JP5203038B2 - Cooker - Google Patents

Cooker Download PDF

Info

Publication number
JP5203038B2
JP5203038B2 JP2008124864A JP2008124864A JP5203038B2 JP 5203038 B2 JP5203038 B2 JP 5203038B2 JP 2008124864 A JP2008124864 A JP 2008124864A JP 2008124864 A JP2008124864 A JP 2008124864A JP 5203038 B2 JP5203038 B2 JP 5203038B2
Authority
JP
Japan
Prior art keywords
heating chamber
unit
temperature
steam
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008124864A
Other languages
Japanese (ja)
Other versions
JP2009275930A (en
Inventor
圭祐 原
哲也 門馬
浩志 伊與田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Osaka City University
Original Assignee
Sharp Corp
Osaka City University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp, Osaka City University filed Critical Sharp Corp
Priority to JP2008124864A priority Critical patent/JP5203038B2/en
Publication of JP2009275930A publication Critical patent/JP2009275930A/en
Application granted granted Critical
Publication of JP5203038B2 publication Critical patent/JP5203038B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、蒸気によって調理物を加熱調理する加熱調理器に関する。   The present invention relates to a cooking device that cooks cooked food with steam.

従来の加熱調理器は特許文献1に開示されている。この加熱調理器は蒸気を発生する蒸気発生部を備え、調理物を収納する加熱室に蒸気を供給して調理物を調理する。これにより、調理物内の水分の蒸発を防止してしっとりした仕上りに調理することができる。また、加熱室内を蒸気で満たして低酸素状態で調理が行われる。このため、ビタミン等の栄養素の破壊を防止できるとともに、油脂の酸化を防止して調理物を風味良く仕上げることができる。   A conventional cooking device is disclosed in Patent Document 1. The cooking device includes a steam generating unit that generates steam, and supplies the steam to a heating chamber in which the food is stored to cook the food. Thereby, it is possible to cook with a moist finish by preventing evaporation of moisture in the food. Moreover, cooking is performed in a low oxygen state by filling the heating chamber with steam. For this reason, destruction of nutrients such as vitamins can be prevented, and oxidation of fats and oils can be prevented to finish the cooking with a good flavor.

加熱室への蒸気の供給経路には温度センサが設けられる。蒸気が不足すると蒸気発生部によって蒸気が過熱され、温度センサの検知温度が高くなる。これにより、蒸気発生部への給水量が増やされる。また、蒸気が過剰に供給されると蒸気が加熱不足になり、温度センサの検知温度が低くなる。これにより、蒸気発生部への給水量が減らされる。従って、所定量の蒸気を安定して加熱室に供給することができる。   A temperature sensor is provided in the steam supply path to the heating chamber. When the steam is insufficient, the steam is overheated by the steam generation unit, and the temperature detected by the temperature sensor increases. As a result, the amount of water supplied to the steam generator is increased. Further, when the steam is supplied excessively, the steam becomes insufficiently heated and the temperature detected by the temperature sensor is lowered. As a result, the amount of water supplied to the steam generator is reduced. Therefore, a predetermined amount of steam can be stably supplied to the heating chamber.

上記の加熱調理器によると、蒸気を加熱室に安定供給できるが、加熱室内の気体の酸素濃度を正確に把握することができない。このため、加熱室内が低酸素状態に到達しても一定量の蒸気の供給が継続され、電力浪費が大きい問題がある。   According to the heating cooker, steam can be stably supplied to the heating chamber, but the oxygen concentration of the gas in the heating chamber cannot be accurately grasped. For this reason, even if the heating chamber reaches a low oxygen state, supply of a constant amount of steam is continued, and there is a problem that power consumption is large.

また、特許文献2には加熱室内に酸素濃度センサや湿度センサを設けた加熱調理器が開示される。酸素濃度センサは加熱室の酸素濃度を検出し、湿度センサは加熱室内の絶対湿度を検知する。加熱室内は蒸気と空気の混合気体であるため、絶対湿度を検知することによって酸素濃度を検出できる。蒸気の供給によって加熱室内の酸素濃度が低下すると湿度センサまたは酸素濃度センサが検知し、蒸気の供給を停止または減少させる。これにより、電力浪費を防止することができる。   Patent Document 2 discloses a cooking device in which an oxygen concentration sensor and a humidity sensor are provided in a heating chamber. The oxygen concentration sensor detects the oxygen concentration in the heating chamber, and the humidity sensor detects the absolute humidity in the heating chamber. Since the heating chamber is a mixed gas of steam and air, the oxygen concentration can be detected by detecting the absolute humidity. When the oxygen concentration in the heating chamber decreases due to the supply of steam, the humidity sensor or the oxygen concentration sensor detects and stops or reduces the supply of steam. Thereby, waste of electric power can be prevented.

特開2003−227612号公報(第3頁−第5頁、第1図)JP 2003-227612 A (page 3 to page 5, FIG. 1) 特開2006−138488号公報(第5頁−第7頁、第1図)JP-A-2006-138488 (pages 5-7, FIG. 1)

しかしながら、上記特許文献2に開示された従来の加熱調理器によると、湿度センサは耐熱温度が低いため、加熱室内の絶対湿度を正確に検知することができない。このため、蒸気の供給が適切に行われない問題があった。また、酸素濃度センサは耐熱温度の高い機種を選択する必要があるため非常に高価になる問題がある。   However, according to the conventional cooking device disclosed in Patent Document 2, the humidity sensor has a low heat-resistant temperature, and thus cannot accurately detect the absolute humidity in the heating chamber. For this reason, there was a problem that supply of steam was not performed appropriately. In addition, there is a problem that the oxygen concentration sensor becomes very expensive because it is necessary to select a model having a high heat-resistant temperature.

本発明は、安価で蒸気の供給を適切に制御できる加熱調理器を提供することを目的とする。   An object of this invention is to provide the heating cooker which can control supply of a vapor | steam cheaply.

上記目的を達成するために本発明は、調理物を収納する加熱室と、前記加熱室に蒸気を供給する蒸気供給部と、蒸気の供給に伴う前記加熱室からの排気が流通する排気部と、前記排気部に外気を供給して前記加熱室の排気を冷却する冷却部と、前記加熱室内から前記冷却部による冷却前までの間の気体の温度を検知する加熱室温度検知部と、前記冷却部による冷却後の気体の温度を検知する冷却温度検知部と、前記冷却部による冷却後の気体に含まれた少なくとも一の成分の含有度合を検知する含有度合検知部とを備え、前記加熱室温度検知部、前記冷却温度検知部及び前記含有度合検知部の検知結果に基づいて前記蒸気供給部による蒸気の供給を制御したことを特徴としている。   In order to achieve the above object, the present invention provides a heating chamber for storing a cooked product, a steam supply unit for supplying steam to the heating chamber, and an exhaust unit for circulating exhaust from the heating chamber accompanying the supply of steam. A cooling unit that supplies outside air to the exhaust unit to cool the exhaust of the heating chamber, a heating chamber temperature detection unit that detects the temperature of the gas from the heating chamber to before cooling by the cooling unit, and A cooling temperature detection unit for detecting the temperature of the gas after cooling by the cooling unit, and a content level detection unit for detecting the content level of at least one component contained in the gas after cooling by the cooling unit, the heating The steam supply by the steam supply unit is controlled based on the detection results of the room temperature detection unit, the cooling temperature detection unit, and the content level detection unit.

この構成によると、蒸気供給部によって飽和蒸気または過熱蒸気が生成され、加熱室に供給される。加熱室内の空気は蒸気の供給によって排気部から外部に排気され、低酸素状態で調理物が加熱調理される。排気部を流通する排気は冷却部によって外気が供給されて冷却される。加熱室温度検知部は加熱室内または冷却前の加熱室の排気の温度を検知する。冷却温度検知部は冷却部よりも下流側の排気の温度を検知する。含有度合検知部は冷却部よりも下流側の排気に含まれる気体成分の含有度合を検知する。例えば、含有度合検知部は該排気の水蒸気の含有度合を絶対湿度により検知してもよく、酸素や窒素の含有度合を酸素濃度や窒素濃度により検知してもよい。蒸気供給部は加熱室温度検知部、冷却温度検知部及び含有度合検知部の検知結果に基づいて蒸気の供給が制御される。加熱室内の気体の状態が所定の状態になると蒸気の供給削減等が行われる。   According to this configuration, saturated steam or superheated steam is generated by the steam supply unit and supplied to the heating chamber. Air in the heating chamber is exhausted to the outside from the exhaust section by supplying steam, and the cooked food is cooked in a low oxygen state. Exhaust air flowing through the exhaust section is cooled by the outside air supplied by the cooling section. The heating chamber temperature detector detects the temperature of the exhaust in the heating chamber or the heating chamber before cooling. The cooling temperature detection unit detects the temperature of the exhaust downstream of the cooling unit. A content degree detection part detects the content degree of the gas component contained in exhaust_gas | exhaustion downstream from a cooling part. For example, the content level detection unit may detect the content level of water vapor in the exhaust gas based on absolute humidity, or may detect the content level of oxygen or nitrogen based on oxygen concentration or nitrogen concentration. In the steam supply unit, the supply of steam is controlled based on the detection results of the heating chamber temperature detection unit, the cooling temperature detection unit, and the content level detection unit. When the gas state in the heating chamber reaches a predetermined state, the supply of steam is reduced.

また本発明は、上記構成の加熱調理器において、前記加熱室温度検知部、前記冷却温度検知部及び前記含有度合検知部の検知結果から前記加熱室内の気体に含まれたすくなくとも一の成分の含有度合を導出し、前記加熱室内の気体成分の含有度合に基づいて前記蒸気供給部による蒸気の供給を制御したことを特徴としている。   In the cooking device having the above-described configuration, the present invention includes at least one component contained in the gas in the heating chamber from the detection results of the heating chamber temperature detection unit, the cooling temperature detection unit, and the content degree detection unit. The degree is derived, and the supply of steam by the steam supply unit is controlled based on the degree of gas component content in the heating chamber.

この構成によると、加熱室温度検知部、冷却温度検知部及び含有度合検知部の検知結果によって加熱室内の酸素濃度や蒸気量等が導出される。そして、加熱室内の例えば、酸素濃度が所定値よりも低下すると蒸気の供給が停止または削減される。尚、加熱室内は空気と蒸気の混合気体とみなすことができ、空気中の酸素と窒素の混合比は一定と見なすことができる。従って、加熱室内の蒸気量(蒸気圧)、酸素濃度及び窒素濃度のいずれかが取得されるとその他も容易に導出できる。   According to this configuration, the oxygen concentration, the vapor amount, and the like in the heating chamber are derived from the detection results of the heating chamber temperature detection unit, the cooling temperature detection unit, and the content degree detection unit. For example, when the oxygen concentration in the heating chamber falls below a predetermined value, the supply of steam is stopped or reduced. The heating chamber can be regarded as a mixed gas of air and steam, and the mixing ratio of oxygen and nitrogen in the air can be regarded as constant. Accordingly, when any of the steam amount (vapor pressure), oxygen concentration, and nitrogen concentration in the heating chamber is acquired, others can be easily derived.

また本発明は、上記構成の加熱調理器において、外気の温度をT1、前記加熱室温度検知部の検知温度をT2、前記冷却温度検知部の検知温度をT3、外気の絶対湿度をY1、前記加熱室内の絶対湿度をY2、前記含有度合検知部の検知に基づく絶対湿度をY3、水蒸気の定圧モル比熱をCps、乾き空気の定圧モル比熱をCpaとした時に、
Y2=[{(T3−T1)Cps・Y1+(T2−T1)Cpa}・Y3
+(T3−T2)Cpa・Y1]
/{(T3−T2)Cps・Y3+(T2−T1)Cps・Y1
+(T3−T1)Cpa}
から成る式により前記加熱室内の絶対湿度を導出したことを特徴としている。
In the cooking device having the above-described configuration, the present invention is configured such that the temperature of the outside air is T1, the detection temperature of the heating chamber temperature detection unit is T2, the detection temperature of the cooling temperature detection unit is T3, the absolute humidity of the outside air is Y1, When the absolute humidity in the heating chamber is Y2, the absolute humidity based on the detection by the content detection unit is Y3, the constant pressure molar specific heat of water vapor is Cps, and the constant pressure molar specific heat of dry air is Cpa,
Y2 = [{(T3-T1) Cps · Y1 + (T2-T1) Cpa} · Y3
+ (T3-T2) Cpa · Y1]
/ {(T3-T2) Cps · Y3 + (T2-T1) Cps · Y1
+ (T3-T1) Cpa}
The absolute humidity in the heating chamber is derived by an equation consisting of:

この構成によると、加熱室温度検知部、冷却温度検知部及び含有度合検知部の検知結果に基づいて加熱室内の絶対湿度が導出される。水蒸気及び乾き空気の定圧モル比熱は一定値が用いられる。外気の温度及び絶対湿度は計測してもよく、一定値を用いてもよい。   According to this configuration, the absolute humidity in the heating chamber is derived based on the detection results of the heating chamber temperature detection unit, the cooling temperature detection unit, and the content degree detection unit. A constant value is used for the constant pressure molar specific heat of water vapor and dry air. The temperature and absolute humidity of the outside air may be measured, or constant values may be used.

また本発明は、上記構成の加熱調理器において、外気の温度及び絶対湿度をそれぞれ検知する外気温度検知部及び外気湿度検知部を設け、前記加熱室内の気体に含まれる成分の含有度合を導出する際に、前記外気温度検知部及び前記外気湿度検知部の検知結果を用いることを特徴としている。この構成によると、加熱室温度検知部、冷却温度検知部、含有度合検知部、外気温度検知部及び外気湿度検知部の検知結果によって加熱室内の酸素濃度や蒸気量等が導出される。   Moreover, this invention provides the outdoor temperature detection part and external air humidity detection part which each detect the temperature and absolute humidity of external air in the heating cooker of the said structure, and derives | leads-out the content degree of the component contained in the gas in the said heating chamber. In this case, the detection results of the outside air temperature detection unit and the outside air humidity detection unit are used. According to this configuration, the oxygen concentration in the heating chamber, the amount of steam, and the like are derived from the detection results of the heating chamber temperature detection unit, the cooling temperature detection unit, the content level detection unit, the outside air temperature detection unit, and the outside air humidity detection unit.

また本発明は、上記構成の加熱調理器において、前記含有度合検知部が前記冷却部による冷却後の気体の絶対湿度を検知する湿度センサを有することを特徴としている。この構成によると、冷却部による冷却後の気体に含まれる蒸気の含有度合が湿度センサにより検知される。   Moreover, the present invention is characterized in that, in the cooking device configured as described above, the content degree detection unit includes a humidity sensor that detects the absolute humidity of the gas after being cooled by the cooling unit. According to this structure, the content level of the vapor | steam contained in the gas after cooling by the cooling part is detected by a humidity sensor.

また本発明は、上記構成の加熱調理器において、前記含有度合検知部が前記冷却部による冷却後の気体の酸素濃度を検知する酸素濃度センサを有することを特徴としている。この構成によると、冷却部による冷却後の気体に含まれる酸素の含有度合が酸素濃度センサにより検知される。   Moreover, the present invention is characterized in that, in the cooking device having the above-described configuration, the content degree detection unit includes an oxygen concentration sensor that detects the oxygen concentration of the gas after being cooled by the cooling unit. According to this configuration, the oxygen concentration sensor detects the degree of oxygen contained in the gas cooled by the cooling unit.

また本発明は、上記構成の加熱調理器において、前記加熱室内の酸素濃度が調理物に応じて決められる所定量より低くなった際に、前記蒸気供給部による蒸気の供給量を減少させることを特徴としている。   Further, the present invention provides a cooking device configured as described above, wherein when the oxygen concentration in the heating chamber becomes lower than a predetermined amount determined according to the food, the amount of steam supplied by the steam supply unit is reduced. It is a feature.

また本発明は、上記構成の加熱調理器において、前記加熱室内の酸素濃度を表示する表示部を設けたことを特徴としている。   According to the present invention, in the cooking device having the above-described configuration, a display unit for displaying the oxygen concentration in the heating chamber is provided.

本発明によると、加熱室温度検知部、冷却温度検知部及び含有度合検知部の検知結果に基づいて蒸気供給部による蒸気の供給を制御したので、含有度合検知部に耐熱温度が低い安価なセンサを用いても加熱室内の気体の状態を判別して蒸気の供給を適切に制御できる。   According to the present invention, since the supply of steam by the steam supply unit is controlled based on the detection results of the heating chamber temperature detection unit, the cooling temperature detection unit, and the content level detection unit, an inexpensive sensor with a low heat-resistant temperature in the content level detection unit Even if is used, it is possible to determine the state of the gas in the heating chamber and appropriately control the supply of steam.

また、加熱室温度検知部、冷却温度検知部及び含有度合検知部の検知結果から加熱室内の気体に含まれたすくなくとも一の成分の含有度合を導出するので、正確に加熱室内の気体の状態を判別することができる。   Moreover, since the content level of at least one component contained in the gas in the heating chamber is derived from the detection results of the heating chamber temperature detection unit, the cooling temperature detection unit, and the content level detection unit, the state of the gas in the heating chamber can be accurately determined. Can be determined.

以下に本発明の実施形態を図面を参照して説明する。図1は一実施形態の加熱調理器を示す外観斜視図である。加熱調理器1は外装板1aで外面が覆われ、調理物を収納する加熱室11(図2参照)を有している。加熱室11の前面には扉3が回動自在に設けられる。扉3の側方には操作部21(図8参照)及び表示部22(図8参照)を有した操作パネル4が配される。加熱調理器1の上面後部には加熱室11の排気が流通する排気部2の上部2aが外装板1aから突出して設けられる。排気部2の上端には開口2bが形成される。   Embodiments of the present invention will be described below with reference to the drawings. Drawing 1 is an appearance perspective view showing the cooking-by-heating machine of one embodiment. The heating cooker 1 has a heating chamber 11 (see FIG. 2) in which the outer surface is covered with an exterior plate 1a and accommodates cooked food. A door 3 is rotatably provided on the front surface of the heating chamber 11. An operation panel 4 having an operation unit 21 (see FIG. 8) and a display unit 22 (see FIG. 8) is disposed on the side of the door 3. An upper part 2a of the exhaust part 2 through which the exhaust from the heating chamber 11 circulates is provided at the rear of the upper surface of the cooking device 1 so as to protrude from the exterior plate 1a. An opening 2 b is formed at the upper end of the exhaust part 2.

図2は加熱調理器1の外装板1aを取り外した内部を側方から見た斜視図を示している。加熱室11の外壁には蒸気発生装置5及び蒸気昇温装置6が配される。蒸気発生装置5は給水ポンプ20(図8参照)の駆動により水タンク(不図示)から給水された水を加熱して蒸気を発生する。蒸気昇温装置6は蒸気発生装置5で発生した蒸気を更に昇温して過熱蒸気を生成する。蒸気昇温装置6で生成された過熱蒸気は加熱室11に供給される。従って、蒸気発生装置5及び蒸気昇温装置6は加熱室11に蒸気を供給する蒸気供給部を構成する。   FIG. 2: has shown the perspective view which looked at the inside which removed the exterior plate 1a of the heating cooker 1 from the side. A steam generator 5 and a steam temperature raising device 6 are arranged on the outer wall of the heating chamber 11. The steam generator 5 heats water supplied from a water tank (not shown) by driving a water supply pump 20 (see FIG. 8) to generate steam. The steam temperature raising device 6 further raises the temperature of the steam generated by the steam generating device 5 to generate superheated steam. The superheated steam generated by the steam temperature raising device 6 is supplied to the heating chamber 11. Therefore, the steam generator 5 and the steam temperature raising device 6 constitute a steam supply unit that supplies steam to the heating chamber 11.

排気部2は外装板1a(図1参照)により上下に分割されたダクト状に形成され、加熱室11の背後に立設される。排気部2の下部は加熱室11に設けた排気口9(図3参照)に接続される。加熱室11の排気は排気部2を流通し、上部2a(図1参照)の上面の開口2b(図1参照)を介して外部に放出される。   The exhaust part 2 is formed in a duct shape that is divided into upper and lower parts by an exterior plate 1 a (see FIG. 1), and is erected behind the heating chamber 11. The lower part of the exhaust part 2 is connected to an exhaust port 9 (see FIG. 3) provided in the heating chamber 11. The exhaust from the heating chamber 11 flows through the exhaust part 2 and is discharged to the outside through the opening 2b (see FIG. 1) on the upper surface of the upper part 2a (see FIG. 1).

図3は加熱調理器1の扉3を開いた状態を正面から見た斜視図を示している。加熱室11の側壁上部には蒸気昇温装置6に連結される吐出口7が設けられる。加熱室11の背壁下部には排気口9が設けられる。吐出口7から加熱室11内に供給される蒸気は矢印Aに示すように加熱室11の天面に沿って流通し、側壁及び底壁に衝突して方向を変えて壁面に沿って循環する。蒸気が循環して流れることによって加熱室11内の気体は排気口9から流出する。   FIG. 3: has shown the perspective view which looked at the state which opened the door 3 of the heating cooker 1 from the front. A discharge port 7 connected to the steam temperature raising device 6 is provided on the upper side wall of the heating chamber 11. An exhaust port 9 is provided in the lower portion of the back wall of the heating chamber 11. The steam supplied from the discharge port 7 into the heating chamber 11 flows along the top surface of the heating chamber 11 as shown by an arrow A, collides with the side wall and the bottom wall, changes direction, and circulates along the wall surface. . As the steam circulates and flows, the gas in the heating chamber 11 flows out from the exhaust port 9.

図4、図5は加熱調理器1の背面から見た斜視図及び透過斜視図を示している。加熱調理器1の背面底部には凹部1bが形成され、凹部1b内に冷却ファン10が配される。排気部2は排気口9よりも下方に延びる外気供給部2e(図7参照)を有し、凹部1bの上面に開口2cが形成される。   4 and 5 show a perspective view and a transparent perspective view as seen from the back of the heating cooker 1. A recess 1b is formed at the bottom of the back surface of the heating cooker 1, and a cooling fan 10 is disposed in the recess 1b. The exhaust part 2 has an outside air supply part 2e (see FIG. 7) extending below the exhaust port 9, and an opening 2c is formed on the upper surface of the recess 1b.

図6は冷却ファン10を示す斜視図である。冷却ファン10はクロスフローファンから成り、ファンモータ28に連結されるファンロータ29を有している。ファンモータ28の駆動によりファンロータ29が回転し、矢印Cに示すように前方から外気を吸込んで上方に向けて送出する(矢印D)。これにより、開口2cを介して排気部2に外気が供給される。   FIG. 6 is a perspective view showing the cooling fan 10. The cooling fan 10 is a cross flow fan, and has a fan rotor 29 connected to a fan motor 28. The fan rotor 29 is rotated by driving the fan motor 28, and as shown by an arrow C, outside air is sucked in from the front and sent upward (arrow D). Thereby, outside air is supplied to the exhaust part 2 through the opening 2c.

図7は加熱調理器1の側面断面図を示している。排気部2の下部は前方と下方とに分岐し、連結部2d及び外気供給部2eを有している。連結部2dは前方に延びて排気口9に接続され、外気供給部2eは下方に延びて冷却ファン10を配した凹部1bに接続される。加熱室11の排気口9から矢印Bに示すように排気部2に流出する排気は冷却ファン10により供給される外気(矢印D)と合流する。   FIG. 7 shows a side sectional view of the heating cooker 1. The lower part of the exhaust part 2 branches forward and downward, and has a connecting part 2d and an outside air supply part 2e. The connecting portion 2d extends forward and is connected to the exhaust port 9, and the outside air supply portion 2e extends downward and is connected to the recess 1b in which the cooling fan 10 is disposed. As shown by an arrow B from the exhaust port 9 of the heating chamber 11, the exhaust gas flowing out to the exhaust unit 2 joins outside air (arrow D) supplied by the cooling fan 10.

これにより、加熱室11の排気が冷却され、冷却後の排気が矢印Eに示すように上昇して開口2bから放出される。従って、冷却ファン10は加熱室11の排気を外気で希釈して冷却する冷却部を構成する。クロスフローファン以外のファン(軸流ファンや遠心ファン等)により冷却ファン10を構成してもよい。   Thereby, the exhaust in the heating chamber 11 is cooled, and the exhaust after cooling rises as shown by an arrow E and is discharged from the opening 2b. Accordingly, the cooling fan 10 constitutes a cooling unit that dilutes and cools the exhaust of the heating chamber 11 with outside air. The cooling fan 10 may be configured by a fan (an axial fan, a centrifugal fan, etc.) other than the cross flow fan.

外気供給部2e内には冷却ファン10により供給される外気の温度及び絶対湿度をそれぞれ検知する温度センサ15(外気温度検知部)及び湿度センサ18(外気湿度検知部)が設けられる。連結部2d内には冷却ファン10による冷却前の排気の温度を検知する温度センサ16(加熱室温度検知部)が設けられる。排気部2の上部には冷却ファン10による冷却後の排気の温度及び絶対湿度をそれぞれ検知する温度センサ17(冷却温度検知部)及び湿度センサ19(含有度合検知部)が設けられる。   A temperature sensor 15 (outside air temperature detecting unit) and a humidity sensor 18 (outside air humidity detecting unit) for detecting the temperature and absolute humidity of the outside air supplied by the cooling fan 10 are provided in the outside air supply unit 2e. A temperature sensor 16 (heating chamber temperature detection unit) that detects the temperature of the exhaust gas before cooling by the cooling fan 10 is provided in the connecting portion 2d. A temperature sensor 17 (cooling temperature detection unit) and a humidity sensor 19 (content degree detection unit) that detect the temperature and absolute humidity of the exhaust after cooling by the cooling fan 10 are provided above the exhaust unit 2.

図8は加熱調理器1の構成を示すブロック図である。加熱調理器1はCPUを有して各部を制御する制御部12を備えている。制御部12には蒸気発生装置5、蒸気昇温装置6、冷却ファン10、給水ポンプ20、操作部21、表示部22、温度センサ15、16、17、湿度センサ18、19及び記憶部23が接続される。   FIG. 8 is a block diagram showing the configuration of the heating cooker 1. The cooking device 1 includes a control unit 12 that has a CPU and controls each unit. The controller 12 includes a steam generator 5, a steam temperature raising device 6, a cooling fan 10, a feed water pump 20, an operation unit 21, a display unit 22, temperature sensors 15, 16, 17, humidity sensors 18, 19, and a storage unit 23. Connected.

操作部21は操作パネル4(図1参照)に設けられた複数の操作キーから成り、調理メニューの選択や調理条件の設定等を行う。表示部22は操作パネル4(図1参照)に設けられた液量表示パネル等から成り、設定画面や調理状況等を表示する。記憶部23はROMやRAMから成り、加熱調理器1の動作プログラムや調理メニューのデータを記憶するとともに制御部12による演算の一時記憶を行う。   The operation unit 21 includes a plurality of operation keys provided on the operation panel 4 (see FIG. 1), and performs selection of a cooking menu, setting of cooking conditions, and the like. The display unit 22 includes a liquid amount display panel provided on the operation panel 4 (see FIG. 1) and displays a setting screen, cooking status, and the like. The memory | storage part 23 consists of ROM and RAM, and memorize | stores the operation program of the heating cooker 1, the data of a cooking menu, and temporarily stores the calculation by the control part 12. FIG.

図9は加熱調理器1の動作を示すフローチャートである。調理物を加熱室11内に設置して調理開始を指示するとステップ#11で蒸気発生装置5が駆動される。ステップ#12では蒸気昇温装置6が駆動される。これにより、加熱室11内に約300℃の過熱蒸気が供給され、それに伴って排気口9から加熱室11内の気体が流出する。この時、水蒸気よりも空気は重いため、加熱室11の下部に設けられる排気口9から迅速に空気を排気することができる。   FIG. 9 is a flowchart showing the operation of the heating cooker 1. When the food is placed in the heating chamber 11 and the start of cooking is instructed, the steam generator 5 is driven in step # 11. In step # 12, the steam temperature raising device 6 is driven. Thereby, about 300 degreeC superheated steam is supplied in the heating chamber 11, and the gas in the heating chamber 11 flows out from the exhaust port 9 in connection with it. At this time, since air is heavier than water vapor, air can be quickly exhausted from the exhaust port 9 provided in the lower part of the heating chamber 11.

ステップ#13では冷却ファン10が駆動され、外気供給部2eを介して排気部2に外気が供給される。これにより、排気部2の排気が冷却される。外気が混合する前の排気の温度は約200℃であり、常温の外気が混合して冷却された排気は100℃程度まで降温される。外気が混合した排気は排気部2内を上昇して更に冷却され、開口2bから放出される。   In step # 13, the cooling fan 10 is driven, and external air is supplied to the exhaust part 2 via the external air supply part 2e. Thereby, the exhaust of the exhaust part 2 is cooled. The temperature of the exhaust before the outside air is mixed is about 200 ° C., and the exhaust that has been cooled by mixing the outside air at room temperature is lowered to about 100 ° C. The exhaust gas mixed with the outside air rises in the exhaust section 2 and is further cooled and discharged from the opening 2b.

ステップ#14では図10に示す酸素濃度導出処理が呼び出される。酸素濃度導出処理は加熱室11の酸素濃度naを導出する。ステップ#31では温度センサ15によって外気の温度T1が検知される。ステップ#32では湿度センサ18によって外気の絶対湿度Y1が検知される。   In step # 14, the oxygen concentration derivation process shown in FIG. 10 is called. The oxygen concentration deriving process derives the oxygen concentration na of the heating chamber 11. In step # 31, the temperature sensor 15 detects the temperature T1 of the outside air. In step # 32, the humidity sensor 18 detects the absolute humidity Y1 of the outside air.

ステップ#33では温度センサ16によって外気による冷却前の加熱室11の排気の温度T2が検知される。ステップ#34では温度センサ17によって外気による冷却後の加熱室11の排気の温度T3が検知される。ステップ#35では湿度センサ19によって外気による冷却後の加熱室11の排気の絶対湿度Y3が検知される。   In step # 33, the temperature sensor 16 detects the temperature T2 of the exhaust in the heating chamber 11 before being cooled by the outside air. In step # 34, the temperature sensor 17 detects the temperature T3 of the exhaust in the heating chamber 11 after being cooled by the outside air. In step # 35, the humidity sensor 19 detects the absolute humidity Y3 of the exhaust in the heating chamber 11 after being cooled by the outside air.

ステップ#36では温度センサ15、16、17及び湿度センサ18、19の検知結果に基づいて加熱室11内の絶対湿度Y2が導出される。   In step # 36, the absolute humidity Y2 in the heating chamber 11 is derived based on the detection results of the temperature sensors 15, 16, 17 and the humidity sensors 18, 19.

冷却ファン10により排気部2に供給される外気の熱量をQ1、加熱室11から流出して外気による冷却前の排気の熱量をQ2、外気と混合して冷却された排気の熱量をQ3とすると、式(1)が成り立つ。   Let Q1 be the amount of heat of the outside air supplied to the exhaust section 2 by the cooling fan 10, Q2 be the amount of heat of the exhaust gas that has flowed out of the heating chamber 11 and cooled before it is cooled by the outside air, and Q3 is the amount of heat of the exhaust gas mixed and cooled with the outside air. Equation (1) holds.

Q1+Q2=Q3 ・・・(1)   Q1 + Q2 = Q3 (1)

水蒸気の定圧モル比熱をCps、乾き空気の定圧モル比熱をCpa、外気に含まれる水蒸気の質量をms1、外気に含まれる乾き空気の質量をma1、外気の温度をT1とすると、外気の熱量Q1は式(2)で表わされる。   When the constant pressure molar specific heat of water vapor is Cps, the constant pressure molar specific heat of dry air is Cpa, the mass of water vapor contained in the outside air is ms1, the mass of dry air contained in the outside air is ma1, and the temperature of the outside air is T1, the amount of heat Q1 of the outside air. Is represented by equation (2).

Q1=(Cps・ms1+Cpa・ma1)・T1 ・・・(2)   Q1 = (Cps · ms1 + Cpa · ma1) · T1 (2)

同様に、外気による冷却前の加熱室11の排気について、含有される水蒸気の質量をms2、乾き空気の質量をma2、温度をT2とすると、熱量Q2は式(3)で表わされる。外気による冷却後の加熱室11の排気について、含有される水蒸気の質量をms3、乾き空気の質量をma3、温度をT3とすると、熱量Q3は式(4)で表わされる。   Similarly, regarding the exhaust of the heating chamber 11 before cooling with the outside air, if the mass of water vapor contained is ms2, the mass of dry air is ma2, and the temperature is T2, the amount of heat Q2 is expressed by equation (3). Regarding the exhaust of the heating chamber 11 after cooling with outside air, if the mass of water vapor contained is ms3, the mass of dry air is ma3, and the temperature is T3, the amount of heat Q3 is expressed by equation (4).

Q2=(Cps・ms2+Cpa・ma2)・T2 ・・・(3)
Q3=(Cps・ms3+Cpa・ma3)・T3 ・・・(4)
Q2 = (Cps · ms2 + Cpa · ma2) · T2 (3)
Q3 = (Cps · ms3 + Cpa · ma3) · T3 (4)

また、水蒸気の質量及び乾き空気の質量は式(5)、(6)の関係がある。   Further, the mass of water vapor and the mass of dry air are related by the equations (5) and (6).

ms1+ms2=ms3 ・・・(5)
ma1+ma2=ma3 ・・・(6)
ms1 + ms2 = ms3 (5)
ma1 + ma2 = ma3 (6)

絶対湿度は水蒸気の質量と乾き空気の質量との比であり、外気の絶対湿度Y1及び冷却後の排気の絶対湿度Y3は式(7)、(8)で表わされる。   The absolute humidity is the ratio of the mass of water vapor to the mass of dry air. The absolute humidity Y1 of the outside air and the absolute humidity Y3 of the exhausted air after cooling are expressed by equations (7) and (8).

Y1=ms1/ma1 ・・・(7)
Y3=ms3/ma3 ・・・(8)
Y1 = ms1 / ma1 (7)
Y3 = ms3 / ma3 (8)

外気は冷却ファン10による気流(矢印D)となって加熱室11内からの排気(矢印B)と混合される。このため、冷却ファン10の流量をV、水蒸気の密度をρs、乾き空気の密度をρaとすると、式(9)の関係がある。   The outside air becomes an air flow (arrow D) by the cooling fan 10 and is mixed with the exhaust (arrow B) from the inside of the heating chamber 11. For this reason, when the flow rate of the cooling fan 10 is V, the density of water vapor is ρs, and the density of dry air is ρa, there is a relationship of Expression (9).

ms1/ρs+ma1/ρa=V ・・・(9)   ms1 / ρs + ma1 / ρa = V (9)

式(1)〜(9)において水蒸気の定圧モル比熱Cps、乾き空気の定圧モル比熱Cpa、水蒸気の密度ρs、乾き空気の密度ρaは定数である。冷却ファン10の流量Vはファンモータ28の回転数により取得できる。また、温度T1、T2、T3及び絶対湿度T1、T3は温度センサ15〜17、湿度センサ18、19により検知される。   In the formulas (1) to (9), the constant pressure molar specific heat Cps of water vapor, the constant pressure molar specific heat Cpa of dry air, the density ρs of water vapor, and the density ρa of dry air are constants. The flow rate V of the cooling fan 10 can be obtained from the rotational speed of the fan motor 28. The temperatures T1, T2, and T3 and the absolute humidity T1 and T3 are detected by the temperature sensors 15 to 17 and the humidity sensors 18 and 19, respectively.

このため、未知数はQ1、Q2、Q3、ms1、ms2、ms3、ma1、ma2、ma3の9個であるから、連立方程式を解くことができる。これにより、加熱室11から流出した冷却前の排気中の水蒸気の質量ms2、乾き空気の質量ma2は式(10)、(11)で与えられる。従って、加熱室11からの排気の絶対湿度Y2が式(12)により導出される。   For this reason, since there are nine unknowns, Q1, Q2, Q3, ms1, ms2, ms3, ma1, ma2, and ma3, simultaneous equations can be solved. Thereby, the mass ms2 of water vapor and the mass ma2 of dry air in the exhaust before cooling out from the heating chamber 11 are given by the equations (10) and (11). Therefore, the absolute humidity Y2 of the exhaust gas from the heating chamber 11 is derived by the equation (12).

ms2=−ρaρsV[{(T3−T1)CpsY1+(T2−T1)Cpa}・Y3
+(T3−T2)Cpa・Y1]
/(T3−T2)(ρaY1+ρs)(Cps・Y3+Cpa)・・(10)
ma2=−ρaρsV{(T3−T2)Cps・Y3+(T2−T1)Cps・Y1
+(T3−T1)Cpa}
/(T3−T2)(ρaY1+ρs)(Cps・Y3+Cpa)・・(11)
ms2 = −ρaρsV [{(T3−T1) CpsY1 + (T2−T1) Cpa} · Y3
+ (T3-T2) Cpa · Y1]
/ (T3-T2) (ρaY1 + ρs) (Cps · Y3 + Cpa) (10)
ma2 = −ρaρsV {(T3−T2) Cps · Y3 + (T2−T1) Cps · Y1
+ (T3-T1) Cpa}
/ (T3-T2) (ρaY1 + ρs) (Cps · Y3 + Cpa) (11)

Y2=[{(T3−T1)Cps・Y1+(T2−T1)Cpa}・Y3
+(T3−T2)Cpa・Y1]
/{(T3−T2)Cps・Y3+(T2−T1)Cps・Y1
+(T3−T1)Cpa} ・・・(12)
Y2 = [{(T3-T1) Cps · Y1 + (T2-T1) Cpa} · Y3
+ (T3-T2) Cpa · Y1]
/ {(T3-T2) Cps · Y3 + (T2-T1) Cps · Y1
+ (T3-T1) Cpa} (12)

例えば、Cps=2[J/g・K]、Cpa=1[J/g・K]とし、T1=30[℃]、T2=200[℃]、T3=90[℃]、Y1=0.002134、Y3=0.262262とすると、加熱室11内の絶対湿度Y2は式(12)に代入して、Y2=14.7と得られる。   For example, Cps = 2 [J / g · K], Cpa = 1 [J / g · K], T1 = 30 [° C.], T2 = 200 [° C.], T3 = 90 [° C.], Y1 = 0. When 002134, Y3 = 0.262262, the absolute humidity Y2 in the heating chamber 11 is substituted into the equation (12), and Y2 = 14.7 is obtained.

次に、ステップ#37では加熱室11内の酸素濃度naが導出される。一般に1気圧の空気においては、酸素が21%を占めている。加熱室11は排気部2を介して外部に連通するため内部の気圧が大気圧とほぼ等しくなっている。従って、調理開始前の加熱室11内の酸素濃度は21%である。調理を開始すると加熱室11内に蒸気が投入されて水蒸気モル濃度が増加し、酸素濃度が21%から減少していく。   Next, in step # 37, the oxygen concentration na in the heating chamber 11 is derived. In general, oxygen accounts for 21% in 1 atmosphere of air. Since the heating chamber 11 communicates with the outside through the exhaust part 2, the internal pressure is substantially equal to the atmospheric pressure. Therefore, the oxygen concentration in the heating chamber 11 before the start of cooking is 21%. When cooking is started, steam is introduced into the heating chamber 11, the water vapor molar concentration increases, and the oxygen concentration decreases from 21%.

加熱室11内で結露の発生がないとして、水蒸気モル濃度をncすると酸素濃度naは式(13)で表わされる。   Assuming that no condensation occurs in the heating chamber 11, when the water vapor molarity is nc, the oxygen concentration na is expressed by the equation (13).

na=0.21(1−nc) ・・・(13)   na = 0.21 (1-nc) (13)

水蒸気モル濃度ncは加熱室11内の水蒸気と空気のモル比であり、式(12)よりms2=Y2・ma2であるので、式(14)で表わされる。ここで、水の分子量をMs、空気の分子量をMaとしている。加熱室内11の気体が水蒸気及び空気から成るとすると、水蒸気モル濃度ncは蒸気圧(単位:気圧)に等しい。   The water vapor molar concentration nc is the molar ratio of water vapor to air in the heating chamber 11, and is expressed by the equation (14) because ms2 = Y2 · ma2 from the equation (12). Here, the molecular weight of water is Ms, and the molecular weight of air is Ma. If the gas in the heating chamber 11 is composed of water vapor and air, the water vapor molarity nc is equal to the vapor pressure (unit: atmospheric pressure).

nc=(ms2/Ms)/{(ms2/Ms)+(ma2/Ma)}
=(Y2/Ms)/{(Y2/Ms)+(1/Ma)} ・・・(14)
nc = (ms2 / Ms) / {(ms2 / Ms) + (ma2 / Ma)}
= (Y2 / Ms) / {(Y2 / Ms) + (1 / Ma)} (14)

上記例でY2=14.7の場合は、Ms=18.01、Ma=28.97とすると、nc=0.9594、na=0.0085=0.85%となる。   In the above example, when Y2 = 14.7, assuming that Ms = 18.01 and Ma = 28.97, nc = 0.9594 and na = 0.0005 = 0.85%.

ステップ#38ではステップ#37で導出した酸素濃度naが表示部22に表示される。これにより、使用者は調理の状態を詳細に知ることができ、例えば、低酸素状態で加熱調理する場合等に調理中の酸素濃度をモニターできる。従って、加熱調理器1の利便性を向上させることができる。   In step # 38, the oxygen concentration na derived in step # 37 is displayed on the display unit 22. Thereby, the user can know the cooking state in detail. For example, when cooking by heating in a low oxygen state, the user can monitor the oxygen concentration during cooking. Therefore, the convenience of the heating cooker 1 can be improved.

次に、図9のステップ#15に移行し、加熱室11の酸素濃度naが所定量よりも低いか否かが判断される。前述したように低酸素状態で加熱調理するとビタミン等の栄養素の破壊や脂の酸化を防ぐことができる。調理物に適した酸素濃度は各調理メニューによって異なり、予め記憶部23に記憶されている。例えば、ローストチキンやステーキ等の脂肪分が多い調理メニューの場合は、調理中の酸素濃度を0.1%以下にするように設定されている。   Next, the process proceeds to step # 15 in FIG. 9, and it is determined whether or not the oxygen concentration na of the heating chamber 11 is lower than a predetermined amount. As described above, cooking under low oxygen conditions can prevent the destruction of nutrients such as vitamins and the oxidation of fat. The oxygen concentration suitable for the cooked food varies depending on each cooking menu, and is stored in the storage unit 23 in advance. For example, in the case of a cooking menu with a large amount of fat such as roast chicken or steak, the oxygen concentration during cooking is set to 0.1% or less.

加熱室11の酸素濃度naが調理メニュー毎に決められた所定量よりも低い場合はステップ#16に移行する。ステップ#16では蒸気発生装置5による蒸気発生量を少なくして蒸気が供給される。加熱室11の酸素濃度naが調理メニュー毎に決められた所定量よりも高い場合はステップ#17に移行する。ステップ#17では蒸気発生装置5による蒸気発生量が多い状態で蒸気が供給される。ステップ#18では調理が終了したか否かが判別される。調理が終了してない場合はステップ#14〜#18が繰り返し行われる。   When the oxygen concentration na of the heating chamber 11 is lower than the predetermined amount determined for each cooking menu, the process proceeds to step # 16. In step # 16, the amount of steam generated by the steam generator 5 is reduced and steam is supplied. When the oxygen concentration na of the heating chamber 11 is higher than the predetermined amount determined for each cooking menu, the process proceeds to step # 17. In step # 17, steam is supplied in a state where the amount of steam generated by the steam generator 5 is large. In step # 18, it is determined whether or not cooking has been completed. If cooking has not ended, steps # 14 to # 18 are repeated.

即ち、蒸気発生量が多い状態で調理が継続され、加熱室11の酸素濃度naが所定量よりも低くなると蒸気発生量が削減される。これにより、電力浪費を防止することができる。この時、蒸気昇温装置6の電力を下げてもよい。また、蒸気発生量を少なくして調理を継続する際に、加熱室11内や周辺の温度低下によって結露が発生して加熱室11の酸素濃度が高くなる場合がある。この時、ステップ#17で蒸気発生量を多くして加熱室11の酸素濃度を低下させる。   That is, cooking is continued with a large amount of steam generated, and the amount of steam generated is reduced when the oxygen concentration na in the heating chamber 11 is lower than a predetermined amount. Thereby, waste of electric power can be prevented. At this time, the electric power of the steam temperature raising device 6 may be lowered. In addition, when cooking is continued while reducing the amount of steam generated, condensation may occur due to a temperature drop in or around the heating chamber 11 and the oxygen concentration in the heating chamber 11 may increase. At this time, in step # 17, the amount of steam generated is increased to reduce the oxygen concentration in the heating chamber 11.

尚、加熱室11の酸素濃度naが調理メニュー毎に決められた所定量よりも低い場合に、蒸気発生装置5及び蒸気昇温装置6を停止して蒸気の供給を停止してもよい。この時、加熱室11から殆ど排気されないため、正確に加熱室11の酸素濃度naを求めることが困難になる。このため、所定期間毎に蒸気発生装置5及び蒸気昇温装置6を駆動して加熱室11から排気し、加熱室11の酸素濃度naを求めるとよい。これにより、加熱室11の酸素濃度naが所定量よりも高くなると、蒸気の継続供給が再開される。   When the oxygen concentration na in the heating chamber 11 is lower than a predetermined amount determined for each cooking menu, the steam generator 5 and the steam temperature raising device 6 may be stopped to stop the supply of steam. At this time, since it is hardly exhausted from the heating chamber 11, it is difficult to accurately determine the oxygen concentration na of the heating chamber 11. For this reason, it is good to drive the steam generator 5 and the steam temperature rising device 6 every predetermined period, exhaust from the heating chamber 11, and obtain | require the oxygen concentration na of the heating chamber 11. FIG. Thereby, when the oxygen concentration na of the heating chamber 11 becomes higher than a predetermined amount, the continuous supply of steam is resumed.

ステップ#18で調理が終了したと判断されると、ステップ#19に移行して蒸気発生装置5が停止される。ステップ#20では蒸気昇温装置6が停止される。ステップ#21では冷却ファン10が停止され、処理を終了する。   If it is determined in step # 18 that cooking has ended, the process proceeds to step # 19 and the steam generator 5 is stopped. In step # 20, the steam temperature raising device 6 is stopped. In step # 21, the cooling fan 10 is stopped and the process is terminated.

本実施形態によると、温度センサ15、16、17及び湿度センサ18、19の検知結果に基づいて蒸気発生装置5及び蒸気昇温装置6を有する蒸気供給部による蒸気の供給が制御される。湿度センサ18は低温の外気の絶対湿度を検知し、湿度センサ19は外気によって冷却された後の加熱室11の排気の絶対湿度を検知する。このため、耐熱温度が低い安価な湿度センサ18、19を用いて加熱室11内の気体の状態を判別し、排気の状態を確認しながら蒸気の供給を適切に制御できるメリットがある。   According to this embodiment, the supply of steam by the steam supply unit having the steam generation device 5 and the steam temperature raising device 6 is controlled based on the detection results of the temperature sensors 15, 16, 17 and the humidity sensors 18, 19. The humidity sensor 18 detects the absolute humidity of the low-temperature outside air, and the humidity sensor 19 detects the absolute humidity of the exhaust in the heating chamber 11 after being cooled by the outside air. For this reason, there is an advantage that the supply of steam can be appropriately controlled while discriminating the state of the gas in the heating chamber 11 using inexpensive humidity sensors 18 and 19 having a low heat-resistant temperature and confirming the state of exhaust.

これにより、過剰な蒸気供給を抑制できるので、加熱調理器1の省エネルギー化を実現することができる。また、従来の加熱調理器に比べて居室内への蒸気排出量が削減されるので、居室内が多湿な雰囲気にならずに快適な室内環境を維持することが可能になる。   Thereby, since excessive vapor | steam supply can be suppressed, the energy saving of the heating cooker 1 is realizable. Moreover, since the amount of steam discharged into the living room is reduced as compared with the conventional cooking device, it is possible to maintain a comfortable indoor environment without having a humid atmosphere in the living room.

加熱室11内及び排気部2内の気体は水蒸気、酸素、窒素により殆ど占められる。酸素と窒素の混合比は一定とみなせるため、いずれか一の気体成分の含有度合を取得すると他の成分の含有度合も求められる。本実施形態では湿度センサ18(外気湿度検知部)、19(含有度合検知部)で取得する絶対湿度によって水蒸気及び空気の含有度合を検知している。これに替えて、酸素濃度センサや窒素濃度センサ等を用いて酸素や窒素の含有度合を検知してもよい。この場合においても耐熱温度が低い安価なセンサを用いることができる。   The gas in the heating chamber 11 and the exhaust part 2 is almost occupied by water vapor, oxygen, and nitrogen. Since the mixing ratio of oxygen and nitrogen can be regarded as constant, when the content level of any one gas component is acquired, the content levels of other components are also obtained. In this embodiment, the moisture and air content levels are detected by the absolute humidity acquired by the humidity sensors 18 (outside air humidity detection unit) and 19 (content level detection unit). Alternatively, the oxygen or nitrogen content may be detected using an oxygen concentration sensor, a nitrogen concentration sensor, or the like. Even in this case, an inexpensive sensor having a low heat-resistant temperature can be used.

また、式(12)により加熱室11の絶対湿度Y2(即ち、水蒸気及び空気の含有度合)を導出し、式(13)により加熱室11の酸素濃度(即ち、酸素の含有度合)を導出している。本実施形態では調理メニュー毎に蒸気の供給を可変する酸素濃度が記憶部23に記憶されているため、式(13)により酸素濃度を導出している。調理メニュー毎に蒸気の供給を可変するための他の気体の含有度合が記憶される場合は、該気体の含有度合を導出すればよい。   Further, the absolute humidity Y2 (that is, the content of water vapor and air) of the heating chamber 11 is derived from the equation (12), and the oxygen concentration (that is, the content of oxygen) of the heating chamber 11 is derived from the equation (13). ing. In this embodiment, since the oxygen concentration that varies the supply of steam for each cooking menu is stored in the storage unit 23, the oxygen concentration is derived from the equation (13). When the content level of another gas for changing the supply of steam for each cooking menu is stored, the content level of the gas may be derived.

即ち、温度センサ15、16、17、湿度センサ18、19の検知結果から加熱室11内の気体(水蒸気、酸素、窒素)に含まれたすくなくとも一の成分の含有度合を導出することによって、正確に加熱室11内の気体の状態を判別することができる。また、式(12)を用いることによって加熱室11内の絶対湿度Y2を簡単に導出することができる。   That is, by deriving the content of at least one component contained in the gas (water vapor, oxygen, nitrogen) in the heating chamber 11 from the detection results of the temperature sensors 15, 16, 17, and the humidity sensors 18, 19, accurate In addition, the state of the gas in the heating chamber 11 can be determined. Moreover, the absolute humidity Y2 in the heating chamber 11 can be easily derived by using the equation (12).

尚、式(12)において、外気の温度T1及び湿度Y1の変動量は排気の温度T2、T3及び湿度Y3に比して小さいため、温度T1、湿度Y1に定数を用いてもよい。これにより、温度センサ15及び湿度センサ18を省くことができる。温度センサ15及び湿度センサ18を設けると、より正確に加熱室11内の絶対湿度Y2を導出することができる。   In the equation (12), since the fluctuation amounts of the outside air temperature T1 and the humidity Y1 are smaller than the exhaust temperature T2, T3 and the humidity Y3, constants may be used for the temperature T1 and the humidity Y1. Thereby, the temperature sensor 15 and the humidity sensor 18 can be omitted. When the temperature sensor 15 and the humidity sensor 18 are provided, the absolute humidity Y2 in the heating chamber 11 can be derived more accurately.

また、温度センサ16を排気口9よりも下流側の連結部2dに設置しているが、加熱室11内に配置してもよい。即ち、加熱室11内から冷却ファン10による冷却前までの間であればどの位置で温度T2を検知してもよい。   Further, although the temperature sensor 16 is installed in the connecting portion 2 d on the downstream side of the exhaust port 9, it may be arranged in the heating chamber 11. That is, the temperature T <b> 2 may be detected at any position as long as it is between the heating chamber 11 and before cooling by the cooling fan 10.

本発明によると、蒸気によって調理物を加熱調理する加熱調理器に利用することができる。   ADVANTAGE OF THE INVENTION According to this invention, it can utilize for the heating cooker which heat-cookes a foodstuff with steam.

本発明の実施形態の加熱調理器を示す外観斜視図The external appearance perspective view which shows the heating cooker of embodiment of this invention 本発明の実施形態の加熱調理器の内部を側方から見た斜視図The perspective view which looked at the inside of the heating cooker of the embodiment of the present invention from the side 本発明の実施形態の加熱調理器の扉を開いた状態を正面から見た斜視図The perspective view which looked at the state which opened the door of the heating cooker of the embodiment of the present invention from the front 本発明の実施形態の加熱調理器の背面から見た斜視図The perspective view seen from the back of the heating cooker of the embodiment of the present invention 本発明の実施形態の加熱調理器の透過斜視図The permeation | transmission perspective view of the heating cooker of embodiment of this invention 本発明の実施形態の加熱調理器の冷却ファンを示す外観斜視図The external appearance perspective view which shows the cooling fan of the heating cooker of embodiment of this invention 本発明の実施形態の加熱調理器を示す側面断面図Side surface sectional drawing which shows the heating cooker of embodiment of this invention 本発明の実施形態の加熱調理器の構成を示すブロック図The block diagram which shows the structure of the heating cooker of embodiment of this invention. 本発明の実施形態の加熱調理器の調理動作を示すフローチャートThe flowchart which shows the cooking operation of the heating cooker of embodiment of this invention. 本発明の実施形態の加熱調理器の酸素濃度導出処理を示すフローチャートThe flowchart which shows the oxygen concentration derivation | leading-out process of the heating cooker of embodiment of this invention.

符号の説明Explanation of symbols

1 加熱調理器
2 排気部
3 扉
4 操作パネル
5 蒸気発生装置
6 蒸気昇温装置
7 吐出口
9 排気口
10 冷却ファン
11 加熱室
12 制御部
15、16、17 温度センサ
18、19 湿度センサ
20 給水ポンプ
21 操作部
22 表示部
23 記憶部
DESCRIPTION OF SYMBOLS 1 Heating cooker 2 Exhaust part 3 Door 4 Operation panel 5 Steam generator 6 Steam temperature rising device 7 Discharge port 9 Exhaust port 10 Cooling fan 11 Heating chamber 12 Control part 15, 16, 17 Temperature sensor 18, 19 Humidity sensor 20 Water supply Pump 21 Operation unit 22 Display unit 23 Storage unit

Claims (8)

調理物を収納する加熱室と、前記加熱室に蒸気を供給する蒸気供給部と、蒸気の供給に伴う前記加熱室からの排気が流通する排気部と、前記排気部に外気を供給して前記加熱室の排気を冷却する冷却部と、前記加熱室内から前記冷却部による冷却前までの間の気体の温度を検知する加熱室温度検知部と、前記冷却部による冷却後の気体の温度を検知する冷却温度検知部と、前記冷却部による冷却後の気体に含まれた少なくとも一の成分の含有度合を検知する含有度合検知部とを備え、前記加熱室温度検知部、前記冷却温度検知部及び前記含有度合検知部の検知結果に基づいて前記蒸気供給部による蒸気の供給を制御したことを特徴とする加熱調理器。   A heating chamber for storing a cooked product, a steam supply unit for supplying steam to the heating chamber, an exhaust unit for exhaust from the heating chamber accompanying the supply of steam, and supplying the outside air to the exhaust unit A cooling unit that cools the exhaust of the heating chamber, a heating chamber temperature detection unit that detects the temperature of the gas between the heating chamber and before cooling by the cooling unit, and a temperature of the gas after cooling by the cooling unit A cooling temperature detection unit, and a content level detection unit that detects a content level of at least one component contained in the gas cooled by the cooling unit, the heating chamber temperature detection unit, the cooling temperature detection unit, and A heating cooker characterized in that the supply of steam by the steam supply unit is controlled based on the detection result of the content degree detection unit. 前記加熱室温度検知部、前記冷却温度検知部及び前記含有度合検知部の検知結果から前記加熱室内の気体に含まれたすくなくとも一の成分の含有度合を導出し、前記加熱室内の気体成分の含有度合に基づいて前記蒸気供給部による蒸気の供給を制御したことを特徴とする請求項1に記載の加熱調理器。   Deriving the content level of at least one component contained in the gas in the heating chamber from the detection results of the heating chamber temperature detection unit, the cooling temperature detection unit, and the content level detection unit, and the content of the gas component in the heating chamber The heating cooker according to claim 1, wherein supply of steam by the steam supply unit is controlled based on a degree. 外気の温度をT1、前記加熱室温度検知部の検知温度をT2、前記冷却温度検知部の検知温度をT3、外気の絶対湿度をY1、前記加熱室内の絶対湿度をY2、前記含有度合検知部の検知に基づく絶対湿度をY3、水蒸気の定圧モル比熱をCps、乾き空気の定圧モル比熱をCpaとした時に、
Y2=[{(T3−T1)Cps・Y1+(T2−T1)Cpa}・Y3
+(T3−T2)Cpa・Y1]
/{(T3−T2)Cps・Y3+(T2−T1)Cps・Y1
+(T3−T1)Cpa}
から成る式により前記加熱室内の絶対湿度を導出したことを特徴とする請求項2に記載の加熱調理器。
The temperature of the outside air is T1, the temperature detected by the heating chamber temperature detector is T2, the temperature detected by the cooling temperature detector is T3, the absolute humidity of the outside air is Y1, the absolute humidity of the heating chamber is Y2, and the content level detector The absolute humidity based on the detection of Y3, the constant pressure molar specific heat of water vapor as Cps, and the constant pressure molar specific heat of dry air as Cpa,
Y2 = [{(T3-T1) Cps · Y1 + (T2-T1) Cpa} · Y3
+ (T3-T2) Cpa · Y1]
/ {(T3-T2) Cps · Y3 + (T2-T1) Cps · Y1
+ (T3-T1) Cpa}
The cooking device according to claim 2, wherein the absolute humidity in the heating chamber is derived by an equation consisting of:
外気の温度及び絶対湿度をそれぞれ検知する外気温度検知部及び外気湿度検知部を設け、前記加熱室内の気体に含まれる成分の含有度合を導出する際に、前記外気温度検知部及び前記外気湿度検知部の検知結果を用いることを特徴とする請求項2または請求項3に記載の加熱調理器。   An outside air temperature detecting unit and an outside air humidity detecting unit for detecting the temperature and absolute humidity of the outside air are provided, and the outside temperature detecting unit and the outside air humidity detecting unit are used when deriving the content of components contained in the gas in the heating chamber. The cooking device according to claim 2 or 3, wherein a detection result of the part is used. 前記含有度合検知部が前記冷却部による冷却後の気体の絶対湿度を検知する湿度センサを有することを特徴とする請求項1〜請求項4のいずれかに記載の加熱調理器。   The cooking device according to any one of claims 1 to 4, wherein the content degree detection unit includes a humidity sensor that detects an absolute humidity of the gas after cooling by the cooling unit. 前記含有度合検知部が前記冷却部による冷却後の気体の酸素濃度を検知する酸素濃度センサを有することを特徴とする請求項1〜請求項4のいずれかに記載の加熱調理器。   The cooking device according to any one of claims 1 to 4, wherein the content degree detection unit includes an oxygen concentration sensor that detects an oxygen concentration of a gas cooled by the cooling unit. 前記加熱室内の酸素濃度が調理物に応じて決められる所定量より低くなった際に、前記蒸気供給部による蒸気の供給量を減少させることを特徴とする請求項1〜請求項6のいずれかに記載の加熱調理器。   The supply amount of steam by the steam supply unit is decreased when the oxygen concentration in the heating chamber becomes lower than a predetermined amount determined according to the cooked food. The heating cooker described in 1. 前記加熱室内の酸素濃度を表示する表示部を設けたことを特徴とする請求項1〜請求項7のいずれかに記載の加熱調理器。   The cooking device according to any one of claims 1 to 7, further comprising a display unit that displays an oxygen concentration in the heating chamber.
JP2008124864A 2008-05-12 2008-05-12 Cooker Expired - Fee Related JP5203038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008124864A JP5203038B2 (en) 2008-05-12 2008-05-12 Cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008124864A JP5203038B2 (en) 2008-05-12 2008-05-12 Cooker

Publications (2)

Publication Number Publication Date
JP2009275930A JP2009275930A (en) 2009-11-26
JP5203038B2 true JP5203038B2 (en) 2013-06-05

Family

ID=41441536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008124864A Expired - Fee Related JP5203038B2 (en) 2008-05-12 2008-05-12 Cooker

Country Status (1)

Country Link
JP (1) JP5203038B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013801A1 (en) * 2009-07-30 2011-02-03 シャープ株式会社 Cooking device
JP5932560B2 (en) * 2012-08-08 2016-06-08 シャープ株式会社 Cooker
CN108477979A (en) * 2018-05-23 2018-09-04 杭州老板电器股份有限公司 Heat sink and steam box

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4631042B2 (en) * 2001-08-30 2011-02-16 パロマ工業株式会社 Combined cooking device
JP3918693B2 (en) * 2002-09-17 2007-05-23 松下電器産業株式会社 Cooked rice incubator
JP2005016857A (en) * 2003-06-27 2005-01-20 Sharp Corp Heating cooker
JP3775403B2 (en) * 2003-08-29 2006-05-17 松下電器産業株式会社 High frequency heating device
KR20050026611A (en) * 2003-09-09 2005-03-15 삼성전자주식회사 Superheated steam cooking apparatus
JP4398814B2 (en) * 2004-07-16 2010-01-13 シャープ株式会社 Steam cooker
KR100598389B1 (en) * 2004-08-19 2006-07-06 삼성전자주식회사 Over-heating steam cooker
JP2007010188A (en) * 2005-06-29 2007-01-18 Matsushita Electric Ind Co Ltd Heating cooker
JP2007247916A (en) * 2006-03-14 2007-09-27 Sharp Corp Heating cooker
JP2008032286A (en) * 2006-07-27 2008-02-14 Sharp Corp Heating cooker
JP4311688B2 (en) * 2006-11-02 2009-08-12 シャープ株式会社 Exhaust steam diluting apparatus and cooking device equipped with the same

Also Published As

Publication number Publication date
JP2009275930A (en) 2009-11-26

Similar Documents

Publication Publication Date Title
CN106647392B (en) A kind of temp measuring method of cooking pot tool, cooking pot tool and cooking system
CN109152497B (en) Air fryer
CN103672988B (en) Cooking equipment
AU2014204815B2 (en) Steam cooking method and steam cooking oven
JP3868464B1 (en) Cooker
EP2123981B1 (en) Automatic cooking oven comprising steam generating system
JP4589825B2 (en) Cooking equipment
US20120017770A1 (en) Cooking appliance
CN108139079A (en) For controlling the method for humidity and household appliance
KR20080037886A (en) Cooking appratus with calorie information display and method of displaying calorie information
CN104665573A (en) Cooking equipment and control method thereof
JP5203038B2 (en) Cooker
JPWO2018042695A1 (en) Cooker
CN101334178A (en) Heating cooker
CN108670050A (en) Oven with humidification function and its control method
JP2010038406A (en) Heating cooker
KR100952114B1 (en) Steam control method of steam convection oven
US9188521B2 (en) Method for controlling the concentration of a component of a gaseous mixture recirculated in a cooking chamber, particularly in food cooking ovens
JP2007321993A (en) Heating cooker
CN113974449A (en) Work control method of air fryer, air fryer and storage medium
JP2006071157A (en) Heating cooker
CN111830865A (en) Cooking appliance, control method and computer-readable storage medium
KR100909491B1 (en) Residual time display device and method for cooking electric pressure rice cooker
JP2004205130A (en) Heating cooker
CN215686730U (en) Steam cooking electric appliance and humidifying device thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130213

R150 Certificate of patent or registration of utility model

Ref document number: 5203038

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350