood heat-treated material and river sand in an equal volume (volume), the problem of soil alteration is small and sterilization is difficult, so the processing time is usually 30 minutes. When a medium such as potato / dextrose liquid medium (PDB medium) or potato / dextrose agar medium (PDA medium) is sterilized under high pressure, the longer the processing time, the deterioration of the medium components occurs. 15 minutes.

本発明におけるVA菌根菌の密度の測定方法は、予め乾燥重量を測定した木質熱処理物と川砂の等量(容積量)混合物を高圧滅菌処理し、滅菌された該混合物に予めVA菌根菌を感染させたアルファルファやソルガムなどの宿主植物を植え付け、25〜28℃の適正温度で約30〜40日間栽培し、混合物中に菌糸が充分に伸長した緑化資材を作製する。得られた緑化資材を乾燥器を用いて乾燥させ、最初に測定しておいた木質熱処理物と川砂の混合物の乾燥重量を差し引いて、増殖したVA菌根菌の菌体重量を得る。   The method for measuring the density of VA mycorrhizal fungus according to the present invention is a method in which an equal amount (volume amount) mixture of a woody heat-treated product and a river sand whose dry weight has been measured in advance is autoclaved, and the sterilized mixture is preliminarily treated with VA mycorrhizal fungus. Plant a host plant such as alfalfa or sorghum that has been infected with, and cultivate at an appropriate temperature of 25 to 28 ° C. for about 30 to 40 days to produce a greening material in which the mycelium is sufficiently elongated in the mixture. The obtained greening material is dried using a drier, and the weight of the grown VA mycorrhizal fungi is obtained by subtracting the dry weight of the mixture of the wood heat treatment and the river sand previously measured.

本発明における外生菌根菌の密度の測定方法は、予め乾燥重量を測定した木質熱処理物に、外生菌根菌の生育に必要なポテト・デキストロース液体培地(PDB培地)を木質熱処理物の容積の半量を添加し、培養器に入れて高圧滅菌処理を行った後、ポテト・デキストロース寒天培地(PDA培地)を用いて平板培養した外生菌根菌を一定量接種し、25〜28℃の適正温度で約30〜40日間栽培し、混合物中に菌糸が充分に伸長した緑化資材を作製する。得られた緑化資材を乾燥器を用いて乾燥させ、最初に測定しておいた木質熱処理物と川砂の混合物の乾燥重量を差し引いて、増殖した外生菌根菌及びエリコイド菌根菌の菌体重量を得る。   The method for measuring the density of ectomycorrhizal fungi according to the present invention is obtained by adding a potato-dextrose liquid medium (PDB medium) necessary for the growth of ectomycorrhizal fungi to a heat-treated wood product whose dry weight has been measured in advance. Add half of the volume, put in an incubator and perform autoclaving, then inoculate a fixed amount of ectomycorrhizal fungi plated on potato-dextrose agar medium (PDA medium), 25-28 ° C Cultivated at an appropriate temperature for about 30 to 40 days to produce a greening material in which the mycelium is sufficiently elongated in the mixture. The obtained greening material is dried using a dryer, and the cells of the grown ectomycorrhizal fungi and ericoidal mycorrhizal fungi are obtained by subtracting the dry weight of the mixture of wood heat treatment and river sand that was measured first. Gain weight.

本発明におけるエリコイド菌根菌の密度の測定方法は、予め乾燥重量を測定した木質熱処理物に、エリコイド菌根菌の生育に必要なポテト・デキストロース液体培地(PDB培地)を木質熱処理物の容積の半量を添加し、培養器に入れて高圧滅菌処理を行った後、ポテト・デキストロース寒天培地(PDA培地)を用いて平板培養したエリコイド菌根菌を一定量接種し、25〜28℃の適正温度で約30〜40日間栽培し、混合物中に菌糸が充分に伸長した緑化資材を作製する。得られた緑化資材を乾燥器を用いて乾燥させ、最初に測定しておいた木質熱処理物と川砂の混合物の乾燥重量を差し引いて、増殖したエリコイド菌根菌の菌体重量を得る。 In the method of measuring the density of ericoidal mycorrhizal fungi according to the present invention, a potato dextrose liquid medium (PDB medium) necessary for the growth of ericoidal mycorrhizal fungi is added to the heat-treated wooden product whose dry weight has been measured in advance. Add half the amount, put into an incubator and perform high-pressure sterilization, then inoculate a certain amount of ericoidal mycorrhizal fungi plated with potato-dextrose agar medium (PDA medium) and incubate at an appropriate temperature of 25-28 ° C. Cultivated for about 30 to 40 days to produce a greening material in which the mycelium is sufficiently elongated in the mixture. The obtained greening material is dried using a drier, and the dry weight of the mixture of the woody heat-treated material and river sand previously measured is subtracted to obtain the weight of the grown ericoid mycorrhizal fungi.

VA菌根菌の製造方法は、木質熱処理物に等量(容積量)の川砂を混合して高圧滅菌処理をし、次いで滅菌された該混合物に予めVA菌根菌を感染させたアルファルファやソルガムなどの宿主植物を植え付け、25〜28℃の適正温度で約30〜40日間栽培し、混合物中に菌糸を充分に伸長させて緑化資材を作製する。   The production method of VA mycorrhizal fungus is alfalfa or sorghum in which an equal amount (volume) of river sand is mixed with heat treated wood and subjected to high-pressure sterilization, and then the sterilized mixture is pre-infected with VA mycorrhizal fungus The plant is planted at an appropriate temperature of 25 to 28 ° C. for about 30 to 40 days, and the mycelium is sufficiently elongated in the mixture to produce a greening material.

外生菌根菌の製造方法は、木質熱処理物にPDB培地を添加して高圧滅菌処理し、次いで滅菌された該混合物に予めPDA培地を用いて平板培養した外生菌根菌を一定量接種し、25〜28℃の適正温度で約30〜40日間栽培し、混合物中に菌糸を充分に伸長させて緑化資材を作製する。   The method for producing ectomycorrhizal fungi is to inoculate a certain amount of ectomycorrhizal fungi that were pre-plated using PDA medium to the sterilized mixture after adding PDB medium to the heat-treated woody material Then, it is cultivated at an appropriate temperature of 25 to 28 ° C. for about 30 to 40 days, and the hyphae are sufficiently elongated in the mixture to produce a greening material.

エリコイド菌根菌の製造方法は、木質熱処理物にPDB培地を添加して高圧滅菌処理し、次いで滅菌された該混合物に予めPDA培地を用いて平板培養したエリコイド菌根菌を一定量接種し、25〜28℃の適正温度で約30〜40日間栽培し、混合物中に菌糸を充分に伸長させて緑化資材を作製する。 The method for producing ericoidal mycorrhizal fungi is that a PDB medium is added to a heat-treated wood and subjected to high-pressure sterilization, and then the sterilized mixture is inoculated with a predetermined amount of ericoidal mycorrhizal fungi previously plated using a PDA medium, Cultivate at an appropriate temperature of 25 to 28 ° C. for about 30 to 40 days, and sufficiently expand the mycelium in the mixture to produce a greening material.

次に実施例によって本発明を詳細に説明するが、本発明はこれらの実施例により何ら制限されるものではない。なお、実施例中の数字は重量部、「%」は重量%を意味する。   EXAMPLES Next, although an Example demonstrates this invention in detail, this invention is not restrict | limited at all by these Examples. In addition, the number in an Example means a weight part and "%" means weight%.

(実施例1)
1プラグ苗当たりの容量が15mlのセルトレイ(東缶興産株式会社製、セルトレイ#72)に、温度121℃、11.8×104Pa(1.2kgf/cm2)の条件で高圧滅菌器(株式会社トミー精工製、BS−325)にて30分間滅菌処理した川砂を7ml入れ、次いでVA菌根菌の保存菌株(Glomus sp.)を2ml添加し、さらに滅菌した川砂を3ml入れてアルファルファの種子を播種した。このときのセルトレイの断面図を図1に示した。気温20〜30℃の条件下で適切に栽培管理し、適時に潅水を行った。また、発芽後1週間毎にピータースの液肥(第一園芸社製、NPK:25−5−20)をポットの下部から液肥が滴るまで充分に施用した。30日間栽培を継続し、その後、アルファルファの細根を採取して、10%水酸化カリウム水溶液で脱色後にトリパンブルー染色液で染色して、顕微鏡を用いてVA菌根菌の感染を確認した。
次に、木質熱処理物(竹内木材工業合資会社製、美園な〜れTM)と等容量の川砂を予め充分に混合し、その混合物を温度121℃、11.8×104Pa(1.2kgf/cm2)の条件で高圧滅菌器(株式会社トミー精工製、BS−325)で30分間滅菌処理した。この混合物を培土として、先にセルトレイで育生したアルファルファを移植した。気温20〜30℃の条件下で適切に栽培管理し、適時に潅水を行った。また、発芽後1週間毎にピータースの液肥(第一園芸社製、NPK:25−5−20)をポットの下部から液肥が滴るまで充分に施用した。30〜40日間栽培を継続し、前述の方法でアルファルファの細根にVA菌根菌の感染を確認し、培土中の菌糸の増殖を確認した。その後、潅水を中止し、植物体を枯死させ、培土中での胞子形成を促した。充分に培土が乾燥した後、VA菌根菌を保持した緑化資材を得た。
本緑化資材中の菌体含量を測定した結果を図2に示した。VA菌根菌を赤玉土と川砂を用いて緑化資材とした場合よりも、本発明の緑化資材中に含まれる菌体の乾燥重量が2〜2.4倍であることが確認された。
Example 1
In a cell tray (cell tray # 72, manufactured by Tocan Kosan Co., Ltd.) having a capacity per plug seedling of 15 ml, a high-pressure sterilizer (temperature: 121 ° C., 11.8 × 10 4 Pa (1.2 kgf / cm 2 )) 7 ml of river sand sterilized by Tommy Seiko Co., Ltd., BS-325) for 30 minutes, 2 ml of VA mycorrhizal conserved strain (Glomus sp.) Was added, and 3 ml of sterilized river sand was further added to alfalfa. Seeds were sown. A cross-sectional view of the cell tray at this time is shown in FIG. Cultivation management was appropriately performed under conditions of an air temperature of 20 to 30 ° C., and watering was performed in a timely manner. Further, every week after germination, Peters' liquid fertilizer (manufactured by Daiichi Horie, NPK: 25-5-20) was sufficiently applied from the bottom of the pot until the liquid fertilizer dripped. Cultivation was continued for 30 days, and then alfalfa fine roots were collected, decolorized with a 10% aqueous potassium hydroxide solution, stained with trypan blue staining solution, and infection of VA mycorrhizal fungi was confirmed using a microscope.
Next, wood heat-treated material (manufactured by Takeuchi Wood Industry Co., Ltd., Misono Nare TM ) and an equal volume of river sand are mixed well in advance, and the mixture is heated to 121 ° C. and 11.8 × 10 4 Pa (1.2 kgf). / Cm 2 ) was sterilized with a high-pressure sterilizer (manufactured by Tommy Seiko Co., Ltd., BS-325) for 30 minutes. Using this mixture as soil, alfalfa previously grown in a cell tray was transplanted. Cultivation management was appropriately performed under conditions of an air temperature of 20 to 30 ° C., and watering was performed in a timely manner. Further, every week after germination, Peters' liquid fertilizer (manufactured by Daiichi Horie, NPK: 25-5-20) was sufficiently applied from the bottom of the pot until the liquid fertilizer dripped. Cultivation was continued for 30 to 40 days, and the infection of VA mycorrhizal fungi was confirmed on the alfalfa fine roots by the method described above, and the growth of mycelia in the soil was confirmed. Thereafter, irrigation was stopped, the plant body was killed, and sporulation was promoted in the culture medium. After the culture was sufficiently dried, a greening material holding VA mycorrhizal fungi was obtained.
The result of measuring the bacterial cell content in the greening material is shown in FIG. It was confirmed that the dry weight of the microbial cells contained in the greening material of the present invention is 2 to 2.4 times that in the case where VA mycorrhizal fungi are used as a greening material using red jade soil and river sand.

(実施例2)
木質熱処理物(竹内木材工業合資会社製、美園な〜れTM)に、その容量の半量のPDB培地(Difco社製)を添加して、温度121℃、11.8×104Pa(1.2kgf/cm2)の条件で15分間の高圧滅菌処理を行った。一方、予めPDA培地(Difco社製)で平板培養した外生菌根菌(Scleroderma sp.)のコロニーを5mm角に4片切り取り、この滅菌処理を行ったPDB培地を含む木質熱処理物の表面に接種して、28℃で培養した。約1ヶ月培養して木質熱処理物が白色の菌糸で充分に覆われた後、外生菌根菌を保持した緑化資材として用いた。本緑化資材中の菌体含量を測定した結果を図3に示した。一方、比較例として、外生菌根菌を木質熱処理物の代わりに木炭(奈良炭化工業株式会社製、グリーンタンソTM)を用いて緑化資材化した場合の菌体含量及び木質熱処理物の代わりに鹿沼土(東洋園芸製)を用いて緑化資材化した場合の菌体含量も併せて図3に示した。この結果、木炭を用いて緑化資材化した場合には菌体がほとんど増殖せず、鹿沼土を用いて緑化資材化した場合よりも、本緑化資材中に含まれる菌体の乾燥重量が約2.5倍に増加することが確認された。
(Example 2)
Half the volume of PDB medium (Difco) is added to a wood heat-treated product (manufactured by Takeuchi Wood Industry Co., Ltd., Misono Nare TM ), and the temperature is 121 ° C., 11.8 × 10 4 Pa (1. High-pressure sterilization treatment was performed for 15 minutes under the condition of 2 kgf / cm 2 ). On the other hand, four colonies of ectomycorrhizal fungi (Scleroderma sp.) Previously plated in PDA medium (manufactured by Difco) were cut into 5 mm square pieces and applied to the surface of the heat treated wood containing PDB medium that had been sterilized. Inoculated and cultured at 28 ° C. After culturing for about one month and the wood heat-treated product was sufficiently covered with white mycelia, it was used as a greening material for holding ectomycorrhizal fungi. The result of measuring the bacterial cell content in the greening material is shown in FIG. On the other hand, as a comparative example, the ectomycorrhizal fungi wood Cook instead charcoal (Nara carbide Industry Co., Ltd. Green carbon TM) in place of the bacterial content and wood heat-treated product in the case of greening materials by using a FIG. 3 also shows the bacterial cell content when using Kanuma soil (made by Toyo Horticulture) as a greening material. As a result, when the greening material is made using charcoal, the bacterial cells hardly grow, and the dry weight of the bacterial cells contained in the greening material is about 2 than when the greening material is made using Kanuma soil. It was confirmed that it increased 5 times.

(実施例3)
木質熱処理物(竹内木材工業合資会社製、美園な〜れTM)に、その容量の半量のPDB培地(Difco社製)を添加して、温度121℃、11.8×104Pa(1.2kgf/cm2)の条件で15分間の高圧滅菌処理を行った。一方、予めPDA培地(Difco社製)で平板培養したエリコイド菌根菌(Oidiodendron sp.)のコロニーを5mm角に4片切り取り、この滅菌処理を行ったPDB培地を含む木質熱処理物の表面に接種して、28℃で培養した。約1ヶ月培養して木質熱処理物が黒灰色の菌糸で充分に覆われた後、エリコイド菌根菌を保持した緑化資材として用いた。本緑化資材中の菌体含量を測定した結果を図4に示した。一方、比較例として、外生菌根菌を木質熱処理物の代わりに木炭(奈良炭化工業株式会社製、グリーンタンソTM)を用いて緑化資材化した場合の菌体含量及び木質熱処理物の代わりに鹿沼土(東洋園芸製)を用いて緑化資材化した場合の菌体含量も併せて図4に示した。この結果、木炭を用いて緑化資材化した場合には菌体がほとんど増殖せず、鹿沼土を用いて緑化資材化した場合よりも、本緑化資材中に含まれる菌体の乾燥重量が約2倍に増加することが確認された。
(Example 3)
Half the volume of PDB medium (Difco) is added to a wood heat-treated product (manufactured by Takeuchi Wood Industry Co., Ltd., Misono Nare TM ), and the temperature is 121 ° C., 11.8 × 10 4 Pa (1. High-pressure sterilization treatment was performed for 15 minutes under the condition of 2 kgf / cm 2 ). On the other hand, four colonies of Oidiodendron sp. Previously plated in PDA medium (manufactured by Difco) were cut into 5 mm squares and inoculated on the surface of the heat-treated wood containing PDB medium that had been sterilized. And cultured at 28 ° C. After culturing for about 1 month and the woody heat-treated product was sufficiently covered with black-gray mycelium, it was used as a greening material for retaining ericoidal mycorrhizal fungi. The results of measuring the bacterial cell content in the greening material are shown in FIG. On the other hand, as a comparative example, the ectomycorrhizal fungi wood Cook instead charcoal (Nara carbide Industry Co., Ltd. Green carbon TM) in place of the bacterial content and wood heat-treated product in the case of greening materials by using a FIG. 4 also shows the bacterial cell content when using Kanuma soil (manufactured by Toyo Horticulture) as a greening material. As a result, when the greening material is made using charcoal, the bacterial cells hardly grow, and the dry weight of the bacterial cells contained in the greening material is about 2 than when the greening material is made using Kanuma soil. It was confirmed that the increase was doubled.

(実施例4)
実施例1で作製したVA菌根菌を保持してなる緑化資材と実施例2で作製した外生菌根菌を保持してなる緑化資材を等量混合して、VA菌根菌及び外生菌根菌を保持してなる緑化資材を作製した。
Example 4
An equal amount of the greening material that holds the VA mycorrhizal fungus prepared in Example 1 and the greening material that holds the ectomycorrhizal fungus prepared in Example 2 are mixed to obtain a VA mycorrhizal fungus and an exogenous material. A greening material containing mycorrhizal fungi was prepared.

(実施例5)
実施例1で作製したVA菌根菌を保持してなる緑化資材と実施例3で作製したエリコイド菌根菌を保持してなる緑化資材を等量混合して、VA菌根菌及びエリコイド菌根菌を保持してなる緑化資材を作製した。
(Example 5)
The greening material that holds the VA mycorrhizal fungus prepared in Example 1 and the greening material that holds the ericoidal mycorrhizal fungus prepared in Example 3 are mixed in equal amounts to obtain VA mycorrhizal fungi and ericoid mycorrhiza. A greening material with fungi was prepared.

(実施例6)
実施例2で作製した外生菌根菌を保持してなる緑化資材と実施例3で作製したエリコイド菌根菌を保持してなる緑化資材を等量混合して、外生菌根菌及びエリコイド菌根菌を保持してなる緑化資材を作製した。
(Example 6)
An equal amount of the greening material that holds the ectomycorrhizal fungus prepared in Example 2 and the greening material that holds the ericoid mycorrhizal fungus prepared in Example 3 are mixed to obtain an ectomycorrhizal fungus and an ericoid. A greening material containing mycorrhizal fungi was prepared.

(実施例7)
実施例1で作製したVA菌根菌を保持してなる緑化資材、実施例2で作製した外生菌根菌を保持してなる緑化資材及び実施例3で作製したエリコイド菌根菌を保持してなる緑化資材をそれぞれ等量混合して、VA菌根菌、外生菌根菌及びエリコイド菌根菌を保持してなる緑化資材を作製した。
(Example 7)
A greening material that holds the VA mycorrhizal fungus prepared in Example 1, a greening material that holds the ectomycorrhizal fungus prepared in Example 2, and the ericoidal mycorrhizal fungus prepared in Example 3 An equal amount of each of the above greening materials was mixed to prepare a greening material holding VA mycorrhizal fungi, ectomycorrhizal fungi and ericoid mycorrhizal fungi.

(実施例8)
乾熱滅菌処理を180℃にて8時間行ったバーミキュライト(ニッタイ株式会社製)にホルトノキ(大阪府岬町産)、タブノキ(大阪府岬町産)の種子を播種した後、適時潅水して大きさの揃った実生苗を育生した。次に、実施例1において作製したVA菌根菌による緑化資材を、上記実生苗1本当たり10mlを植穴に施用した後、1週間毎にピータースの液肥(第一園芸社製、NPK:25−5−20)を施用して栽培を行った。栽培40日目には、図5に示したようにVA菌根菌が感染して、肥料だけで育苗した苗木よりも健全な育苗を行うことができた。また、植物体の重量変化は図6に示したように、タブノキ及びホルトノキの両者において、無処理区に比して約4倍の生長を示した。
(Example 8)
Vermiculite (manufactured by Nittai Co., Ltd.) that had been subjected to dry heat sterilization at 180 ° C for 8 hours was seeded with holtokiki (produced in Misaki-cho, Osaka Prefecture) and tabonoki (produced in Misaki-cho, Osaka Prefecture) and then irrigated in a timely manner. Raised seedlings with the same size. Next, after applying 10 ml per seedling seedling to the planting hole, the greening material produced by VA mycorrhizal fungus prepared in Example 1 was applied to Peters liquid fertilizer (Daiichi Horticultural Co., NPK: 25-5-20) was applied for cultivation. On the 40th day of cultivation, VA mycorrhizal fungi were infected as shown in FIG. 5, and it was possible to carry out healthy seedlings more than seedlings grown only with fertilizer. In addition, as shown in FIG. 6, the change in the weight of the plant showed about four times the growth in both tablina and holonoki as compared to the untreated group.

(実施例9)
乾熱滅菌処理を180℃にて8時間行ったバーミキュライト(ニッタイ株式会社製)にマテバシイ(大阪府岬町産)、スダジイ(大阪府岬町産)、ウバメガシ(大阪府岬町産)の種子を播種した後、適時潅水して大きさの揃った実生苗を育生した。次に、実施例2において作製した外生菌根菌による緑化資材を、上記実生苗1本当たり10mlを植穴に施用した後、1週間毎に表1に示した組成であるホークランドの液肥(自家製)を施用して栽培を行った。栽培40日目には、図7に示したように外生菌根菌が感染して、肥料だけで育苗した苗木よりも健全な育苗を行うことができた。また、植物体の重量変化は図8に示したように、マテバシイでは無処理区に比して約2倍、クロマツにおいては、無処理区に比して約3倍の生長を示した。
Example 9
Vermiculite (manufactured by Nittai Co., Ltd.) that has been subjected to dry heat sterilization at 180 ° C for 8 hours is seeded with matebashii (from Misaki-cho, Osaka Prefecture), Sudagii (from Misaki-cho, Osaka Prefecture), and Ubameshi (from Misaki-cho, Osaka Prefecture). After sowing, seedlings having a uniform size were bred by irrigating in a timely manner. Next, after applying 10 ml per seedling seedling to the planting hole using the ectomycorrhizal planting material prepared in Example 2, the liquid fertilizer of Hawkland having the composition shown in Table 1 every week (Homemade) was applied for cultivation. On the 40th day of cultivation, ectomycorrhizal fungi were infected as shown in FIG. 7, and it was possible to carry out healthy seedlings more than seedlings grown only with fertilizers. In addition, as shown in FIG. 8, the change in the weight of the plant body was about twice as long as that of the untreated group, and about three times as much as that of the black pine as compared with the untreated group.

(実施例10)
乾熱滅菌処理を180℃にて8時間行ったバーミキュライト(ニッタイ株式会社製)にヒラドツツジ(京都府宇治市産)を挿し木育苗した後、適時潅水して大きさの揃った実生苗を育生した。次に、実施例3において作製したエリコイド菌根菌による緑化資材を、上記実生苗1本当たり10mlを植穴に施用した後、1週間毎にホークランドの液肥(自家製)を施用して栽培を行った。栽培40日目には、図9に示したようにエリコイド菌根菌が感染して、肥料だけで育苗した苗木よりも健全な育苗を行うことができた。また、植物体の重量変化は図10に示したように、ヒラドツツジでは無処理区に比して約2倍の生長を示した。
(Example 10)
A vermiculite (manufactured by Nittai Co., Ltd.) that had been subjected to a dry heat sterilization treatment at 180 ° C. for 8 hours was planted with hirado azalea (produced by Uji City, Kyoto Prefecture), and seedlings were bred in a timely manner to grow seedlings of uniform size. Next, after applying 10 ml per seedling seedling to the planting hole, the vegetative material produced in Example 3 was applied with Hawkland liquid fertilizer (homemade) every week. went. On the 40th day of cultivation, as shown in FIG. 9, ericoidal mycorrhizal fungi were infected, and it was possible to carry out healthy raising of seedlings compared to seedlings grown only with fertilizer. Moreover, as shown in FIG. 10, the weight change of the plant body showed about twice as much growth in the hill azalea as compared with the untreated section.

(実施例11)
VA菌根菌が共生するアジュガ(大阪府大阪市産)、フッキソウ(大阪府大阪市産)と外生菌根菌が共生するマテバシイ(大阪府大阪市産)、シラカシ(大阪府大阪市産)を混植する屋上緑化において、実施例4において作製したVA菌根菌と外生菌根菌を含む緑化資材を屋上緑化基盤に5%混合して施用した。その結果は図11に示したように、いずれの樹種においても植裁90日目にはVA菌根菌と外生菌根菌が共生し、肥料だけで緑化した場合よりも植物体の重量変化で無処理区に比して約50%増の生長を示し、健全な植物を育生することができた。
(Example 11)
Ajuga symbiotic VA mycorrhizal fungi (Osaka City, Osaka Prefecture), Fukkiso (Osaka City Osaka Prefecture) and ectomycorrhizal symbiont (Osaka City Osaka Prefecture), Shirakashi (Osaka City Osaka Prefecture) The greening material containing VA mycorrhizal fungi and ectomycorrhizal fungi prepared in Example 4 was mixed and applied to the rooftop greening base. As a result, as shown in FIG. 11, in any tree species, VA mycorrhizal fungi and ectomycorrhizal fungi coexisted on the 90th day of planting, and the change in the weight of the plant compared to the case of greening only with fertilizers. The plant grew about 50% more than the untreated area, and was able to grow healthy plants.

(実施例12)
VA菌根菌が共生するアジュガ(大阪府大阪市産)、フッキソウ(大阪府大阪市産)とエリコイド菌根菌が共生するヒラドツツジ(大阪府大阪市産)、サツキツツジ(大阪府大阪市産)を混植する屋上緑化において、実施例5において作製したVA菌根菌とエリコイド菌根菌を含む緑化資材を屋上緑化基盤に5%混合して施用した。その結果は図12に示したように、植裁90日目にはVA菌根菌、エリコイド菌根菌が共生し、肥料だけで緑化した場合よりも健全な植物を育生することができた。
(Example 12)
Ajuga (produced in Osaka City, Osaka Prefecture) where VA mycorrhizal fungi coexist, Hirado Azalea (produced in Osaka City, Osaka Prefecture) and Futsukiso (produced in Osaka City, Osaka Prefecture) and Satsuki Azalea (produced in Osaka City, Osaka Prefecture) In rooftop greening to be mixed, 5% of the greening material containing VA mycorrhizal fungi and ericoidal mycorrhizal fungi prepared in Example 5 was applied to the rooftop greening base. As a result, as shown in FIG. 12, VA mycorrhizal fungi and ericoidal mycorrhizal fungi coexisted on the 90th day of planting, and a healthy plant could be bred as compared with the case of greening with only fertilizer.

(実施例13)
外生菌根菌が共生するマテバシイ(大阪府岬町産)、シラカシ(大阪府大阪市産)とエリコイド菌根菌が共生するヒラドツツジ(大阪府大阪市産)、サツキツツジ(大阪府大阪市産)を混植する屋上緑化において、実施例6において作製した外生菌根菌とエリコイド菌根菌を含む緑化資材を屋上緑化基盤に5%混合して施用した。その結果は図13に示したように、植裁90日目には外生菌根菌、エリコイド菌根菌が共生し、肥料だけで緑化した場合よりも健全な植物を育生することができた。
(Example 13)
Matebashii (produced in Misaki-cho, Osaka), shirakashi (produced in Osaka, Osaka) and hirado azalea (produced in Osaka-shi, Osaka), Satsuki azalea (produced in Osaka-shi, Osaka) The greening material containing the ectomycorrhizal fungi and ericoid mycorrhizal fungi prepared in Example 6 was mixed and applied to the rooftop greening base. As a result, as shown in FIG. 13, ectomycorrhizal fungi and ericoidal mycorrhizal fungi coexisted on the 90th day of planting, and a healthy plant could be bred as compared with the case of greening only with fertilizer. .

(実施例14)
VA菌根菌が共生するアジュガ(大阪府大阪市産)、フッキソウ(大阪府大阪市産)、外生菌根菌が共生するマテバシイ(大阪府大阪市産)、シラカシ(大阪府大阪市産)及びエリコイド菌根菌が共生するヒラドツツジ(大阪府大阪市産)、サツキツツジ(大阪府大阪市産)を混植する屋上緑化において、実施例7において作製したVA菌根菌、外生菌根菌及びエリコイド菌根菌を含む緑化資材を屋上緑化基盤に5%混合して施用した。その結果は図14に示したように、植裁90日目にはVA菌根菌、外生菌根菌及びエリコイド菌根菌が共生し、肥料だけで緑化した場合よりも健全な植物を育生することができた。
(Example 14)
Ajuga symbiotic VA mycorrhizal fungi (Osaka city, Osaka), Fukkiso (Osaka city Osaka), Matebashii symbiotic ectomycorrhizal fungi (produced in Osaka city, Osaka), Shirakashi (produced in Osaka city, Osaka prefecture) And ectomycorrhizal fungi, ectomycorrhizal fungi, and ectomycorrhizal fungi produced in Example 7 in rooftop greening mixed with Japanese azalea (produced in Osaka City, Osaka Prefecture) and Satsuki Azalea (produced in Osaka City, Osaka Prefecture). The greening material containing mycorrhizal fungi was mixed and applied to the rooftop greening base. As shown in FIG. 14, VA mycorrhizal fungi, ectomycorrhizal fungi and ericoidal mycorrhizal fungi coexisted on the 90th day of planting, and a healthy plant was bred as compared with the case of greening only with fertilizer. We were able to.

本発明の緑化資材は、法面の緑化、造成地の緑化、崩壊跡地の緑化、火山噴火跡地などの災害跡地の緑化をはじめ、造園、園芸、果樹栽培などの資材として利用可能な資材である。   The revegetation material of the present invention is a material that can be used as a material for landscaping, horticulture, fruit tree cultivation, etc., including revegetation of slopes, revegetation of reclaimed land, revegetation of collapsed sites, revegetation of disaster sites such as volcanic eruption sites, etc. .

セルトレイの断面図Cross section of cell tray アルファルファにおけるVA菌根菌の菌体重量の変化を示す図The figure which shows the change of the cell weight of VA mycorrhizal fungi in alfalfa 外生菌根菌の菌体重量の変化を示す図Diagram showing changes in microbial weight of ectomycorrhizal fungi エリコイド菌根菌の菌体重量の変化を示す図Diagram showing changes in cell weight of ericoidal mycorrhizal fungi VA菌根菌を保持した緑化資材による植物の生育を示した図 a ホルトノキ b タブノキDiagram showing plant growth with greening material holding VA mycorrhizal fungi ホルトノキ及びタブノキにおけるVA菌根菌資材による植物体乾燥重量の変化を示す図The figure which shows the change of the plant body dry weight by the VA mycorrhizal fungi material in the horn beetle and the tabinoki 外生菌根菌を保持した緑化資材による植物の生育を示した図 a マテバシイ b クロマツA diagram showing the growth of a plant using a greening material that holds ectomycorrhizal fungi a Matebashi b Black pine マテバシイ及びクロマツにおける外生菌根菌の菌体重量の変化を示す図Figure showing changes in the weight of ectomycorrhizal fungi in pine pine and black pine ヒラドツツジにおけるエリコイド菌根菌を保持した緑化資材による植物の生育を示した図A diagram showing the growth of plants by revegetation material that retains ericoidal mycorrhizal fungi in the azalea ヒラドツツジにおけるエリコイド菌根菌資材による植物体乾燥重量の変化を示す図Figure showing changes in dry weight of plants by ericoidal mycorrhizal fungi material in the Japanese azalea a アジュガとフッキソウにおけるVA菌根菌と外生菌根菌を保持した緑化資材によるVA菌根菌と外生菌根菌資材による植物体乾燥重量の変化を示す図 b マテバシイとシラカシにおけるVA菌根菌と外生菌根菌を保持した緑化資材によるVA菌根菌と外生菌根菌資材による植物体乾燥重量の変化を示す図a Figure showing changes in dry weight of plant by VA mycorrhizal fungi and ectomycorrhizal fungi with VA mycorrhizal fungi and ectomycorrhizal fungi, and VA mycorrhiza in pine mysore and white birch Of change in plant dry weight by VA mycorrhizal fungus and ectomycorrhizal fungus material with greening material holding fungus and ectomycorrhizal fungus a アジュガとフッキソウにおけるVA菌根菌とエリコイド菌根菌を保持した緑化資材によるVA菌根菌と外生菌根菌資材による植物体乾燥重量の変化を示す図 b サツキツツジとヒラドツツジにおけるVA菌根菌とエリコイド菌根菌を保持した緑化資材によるVA菌根菌と外生菌根菌資材による植物体乾燥重量の変化を示す図a Figure showing changes in plant dry weight by VA mycorrhizal fungi and ectomycorrhizal fungi material with VA mycorrhizal fungi and ericoidal mycorrhizal fungi in Ajuga and Fukkiso, b VA mycorrhizal fungi in Satsuki Azalea and Japanese azalea Of change in plant dry weight by VA mycorrhizal fungus and ectomycorrhizal fungus material with greening material retaining erythroid mycorrhizal fungus a マテバシイとシラカシにおける外生菌根菌とエリコイド菌根菌を保持した緑化資材によるVA菌根菌と外生菌根菌資材による植物体乾燥重量の変化を示す図 b サツキツツジとヒラドツツジにおける外生菌根菌とエリコイド菌根菌を保持した緑化資材によるVA菌根菌と外生菌根菌資材による植物体乾燥重量の変化を示す図a Figure showing changes in dry weight of plants by VA mycorrhizal fungi and ectomycorrhizal fungi material with ectomycorrhizal fungi and ericoidal mycorrhizal fungi in Matebashii and Shirakabashi b Exogenous fungi in Satsuki Azalea and Japanese azalea The figure which shows the change of the plant dry weight by the VA mycorrhizal fungus and the ectomycorrhizal fungi material by the greening material which holds the mycorrhizal fungus and the ericoidal mycorrhizal fungus a アジュガとフッキソウにおけるVA菌根菌、外生菌根菌及びエリコイド菌根菌を保持した緑化資材によるVA菌根菌、外生菌根菌及びエリコイド菌根菌資材による植物体乾燥重量の変化を示す図 b マテバシイとシラカシにおけるVA菌根菌、外生菌根菌及びエリコイド菌根菌を保持した緑化資材によるVA菌根菌、外生菌根菌及びエリコイド菌根菌資材による植物体乾燥重量の変化を示す図 c サツキツツジとヒラドツツジにおけるVA菌根菌、外生菌根菌及びエリコイド菌根菌を保持した緑化資材によるVA菌根菌、外生菌根菌及びエリコイド菌根菌資材による植物体乾燥重量の変化を示す図a Change in dry weight of plant by VA mycorrhizal fungi, ectomycorrhizal fungi and ericoid mycorrhizal fungi with greening materials holding VA mycorrhizal fungi, ectomycorrhizal fungi and ericoid mycorrhizal fungi in Ajuga and Fukkiso Figure b. Dry weight of plant body by VA mycorrhizal fungus, ectomycorrhizal fungi and ericoidal mycorrhizal fungus material with greening material holding VA mycorrhizal fungi, ectomycorrhizal fungi and ericoid mycorrhizal fungi Figure showing changes c Plants dried by VA mycorrhizal fungi, ectomycorrhizal fungi and ericoid mycorrhizal fungi with greening material holding VA mycorrhizal fungi, ectomycorrhizal fungi and ericoidal mycorrhizal fungi in Satsuki azalea and hirado azalea Diagram showing changes in weight

符号の説明Explanation of symbols

1.セルトレイ
2.種子
3.VA菌根菌
4.川砂

1. Cell tray2. Seed 3. VA mycorrhizal fungi4. River sand

Claims (17)

弱酸性乃至酸性である木質熱処理物にVA菌根菌を保持してなることを特徴とする緑化資材。   A greening material characterized by holding VA mycorrhizal fungi in a weakly acidic or acidic woody heat-treated product. 弱酸性乃至酸性である木質熱処理物に外生菌根菌を保持してなることを特徴とする緑化資材。   A greening material characterized by holding ectomycorrhizal fungi in a heat-treated wood that is weakly acidic or acidic. 弱酸性乃至酸性である木質熱処理物にエリコイド菌根菌を保持してなることを特徴とする緑化資材。   A greening material characterized by holding ericoidal mycorrhizal fungi in a slightly acidic or acidic woody heat-treated product. 弱酸性乃至酸性である木質熱処理物にVA菌根菌、外生菌根菌およびエリコイド菌根菌のいずれか1種または2種以上を保持してなることを特徴とする緑化資材。   A greening material comprising a weakly acidic or acidic woody heat-treated product containing one or more of VA mycorrhizal fungi, ectomycorrhizal fungi and ericoid mycorrhizal fungi. 前記VA菌根菌が、ジャイガスポーラ(Gigaspora)属、ステクロスポーラ(Scutellospora)属、グロマス(Glomus)属、アカウロスポーラ(Acaulospora)属、スクレロシスチス(Sclerocystis)属およびエンテロスポーラ(Entrophospora)属のいずれか1種または2種以上であることを特徴とする請求項1または4に記載の緑化資材。   The VA mycorrhizal fungi are genus Gigaspora, genus Scutellospora, genus Gromus, genus Acaulospora, genus Sclerocystis and genus Enterophospora. The greening material according to claim 1, wherein the greening material is any one or two or more. 前記外生菌根菌が、キシメジ(Tricholomataceae)科、イグチ(Boletaceae)科、テングタケ(Amanitaceae)科、フウセンタケ(Cortinariaceae)科、ヒダハタケ(Paxillaceae)科、ベニタケ(Russulaceae)科、オニイグチ(Strobilomycetaceae)科、アンズタケ(Cantharellaceae)科、イボタケ(Thelephoraceae)科、コツブタケ(Pisolithaceae)科、ニセショウロ(Sclerodermataceae)科およびイモタケ(Terfeziaceae)科のいずれか1種または2種以上であることを特徴とする請求項2または4に記載の緑化資材。   The ectomycorrhizal fungi are: Tricholomataceae family, Boletaceae family, Amanitaceae family, Cortinariaceae family, Paxillaceae family, Russulaceae family, Strobilomycet family Claim 2 or 4 characterized in that it is any one or more of the family of chanterelle (Cantharellaceae), thelephoraceae, the family Pisolithaceae, the family Sclerodermataceae and the family Terfeziaceae Greening materials described in 1. 前記エリコイド菌根菌が、子嚢菌類、不完全菌類及び担子菌類のいずれか1種または2種以上であることを特徴とする請求項3または4に記載の緑化資材。   The greening material according to claim 3 or 4, wherein the ericoid mycorrhizal fungus is any one or more of ascomycetes, incomplete fungi, and basidiomycetes. 前記子嚢菌類が、Hymenoscyphus属、Gymnascella属、Pseudogymnascus属及びMyxotrichum属のいずれか1種または2種以上であることを特徴とする請求項7に記載の緑化資材。   The planting material according to claim 7, wherein the ascomycete is one or more of Hygenoscyphus genus, Gymnascella genus, Pseudogymnascus genus and Myxotrichum genus. 前記不完全菌類が、Oidiodendron属であることを特徴とする請求項7に記載の緑化資材。   The greening material according to claim 7, wherein the imperfect fungus belongs to the genus Oidiodendron. 川砂またはポテト・デキストロース液体培地(PDB培地)を含有する請求項1〜9いずれか記載の緑化資材。The greening material according to any one of claims 1 to 9, comprising river sand or potato-dextrose liquid medium (PDB medium). 木質熱処理物に等容量の川砂を混合した混合物を高圧滅菌処理した後、予めVA菌根菌を感染させた宿主植物を該混合物に植え付け、25℃〜28℃で該混合物中に菌糸を充分に伸長させることを特徴とする弱酸性乃至酸性である木質熱処理物にVA菌根菌を保持してなる緑化資材の製造方法。   After sterilizing a mixture of an equal volume of river sand mixed with a wooden heat-treated product, a host plant pre-infected with VA mycorrhizal fungi is planted in the mixture, and the mycelium is sufficiently introduced into the mixture at 25 ° C to 28 ° C. A method for producing a greening material obtained by holding a VA mycorrhizal fungus in a woody heat-treated product that is weakly acidic or acidic, characterized by extending. 木質熱処理物にポテト・デキストロース液体培地(PDB培地)を添加して高圧滅菌処理した後、予め外生菌根菌をポテト・デキストロース寒天培地(PDA培地)で平板培養し、その所要量を該木質熱処理物に接種し、25℃〜28℃で培養し、菌糸を充分に伸長させることを特徴とする弱酸性乃至酸性である木質熱処理物に外生菌根菌を保持してなる緑化資材の製造方法。   After adding potato-dextrose liquid medium (PDB medium) to the heat-treated wood and sterilizing under high pressure, the ectomycorrhizal fungi are pre-plated on potato-dextrose agar medium (PDA medium), and the required amount is added to the woody material. Manufacture of greening material that holds ectomycorrhizal fungi in a slightly acidic or acidic woody heat-treated product, characterized by inoculating a heat-treated product, culturing at 25 ° C. to 28 ° C., and sufficiently extending mycelia Method. 木質熱処理物にポテト・デキストロース液体培地(PDB培地)を添加して高圧滅菌処理した後、予めエリコイド菌根菌のいずれか1種をポテト・デキストロース寒天培地(PDA培地)で平板培養し、その所要量を該木質熱処理物に接種し、25℃〜28℃で培養し、菌糸を充分に伸長させることを特徴とする弱酸性乃至酸性である木質熱処理物にエリコイド菌根菌を保持してなる緑化資材の製造方法。   After adding potato-dextrose liquid medium (PDB medium) to the heat-treated wood and sterilizing under high pressure, any one of the ericid mycorrhizal fungi is plated in advance on potato-dextrose agar medium (PDA medium). Inoculate the amount of heat-treated woody material, incubate at 25-28 ° C, and sufficiently elongate mycelium. Material manufacturing method. 請求項11に記載した製造方法で製造したVA菌根菌を保持してなる緑化資材、請求項12に記載した製造方法で製造した外生菌根菌を保持してなる緑化資材、及び請求項13に記載した製造方法で製造したエリコイド菌根菌を保持してなる緑化資材、のいずれか2種以上を混合することを特徴とする請求項4に記載の緑化資材の製造方法。 The greening material which hold | maintains VA mycorrhizal fungi manufactured with the manufacturing method described in Claim 11 , the greening material which hold | maintains ectomycorrhizal fungi manufactured with the manufacturing method of Claim 12 , and Claim The method for producing a greening material according to claim 4, wherein any two or more of the greening materials obtained by holding the ericoidal mycorrhizal fungi produced by the production method described in 13 are mixed. 弱酸性乃至酸性である木質熱処理物にVA菌根菌、外生菌根菌及びエリコイド菌根菌のいずれか1種または2種以上を保持してなる緑化資材を、苗木を植裁する緑化工事または造園工事において、肥料の代替または肥料の一部の代替として施用することを特徴とする緑化資材の使用方法。   Revegetation planting planting seedlings with a vegetative heat treatment material that is weakly acidic or acidic and containing one or more of VA mycorrhizal fungi, ectomycorrhizal fungi and ericoid mycorrhizal fungi Or in landscaping work, the use method of the greening material characterized by applying as a substitute of a fertilizer or a part of fertilizer. 弱酸性乃至酸性である木質熱処理物にVA菌根菌、外生菌根菌及びエリコイド菌根菌のいずれか1種または2種以上を保持してなる緑化資材を、花卉、野菜、果樹などのいずれか1種または2種以上の育苗時に肥料の代替または肥料の一部の代替として施用することを特徴とする緑化資材の使用方法。   A greening material comprising one or more of VA mycorrhizal fungi, ectomycorrhizal fungi and ericoidal mycorrhizal fungi, which are weakly acidic to acidic heat treated wood, such as flowers, vegetables, fruit trees, etc. A method of using a greening material, wherein the method is applied as a substitute for a fertilizer or as a partial substitute for a fertilizer when raising one or more seedlings. 弱酸性乃至酸性である木質熱処理物にVA菌根菌、外生菌根菌及びエリコイド菌根菌のいずれか1種または2種以上を保持してなる緑化資材を、樹勢の衰えた樹木または果樹に、樹勢回復資材として施用することを特徴とする緑化資材の使用方法。   A tree or fruit tree with a decline in tree vigor, comprising one or more of VA mycorrhizal fungi, ectomycorrhizal fungi and ericoidal mycorrhizal fungi on a slightly heat-treated or acidic heat treated wood In addition, the method of using a greening material, characterized by being applied as a tree restoration material.
JP2005266855A 2005-09-14 2005-09-14 Revegetation material using heat-treated wood and method for producing and using the same Expired - Fee Related JP5205690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005266855A JP5205690B2 (en) 2005-09-14 2005-09-14 Revegetation material using heat-treated wood and method for producing and using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005266855A JP5205690B2 (en) 2005-09-14 2005-09-14 Revegetation material using heat-treated wood and method for producing and using the same

Publications (2)

Publication Number Publication Date
JP2007074986A JP2007074986A (en) 2007-03-29
JP5205690B2 true JP5205690B2 (en) 2013-06-05

Family

ID=37935913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005266855A Expired - Fee Related JP5205690B2 (en) 2005-09-14 2005-09-14 Revegetation material using heat-treated wood and method for producing and using the same

Country Status (1)

Country Link
JP (1) JP5205690B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6093555A (en) * 1983-10-27 1985-05-25 Toshiba Corp Microprogram controller
JP6192162B2 (en) * 2013-09-03 2017-09-06 関西電力株式会社 Tree planting material and its manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05176636A (en) * 1991-08-06 1993-07-20 Idemitsu Kosan Co Ltd Proliferation of va mycorrhiza bacteria
JP4238317B2 (en) * 2003-07-10 2009-03-18 国立大学法人山口大学 Solid culture method of ectomycorrhizal fungi

Also Published As

Publication number Publication date
JP2007074986A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
CN105325244B (en) A kind of method that use in conjunction AMF carries out the cultivation of citrus container Va Mycorrhiza Seedling with PGPR microbial inoculums
MX2013003809A (en) Plant growth medium.
JP6192162B2 (en) Tree planting material and its manufacturing method
CN102626029A (en) Method for planting ardisia crenata container seedlings by using microorganisms
Nurbaity et al. Application of Glomus sp. and Pseudomonas diminuta reduce the use of chemical fertilizers in production of potato grown on different soil types
JP2012080829A (en) Greening material and method for producing the same
EP3289878A1 (en) Method for producing an organic substrate for promoting growth during plant germination and development, and organic substrate
JP5205690B2 (en) Revegetation material using heat-treated wood and method for producing and using the same
Sharma et al. Screening of AM fungi and Azotobacter chroococcum under natural, solarization, chemical sterilization and moisture conservation practices for commercial mango nursery production in north-west Himalayas
CN110313390A (en) Utilize the method for Applying Ectomycorrhizal Fungi auxiliary black pine improvement heavy-metal contaminated soil
JP2022077963A (en) Plant seedling, seedling cultivation method, culture soil, and method of growing plant
JPH0823963A (en) Method for culturing plant
Lonergan et al. Use of low nitrogen fertilizer as a strategy for maintaining mycorrhizal colonization on whitebark pine seedlings inoculated with native fungi in the greenhouse
KR100773298B1 (en) Effective inoculation method of indigenous amf for improvement of ginseng productivity
JPH05137461A (en) Production of stock for grafting
KR101931579B1 (en) Method for Soil Improvement of Mine Soil Mixed with Fine-Powdered Building Waste Using Pisolithus Tinctorius, Mycorrhizal Fungus
Abak et al. Effect of vesicular arbuscular mycorrhizas on plant growth of soilless grown muskmelon
Li Evaluation of chemical and non-chemical treatments for the control of ginseng replant disease
JP6384087B2 (en) Plant cultivation method
JP7038451B1 (en) Plant seedlings, seedling raising methods, hilling, and plant growing methods
WO2011152700A1 (en) A palm growth underground formulation
WO2024101432A1 (en) Culture soil for legumes, use of said soil, cultivation set for legumes, method for cultivating legumes, and seedlings of legumes with culture soil
CN107318294A (en) A kind of Ecological Tea Gardens soil improvement method
JPH05123057A (en) Preparation of vigorous seedling
Harisudan et al. Rhizosphere management practices in sustaining mycorrhizae

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5205690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees