JP5199019B2 - 昇降圧dc−dcコンバータ - Google Patents

昇降圧dc−dcコンバータ Download PDF

Info

Publication number
JP5199019B2
JP5199019B2 JP2008267463A JP2008267463A JP5199019B2 JP 5199019 B2 JP5199019 B2 JP 5199019B2 JP 2008267463 A JP2008267463 A JP 2008267463A JP 2008267463 A JP2008267463 A JP 2008267463A JP 5199019 B2 JP5199019 B2 JP 5199019B2
Authority
JP
Japan
Prior art keywords
voltage
comparison
comparison voltage
switch
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008267463A
Other languages
English (en)
Other versions
JP2010098840A (ja
Inventor
文規 塩津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koito Manufacturing Co Ltd
Original Assignee
Koito Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koito Manufacturing Co Ltd filed Critical Koito Manufacturing Co Ltd
Priority to JP2008267463A priority Critical patent/JP5199019B2/ja
Publication of JP2010098840A publication Critical patent/JP2010098840A/ja
Application granted granted Critical
Publication of JP5199019B2 publication Critical patent/JP5199019B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters

Landscapes

  • Dc-Dc Converters (AREA)

Description

本発明は、入力された直流電圧を昇圧または降圧し、入力された直流電圧を所定の出力電圧に変換する昇降圧DC−DCコンバータに関する。
従来、電子機器等の電源装置として、入力電圧の変動しても出力電圧を一定の範囲に保持することができるチョッパ方式の電源装置が用いられている。
この種の電源装置としては、例えば、降圧用チョッパトランジスタと昇圧用チョッパトランジスタとを共通のチョークコイルを介して接続し、入力電圧が出力電圧よりも高いときには、昇圧用チョッパトランジスタをオフとし、降圧用チョッパトランジスタをオンオフ制御して入力電圧を降圧し、入力電圧が出力電圧よりも低いときには、降圧用チョッパトランジスタをオンとし、昇圧用チョッパトランジスタをオンオフ制御して入力電圧を昇圧するようにしたものが提案されている(特許文献1参照)。
この電源装置によれば、降圧型チョッパ方式の電源装置と昇圧型チョッパ方式の電源装置を同一の回路で実現することができる。
特開昭62−18970号公報(第2頁から第3頁、図1参照)
従来技術では、入力電圧に応じて降圧用チョッパトランジスタと昇圧用チョッパトランジスタを選択的に動作させるようにしているので、入力電圧が変動しても出力電圧をほぼ一定に保つことができる。
しかし、降圧と昇圧の切替時には、降圧用チョッパトランジスタと昇圧用チョッパトランジスタの動作が円滑に切り替わらないので、出力電圧を一定に保持できない。
すなわち、降圧用チョッパトランジスタや昇圧用チョッパトランジスタに用いるトランジスタには、ターンオン時やターンオフ時にディレイタイム(スイッチング時間)があるので、降圧と昇圧の切替時に、単に、入力電圧に応じて降圧用チョッパトランジスタと昇圧用チョッパトランジスタを選択的に動作させても、降圧用チョッパトランジスタがオンに、昇圧用チョッパトランジスタがオフに維持されることがあり、出力電圧を一定に保持できない。
本発明は、前記従来技術の課題に鑑みて為されたものであり、その目的は、あらゆる入出力の条件下で出力電圧を規定の電圧に保持することができる昇降圧DC−DCコンバータを提供することにある。
前記目的を達成するために、請求項1に係る昇降圧DC−DCコンバータは、直流電源から直流電圧を入力する降圧スイッチと、前記降圧スイッチに接続されたチョークコイルを有し、入力電圧より低い出力電圧を出力する降圧部と、前記チョークコイルを介して前記降圧スイッチに接続された昇圧スイッチを有し、入力電圧より高い出力電圧を出力する昇圧部と、前記降圧スイッチまたは前記昇圧スイッチをオンオフ制御する制御部とを備え、前記制御部は、電圧レベルが時間軸に沿って変化する比較電圧として、第1の降圧用比較電圧と、平均電圧が前記第1の降圧用比較電圧より高い第2の降圧用比較電圧と、平均電圧が前記第2の降圧用比較電圧より高い第1の昇圧用比較電圧と、平均電圧が前記第1の昇圧用比較電圧より高い第2の昇圧用比較電圧をそれぞれ入力し、前記入力した各比較電圧と出力電圧に対応した検出電圧とを比較して前記降圧スイッチまたは前記昇圧スイッチをオンオフ制御してなる構成とした。
(作用)まず、2つの比較電圧を用いることを前提とすると、平均電圧が相異なる2つの比較電圧を入力し、入力した各比較電圧と検出電圧とを比較し、この比較結果に応じて降圧スイッチまたは昇圧スイッチをオンオフ制御することになる。この場合、検出電圧が2つの比較電圧の電圧範囲に亘って変化する過程で、検出電圧のレベルが2つの比較電圧の中間のレベルになると、降圧スイッチと昇圧スイッチのディレイタイムによって、降圧スイッチがオンに、昇圧スイッチがオフに維持され、規定の出力電圧を出力することができない。
これに対して、4つの比較電圧を用いることを前提とすると、平均電圧が相異なる4つの比較電圧(第1の降圧用比較電圧、第2の降圧用比較電圧、第1の昇圧用比較電圧、第2の昇圧用比較電圧)を入力し、入力した各比較電圧と検出電圧とを比較し、この比較結果に応じて降圧スイッチまたは昇圧スイッチをオンオフ制御することになる。この場合、検出電圧が4つの比較電圧の電圧範囲に亘って変化する過程で、比較電圧が2つのときよりも、検出電圧がいずれかの比較電圧と比較される機会が多くなる。
例えば、検出電圧が4つの比較電圧の電圧範囲に亘って変化する過程で、検出電圧のレベルが第1の降圧用比較電圧と第2の昇圧用比較電圧の中間のレベルになっても、検出電圧は第2の降圧用比較電圧および第1の昇圧用比較電圧と比較され、降圧スイッチおよび昇圧スイッチをオンオフ制御するための比較結果が得られる。
上述したように、検出電圧が、入力電圧の変化に伴って、4つの比較電圧の電圧範囲に亘って変化しても、出力電圧を連続して出力することができる。従って、あらゆる入出力の条件下で出力電圧を規定の電圧に保持することができ、性能の向上に寄与することができる。
請求項2に係る昇降圧DC−DCコンバータは、請求項1に記載の昇降圧DC−DCコンバータにおいて、前記制御部は、前記第1の降圧用比較電圧と前記検出電圧とを比較して、前記降圧スイッチをオンオフ制御し、前記昇圧スイッチをオフに維持する第1の制御モードと、前記第2の昇圧用比較電圧と前記検出電圧とを比較して、前記昇圧スイッチをオンオフ制御し、前記降圧スイッチをオンに維持する第2の制御モードと、前記第2の降圧用比較電圧と前記検出電圧とを比較して、前記降圧スイッチをオンオフ制御し、前記第1の昇圧用比較電圧と前記検出電圧とを比較して、前記昇圧スイッチをオンオフ制御する第3の制御モードと、を備えてなる構成とした。
(作用)制御部が、第1の制御モードとして、第1の降圧用比較電圧と検出電圧とを比較して、降圧スイッチをオンオフ制御し、昇圧スイッチをオフに維持することで、降圧部により、入力電圧より低い出力電圧を出力する降圧が実行される。
一方、制御部が、第2の制御モードとして、第2の昇圧用比較電圧と検出電圧とを比較して、昇圧スイッチをオンオフ制御し、降圧スイッチをオンに維持することで、昇圧部により、入力電圧より高い出力電圧を出力する昇圧が実行される。
また、制御部が、第3の制御モードとして、第2の降圧用比較電圧と検出電圧とを比較して、降圧スイッチをオンオフ制御し、第1の昇圧用比較電圧と検出電圧とを比較して、昇圧スイッチをオンオフ制御することで、降圧部と昇圧部の両方を動作させて、昇降圧が実行される。ここで、昇降圧とは、入力電圧よりも低い出力電圧も高い出力電圧もどちらも出力できる動作を指す。
すなわち、第1の制御モードによる降圧から第2の制御モードによる昇圧へ、または、その逆、昇圧から降圧へは直接移動せず、その間に、第3の制御モードによる昇降圧を介することで、あらゆる条件下で、出力電圧を規定の電圧に保持することができる。
請求項3に係る昇降圧DC−DCコンバータは、請求項1または2に記載の昇降圧DC−DCコンバータにおいて、前記第2の降圧用比較電圧と前記第1の昇圧用比較電圧の各電圧レベルは、前記第1の降圧用比較電圧の最小値と前記第2の昇圧用比較電圧の最大値との間に設定され、前記各比較電圧相互の電圧レベルは、前記第1の降圧用比較電圧の最大値<前記第2の昇圧用比較電圧の最小値
前記第1の降圧用比較電圧の最大値<前記第2の降圧用比較電圧の最大値
前記第1の昇圧用比較電圧の最小値<前記第2の昇圧用比較電圧の最小値
前記第1の昇圧用比較電圧の最小値<前記第2の降圧用比較電圧の最大値
の関係を満たしてなる構成とした。
(作用)検出電圧が、第1の降圧用比較電圧の最小値と第2の昇圧用比較電圧の最大値との間に亘って変化するときに、各比較電圧相互の電圧レベルを、
第1の降圧用比較電圧の最大値<第2の昇圧用比較電圧の最小値
第1の降圧用比較電圧の最大値<第2の降圧用比較電圧の最大値
第1の昇圧用比較電圧の最小値<第2の昇圧用比較電圧の最小値
第1の昇圧用比較電圧の最小値<第2の降圧用比較電圧の最大値
の関係を満たすように設定すると、以下のような比較が行われる。
検出電圧は、入力電圧が出力電圧よりも高いときには、第1の降圧用比較電圧と比較され、一方、入力電圧が出力電圧よりも低いときには、第2の昇圧用比較電圧と比較され、また、入力電圧と出力電圧がほぼ同じになるときには、第2の降圧用比較電圧および第1の昇圧用比較電圧と比較される。
このため、検出電圧が、入力電圧の変化に伴って、第1の降圧用比較電圧の最小値と第2の昇圧用比較電圧の最大値との間に亘って変化しても、出力電圧を連続して出力することができる。結果として、あらゆる入出力の条件下で出力電圧を規定の電圧に保持することができ、性能の向上に寄与することができる。
請求項4に係る昇降圧DC−DCコンバータは、請求項1、2または3のうちいずれか1項に記載の昇降圧DC−DCコンバータにおいて、前記第1の降圧用比較電圧と前記第2の昇圧用比較電圧は、それぞれ同一の周波数の三角波またはランプ波あるいはノコギリ波であり、前記第2の降圧用比較電圧と前記第1の昇圧用比較電圧は、前記第1の降圧用比較電圧と前記第2の昇圧用比較電圧の半分の周波数の三角波である構成とした。
(作用)第2の降圧用比較電圧および第1の昇圧用比較電圧として、ランプ波やノコギリ波を用いると、降圧スイッチと昇圧スイッチにオンオフ信号を印加する過程で、降圧スイッチがオフになる期間と昇圧スイッチがオンになる期間が重なるときがある。
降圧スイッチがオフになる期間と昇圧スイッチがオンになる期間が重なると、チョークコイルと昇圧スイッチを結ぶ経路が形成され、チョークコイルに蓄えられたエネルギーが出力側に伝達されることなく、無駄に消費され、コンバータの電気効率が低下する。
これに対して、第2の降圧用比較電圧および第1の昇圧用比較電圧として三角波を用いると、降圧スイッチと昇圧スイッチにオンオフ信号を印加する過程で、降圧スイッチがオフになる期間と昇圧スイッチがオンになる期間が重なることはなく、コンバータの電気効率が低下するのを防止することができる。
一方、第1の降圧用比較電圧は、第1の制御モード時に、降圧スイッチをオンオフ制御し、第2の制御モード時に、降圧スイッチをオンするために用いられ、第2の昇圧用比較電圧は、第1の制御モード時に昇圧スイッチをオフし、第2の制御モード時に、昇圧スイッチをオンオフ制御するために用いられている。このため、降圧スイッチまたは昇圧スイッチのうち一方のみをオンオフ制御するための第1の降圧用比較電圧および第2の昇圧用比較電圧として、ランプ波やノコギリ波を用いても、コンバータの電気効率が低下することはない。
また、第2の降圧用比較電圧および第1の昇圧用比較電圧は、第1の降圧用比較電圧および第2の昇圧用比較電圧の半分の周波数であるので、制御モードが変わっても、スイッチング周波数(スイッチング回数)が変わらず、コンバータの電気効率が低下するのを防止することができる。
すなわち、各比較電圧として、全て同じ周波数のものを用いると、第3の制御モード時に、降圧スイッチおよび昇圧スイッチに印加されるオンオフ信号のスイッチング周波数は、第1の制御モード時や第2の制御モード時に、降圧スイッチまたは昇圧スイッチに印加されるオンオフ信号のスイッチング周波数の2倍となる。降圧スイッチおよび昇圧スイッチに印加されるオンオフ信号のスイッチング周波数が2倍になると、降圧スイッチおよび昇圧スイッチのスイッチング損失も2倍となり、コンバータの電気効率が低下することになる。
このため、第2の降圧用比較電圧および第1の昇圧用比較電圧の周波数を、第1の降圧用比較電圧および第2の昇圧用比較電圧の半分の周波数にすることで、コンバータの電気効率が低下するのを防止することができる。
請求項5に係る昇降圧DC−DCコンバータは、請求項4に記載の昇降圧DC−DCコンバータにおいて、前記各比較電圧を発生する比較電圧発生器として、三角波またはランプ波あるいはノコギリ波を生成して前記第1の降圧用比較電圧を発生する第1の降圧用比較電圧発生器と、前記第1の降圧用比較電圧の半分の周波数の三角波を生成して前記第2の降圧用比較電圧を発生する第2の降圧用比較電圧発生器と、前記第2の降圧用比較電圧をオフセットして前記第1の昇圧用比較電圧を発生する第1の昇圧用比較電圧発生器と、前記第1の降圧用比較電圧をオフセットして前記第2の昇圧用比較電圧を発生する第2の昇圧用比較電圧発生器を備えてなる構成とした。
(作用)三角波またはランプ波あるいはノコギリ波を生成して第1の降圧用比較電圧を発生させることができ、第1の降圧用比較電圧をオフセットして第2の昇圧用比較電圧を発生させることができる。第1の降圧用比較電圧の半分の周波数の三角波を生成して第2の降圧用比較電圧を発生させることができ、第2の降圧用比較電圧をオフセットして第1の昇圧用比較電圧を発生させることができる。
以上の説明から明らかなように、請求項1によれば、あらゆる入出力の条件下で出力電圧を規定の電圧に保持することができ、性能の向上に寄与することができる。
請求項2によれば、あらゆる入出力の条件下で出力電圧を規定の電圧に保持することができ、性能の向上に寄与することができる。
請求項3によれば、あらゆる入出力の条件下で出力電圧を規定の電圧に保持することができ、性能の向上に寄与することができる。
請求項4によれば、コンバータの電気効率が低下するのを防止することができる。
請求項5によれば、第1の降圧用比較電圧を基に、第2の昇圧用比較電圧を発生させ、第2の降圧用比較電圧を基に、第1の昇圧用比較電圧を発生させることができる。
以下、本発明の一実施形態を図面に基づいて説明する。図1は、本発明の一実施例を示す車両用灯具の電源装置の回路構成図、図2は、比較電圧の波形図、図3は、降圧モードと降圧・昇圧モードおよび昇圧モードにおける動作を説明するための波形図、図4は、降圧時におけるスイッチング信号のオンデューティと入出力電圧比との関係を示す特性図、図5は、昇圧時におけるスイッチング信号のオンデューティと入出力電圧比との関係を示す特性図、図6は、コンパレータを2個用いたときの回路構成図、図7は、コンパレータを2個、すなわち、比較電圧を2つ用いたときの降圧モードと導通モードおよび昇圧モードにおける動作を説明するための波形図、図8は、コンパレータを2個、すなわち、比較電圧を2つ用いたときの検出電圧と出力電圧との関係を示す特性図、図9は、コンパレータを4個、すなわち、比較電圧を4つ用いて出力電圧にヒステリシスを持たせたときの検出電圧と出力電圧との関係を示す特性図、図10(a)は、降圧・昇圧モード時に、比較電圧としてランプ波またはノコギリ波を用いたときの動作を説明するための波形図、図10(b)は、降圧・昇圧モード時に、比較電圧として三角波を用いたときの動作を説明するための波形図、図11は、降圧・昇圧モード時に、比較電圧としてランプ波またはノコギリ波を用いたときの動作を説明するための回路図である。
図1において、車両用灯具の電源装置10は、昇降圧DC−DCコンバータとして、入力電圧より低い出力電圧を出力する降圧部12と、入力電圧より高い出力電圧を出力する昇圧部14と、降圧部12と昇圧部14を制御する制御部16を備えている。
降圧部12は、降圧スイッチ18と、コンデンサC1と、ダイオードD1と、チョークコイル(インダクタ)L1を備えている。降圧スイッチ18は、スッチング素子、例えば、NMOSトランジスタで構成され、NMOSトランジスタのドレインが入力端子20に接続され、ソースがダイオードD1を介して接地されているとともに、チョークコイルL1の一端に接続され、ゲートが制御部16に接続されている。コンデンサC1の両端は、入力端子20、22にそれぞれ接続されている。入力端子20は、電源スイッチ24を介して車載バッテリ(直流電源)26のプラス端子に接続され、入力端子22は、車載バッテリ26のマイナス端子に接続されている。
昇圧部14は、降圧部12と共通のチョークコイル(インダクタ)L1を備えているとともに、昇圧スイッチ28と、コンデンサC2と、ダイオードD2を備えている。昇圧スイッチ28は、スッチング素子、例えば、NMOSトランジスタで構成され、NMOSトランジスタのドレインがチョークコイルL1の他端に接続されているとともに、ダイオードD2を介して出力端子30に接続され、ソースが接地され、ゲートが制御部16に接続されている。コンデンサC2は、その一端がダイオードD2と出力端子30に接続され、他端が接地されているとともに出力端子32に接続されている。出力端子30、32の両端には、ランプ、LEDなどの負荷34が接続されている。
降圧スイッチ18と昇圧スイッチ28は、制御部16からのオンオフ信号(スイッチング信号)に応答してオンオフし、オフ信号に応答してオフとなり、オン信号に応答してオンとなる。
例えば、入力端子20、22間に印加される入力電圧Vinが、出力端子30、32から負荷34に印加される出力電圧Voutよりも高い、降圧モード(第1の制御モード)のときには、降圧スイッチ18は、制御部16からのオンオフ信号に応答してオンオフし、昇圧スイッチ28はオフ信号に応答してオフとなる。
昇圧スイッチ28がオフに維持されているときに、降圧スイッチ18がオンになると、入力端子20、22間に印加された直流電圧がコンデンサC1の両端に印加されるとともに、降圧スイッチ18に電流が流れる。この電流は、チョークコイルL1、ダイオードD2を介して負荷34に流れる。これにより、チョークコイルL1に電磁エネルギーが蓄積される。
次に、昇圧スイッチ28がオフに維持されているときに、降圧スイッチ18がオフになると、ダイオードD1の導通により、チョークコイルL1に蓄積されていた電磁エネルギーが、チョークコイルL1、ダイオードD2を介してコンデンサC2および負荷34に供給され、入力電圧Vinが降圧されて出力端子30、32から出力される。
また、入力電圧Vinが出力電圧Voutよりも低い、昇圧モード(第2の制御モード)のときには、降圧スイッチ18は、制御部16からのオン信号に応答してオンとなり、昇圧スイッチ28は、制御部16からのオンオフ信号に応答してオンオフする。
降圧スイッチ18がオンに維持されているときに、昇圧スイッチ28がオンになると、車載バッテリ26からの電流が降圧スイッチ28、チョークコイルL1を介して昇圧スイッチ28に流れる。これにより、チョークコイルL1に電磁エネルギーが蓄積される。
次に、降圧スイッチ18がオンに維持されているときに、昇圧スイッチ28がオフになると、ダイオードD2の導通により、チョークコイルL1に蓄積されていた電磁エネルギーが、チョークコイルL1、ダイオードD2を介してコンデンサC2および負荷34に供給され、入力電圧Vinが昇圧されて出力端子30、32から出力される。
また、降圧モード(第1の制御モード)と昇圧モード(第2の制御モード)の間の降圧・昇圧モード(第3の制御モード)として、降圧スイッチ18と昇圧スイッチ28が制御部16からのオンオフ信号に応答してオンオフする。
すなわち、制御部16は、降圧モード(第1の制御モード)と昇圧モード(第2の制御モード)および降圧・昇圧モード(第3の制御モード)を備え、各モードに応じて制御信号(オンオフ信号、オン信号およびオフ信号を含む信号)を生成し、生成した制御信号を降圧スイッチ18と昇圧スイッチ28に出力する。
具体的には、制御部16は、誤差増幅回路36と、比較波発生回路38と、比較回路40と、判別回路42と、制御信号切替回路44を備えている。
誤差増幅回路36は、エラーアンプ(誤差増幅器)50と、ツェナーダイオードZD1と、コンデンサC3と、抵抗R2、R3、R5〜R10を備えている。
抵抗R2、R3は、出力電圧Voutを分圧し、分圧して得られた電圧を、抵抗R8を介してエラーアンプ50のマイナス入力端子に入力する。エラーアンプ50は、プラス端子に印加される設定電圧(基準電圧Vrを抵抗R10と抵抗R9で分圧して得られた電圧)とマイナス端子に印加される電圧との差の電圧を増幅し、増幅された電圧を、出力電圧Voutに対応した検出電圧Veとして、抵抗R6を介して比較回路40に出力する。この場合、エラーアンプ50で増幅された電圧を、入力電圧Vinと出力電圧Voutとの比に対応した検出電圧Veと見なすこともできる。
比較波発生回路38は、比較波発生器54、56、58、60を備えている。
比較波発生器54は、第1の降圧用比較電圧発生器として、図2に示すように、例えば、2MHzの三角波信号による比較波Aを生成し、生成した比較波Aを比較回路40と比較波発生器56に出力する。
比較波発生器56は、第2の昇圧用比較電圧発生器として、比較波Aに応答して、比較波Aのレベルをオフセットした、三角波信号による比較波D(図2参照)を生成し、生成した比較波Dを比較回路40に出力する。
比較波発生器58は、第2の降圧用比較電圧発生器として、例えば、1MHzの三角波信号による比較波B(図2参照)を生成し、生成した比較波Bを比較回路40と比較波発生器60に出力する。
比較波発生器60は、第1の昇圧用比較電圧発生器として、比較波Bに応答して、比較波Bのレベルをオフセットした、三角波信号による比較波C(図2参照)を生成し、生成した比較波Cを比較回路40に出力する。
ここで、比較波A〜Dは、図2に示すように、それぞれ振幅は相対的には同じであるが、平均電圧は互いに異なる値に設定されている。
例えば、比較波Aは、比較波A〜Dの中で、その平均電圧が最も低い、第1の降圧用比較電圧として設定されている。比較波Bは、その平均電圧が第1の降圧用比較電圧(比較波A)より高い、第2の降圧用比較電圧として設定されている。比較波Cは、その平均電圧が第2の降圧用比較電圧(比較波B)より高い、第1の昇圧用比較電圧として設定されている。比較波Dは、その平均電圧が第1の昇圧用比較電圧(比較波C)より高い、第2の昇圧用比較電圧として設定されている。
この際、比較波B(第2の降圧用比較電圧)と比較波C(第1の昇圧用比較電圧)の各電圧レベルは、比較波A(第1の降圧用比較電圧)の最小値と比較波D(第2の昇圧用比較電圧)の最大値との間に設定され、各比較波A〜Dの電圧レベルは、
比較波Aの最大値<比較波Dの最小値
比較波Aの最大値<比較波Bの最大値
比較波Cの最小値<比較波Dの最小値
比較波Cの最小値<比較波Bの最大値
の関係を満たしている。
比較回路40は、コンパレータ62、64、66、68を備え、各コンパレータ62〜68のプラス端子が抵抗R6を介してエラーアンプ50の出力端子に接続されている。
コンパレータ62は、プラス端子に入力される検出電圧Veとマイナス端子に入力される比較波Aとを比較し、比較結果に応じた電圧を降圧信号aとして制御信号切替回路44に出力する。
コンパレータ64は、プラス端子に入力される検出電圧Veとマイナス端子に入力される比較波Bとを比較し、比較結果に応じた電圧を降圧信号bとして制御信号切替回路44に出力する。
コンパレータ66は、プラス端子に入力される検出電圧Veとマイナス端子に入力される比較波Cとを比較し、比較結果に応じた電圧を昇圧信号cとして制御信号切替回路44に出力する。
コンパレータ68は、プラス端子に入力される検出電圧Veとマイナス端子に入力される比較波Dとを比較し、比較結果に応じた電圧を昇圧信号dとして制御信号切替回路44に出力する。
判別回路42は、インバータ70、72と、ANDゲート74、76、78と、フリップフロップ80、82を備えている。
インバータ70は、昇圧信号dを反転し、反転した昇圧信号dをANDゲート74に出力する。ANDゲート74は、降圧信号aと反転した昇圧信号dの論理積の条件が成立したときに、ハイレベルの信号をフリップフロップ80、82のクリア端子に出力する。
フリップフロップ80は、クロック発生器52からのクロック信号をANDゲート76から取り込み、クロック信号に応答して、Q端子からANDゲート78にパルス信号を出力し、Qバー端子からフリップフロップ82のクロック端子にパルス信号を出力する。フリップフロップ82は、クロック端子に入力されたパルス信号に応答して、Q端子からANDゲート78にパルス信号を出力する。
ANDゲート78は、フリップフロップ80、82の出力信号に応答して、検出電圧Veが、比較波Aの最大値と比較波Dの最小値との間にあるときには、“L”レベルのスイッチングモード切替信号Xを制御信号切替回路44に出力し、検出電圧Veが、比較波Aの最大値よりも小さいとき、あるいは、検出電圧Veが、比較波Dの最小値よりも大きいときには、“H”レベルのスイッチングモード切替信号Xを制御信号切替回路44に出力する。スイッチングモード切替信号Xは、インバータ72で反転されて、スイッチングモード切替信号Yとして、制御信号切替回路44に出力される。
制御信号切替回路44は、ORゲート84、86と、ANDゲート88、90、92、94を備えている。ORゲート84は、出力端子が降圧スイッチ18に接続され、入力端子がANDゲート88、90の出力端子に接続されている。ORゲート86は、出力端子が昇圧スイッチ28に接続され、入力端子がANDゲート92、94の出力端子に接続されている。
ANDゲート88は、一方の入力端子がインバータ72の出力端子に接続され、他方の入力端子がコンパレータ62の出力端子に接続されている。ANDゲート90は、一方の入力端子がANDゲート78の出力端子に接続され、他方の入力端子がコンパレータ64の出力端子に接続されている。ANDゲート92は、一方の入力端子がANDゲート78の出力端子に接続され、他方の入力端子がコンパレータ66の出力端子に接続されている。ANDゲート94は、一方の入力端子がインバータ72の出力端子に接続され、他方の入力端子がコンパレータ68の出力端子に接続されている。
ANDゲート88は、スイッチングモード切替信号Yのレベルが“H”レベルにあるときに、降圧信号aをオンオフ信号(降圧スイッチング信号)としてORゲート84を介して降圧スイッチ18に出力し、スイッチングモード切替信号Yのレベルが“L”レベルにあるときには、“L”レベルのオフ信号をORゲート84に出力する。
ANDゲート90は、スイッチングモード切替信号Xのレベルが“H”レベルにあるときに、降圧信号bをオンオフ信号(降圧スイッチング信号)としてORゲート84を介して降圧スイッチ18に出力し、スイッチングモード切替信号Xのレベルが“L”レベルにあるときには、“L”レベルのオフ信号をORゲート84に出力する。
ANDゲート92は、スイッチングモード切替信号Xのレベルが“H”レベルにあるときに、昇圧信号cをオンオフ信号(昇圧スイッチング信号)としてORゲート86を介して昇圧スイッチ28に出力し、スイッチングモード切替信号Xのレベルが“L”レベルにあるときには、“L”レベルのオフ信号をORゲート86に出力する。
ANDゲート94は、スイッチングモード切替信号Yのレベルが“H”レベルにあるときに、昇圧信号dをオンオフ信号(昇圧スイッチング信号)としてORゲート86を介して昇圧スイッチ28に出力し、スイッチングモード切替信号Yのレベルが“L”レベルにあるときには、“L”レベルのオフ信号をORゲート86に出力する。
ORゲート84は、ANDゲート88の出力による降圧信号aまたはANDゲート90の出力による降圧信号bに応答して、オンオフ信号またはオン信号を降圧スイッチ18に出力する。
ORゲート86は、ANDゲート92の出力による昇圧信号cまたはANDゲート94の出力による昇圧信号dに応答して、オンオフ信号またはオフ信号を昇圧スイッチ28に出力する。
すなわち、図3(a)に示すように、検出電圧Veが比較波Aの最大値よりも小さく、コンパレータ62から、オンオフの降圧信号aが出力されたときには、判別回路42は、降圧モード(第1の制御モード)にあると判別し、制御信号切替回路44のANDゲート88、94に、“H”レベルのスイッチングモード切替信号Yを出力し、制御信号切替回路44のANDゲート90、92に、“L”レベルのスイッチングモード切替信号Xを出力する。
ANDゲート88、94に、“H”レベルのスイッチングモード切替信号Yが入力されると、ORゲート84から降圧スイッチ18に、制御信号としてオンオフ信号が出力され、ORゲート86から昇圧スイッチ28に、制御信号としてオフ信号が出力される。これにより、降圧モード(第1の制御モード)における制御として、降圧スイッチ18がオンオフ制御され、昇圧スイッチ28がオフに維持される。
一方、図3(c)に示すように、検出電圧Veが比較波Dの最小値よりも大きく、コンパレータ68から、オンオフの昇圧信号dが出力されたときには、判別回路42は、昇圧モード(第2の制御モード)にあると判別し、制御信号切替回路44のANDゲート88、94に、“H”レベルのスイッチングモード切替信号Yを出力し、制御信号切替回路44のANDゲート90、92に、“L”レベルのスイッチングモード切替信号Xを出力する。
ANDゲート88、94に、“H”レベルのスイッチングモード切替信号Yが入力されると、ORゲート84から降圧スイッチ18に、制御信号としてオン信号が出力され、ORゲート86から昇圧スイッチ28に、制御信号としてオンオフ信号が出力される。これにより、昇圧モード(第2の制御モード)における制御として、降圧スイッチ18がオンに維持され、昇圧スイッチ28がオンオフ制御される。
また、図3(b)に示すように、検出電圧Veが比較波Aの最大値と比較波Dの最小値との間にあって、コンパレータ64および66から、オンオフの降圧信号bおよびオンオフの昇圧信号cが出力されたときには、判別回路42は、降圧・昇圧モード(第3の制御モード)にあると判別し、制御信号切替回路44のANDゲート88、94に、“L”レベルのスイッチングモード切替信号Yを出力し、制御信号切替回路44のANDゲート90、92に、“H”レベルのスイッチングモード切替信号Xを出力する。
ANDゲート90、92に、“H”レベルのスイッチングモード切替信号Xが入力されると、ORゲート84から降圧スイッチ18に、制御信号としてオンオフ信号が出力され、ORゲート86から昇圧スイッチ28に、制御信号としてオンオフ信号が出力される。これにより、降圧・昇圧モード(第3の制御モード)における制御として、降圧スイッチ18および昇圧スイッチ28がオンオフ制御される。
ここで、降圧スイッチ18に印加されるオンオフ信号のオンデューティと電源装置10の入出力電圧比(Vout/Vin)の関係は、図4の特性で表わされ、昇圧スイッチ28に印加されるオンオフ信号のオンデューティと電源装置10の入出力電圧比(Vout/Vin)の関係は、図5の特性で表わされる。
このため、入出力電圧比(Vout/Vin)=1となるとき、すなわち、降圧スイッチ18に印加されるオンオフ信号のオンデューティ=100%、昇圧スイッチ28に印加されるオンオフ信号のオンデューティ=0%で降圧モードと昇圧モードとの切替を行うことで、降圧モードと昇圧モードにおいても、電源装置10から出力電圧Voutを連続的に出力することができる。
この際、図6に示すように、コンパレータとして、三角波信号による比較波A1が入力される降圧用コンパレータ62Aと、三角波信号の最小値が比較波A1の最大値に等しい、比較波D1が入力される昇圧用コンパレータ68Aを用い、エラーアンプ50Aの出力による検出電圧Veと比較波A1とを降圧用コンパレータ62Aで比較し、検出電圧Veと比較波D1とを昇圧用コンパレータ68Aで比較する構成を採用することができる。
この場合、図7(a)に示すように、降圧時(Vout/Vin<1)には、エラーアンプ50Aの出力による検出電圧Veと比較波A1とを降圧用コンパレータ62Aで比較し、この比較結果に応じて、オンオフ信号を降圧スイッチ18に出力し、また、検出電圧Veと比較波D1とを昇圧用コンパレータ68Aで比較し、この比較結果に応じてオフ信号を昇圧スイッチ28に出力することで、入力電圧を降圧して出力することができる。
また、図7(b)に示すように、降圧と昇圧との切替時(Vout/Vin=1)には、降圧用コンパレータ62Aから降圧スイッチ18にオン信号を出力し、昇圧用コンパレータ68Aから昇圧スイッチ28にオフ信号を出力することで、スイッチング動作することなく、チョークコイルを介して、入力と出力が導通した状態なり、入力電圧に等しい出力電圧を出力することができる。
一方、図7(c)に示すように、昇圧時(Vout/Vin>1)には、エラーアンプ50Aの出力による検出電圧Veと比較波A1とを降圧用コンパレータ62Aで比較し、この比較結果に応じて、オン信号を降圧スイッチ18に出力し、また、検出電圧Veと比較波D1とを昇圧用コンパレータ68Aで比較し、この比較結果に応じてオンオフ信号を昇圧スイッチ28に出力することで、入力電圧を昇圧して出力することができる。
このように、降圧モードと昇圧モードによる制御を実行するときに、エラーアンプ50Aの出力による検出電圧Veの増減に応じて、降圧と昇圧が自動的に切り替わり、出力電圧Voutを連続的に出力することができる。
ところが、降圧スイッチ18と昇圧スイッチ28を構成するスイッチング素子がオンオフ動作する際には、スイッチング可能な最小のオン時間とオフ時間(スイッチング時間)が存在するので、オンデューティの値によっては、出力電圧Voutを連続的に出力することができないことがある。
例えば、降圧スイッチ18と昇圧スイッチ28を構成するスイッチング素子に印加されるオンオフ信号の周波数(スイッチング周波数)を2MHz(周期=500ns)とし、このオンオフ信号の最小オン時間=最小オフ時間=50nsとすると、図8に示すように、降圧スイッチ18を構成するスイッチング素子は、降圧時(降圧モードM1時)におけるオンオフ信号のオンデューティが90%よりも小さいときには、スイッチング動作するが、降圧時におけるオンオフ信号のオンデューティが90%以上になるとスイッチング動作することができない。
また、昇圧スイッチ28を構成するスイッチング素子は、昇圧時(昇圧モードM2時)におけるオンオフ信号のオンデューティが10%よりも大きいときには、スイッチング動作するが、昇圧時におけるオンオフ信号のオンデューティが10%以下になるとスイッチング動作することができない。
すなわち、降圧スイッチ18と昇圧スイッチ28を構成するスイッチング素子は、降圧時(降圧モードM1時)におけるオンオフ信号のオンデューティが90%以上〜昇圧時(昇圧モードM2時)におけるオンオフ信号のオンデューティが10%以下の範囲Wでは、スイッチング動作することなく、チョークコイルL1を介して導通する。このため、Vin=Voutで一定になるので、検出電圧Veに応じて、出力電圧Voutを破線のように、制御したくても、実線のようになり、出力電圧Voutを正確に制御できないことになる。
特に、スイッチング周波数が高周波で、入出力電圧が大きい程、出力電圧Voutを正確に制御できない。これは、スイッチング周波数が高周波になる程、1周期の時間が短くなり、1周期に対する最小のオン時間とオフ時間の割合が大きくなるためである。また、入出力電圧が大きいと、スイッチング素子の耐圧を大きくする必要があり、一般的に、耐圧が大きいスイッチング素子程、最小のオン時間とオフ時間の値も大きいためである。
これに対して、本実施例では、比較電圧として、平均電圧がそれぞれ異なる比較波A、B、C、Dを用い、コンパレータとして、検出電圧Veと比較波A、B、C、Dとをそれぞれ比較する、4個のコンパレータ62、64、66、68を用いることとしている。
そして、入力電圧Vinが出力電圧Voutよりも高く、検出電圧Veが比較波Aの最大値よりも小さい、降圧モード(第1の制御モード)時には、降圧スイッチ18にオンオン信号を出力し、昇圧スイッチ28にオフ信号を出力することとしている。
一方、入力電圧Vinが出力電圧Voutよりも低く、検出電圧Veが比較波Dの最小値よりも大きい、昇圧モード(第2の制御モード)時には、降圧スイッチ18にオン信号を出力し、昇圧スイッチ28にオンオフ信号を出力することとしている。
また、入力電圧Vinと出力電圧Voutがほぼ同じで、検出電圧Veが比較波Aの最大値と比較波Dの最小値との間にある、降圧・昇圧モード(第3の制御モード)時には、降圧スイッチ18にオンオフ信号を出力するとともに、昇圧スイッチ28にオンオフ信号を出力することとしている。
このように、本実施例においては、入力電圧Vinの変化に伴って、検出電圧Veが比較波Aの最小値から比較波Dの最大値の範囲に亘って変化しても、降圧モード(第1の制御モード)、昇圧モード(第2の制御モード)、あるいは降圧・昇圧モード(第3の制御モード)による制御を実行するようにしたため、入力電圧Vinが変化しても出力電圧Voutを連続的に出力することができる。
従って、本実施例によれば、あらゆる入出力の条件下で出力電圧Voutを規定の電圧に保持することができ、電源装置10の性能の向上に寄与することができる。
また、比較波A、B、C、Dの電圧レベルを設定するに際しては、図9に示すように、検出電圧Veと出力電圧Voutとの関係において、ヒステリシスH1、H2ができるように、比較波A、B、C、Dの電圧レベルを設定することで、降圧モード(第1の制御モード)M1と降圧・昇圧モード(第3の制御モード)M3との切替時や降圧・昇圧モード(第3の制御モード)M3と昇圧モード(第2の制御モード)M2との切替時に、頻繁にモードが切り替わることを防止することができる。
この場合、比較波A、B、C、Dの電圧レベルとしては、以下の例を考慮して設定することができる。
例えば、降圧スイッチ18と昇圧スイッチ28を構成するスイッチング素子に印加されるオンオフ信号の最小オン時間=最小オフ時間=50nsとし、2MHzの比較波A、Dを用いるときのオンオフ信号の最小デューディ=10%、最大デューティ=90%とし、1MHzの比較波B、Cを用いるときのオンオフ信号の最小デューディ=5%、最大デューティ=95%とした場合、比較波Aとしては、降圧時に、オンオフ信号のオンデューティが90%以下で、Vin=10Vのとき、Voutとして、9.0V以下となる。
同様に、比較波B、Cとしては、降圧時に、オンオフ信号のオンデューティが5%〜30%で、昇圧時に、オンオフ信号のオンデューティが70%〜95%で、Vin=10Vのとき、Voutとして、7.37〜13.57Vとなる。
同様に、比較波Dとしては、昇圧時に、オンオフ信号のオンデューティが10%以上で、Vin=10Vのとき、Voutとして、11.11V以上となる。
また、本実施例では、比較波A、B、C、Dとして、ランプ波やノコギリ波による信号の代わりに、三角波信号を用いているが、これは、降圧・昇圧モード(第3の制御モード)時に、降圧スイッチ18=オフおよび昇圧スイッチ28=オンとなる瞬間を作らないためである。
すなわち、図10(a)に示すように、比較波B、Cとして、ランプ波やノコギリ波による信号を用いると、降圧スイッチ18がオフになる期間と昇圧スイッチ28がオンになる期間のうち両者が瞬時重なるタイミングt1、t2、t3が生じる。
降圧スイッチ18がオフになる期間と昇圧スイッチ28がオンになる期間のうち両者が瞬時重なるタイミングt1、t2、t3が生じると、図11に示すように、ダイオードD1とチョークコイルL1および昇圧スイッチ28を結ぶ経路が形成され、チョークコイルL1に蓄えられたエネルギーが出力側に伝達されることなく、無駄に消費され、電源装置10の電気効率が低下する。
これに対して、図10(b)に示すように、比較波B、Cとして、三角波信号を用いると、降圧スイッチ18がオフになる期間と昇圧スイッチ28がオンになる期間とが重なることはなく、電源装置10の電気効率が低下するのを防止することができる。
なお、比較波Aは、降圧モード(第1の制御モード)時に、降圧スイッチ18をオンオフ制御し、昇圧モード(第2の制御モード)時に、降圧スイッチ18をオンするために用いられ、比較波Dは、降圧モード(第1の制御モード)時に、昇圧スイッチ28をオフにし、昇圧モード(第2の制御モード)時に、昇圧スイッチ28をオンオフ制御するために用いられている。このため、降圧スイッチ18または昇圧スイッチ28のうち一方のみをオンオフ制御する制御信号を生成するための比較波A、Dとして、ランプ波やノコギリ波による信号を用いても、電源装置10の電気効率が低下することはない。
また、本実施例では、比較波A、Dとして、2MHzの三角波信号を用い、比較波B、Cとして、比較波A、Dの半分の周波数である、1MHzの三角波信号を用いているので、制御モードが変わっても、スイッチング周波数(スイッチング回数)は変わらず、電源装置10の電気効率が低下するのを防止することができる。
すなわち、比較波A、B、C、Dとして、全て同じ周波数の三角波信号を用いると、降圧・昇圧モード(第3の制御モード)時に、スイッチング素子に印加されるオンオフ信号のスイッチング周波数は、降圧モード(第1の制御モード)時や昇圧モード(第2の制御モード)時に、スイッチング素子に印加されるオンオフ信号のスイッチング周波数の2倍となる。スイッチング素子に印加されるオンオフ信号のスイッチング周波数が2倍になると、スイッチング素子のスイッチング損失も2倍となり、電源装置10の電気効率が低下することになる。
また、本実施例では、比較波A、B、C、Dとして、各比較波の相対的な電圧レベル(振幅)を同一にしたものを用いているが、各比較波の相対的な電圧レベルを相異なる値に設定することもできる。
また、本実施例では、出力電圧Voutをフィードバックする方式を採用しているが、出力電流または出力電力をフィードバックする方式を採用することもできる。
本発明の一実施例を示す車両用灯具の電源装置の回路構成図である。 比較電圧の波形図である。 降圧モードと降圧・昇圧モードおよび昇圧モードにおける動作を説明するための波形図である。 降圧時におけるスイッチング信号のオンデューティと入出力電圧比との関係を示す特性図である。 昇圧時におけるスイッチング信号のオンデューティと入出力電圧比との関係を示す特性図である。 コンパレータを2個用いたときの回路構成図である。 コンパレータを2個、すなわち比較電圧を2つ用いたときの降圧モードと導通モードおよび昇圧モードにおける動作を説明するための波形図である。 コンパレータを2個、すなわち比較電圧を2つ用いたときの検出電圧と出力電圧との関係を示す特性図である。 コンパレータを4個、すなわち、比較電圧を4つ用いて出力電圧にヒステリシスを持たせたときの検出電圧と出力電圧との関係を示す特性図である。 (a)は、降圧・昇圧モード時に、比較電圧としてランプ波またはノコギリ波を用いたときの動作を説明するための波形図、(b)は、降圧・昇圧モード時に、比較電圧として三角波を用いたときの動作を説明するための波形図である。 降圧・昇圧モード時に、比較電圧としてランプ波またはノコギリ波を用いたときの動作を説明するための回路図である。
符号の説明
10 電源装置(昇降圧DC−DCコンバータ)
12 降圧部
14 昇圧部
16 制御部
18 降圧スイッチ
28 昇圧スイッチ
36 誤差増幅回路
38 比較波発生回路
40 比較回路
42 判別回路
44 制御信号切替回路

Claims (5)

  1. 直流電源から直流電圧を入力する降圧スイッチと、前記降圧スイッチに接続されたチョークコイルを有し、入力電圧より低い出力電圧を出力する降圧部と、
    前記チョークコイルを介して前記降圧スイッチに接続された昇圧スイッチを有し、入力電圧より高い出力電圧を出力する昇圧部と、
    前記降圧スイッチまたは前記昇圧スイッチをオンオフ制御する制御部とを備え、
    前記制御部は、電圧レベルが時間軸に沿って変化する比較電圧として、
    第1の降圧用比較電圧と、
    平均電圧が前記第1の降圧用比較電圧より高い第2の降圧用比較電圧と、
    平均電圧が前記第2の降圧用比較電圧より高い第1の昇圧用比較電圧と、
    平均電圧が前記第1の昇圧用比較電圧より高い第2の昇圧用比較電圧をそれぞれ入力し、
    前記入力した各比較電圧と出力電圧に対応した検出電圧とを比較して前記降圧スイッチまたは前記昇圧スイッチをオンオフ制御してなる、
    昇降圧DC−DCコンバータ。
  2. 請求項1に記載の昇降圧DC−DCコンバータにおいて、
    前記制御部は、
    前記第1の降圧用比較電圧と前記検出電圧とを比較して、前記降圧スイッチをオンオフ制御し、前記昇圧スイッチをオフに維持する第1の制御モードと、
    前記第2の昇圧用比較電圧と前記検出電圧とを比較して、前記昇圧スイッチをオンオフ制御し、前記降圧スイッチをオンに維持する第2の制御モードと、
    前記第2の降圧用比較電圧と前記検出電圧とを比較して、前記降圧スイッチをオンオフ制御し、前記第1の昇圧用比較電圧と前記検出電圧とを比較して、前記昇圧スイッチをオンオフ制御する第3の制御モードと、を備えてなることを特徴とする昇降圧DC−DCコンバータ。
  3. 請求項1または2に記載の昇降圧DC−DCコンバータにおいて、
    前記第2の降圧用比較電圧と前記第1の昇圧用比較電圧の各電圧レベルは、前記第1の降圧用比較電圧の最小値と前記第2の昇圧用比較電圧の最大値との間に設定され、前記各比較電圧相互の電圧レベルは、
    前記第1の降圧用比較電圧の最大値<前記第2の昇圧用比較電圧の最小値
    前記第1の降圧用比較電圧の最大値<前記第2の降圧用比較電圧の最大値
    前記第1の昇圧用比較電圧の最小値<前記第2の昇圧用比較電圧の最小値
    前記第1の昇圧用比較電圧の最小値<前記第2の降圧用比較電圧の最大値
    の関係を満たしてなることを特徴とする昇降圧DC−DCコンバータ。
  4. 請求項1、2または3のうちいずれか1項に記載の昇降圧DC−DCコンバータにおいて、
    前記第1の降圧用比較電圧と前記第2の昇圧用比較電圧は、それぞれ同一の周波数の三角波またはランプ波あるいはノコギリ波であり、前記第2の降圧用比較電圧と前記第1の昇圧用比較電圧は、前記第1の降圧用比較電圧と前記第2の昇圧用比較電圧の半分の周波数の三角波であることを特徴とする昇降圧DC−DCコンバータ。
  5. 請求項4に記載の昇降圧DC−DCコンバータにおいて、
    前記各比較電圧を発生する比較電圧発生器として、三角波またはランプ波あるいはノコギリ波を生成して前記第1の降圧用比較電圧を発生する第1の降圧用比較電圧発生器と、前記第1の降圧用比較電圧の半分の周波数の三角波を生成して前記第2の降圧用比較電圧を発生する第2の降圧用比較電圧発生器と、前記第2の降圧用比較電圧をオフセットして前記第1の昇圧用比較電圧を発生する第1の昇圧用比較電圧発生器と、前記第1の降圧用比較電圧をオフセットして前記第2の昇圧用比較電圧を発生する第2の昇圧用比較電圧発生器を備えてなることを特徴とする昇降圧DC−DCコンバータ。
JP2008267463A 2008-10-16 2008-10-16 昇降圧dc−dcコンバータ Expired - Fee Related JP5199019B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008267463A JP5199019B2 (ja) 2008-10-16 2008-10-16 昇降圧dc−dcコンバータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008267463A JP5199019B2 (ja) 2008-10-16 2008-10-16 昇降圧dc−dcコンバータ

Publications (2)

Publication Number Publication Date
JP2010098840A JP2010098840A (ja) 2010-04-30
JP5199019B2 true JP5199019B2 (ja) 2013-05-15

Family

ID=42260117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008267463A Expired - Fee Related JP5199019B2 (ja) 2008-10-16 2008-10-16 昇降圧dc−dcコンバータ

Country Status (1)

Country Link
JP (1) JP5199019B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6196048B2 (ja) * 2013-03-07 2017-09-13 株式会社小糸製作所 昇降圧dc−dcコンバータ型点灯回路および車両用灯具
JP2015089260A (ja) * 2013-10-31 2015-05-07 株式会社デンソー 負荷駆動装置
JP6543908B2 (ja) * 2014-10-14 2019-07-17 株式会社オートネットワーク技術研究所 変圧装置
JP6487719B2 (ja) * 2015-03-03 2019-03-20 新日本無線株式会社 スイッチング制御回路およびスイッチング制御方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6218970A (ja) * 1985-07-17 1987-01-27 Matsushita Electric Ind Co Ltd 電源装置
JP4516656B2 (ja) * 2000-03-17 2010-08-04 新日本無線株式会社 Pwm信号発生方法及びpwm回路
JP4292996B2 (ja) * 2004-01-07 2009-07-08 富士電機デバイステクノロジー株式会社 昇降圧型dc−dcコンバータの制御装置
JP2006006004A (ja) * 2004-06-16 2006-01-05 Ricoh Co Ltd 昇降圧型dc−dcコンバータ

Also Published As

Publication number Publication date
JP2010098840A (ja) 2010-04-30

Similar Documents

Publication Publication Date Title
US7701181B2 (en) Power supply device and operations control method thereof
US8310219B2 (en) DC-DC converter with a PWM mode and a continuously on mode
CN101610033B (zh) Dc-dc变换器
KR101131262B1 (ko) 전류 모드 제어형 스위칭 레귤레이터
US7411316B2 (en) Dual-input power converter and control methods thereof
JP5091027B2 (ja) スイッチングレギュレータ
JP5625369B2 (ja) 昇降圧dc−dcコンバータおよびスイッチング制御回路
EP2779398B1 (en) A control method of high efficient buck-boost switching regulator
US7898233B2 (en) Multiphase voltage regulators and methods for voltage regulation
US20090174384A1 (en) Switching regulator and method of controlling the same
CN101981794B (zh) 用于调节输出电压的方法
JP5853153B2 (ja) 昇降圧コンバータ
US20100141222A1 (en) Load transient sensing circuit for a power converter
JP2007259599A (ja) スイッチングレギュレータ
JP5407548B2 (ja) スイッチング電源装置
JP5479940B2 (ja) 昇降圧dc−dcコンバータ及び車両用灯具
JP2008161001A (ja) 電流モード制御型スイッチングレギュレータ及びその動作制御方法
CN106992679B (zh) 双固定时间的升降压切换式电源电路及其控制电路与方法
KR101919625B1 (ko) 전류제어 모드 dc-dc 컨버터
JP2011188645A (ja) Dc−dcコンバータ及びdc−dcコンバータの制御方法
US9641071B2 (en) Cuk based current source
JP4487649B2 (ja) 昇降圧型dc−dcコンバータの制御装置
CN212572391U (zh) 电子电路
JP5199019B2 (ja) 昇降圧dc−dcコンバータ
JP2006014559A (ja) Dc−dcコンバータ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees