JP5201684B2 - Chip type solid electrolytic capacitor - Google Patents

Chip type solid electrolytic capacitor Download PDF

Info

Publication number
JP5201684B2
JP5201684B2 JP2009067641A JP2009067641A JP5201684B2 JP 5201684 B2 JP5201684 B2 JP 5201684B2 JP 2009067641 A JP2009067641 A JP 2009067641A JP 2009067641 A JP2009067641 A JP 2009067641A JP 5201684 B2 JP5201684 B2 JP 5201684B2
Authority
JP
Japan
Prior art keywords
connection terminal
cathode
anode
solid electrolytic
type solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009067641A
Other languages
Japanese (ja)
Other versions
JP2010219478A (en
Inventor
光範 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2009067641A priority Critical patent/JP5201684B2/en
Publication of JP2010219478A publication Critical patent/JP2010219478A/en
Application granted granted Critical
Publication of JP5201684B2 publication Critical patent/JP5201684B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)

Description

本発明は、チップ型固体電解コンデンサに関し、回路基板実装時のはんだ接続信頼性を向上させる下面電極構造のチップ型固体電解コンデンサに関するものである。   The present invention relates to a chip-type solid electrolytic capacitor, and more particularly to a chip-type solid electrolytic capacitor having a bottom electrode structure that improves solder connection reliability when mounted on a circuit board.

従来から弁作用金属として、タンタル、ニオブなどを用いた固体電解コンデンサは、小型で静電容量が大きく、周波数特性に優れ、CPUの電源回路などに広く使用されている。また、携帯型電子機器の発展に伴い、特にチップ型固体電解コンデンサの小型化及び薄型化が進行している。その中で、電極端子を製品の実装面に限定することで、コンデンサの内部構造を効率化し、コンデンサ素子の体積をより大きくする下面電極構造タイプの製品が登場している。このような下面電極構造のチップ型固体電解コンデンサとしては、たとえば、特許文献1に開示された技術がある。   Conventionally, solid electrolytic capacitors using tantalum, niobium or the like as a valve action metal are small, have a large capacitance, are excellent in frequency characteristics, and are widely used in power supply circuits for CPUs. In addition, with the development of portable electronic devices, chip-type solid electrolytic capacitors are particularly becoming smaller and thinner. Among them, a product of a bottom electrode structure type has appeared that makes the internal structure of the capacitor more efficient and limits the volume of the capacitor element by limiting the electrode terminal to the mounting surface of the product. As a chip-type solid electrolytic capacitor having such a bottom electrode structure, for example, there is a technique disclosed in Patent Document 1.

従来の技術について図面を用いて説明する。図8は、従来のチップ型固体電解コンデンサを示す断面図である。図9は、従来のチップ型固体電解コンデンサの切断前の底面図である。又、図10は、従来のチップ型固体電解コンデンサの切断後の底面図、図11は従来のチップ型固体電解コンデンサの切断後にバリの発生を示した底面図、図12は従来のチップ型固体電解コンデンサの実装端子の拡大図を示す。   Conventional techniques will be described with reference to the drawings. FIG. 8 is a cross-sectional view showing a conventional chip-type solid electrolytic capacitor. FIG. 9 is a bottom view of a conventional chip-type solid electrolytic capacitor before cutting. FIG. 10 is a bottom view of the conventional chip-type solid electrolytic capacitor after cutting, FIG. 11 is a bottom view showing the occurrence of burrs after the cutting of the conventional chip-type solid electrolytic capacitor, and FIG. The enlarged view of the mounting terminal of an electrolytic capacitor is shown.

従来の技術によるチップ型固体電解コンデンサは、コンデンサ素子のそれぞれの電極を実装端子に変換する電極端子を備えた変換基板を用いている。この変換基板の電極端子は、絶縁基板の上面にコンデンサ接続端子面を、下面に実装端子面を有し、上下面を電気的に接続した構造を有している。図8を参照すると、従来のチップ型固体電解コンデンサ40は、陽極リード線22が導出された弁作用金属からなる多孔質の焼結体からなる陽極体表面に誘電体、電解質、陰極層を順次形成してコンデンサ素子21を形成する。   A chip-type solid electrolytic capacitor according to a conventional technique uses a conversion substrate provided with electrode terminals for converting each electrode of a capacitor element into a mounting terminal. The electrode terminal of this conversion substrate has a structure in which a capacitor connection terminal surface is provided on the upper surface of the insulating substrate, a mounting terminal surface is provided on the lower surface, and upper and lower surfaces are electrically connected. Referring to FIG. 8, in the conventional chip-type solid electrolytic capacitor 40, a dielectric, an electrolyte, and a cathode layer are sequentially formed on a surface of an anode body made of a porous sintered body made of a valve metal from which an anode lead wire 22 is led out. Then, the capacitor element 21 is formed.

その後、コンデンサ素子21の陽極リード線22に抵抗溶接によって接続された金属片からなる支持部材23と、支持部材23に高温はんだ30を介して接合される陽極側接続端子面24aを有する陽極接続端子24を備えるとともにコンデンサ素子21の陰極部21aに導電性接着剤31を介して接続される陰極側接続端子面26aを有する陰極接続端子26を備えるガラスエポキシ層35を基材とした変換基板32と、変換基板32の陽極接続端子24及び陰極接続端子26にそれぞれスルーホール28を介して接続された陽極実装端子25及び陰極実装端子27のそれぞれの外部実装面25a,27aを露出させるように外装樹脂29で覆う。   Thereafter, a support member 23 made of a metal piece connected to the anode lead wire 22 of the capacitor element 21 by resistance welding, and an anode connection terminal having an anode side connection terminal surface 24a joined to the support member 23 via a high temperature solder 30 24 and a conversion substrate 32 based on a glass epoxy layer 35 having a cathode connection terminal 26 having a cathode side connection terminal surface 26a connected to the cathode portion 21a of the capacitor element 21 via a conductive adhesive 31; The exterior resin is exposed so that the external mounting surfaces 25a and 27a of the anode mounting terminal 25 and the cathode mounting terminal 27 connected to the anode connection terminal 24 and the cathode connection terminal 26 of the conversion substrate 32 via the through holes 28 are exposed. 29.

ここで、変換基板32は、絶縁性のガラスエポキシ層35を有しており、陽極接続端子24は、支持部材23に高温はんだ30を接合させるために陽極側接続端子面24aを有する。また、陰極接続端子26はコンデンサ素子21と導電性接着剤31を介して接合させるために陰極側接続端子面26aを有する。陽極側及び陰極側接続端子面24a,26aを有する陽極接続端子24及び陰極接続端子26と、外部実装面25a,27aをそれぞれ有する陽極実装端子及び陰極実装端子25,27とをそれぞれを導通化するために、基板の絶縁性のガラスエポキシ層35内に、数箇所のスルーホール28が形成されている。   Here, the conversion substrate 32 has an insulating glass epoxy layer 35, and the anode connection terminal 24 has an anode side connection terminal surface 24 a for joining the high temperature solder 30 to the support member 23. Further, the cathode connection terminal 26 has a cathode side connection terminal surface 26 a for bonding with the capacitor element 21 via the conductive adhesive 31. The anode connection terminal 24 and the cathode connection terminal 26 having the anode side and cathode side connection terminal surfaces 24a and 26a, and the anode mounting terminal and the cathode mounting terminals 25 and 27 having the external mounting surfaces 25a and 27a, respectively, are made conductive. Therefore, several through holes 28 are formed in the insulating glass epoxy layer 35 of the substrate.

又、前述の外装樹脂29で覆った後、図9に示すように製品外形形状に整えるため、ダイシング加工によりA−A線、B−B線、C−C線、D−D線で切断することにより、図10に示すように陽極実装端子25と陰極実装端子27には、実装時に、はんだフィレットを形成するための製品の幅方向に細長い凹部25b及び27bがそれぞれ設けられる。   In addition, after covering with the above-described exterior resin 29, cutting is performed by AA line, BB line, CC line, and DD line by dicing processing in order to adjust the outer shape of the product as shown in FIG. 9. As a result, as shown in FIG. 10, the anode mounting terminal 25 and the cathode mounting terminal 27 are provided with recesses 25b and 27b elongated in the width direction of the product for forming a solder fillet at the time of mounting.

そこで、従来の技術には、前記ダイシングによる切断の際に、切断精度のばらつきにより、図11の凹部27bの中央(一点鎖線部)よりも製品端面18側に偏って切断されることがある。その際に、切断後の製品側に残った凹部の幅が、切断前の幅の半分より多く残るような切断となってしまい、このことにより、凹部の中にバリ41が発生しやすくなり、このバリ41が当該チップ型固体電解コンデンサを回路基板上に実装する際に、はんだフィレットの形成を妨げ、はんだ付けの外観不良になってしまう問題がある。   Therefore, in the conventional technique, when cutting by the dicing, there is a case where the cutting is biased toward the product end face 18 side from the center (the one-dot chain line portion) of the concave portion 27b of FIG. At that time, the width of the recess remaining on the product side after cutting becomes such that it remains more than half of the width before cutting, and this makes it easier to generate burrs 41 in the recess, When the burr 41 mounts the chip-type solid electrolytic capacitor on the circuit board, there is a problem that the formation of the solder fillet is hindered and the appearance of soldering is deteriorated.

バリ41の発生原因としては、凹部の形状に起因しており、切断前の凹部の形状は図9に示すように、切断部が半円部となる長円形である。凹部の中心を切断すると、図10の様に、製品側に残った凹部の円弧200(点線の丸円で囲まれた斜線部分)は、凹部25b及び27bのような円の1/4円になる。しかし、切断線B−Bが製品の製品端側にずれると、凹部の円弧300(点線の丸円で囲まれた部分)は、図11の凹部25bのような円の1/4円よりも小さくなり、切断位置が製品端側にずれると、凹部の円弧400(点線の丸円で囲まれた部分)は、図11の凹部27bの円のような1/4円を超え、半円よりも小さくなる。前記円弧400を、図12に示すように角度で示すと、縁37と製品端面38との交差角度39が90度よりも大きくなることであり、このような状態になると前記バリ41が発生しやすくなる。   The cause of the generation of the burrs 41 is due to the shape of the recess, and the shape of the recess before cutting is an oval where the cut portion is a semicircular portion as shown in FIG. When the center of the recess is cut, as shown in FIG. 10, the arc 200 of the recess remaining on the product side (the hatched portion surrounded by a dotted circle) is a quarter circle of the recesses 25b and 27b. Become. However, when the cutting line BB is shifted to the product end side of the product, the arc 300 of the recess (the portion surrounded by the dotted circle) is less than a quarter circle of the circle like the recess 25b in FIG. When the cutting position shifts toward the product end side, the concave arc 400 (the portion surrounded by the dotted circle) exceeds ¼ circle like the circle of the concave portion 27b in FIG. Becomes smaller. When the arc 400 is represented by an angle as shown in FIG. 12, the intersection angle 39 between the edge 37 and the product end face 38 is larger than 90 degrees, and in this state, the burr 41 is generated. It becomes easy.

特開2008−270317号公報JP 2008-270317 A

本発明の課題は、製品外形形状に整えるためのダイシング加工による切断の際に切断ズレの発生により、はんだフィレットが形成される凹部に発生するバリを防止して、はんだ付けの外観不良を低減するチップ型固体電解コンデンサを提供することにある。   An object of the present invention is to prevent burrs generated in a recess where a solder fillet is formed due to the occurrence of cutting misalignment during cutting by dicing for adjusting to a product outer shape, thereby reducing the appearance defect of soldering. The object is to provide a chip-type solid electrolytic capacitor.

本発明によれば、極リード線が導出され、陰極層を備えたコンデンサ素子と絶縁板の上面に対向して設けられた前記コンデンサ素子と接続する陽極接続端子及び陰極接続端子を備え、下面には、前記陽極接続端子及び陰極接続端子にそれぞれスルーホールを介して接続された陽極実装端子及び陰極実装端子を備え、前記陽極接続端子及び陰極接続端子には、はんだフィレット形成のための凹部がそれぞれ設けられ、前記コンデンサ素子及び前記絶縁板上面を外装樹脂によって外装され、前記凹部縁と製品端面との交差角度が鋭角であることを特徴とするチップ型固体電解コンデンサが得られる。 According to the present invention, positive electrode lead wire is led, with the anode connection terminal and the cathode connection terminal for connecting with the capacitor element provided opposite to the upper surface of the capacitor element including a cathode layer insulating plate, a lower surface Includes an anode mounting terminal and a cathode mounting terminal connected to the anode connection terminal and the cathode connection terminal via through holes, respectively, and the anode connection terminal and the cathode connection terminal have a recess for forming a solder fillet. respectively provided, wherein the capacitor element and the insulating plate top surface is the exterior by the exterior resin, a chip type solid electrolytic capacitor characterized in that the crossing angle between the peripheral edge and a product end surface is acute angle can be obtained.

本発明によれば、陽極実装端子及び陰極実装端子に形成されている、はんだフィレット形成のための凹部において、前記凹部の角から製品の端面にのびる縁と前記端面との交わる角度が90度以下にすることにより、ダイシングによる切断後の凹部中に発生するバリを抑える事が出来、回路基板実装時のはんだ接続信頼性が向上するチップ型固体電解コンデンサを提供することができる。   According to the present invention, in the recess for forming the solder fillet formed in the anode mounting terminal and the cathode mounting terminal, the angle between the edge extending from the corner of the recess and the end surface of the product and the end surface is 90 degrees or less. By doing so, it is possible to provide a chip-type solid electrolytic capacitor that can suppress burrs generated in the recess after cutting by dicing and improve the solder connection reliability when mounted on a circuit board.

本発明におけるチップ型固体電解コンデンサの断面図。Sectional drawing of the chip-type solid electrolytic capacitor in this invention. 本発明の実施例1におけるチップ型固体電解コンデンサの切断前の底面図。The bottom view before the cutting | disconnection of the chip-type solid electrolytic capacitor in Example 1 of this invention. 本発明の実施例1におけるチップ型固体電解コンデンサの切断後の底面図。The bottom view after the cutting | disconnection of the chip-type solid electrolytic capacitor in Example 1 of this invention. 本発明の実施の形態におけるチップ型固体電解コンデンサの切断後の陰極実装端子の拡大図。The enlarged view of the cathode mounting terminal after the cutting | disconnection of the chip-type solid electrolytic capacitor in embodiment of this invention. 本発明の実施例2におけるチップ型固体電解コンデンサの切断前の底面図。The bottom view before the cutting | disconnection of the chip-type solid electrolytic capacitor in Example 2 of this invention. 本発明の実施例2におけるチップ型固体電解コンデンサの切断後の底面図。The bottom view after the cutting | disconnection of the chip-type solid electrolytic capacitor in Example 2 of this invention. 本発明の実施例2におけるチップ型固体電解コンデンサの切断後の陰極実装端子の拡大図。The enlarged view of the cathode mounting terminal after the cutting | disconnection of the chip-type solid electrolytic capacitor in Example 2 of this invention. 従来のチップ型固体電解コンデンサを示す断面図。Sectional drawing which shows the conventional chip-type solid electrolytic capacitor. 従来のチップ型固体電解コンデンサの切断前の底面図。The bottom view before the cutting | disconnection of the conventional chip-type solid electrolytic capacitor. 従来のチップ型固体電解コンデンサの切断後の底面図。The bottom view after the cutting | disconnection of the conventional chip type solid electrolytic capacitor. 従来のチップ型固体電解コンデンサの切断後にバリの発生を示した底面図。The bottom view which showed generation | occurrence | production of the burr | flash after the cutting | disconnection of the conventional chip type solid electrolytic capacitor. 従来のチップ型固体電解コンデンサの実装端子の拡大図。The enlarged view of the mounting terminal of the conventional chip type solid electrolytic capacitor.

次に、本発明の実施の形態について、図面を参照して説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

図1を参照すると、チップ型固体電解コンデンサ20は、陽極リード線2が導出された弁作用金属からなる多孔質の焼結体からなる陽極体表面に誘電体、電解質、陰極層を順次形成した陰極部を有するコンデンサ素子1と、コンデンサ素子1の陽極リード線2に抵抗溶接によって接続された金属片からなる支持部材3と、支持部材3に高温はんだ10を介して接合される陽極側接続端子面4aを有する陽極接続端子4を備えるとともにコンデンサ素子1の陰極部に導電性接着剤11を介して接続される陰極側接続端子面6aを有する陰極接続端子6の両端子を備えるガラスエポキシ層15を基材とした変換基板12と、これらを覆うとともに、変換基板12の陽極接続端子4及び陰極接続端子6にそれぞれスルーホールにより接続された陽極実装端子5及び陰極実装端子7のそれぞれの外部実装面5a,7aを露出させるように覆う外装樹脂9とを備えている。   Referring to FIG. 1, in a chip-type solid electrolytic capacitor 20, a dielectric, an electrolyte, and a cathode layer are sequentially formed on the surface of an anode body made of a porous sintered body made of a valve metal from which the anode lead wire 2 is led out. Capacitor element 1 having a cathode portion, support member 3 made of a metal piece connected to anode lead 2 of capacitor element 1 by resistance welding, and anode-side connection terminal joined to support member 3 via high-temperature solder 10 A glass epoxy layer 15 provided with both terminals of the cathode connection terminal 6 having the anode connection terminal 4 having the anode connection terminal 4 having the surface 4a and having the cathode side connection terminal surface 6a connected to the cathode portion of the capacitor element 1 via the conductive adhesive 11. Conversion substrate 12 having a base material, and anodes that cover these and are connected to the anode connection terminal 4 and the cathode connection terminal 6 of the conversion substrate 12 by through holes, respectively. Each outer mounting surface 5a of the Sotanshi 5 and the cathode mounting terminals 7, and a packaging resin 9 covering to expose the 7a.

陽極端子13は、陽極接続端子4を有し、陽極接続端子4は、金属片からなる支持部材3と高温はんだ10を介して接合させるために陽極側接続端子面4aを有する。また、実装面側には、外部実装面5aを有する陽極実装端子5を有している一方、陰極端子14は、陰極部1a側に陰極側接続端子面6aを有する陰極接続端子6を備え、陰極接続端子6は、コンデンサ素子1の陰極部と導電性接着剤11を介して接合させるために陰極側接続端子面6aを有し、また、実装面側には、外部実装面7aを有する陰極実装端子7を備えている。   The anode terminal 13 has an anode connection terminal 4, and the anode connection terminal 4 has an anode side connection terminal surface 4 a for bonding with a support member 3 made of a metal piece via a high temperature solder 10. The mounting surface side has the anode mounting terminal 5 having the external mounting surface 5a, while the cathode terminal 14 includes the cathode connection terminal 6 having the cathode side connection terminal surface 6a on the cathode portion 1a side, The cathode connection terminal 6 has a cathode side connection terminal surface 6a for bonding with the cathode portion of the capacitor element 1 via the conductive adhesive 11, and a cathode having an external mounting surface 7a on the mounting surface side. A mounting terminal 7 is provided.

陽極側接続端子面4a及び陰極側接続端子面6aをそれぞれ有する陽極接続端子4及び陰極接続端子6と、陽極実装面5a及び陰極実装面7aをそれぞれ有する陽極実装端子5及び陰極実装端子7を導通化するために、変換基板12の絶縁性のガラスエポキシ層15内に、数箇所のスルーホール8が形成されている。又、陽極実装端子5及び陰極実装端子7には図4に示すように、凹部5b及び7bがそれぞれ設けられている。当該凹部は矩形状で中心部側の2ヶ所の角がR加工されており、直線である縁17と製品端面18との交差角度19は、矩形形状であれば90度であり、それ以外の形状を有した場合は、90度以下とする。切断寸法精度と陽陰極実装端子の寸法を考慮すると、30度以上が好ましい。   The anode connection terminal 4 and the cathode connection terminal 6 having the anode side connection terminal surface 4a and the cathode side connection terminal surface 6a, respectively, and the anode mounting terminal 5 and the cathode mounting terminal 7 having the anode mounting surface 5a and the cathode mounting surface 7a, respectively, are conducted. In order to achieve this, several through holes 8 are formed in the insulating glass epoxy layer 15 of the conversion substrate 12. The anode mounting terminal 5 and the cathode mounting terminal 7 are provided with recesses 5b and 7b, respectively, as shown in FIG. The recess has a rectangular shape and two corners on the center side are rounded, and the crossing angle 19 between the straight edge 17 and the product end surface 18 is 90 degrees if it is a rectangular shape. If it has a shape, it is 90 degrees or less. Considering the cutting dimensional accuracy and the dimensions of the positive and negative electrode mounting terminals, 30 degrees or more is preferable.

次に、本発明の一例によるチップ型固体電解コンデンサ20について図1を参照して説明する。まず、公知の技術によってコンデンサ素子1を製作する。次に金属片からなる支持部材3にコンデンサ素子1から導出した陽極リード線2を抵抗溶接により接続する。そして、変換基板12の陽極接続端子4の陽極側接続端子面4aに高温はんだ10を塗布し、また変換基板12の陰極接続端子6の陰極側接続端子面6aに導電性接着剤11を塗布する。その後、高温はんだ10上に支持部材3を搭載するように、また、導電性接着剤11上にコンデンサ素子1を搭載し、支持部材3の上面にレーザー光を照射する。レーザー光の熱が支持部材3を通して高温はんだ10に伝わり、その熱によって高温はんだ10を溶融することで、支持部材3と陽極接続端子4とをはんだ接続して、導電性接着剤11を乾燥硬化することでコンデンサ素子1と陰極接続端子6を接続する。その後、変換基板12上のコンデンサ素子1を覆うように外装樹脂9を形成し、変換基板12と外装樹脂9を所定の寸法に切断することで、本発明の一例によるチップ型固体電解コンデンサ20が得られる。   Next, a chip type solid electrolytic capacitor 20 according to an example of the present invention will be described with reference to FIG. First, the capacitor element 1 is manufactured by a known technique. Next, the anode lead wire 2 led out from the capacitor element 1 is connected to the support member 3 made of a metal piece by resistance welding. Then, the high temperature solder 10 is applied to the anode side connection terminal surface 4 a of the anode connection terminal 4 of the conversion substrate 12, and the conductive adhesive 11 is applied to the cathode side connection terminal surface 6 a of the cathode connection terminal 6 of the conversion substrate 12. . Thereafter, the capacitor element 1 is mounted on the conductive adhesive 11 so that the support member 3 is mounted on the high-temperature solder 10, and the upper surface of the support member 3 is irradiated with laser light. The heat of the laser beam is transmitted to the high-temperature solder 10 through the support member 3, and the high-temperature solder 10 is melted by the heat, so that the support member 3 and the anode connection terminal 4 are soldered to dry and cure the conductive adhesive 11. By doing so, the capacitor element 1 and the cathode connection terminal 6 are connected. Thereafter, the exterior resin 9 is formed so as to cover the capacitor element 1 on the conversion substrate 12, and the conversion substrate 12 and the exterior resin 9 are cut into predetermined dimensions, whereby the chip-type solid electrolytic capacitor 20 according to an example of the present invention is obtained. can get.

(実施例1)
実施例1について図1から図3を用いて説明する。
Example 1
Example 1 will be described with reference to FIGS.

まず、コンデンサ素子1の製作については、公知の技術であるので、弁作用金属として、タンタルを用いた場合について説明する。タンタル線のまわりに、タンタル粉末をプレス機で成型し、高真空・高温度で焼結してタンタル焼結ペレットを製作した。次に、焼結ペレットをリン酸水溶液中で15Vで陽極酸化して焼結体の表面に酸化被膜を形成した。さらに、硝酸マンガンに浸漬した後、熱分解して、固体電解質である二酸化マンガンを形成し、引き続き、グラファイト及び銀ペーストによる陰極層を形成して、コンデンサ素子1を得た。なお、固体電解質である二酸化マンガンに換えて、ポリチオフェンあるいはポリピロールなどの導電性高分子を用いると、1つのコンデンサ素子として低ESRを得るのが容易になる。   First, since the production of the capacitor element 1 is a known technique, a case where tantalum is used as the valve metal will be described. A tantalum powder was molded around a tantalum wire with a press and sintered at high vacuum and high temperature to produce a tantalum sintered pellet. Next, the sintered pellet was anodized at 15 V in an aqueous phosphoric acid solution to form an oxide film on the surface of the sintered body. Further, after being immersed in manganese nitrate, it was thermally decomposed to form manganese dioxide which is a solid electrolyte, and subsequently a cathode layer made of graphite and silver paste was formed to obtain capacitor element 1. If a conductive polymer such as polythiophene or polypyrrole is used instead of manganese dioxide, which is a solid electrolyte, it is easy to obtain a low ESR as one capacitor element.

次に、本実施例1で用いる変換基板12としては、図1に示すように、絶縁性の変換基板12の上面に、金属片からなる支持部材3と高温はんだ10、およびコンデンサ素子1と導電性接着剤11を介して接続させるための陽極側接続端子面4a及び陰極側接続端子面6aを夫々有する陽極及び陰極接続端子4,6が形成されており、また、反対のコンデンサ実装面には、外部実装面5a,7aをそれぞれ備えた陽極実装端子5及び陰極実装端子7が形成されている。そして、陽極接続端子4及び陰極接続端子6と陽極実装端子5及び陰極実装端子7をそれぞれ導通化するようにするために、変換基板12内に、数箇所のスルーホール8を形成した。   Next, as the conversion substrate 12 used in Example 1, as shown in FIG. 1, the support member 3 made of a metal piece, the high-temperature solder 10, and the capacitor element 1 are electrically connected to the upper surface of the insulating conversion substrate 12. The anode and cathode connection terminals 4 and 6 each having an anode side connection terminal surface 4a and a cathode side connection terminal surface 6a for connection via the conductive adhesive 11 are formed, and on the opposite capacitor mounting surface An anode mounting terminal 5 and a cathode mounting terminal 7 having external mounting surfaces 5a and 7a, respectively, are formed. Then, several through holes 8 were formed in the conversion substrate 12 in order to make the anode connection terminal 4 and the cathode connection terminal 6, the anode mounting terminal 5 and the cathode mounting terminal 7 conductive.

図2に示すように、陽極実装端子5及び陰極実装端子7は、凹部5b及び7bをレーザー加工によって設けた。凹部の寸法は深さ0.075mm、W(幅)0.2mm、L(長さ)0.79mm、T(短い縁)0.1mm、R(半径)0.05mm、縁と製品端面との交差角度Aを90度とした。   As shown in FIG. 2, the anode mounting terminal 5 and the cathode mounting terminal 7 were provided with recesses 5b and 7b by laser processing. The dimensions of the recess are 0.075 mm in depth, 0.2 mm in W (width), 0.79 mm in L (length), 0.1 mm in T (short edge), 0.05 mm in R (radius), and the edge and end surface of the product. The crossing angle A was 90 degrees.

次に、陽極リード線2と支持部材3を抵抗溶接によって接続した。支持部材3をなす金属片の材料としては42%Ni合金や銅などがあげられる。その後、陽極接続端子4の陽極側接続端子面4a上に、例えば、Sn、Ag、Cuを含む高温はんだ10を塗布し、その上に支持部材3を載せた。レーザー光の照射には、波長940nmの半導体レーザーを用い、レーザービーム径は0.35mmとして、レーザー光を支持部材3の上面の溶接された陽極リード線2を避けるようにして両端の2箇所を同時照射した。このように金属片からなる支持部材3にレーザー光を照射し、レーザー光の熱により高温はんだ10が溶融し、支持部材3と陽極接続端子4とをはんだによって接続した。   Next, the anode lead wire 2 and the support member 3 were connected by resistance welding. Examples of the material of the metal piece forming the support member 3 include 42% Ni alloy and copper. Then, the high temperature solder 10 containing Sn, Ag, Cu, for example was apply | coated on the anode side connection terminal surface 4a of the anode connection terminal 4, and the supporting member 3 was mounted on it. The laser beam is irradiated with a semiconductor laser having a wavelength of 940 nm, the laser beam diameter is set to 0.35 mm, and the laser beam is applied to the two ends of the support member 3 so as to avoid the welded anode lead 2. Simultaneous irradiation. Thus, the laser beam was irradiated to the support member 3 made of a metal piece, the high-temperature solder 10 was melted by the heat of the laser beam, and the support member 3 and the anode connection terminal 4 were connected by solder.

また、コンデンサ素子1の陰極部1aと変換基板12の陰極接続端子6を、陰極側接続端子面6aにAgを含む導電性接着剤11を塗布して接続した。次いで、外装樹脂9としてガラス含有エポキシ樹脂、または液晶ポリマー、またはトランスファーモールド樹脂、または液状エポキシ樹脂を用いて熱成型して外装を行った後、図3に示すように、製品外形寸法を整える為にダイシングソーにより、チップ型固体電解コンデンサ20の外側面となる四面を切断し、本実施例1のチップ型固体電解コンデンサ20を得た。   Further, the cathode part 1a of the capacitor element 1 and the cathode connection terminal 6 of the conversion substrate 12 were connected by applying the conductive adhesive 11 containing Ag to the cathode side connection terminal surface 6a. Next, after the exterior is formed by thermoforming using glass-containing epoxy resin, liquid crystal polymer, transfer mold resin, or liquid epoxy resin as the exterior resin 9, as shown in FIG. The four surfaces that are the outer surfaces of the chip-type solid electrolytic capacitor 20 were cut by a dicing saw to obtain the chip-type solid electrolytic capacitor 20 of Example 1.

(実施例2)
実施例2について図5〜7を用いて説明する。
(Example 2)
Example 2 will be described with reference to FIGS.

図5は本発明の実施例2におけるチップ型固体電解コンデンサの切断前の底面図であり、図6は本発明の実施例2におけるチップ型固体電解コンデンサの切断後の底面図であり、図7は本発明の実施例2におけるチップ型固体電解コンデンサの切断後の陰極実装端子の拡大図である。   FIG. 5 is a bottom view before cutting the chip-type solid electrolytic capacitor in Example 2 of the present invention, and FIG. 6 is a bottom view after cutting the chip-type solid electrolytic capacitor in Example 2 of the present invention. These are the enlarged views of the cathode mounting terminal after the cutting | disconnection of the chip-type solid electrolytic capacitor in Example 2 of this invention.

切断前の凹部5b及び7bの寸法は、深さ0.075mm、W(幅)0.2mm、L1(長さ)0.79mm、L2(長さ)0.63mm、T(短い縁)0.1mm、R(半径)0.045mm、縁と製品端面との交差角度Aを63.4度とした。尚、前記凹部寸法以外は、実施例1と同様である。   The dimensions of the recesses 5b and 7b before cutting are as follows: depth 0.075 mm, W (width) 0.2 mm, L1 (length) 0.79 mm, L2 (length) 0.63 mm, T (short edge) 0. 1 mm, R (radius) 0.045 mm, and the crossing angle A between the edge and the product end face was 63.4 degrees. In addition, it is the same as that of Example 1 except the said recessed part dimension.

(比較例)
図9より、切断前の凹部5b及び7bの寸法を深さ0.075mm、W(幅)0.2mm、L(長さ)0.79mm、T(短い縁)0.1mm、R(半径)0.1mmとした。尚、前記凹部寸法以外は、実施例1と同様である。
(Comparative example)
From FIG. 9, the dimensions of the recesses 5b and 7b before cutting are as follows: depth 0.075 mm, W (width) 0.2 mm, L (length) 0.79 mm, T (short edge) 0.1 mm, R (radius) It was 0.1mm. Incidentally, other than the recess dimension is Example 1 as well.

実施例1、2及び比較例のチップ型固体電解コンデンサを1000個製作して、前記ダイシングソーによる切断後のバリ発生率を表1に示した。   1000 chip-type solid electrolytic capacitors of Examples 1 and 2 and Comparative Example were manufactured, and the burr generation rate after cutting with the dicing saw is shown in Table 1.

Figure 0005201684
Figure 0005201684

表1からわかるように、実施例1及び実施例2は比較例に比べて切断後のバリ発生に対して改善されていることがわかる。これにより、はんだ接続の信頼性が向上すると言える。   As can be seen from Table 1, it can be seen that Example 1 and Example 2 are improved with respect to the generation of burrs after cutting as compared with the comparative example. Thereby, it can be said that the reliability of solder connection is improved.

本発明によるチップ型固体電解コンデンサは、電子機器、電気機器や、携帯電話等の基板に表面実装される固体電解コンデンサに適用される。   The chip-type solid electrolytic capacitor according to the present invention is applied to a solid electrolytic capacitor that is surface-mounted on a substrate such as an electronic device, an electric device, or a mobile phone.

1,21 コンデンサ素子
1a 陰極部
2,22 陽極リード線
3,23 支持部材
4,24 陽極接続端子
4a,24a 陽極側接続端子面
5,25 陽極実装端子
5a,25a 外部実装面
5b,25b 凹部
6,26 陰極接続端子
6a,26a 陰極側接続端子面
7,27 陰極実装端子
7a,27a 外部実装面
7b,27b 凹部
8,28 スルーホール
9,29 外装樹脂
10,30 高温はんだ
11,31 導電性接着剤
12,32 変換基板
13,33 陽極端子
14,34 陰極端子
15,35 ガラスエポキシ層
16,36 角
17,37 縁
18,38 製品端面
19,39 交差角度
20,40 チップ型固体電解コンデンサ
41 バリ
1, 21 Capacitor element 1a Cathode portion 2, 22 Anode lead wire 3, 23 Support member 4, 24 Anode connection terminals 4a, 24a Anode side connection terminal surfaces 5, 25 Anode mounting terminals 5a, 25a External mounting surfaces 5b, 25b Recess 6 , 26 Cathode connection terminal 6a, 26a Cathode side connection terminal surface 7, 27 Cathode mounting terminal 7a, 27a External mounting surface 7b, 27b Recess 8, 28 Through hole 9, 29 Exterior resin 10, 30 High temperature solder 11, 31 Conductive bonding Agents 12 and 32 Conversion substrate 13 and 33 Anode terminal 14 and 34 Cathode terminal 15 and 35 Glass epoxy layer 16, 36 Corner 17, 37 Edge 18, 38 Product end face 19, 39 Crossing angle 20, 40 Chip type solid electrolytic capacitor 41 Burr

Claims (1)

陽極リード線が導出され、陰極層を備えたコンデンサ素子と絶縁板の上面に対向して設けられた前記コンデンサ素子と接続する陽極接続端子及び陰極接続端子を備え、下面には、前記陽極接続端子及び陰極接続端子にそれぞれスルーホールを介して接続された陽極実装端子及び陰極実装端子を備え、前記陽極接続端子及び陰極接続端子には、はんだフィレット形成のための凹部がそれぞれ設けられ、前記コンデンサ素子及び前記絶縁板上面を外装樹脂によって外装され、
前記凹部縁と製品端面との交差角度が鋭角であることを特徴とするチップ型固体電解コンデンサ。
An anode lead wire is provided, and includes a capacitor element having a cathode layer and an anode connection terminal and a cathode connection terminal connected to the capacitor element provided to face the upper surface of the insulating plate. And an anode mounting terminal and a cathode mounting terminal connected to the cathode connection terminal through a through hole, respectively, and the anode connection terminal and the cathode connection terminal are each provided with a recess for forming a solder fillet, and the capacitor element And the upper surface of the insulating plate is externally covered with an external resin,
Chip type solid electrolytic capacitor characterized in that the crossing angle between the peripheral edge and a product end surface is acute angle.
JP2009067641A 2009-03-19 2009-03-19 Chip type solid electrolytic capacitor Active JP5201684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009067641A JP5201684B2 (en) 2009-03-19 2009-03-19 Chip type solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009067641A JP5201684B2 (en) 2009-03-19 2009-03-19 Chip type solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2010219478A JP2010219478A (en) 2010-09-30
JP5201684B2 true JP5201684B2 (en) 2013-06-05

Family

ID=42977962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009067641A Active JP5201684B2 (en) 2009-03-19 2009-03-19 Chip type solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP5201684B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5326032B1 (en) * 2012-09-24 2013-10-30 Necトーキン株式会社 Solid electrolytic capacitor
CN104685590B (en) * 2012-09-28 2018-02-09 松下知识产权经营株式会社 Solid electrolytic capacitor And Manufacturing approach

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2921416B2 (en) * 1994-11-25 1999-07-19 日本電気株式会社 Solid electrolytic capacitor and method of manufacturing the same
JP2002008944A (en) * 2000-06-23 2002-01-11 Nichicon Corp Chip-like capacitor
JP4369207B2 (en) * 2003-11-06 2009-11-18 Necトーキン株式会社 Solid electrolytic capacitor
JP2005236090A (en) * 2004-02-20 2005-09-02 Nec Tokin Corp Solid electrolytic capacitor and transmission line element, and their manufacturing methods, and composite electronic component using them
JP2006019925A (en) * 2004-06-30 2006-01-19 Sharp Corp Portable information terminal, its switching operation method, and its displaying method
JP2006278876A (en) * 2005-03-30 2006-10-12 Sanyo Electric Co Ltd Solid electrolytic capacitor
JP4667214B2 (en) * 2005-11-18 2011-04-06 Necトーキン株式会社 Bottom electrode type solid electrolytic capacitor
JP2007281111A (en) * 2006-04-05 2007-10-25 Matsushita Electric Ind Co Ltd Solid-state electrolytic capacitor and solid-state electrolytic capacitor-incorporated substrate, and method of manufacturing these
KR100826391B1 (en) * 2006-07-18 2008-05-02 삼성전기주식회사 Chip type solid electrolytic capacitor
CN101286417B (en) * 2007-03-09 2011-02-02 Nec东金株式会社 Solid electrolytic capacitor and manufacturing method thereof
JP4753380B2 (en) * 2007-04-17 2011-08-24 Necトーキン株式会社 Bottom electrode type solid electrolytic capacitor
JP4702383B2 (en) * 2008-03-26 2011-06-15 Tdk株式会社 Electronic components
JP5201671B2 (en) * 2008-09-08 2013-06-05 Necトーキン株式会社 Bottom electrode type solid electrolytic capacitor and manufacturing method thereof

Also Published As

Publication number Publication date
JP2010219478A (en) 2010-09-30

Similar Documents

Publication Publication Date Title
JP4878103B2 (en) Manufacturing method of chip-type solid electrolytic capacitor
JP5466722B2 (en) Solid electrolytic capacitor
JP5152946B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP6722479B2 (en) Method for manufacturing solid electrolytic capacitor
US7149077B2 (en) Solid electrolytic capacitor with face-down terminals, manufacturing method of the same, and lead frame for use therein
JP5453174B2 (en) Bottom electrode type solid electrolytic multilayer capacitor and its mounting body
JP2005079357A (en) Chip type solid electrolytic capacitor, its manufacturing method, and lead frame used therefor
JP4802550B2 (en) Solid electrolytic capacitor
JP2007081069A (en) Chip type solid electrolytic capacitor, terminals, and method for manufacturing them
JP2017092237A (en) Solid electrolytic capacitor and manufacturing method thereof
JP5201684B2 (en) Chip type solid electrolytic capacitor
JP2005101418A (en) Chip type solid electrolytic capacitor and its manufacturing method, and lead frame used therefor
JP2007013043A (en) Electrode assembly for mounting electric element, electric component employing the same, and solid electrolytic capacitor
JP2009004671A (en) Solid electrolytic capacitor
JP2006190925A (en) Solid electrolytic capacitor and its manufacturing method
JP5009122B2 (en) Chip-type solid electrolytic capacitor and manufacturing method thereof
JP5164213B2 (en) Solid electrolytic capacitor
JP2008109007A (en) Method of manufacturing bottom-surface electrode type solid-state electrolytic capacitor, and lead frame used for the same
JP2005228801A (en) Chip-type solid electrolytic capacitor and lead frame used therefor
JP2011049339A (en) Lower-surface electrode type solid electrolytic capacitor and manufacturing method thereof
JP2011146548A (en) Solid electrolytic capacitor
JP4735251B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2010287642A (en) Chip-type solid electrolytic capacitor and method of manufacturing therefor
JP2011077079A (en) Chip-type solid electrolytic capacitor
JP5258071B2 (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130207

R150 Certificate of patent or registration of utility model

Ref document number: 5201684

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250