JP5196011B2 - Charge control system - Google Patents

Charge control system Download PDF

Info

Publication number
JP5196011B2
JP5196011B2 JP2011510768A JP2011510768A JP5196011B2 JP 5196011 B2 JP5196011 B2 JP 5196011B2 JP 2011510768 A JP2011510768 A JP 2011510768A JP 2011510768 A JP2011510768 A JP 2011510768A JP 5196011 B2 JP5196011 B2 JP 5196011B2
Authority
JP
Japan
Prior art keywords
power storage
storage device
state estimation
voltage
calculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011510768A
Other languages
Japanese (ja)
Other versions
JPWO2011155051A1 (en
Inventor
優 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Application granted granted Critical
Publication of JP5196011B2 publication Critical patent/JP5196011B2/en
Publication of JPWO2011155051A1 publication Critical patent/JPWO2011155051A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、充電制御システムに係り、特に、外部商用電源から供給される電力を用いて充電可能な蓄電装置を備える充電制御システムに関する。   The present invention relates to a charge control system, and more particularly, to a charge control system including a power storage device that can be charged using electric power supplied from an external commercial power source.

近年、家庭用コンセント等を用いて充電を行うことが可能な二次電池を搭載したプラグインハイブリッド自動車等が開発されている。そして、当該二次電池に対して充電を行う場合には、二次電池の充電状態を示すSOC(State Of Charge)が所定の範囲内となるように充電制御が行われている。ここで、二次電池のSOCは、二次電池の開回路電圧OCV(Open Circuit Voltage)により推定可能であるが、二次電池の充電中は開回路電圧OCVを測定することができないため、二次電池の閉回路電圧CCV(Closed Circuit Voltage)により二次電池のSOCが推定されている。なお、CCV≒OCV+IR(Iは二次電池に流れる電流、Rは二次電池の内部抵抗)の関係式が成り立っている。   In recent years, plug-in hybrid vehicles equipped with secondary batteries that can be charged using a household outlet have been developed. And when charging with respect to the said secondary battery, charge control is performed so that SOC (State Of Charge) which shows the charge condition of a secondary battery may be in a predetermined range. Here, the SOC of the secondary battery can be estimated from the open circuit voltage OCV (Open Circuit Voltage) of the secondary battery. However, since the open circuit voltage OCV cannot be measured while the secondary battery is being charged, The SOC of the secondary battery is estimated by the closed circuit voltage CCV (Closed Circuit Voltage) of the secondary battery. The relational expression CCV≈OCV + IR (I is the current flowing through the secondary battery, R is the internal resistance of the secondary battery) is established.

本発明に関連する技術として、例えば、特許文献1には、二次電池の充電を制御する充電制御回路であって、上記二次電池の端子電圧を検出する電圧検出部と、上記二次電池の充電中に当該充電を停止させると共に当該充電の停止中において上記電圧検出部により検出される端子電圧から当該端子電圧の所定時間あたりの低下量を示す電圧傾き情報を取得する傾き情報取得処理を行う傾き取得部と、上記傾き取得部により取得された上記電圧傾き情報に基づいて、上記二次電池の充電を終了すべきか否かを判定する判定処理を実行する充電終了判定部と、を備える構成が開示されている。   As a technique related to the present invention, for example, Patent Document 1 discloses a charge control circuit that controls charging of a secondary battery, the voltage detection unit detecting the terminal voltage of the secondary battery, and the secondary battery. Inclination information acquisition processing for stopping the charging during charging and acquiring voltage inclination information indicating a decrease amount per predetermined time of the terminal voltage from the terminal voltage detected by the voltage detection unit while the charging is stopped An inclination acquisition unit to perform, and a charge end determination unit that executes determination processing to determine whether or not to charge the secondary battery based on the voltage gradient information acquired by the inclination acquisition unit. A configuration is disclosed.

特開2009−296699号公報JP 2009-296699 A

ところで、上記のように二次電池の閉回路電圧CCVを用いてSOCを推定する場合には、家庭用コンセント等によって供給される商用電力の変動によってIRの値が変動し、これに伴い閉回路電圧CCVも変動するため、SOCの推定精度が低下する可能性がある。したがって、SOCの推定は、閉回路電圧CCVに所定の変動抑制係数(商用電力の変動を演算上抑制するための係数)を掛けること等の演算により求めたSOC推定用演算値を用いて行われている。   By the way, when the SOC is estimated using the closed circuit voltage CCV of the secondary battery as described above, the IR value fluctuates due to fluctuations in the commercial power supplied from a household outlet or the like. Since the voltage CCV also fluctuates, there is a possibility that the estimation accuracy of the SOC is lowered. Therefore, the estimation of the SOC is performed using the calculated value for estimating the SOC obtained by a calculation such as multiplying the closed circuit voltage CCV by a predetermined fluctuation suppression coefficient (a coefficient for suppressing the fluctuation of commercial power in terms of calculation). ing.

しかし、上記の変動抑制係数は、予め経験的に求められた値等が固定値として用いられており、二次電池の特性や使用環境等によって適切な値でない場合もあるため、SOCの推定精度が低くなってしまうこともありうる。   However, since the above-described fluctuation suppression coefficient is a fixed value, such as a value obtained empirically in advance, it may not be an appropriate value depending on the characteristics of the secondary battery or the usage environment. May become low.

本発明の目的は、二次電池のSOCの推定精度をより向上させることを可能とする充電制御システムを提供することである。   The objective of this invention is providing the charge control system which makes it possible to improve the estimation precision of SOC of a secondary battery more.

本発明に係る充電制御システムは、外部商用電源から供給される電力を用いて充電可能な蓄電装置と、蓄電装置の両端電圧を検出する電圧検出部と、外部商用電源の電力変動が蓄電装置の両端電圧に与えた影響を演算上抑制させるための変動抑制係数を設定する変動抑制係数設定部と、電圧検出部によって検出された蓄電装置の両端電圧と、変動抑制係数設定部によって設定された変動抑制係数と、前回の演算によって求められた充電状態推定用演算値と、を用いて蓄電装置の充電状態推定用演算値を演算する変動抑制演算部と、充電状態推定用演算値に基づいて蓄電装置の充電状態を推定する充電状態推定部と、を備え、変動抑制係数設定部は、蓄電装置の充電中の所定の期間内に充電状態推定用演算値が降下した場合に、当該所定の期間以降に充電状態推定用演算値の演算を行う際に、電圧検出部によって検出された蓄電装置の両端電圧と前回の演算によって求められた充電状態推定用演算値とのうち、電圧検出部によって検出された蓄電装置の両端電圧の比率が小さくなるように変動抑制係数を変更することが好ましい。   A charging control system according to the present invention includes a power storage device that can be charged using power supplied from an external commercial power source, a voltage detection unit that detects a voltage across the power storage device, and a power fluctuation of the external commercial power source A fluctuation suppression coefficient setting unit for setting a fluctuation suppression coefficient for suppressing the influence on the voltage at both ends in operation, a voltage across the power storage device detected by the voltage detection unit, and a fluctuation set by the fluctuation suppression coefficient setting unit A fluctuation suppression calculation unit that calculates a calculation value for charge state estimation of the power storage device using a suppression coefficient and a calculation value for charge state estimation obtained by the previous calculation, and storage based on the calculation value for charge state estimation A fluctuation state coefficient setting unit that estimates a state of charge of the power storage device, and the fluctuation suppression coefficient setting unit includes a predetermined period of time when the calculation value for charge state estimation falls within a predetermined period of time during charging of the power storage device. Detected by the voltage detection unit among the voltage across the power storage device detected by the voltage detection unit and the calculation value for charge state estimation obtained by the previous calculation when calculating the calculation value for charging state estimation It is preferable to change the variation suppression coefficient so that the ratio of the voltage across the power storage device is reduced.

また、本発明に係る充電制御システムにおいて、電圧検出部によって検出された蓄電装置の両端電圧をVとし、変動抑制係数をtとし、前回の演算によって求められた充電状態推定用演算値をVfLとし、今回の演算によって求める充電状態推定用演算値をVfとした場合に、変動抑制演算部は、Vf=(1−t)*VfL+t*Vを用いて、Vfを求め、変動抑制係数設定部は、蓄電装置の充電中の所定の期間内に充電状態推定用演算値Vfが降下した場合に算出した係数変更基準値に基づいて、変動抑制係数tの値を小さく変更することが好ましい。In the charge control system according to the present invention, the voltage across the power storage device detected by the voltage detector is V, the fluctuation suppression coefficient is t, and the charge state estimation calculation value obtained by the previous calculation is Vf L And the fluctuation suppression calculation unit calculates Vf using Vf = (1−t) * Vf L + t * V, where Vf is the calculation value for charge state estimation obtained by the current calculation, and the fluctuation suppression coefficient The setting unit preferably changes the value of the fluctuation suppression coefficient t to be smaller based on the coefficient change reference value calculated when the charge state estimation calculation value Vf falls within a predetermined period during charging of the power storage device. .

また、本発明に係る充電制御システムにおいて、変動抑制係数設定部は、所定の期間内に充電状態推定用演算値Vfが降下した回数がxである場合に、所定の期間内において充電状態推定用演算値Vfが降下した値の合計値をxで割った降下平均値を係数変更基準値とすることが好ましい。   Further, in the charge control system according to the present invention, the fluctuation suppression coefficient setting unit is for charge state estimation within a predetermined period when the number of times the charge state estimation calculation value Vf drops within a predetermined period is x. It is preferable that the average value of the fall of the calculated value Vf divided by x is the coefficient change reference value.

また、本発明に係る充電制御システムにおいて、変動抑制係数設定部は、所定の期間内に充電状態推定用演算値Vfが降下した回数がxである場合に、xを係数変更基準値とすることが好ましい。   In the charge control system according to the present invention, the fluctuation suppression coefficient setting unit sets x as a coefficient change reference value when the number of times the charge state estimation calculation value Vf drops within a predetermined period is x. Is preferred.

上記構成の充電制御システムによれば、蓄電装置の充電中の所定の期間内に充電状態推定用演算値が降下した場合に、充電状態推定用演算値を求める演算式のうち、外部商用電源の電力変動の影響を受ける蓄電装置の両端電圧の比率を小さくすることができる。したがって、充電状態推定用演算値を演算により求める場合に外部商用電源の電力変動の影響を抑制することができる。   According to the charge control system configured as described above, when the calculation value for charge state estimation drops within a predetermined period during charging of the power storage device, the calculation formula for the calculation value for charge state estimation includes The ratio of the voltage across the power storage device that is affected by the power fluctuation can be reduced. Therefore, the influence of the power fluctuation of the external commercial power source can be suppressed when the calculation value for charge state estimation is obtained by calculation.

本発明に係る実施の形態において、充電制御システムの構成を示す図である。In embodiment which concerns on this invention, it is a figure which shows the structure of a charge control system. 本発明に係る実施の形態において、蓄電装置へのプラグイン充電の前半充電期間内において、横軸に時間をとり、縦軸に充電状態推定用演算値Vfをとった場合にVfの変化を示す図である。In the embodiment according to the present invention, in the first half charging period of plug-in charging to the power storage device, the horizontal axis indicates time, and the vertical axis indicates the change in Vf when the calculation value Vf for charge state estimation is taken. FIG.

以下では、全ての図面において同様の要素には同一の符号を付し、重複する説明を省略する。また、本文中の説明においては、必要に応じそれ以前に述べた符号を用いるものとする。   Below, the same code | symbol is attached | subjected to the same element in all the drawings, and the overlapping description is abbreviate | omitted. In the description in the text, the symbols described before are used as necessary.

図1は、充電制御システム10の構成を示す図である。充電制御システム10は、蓄電装置側回路100と、充電装置側回路200と、電源部40と、制御部20と、外部充電ケーブル部50と、を含んで構成される。ここで、蓄電装置側回路100と、充電装置側回路200と、電源部40と、制御部20とは、エンジンとモータとを併用して走行を行い、家庭用コンセント等を用いて充電可能なプラグインハイブリッド自動車に搭載されている。   FIG. 1 is a diagram illustrating a configuration of the charging control system 10. The charging control system 10 includes a power storage device side circuit 100, a charging device side circuit 200, a power supply unit 40, a control unit 20, and an external charging cable unit 50. Here, the power storage device side circuit 100, the charging device side circuit 200, the power supply unit 40, and the control unit 20 run using a combination of an engine and a motor and can be charged using a household outlet or the like. Installed in plug-in hybrid vehicles.

蓄電装置側回路100は、蓄電装置102と、電圧センサ105と、蓄電側リレー回路部103と、蓄電側コンデンサ112と、DC/DCコンバータ回路114と、A/C回路116と、昇降圧コンバータ回路118と、第1インバータ回路120と、第2インバータ回路122と、第1モータジェネレータ124と、第2モータジェネレータ126とを含んで構成される。   The power storage device side circuit 100 includes a power storage device 102, a voltage sensor 105, a power storage side relay circuit unit 103, a power storage side capacitor 112, a DC / DC converter circuit 114, an A / C circuit 116, and a buck-boost converter circuit. 118, a first inverter circuit 120, a second inverter circuit 122, a first motor generator 124, and a second motor generator 126.

蓄電装置102は、第1モータジェネレータ124と第2モータジェネレータ126とに電力を供給するためのバッテリである。また、蓄電装置102は、充放電可能な直流電源であって、例えば、炭素物質で構成された負極と、リチウムイオンが移動するための電解液と、リチウムイオンを可逆的に出し入れできる正極活物質とを有するリチウムイオン二次電池を用いることができる。   The power storage device 102 is a battery for supplying power to the first motor generator 124 and the second motor generator 126. The power storage device 102 is a chargeable / dischargeable DC power source, for example, a negative electrode made of a carbon material, an electrolyte for moving lithium ions, and a positive electrode active material capable of reversing lithium ions. Can be used.

蓄電装置102は、充電状態を示すSOC(State Of Charge)が所定の範囲内となるように充電制御が行われている。ここで、蓄電装置102のSOCは、蓄電装置102の開回路電圧OCV(Open Circuit Voltage)により推定可能であるが、蓄電装置102の充電中は開回路電圧OCVを測定することができないため、蓄電装置102の閉回路電圧CCV(Closed Circuit Voltage)により蓄電装置102のSOCが推定されている。なお、CCV≒OCV+IR(Iは蓄電装置102に流れる電流、Rは蓄電装置102の内部抵抗)の関係式が成り立っている。   Charging control is performed on power storage device 102 so that SOC (State Of Charge) indicating a charging state is within a predetermined range. Here, although the SOC of the power storage device 102 can be estimated by the open circuit voltage OCV (Open Circuit Voltage) of the power storage device 102, the open circuit voltage OCV cannot be measured while the power storage device 102 is being charged. The SOC of power storage device 102 is estimated based on the closed circuit voltage CCV (Closed Circuit Voltage) of device 102. Note that a relational expression CCV≈OCV + IR (I is a current flowing through the power storage device 102 and R is an internal resistance of the power storage device 102) is established.

電圧センサ105は、蓄電装置102の両端電圧である閉回路電圧CCVを計測する機能を有している。   The voltage sensor 105 has a function of measuring a closed circuit voltage CCV that is a voltage across the power storage device 102.

蓄電側リレー回路部103は、第1リレー回路部104と、第2リレー回路部107と、第3リレー回路部110と、を含んで構成される。第1リレー回路部104は、正極側ライン24に直列に接続されるリレーであり、制御部20の制御指令によって接続あるいは遮断の制御が行われる。第2リレー回路部107は、抵抗素子108と、制御部20の制御指令によって接続あるいは遮断の制御が行われるリレー106とが直列に接続されて構成される。また、第2リレー回路部107は、負極側ライン26に直列に接続される。第3リレー回路部110は、第2リレー回路部107に並列に接続されるリレーであり、制御部20の制御指令によって接続あるいは遮断の制御が行われる。   The power storage side relay circuit unit 103 includes a first relay circuit unit 104, a second relay circuit unit 107, and a third relay circuit unit 110. The first relay circuit unit 104 is a relay connected in series to the positive electrode side line 24, and connection or disconnection control is performed by a control command of the control unit 20. The second relay circuit unit 107 is configured by connecting in series a resistance element 108 and a relay 106 that is controlled to be connected or disconnected according to a control command from the control unit 20. The second relay circuit unit 107 is connected in series to the negative electrode side line 26. The third relay circuit unit 110 is a relay connected in parallel to the second relay circuit unit 107, and connection or disconnection control is performed according to a control command from the control unit 20.

蓄電側コンデンサ112は、正極側ライン24と負極側ライン26との間に接続され、正極側ライン24と負極側ライン26との間の電圧変動を平滑化する平滑コンデンサである。   The power storage side capacitor 112 is connected between the positive electrode side line 24 and the negative electrode side line 26 and is a smoothing capacitor that smoothes voltage fluctuations between the positive electrode side line 24 and the negative electrode side line 26.

昇降圧コンバータ回路118は、蓄電装置102から受け取る直流電圧についてコイル等を用いて昇圧する機能を有する。具体的には、昇降圧コンバータ回路118は、トランジスタ等のスイッチング素子のスイッチング動作に応じて流れる電流をコイルにエネルギとして蓄積する。そして、昇降圧コンバータ回路118は、その蓄積されたエネルギをトランジスタがオフされたタイミングに同期してコンデンサに蓄積することで昇圧を行う。また、昇降圧コンバータ回路118は、第1インバータ回路120あるいは第2インバータ回路122から受ける直流電圧を降圧し、蓄電装置102を充電することもできる。   The buck-boost converter circuit 118 has a function of boosting a DC voltage received from the power storage device 102 using a coil or the like. Specifically, the buck-boost converter circuit 118 accumulates current that flows according to the switching operation of a switching element such as a transistor as energy in the coil. The buck-boost converter circuit 118 boosts the accumulated energy in the capacitor in synchronization with the timing when the transistor is turned off. Further, the step-up / down converter circuit 118 can step down the DC voltage received from the first inverter circuit 120 or the second inverter circuit 122 and charge the power storage device 102.

第1インバータ回路120及び第2インバータ回路122は、プラグインハイブリッド自動車の力行時には昇降圧コンバータ回路118の出力電圧である直流電圧を交流電圧に変換して第1モータジェネレータ124あるいは第2モータジェネレータ126に供給し、これにより第1モータジェネレータ124あるいは第2モータジェネレータ126が回転駆動される。また、第1インバータ回路120及び第2インバータ回路122は、プラグインハイブリッド自動車の回生時には第1モータジェネレータ124あるいは第2モータジェネレータ126によって発電された交流電圧を直流電圧に変換し、昇降圧コンバータ回路118を介して蓄電装置102に供給されることで蓄電装置102が充電される。   The first inverter circuit 120 and the second inverter circuit 122 convert a DC voltage, which is an output voltage of the step-up / down converter circuit 118, into an AC voltage during powering of the plug-in hybrid vehicle, and convert the first motor generator 124 or the second motor generator 126 into an AC voltage. Thus, the first motor generator 124 or the second motor generator 126 is rotationally driven. Further, the first inverter circuit 120 and the second inverter circuit 122 convert the AC voltage generated by the first motor generator 124 or the second motor generator 126 into a DC voltage during regeneration of the plug-in hybrid vehicle, and thereby a step-up / down converter circuit. The power storage device 102 is charged by being supplied to the power storage device 102 via 118.

第1モータジェネレータ124及び第2モータジェネレータ126は、それぞれU相コイルとV相コイルとW相コイルとを含んで構成される三相交流回転電機である。第1モータジェネレータ124は、図示しない動力分割機構により分割されたエンジンの動力によって発電する。そして、第1モータジェネレータ124によって発電された電力は、プラグインハイブリッド自動車の走行状態や蓄電装置102のSOC(State Of Charge)の状態に応じて使い分けられる。また、第2モータジェネレータ126は、蓄電装置102において蓄えられた電力及び第1モータジェネレータ124によって発電された電力のうち少なくともいずれかの電力により駆動される。もちろん、第1モータジェネレータ124と第2モータジェネレータ126の機能を上記とは逆の機能を割り当ててもよい。   The first motor generator 124 and the second motor generator 126 are three-phase AC rotating electric machines each including a U-phase coil, a V-phase coil, and a W-phase coil. The first motor generator 124 generates power using the power of the engine divided by a power split mechanism (not shown). The electric power generated by first motor generator 124 is selectively used according to the running state of the plug-in hybrid vehicle and the state of charge (SOC) of power storage device 102. Second motor generator 126 is driven by at least one of the electric power stored in power storage device 102 and the electric power generated by first motor generator 124. Of course, the functions of the first motor generator 124 and the second motor generator 126 may be assigned functions opposite to those described above.

DC/DCコンバータ回路114は、メインバッテリである蓄電装置102の出力電圧を補機バッテリである電源部40の充電電圧に降圧する機能を有する。   The DC / DC converter circuit 114 has a function of stepping down the output voltage of the power storage device 102 that is a main battery to the charging voltage of the power supply unit 40 that is an auxiliary battery.

A/C回路116は、図示しないコンプレッサを駆動制御するために、蓄電装置102の直流電力を交流電力に変換するインバータを含んで構成される。   A / C circuit 116 includes an inverter that converts DC power of power storage device 102 into AC power in order to drive and control a compressor (not shown).

充電装置側回路200は、充電器202と、充電側リレー回路部205とを含んで構成される。   The charging device side circuit 200 includes a charger 202 and a charging side relay circuit unit 205.

充電器202は、制御部20によって制御され、外部商用電源からの交流電力を直流電力に変換して蓄電装置102に対して供給するための装置である。充電器202は、外部商用電源からの交流電力が外部充電ケーブル部50を介して入力され、AC/DC変換回路によって当該入力された交流電力を直流電力に変換する。そして、その後DC/AC変換回路によって当該直流電力を高周波の交流電力に変換し、その後絶縁トランス回路によって当該高周波の交流電力を一次コイル及び二次コイルの巻き数比に応じた電圧レベルに変換し、その後整流回路によって当該交流電力を直流電力に整流して出力する。   Charger 202 is a device that is controlled by control unit 20 to convert AC power from an external commercial power source into DC power and supply it to power storage device 102. The charger 202 receives AC power from an external commercial power supply via the external charging cable unit 50, and converts the input AC power into DC power by an AC / DC conversion circuit. Then, the DC power is converted into high frequency AC power by a DC / AC conversion circuit, and then the high frequency AC power is converted into a voltage level corresponding to the turn ratio of the primary coil and the secondary coil by an insulating transformer circuit. Then, the AC power is rectified to DC power by a rectifier circuit and output.

充電側リレー回路部205は、第1リレー回路部206と、第2リレー回路部208とを含んで構成される。第1リレー回路部206は、正極側ライン27に直列に接続されるリレーであり、制御部20の制御指令によって接続あるいは遮断の制御が行われる。第2リレー回路部208は、負極側ライン29に直列に接続されるリレーであり、制御部20の制御指令によって接続あるいは遮断の制御が行われる。   The charging-side relay circuit unit 205 includes a first relay circuit unit 206 and a second relay circuit unit 208. The first relay circuit unit 206 is a relay connected in series to the positive electrode side line 27, and connection or disconnection control is performed by a control command of the control unit 20. The second relay circuit unit 208 is a relay connected in series to the negative electrode side line 29, and is controlled to be connected or disconnected by a control command from the control unit 20.

外部充電ケーブル部50は、外部商用電源の取出口である家庭用ACコンセントに接続するためのプラグ56と、外部商用電源から充電器202への電力供給を停止するためのリレーを含むCCID54と、充電器202に接続されるインレット207に接続するためのコネクタ52とを含んで構成される。   The external charging cable unit 50 includes a plug 56 for connecting to a household AC outlet that is an outlet of an external commercial power supply, a CCID 54 including a relay for stopping power supply from the external commercial power supply to the charger 202, And a connector 52 for connecting to an inlet 207 connected to the charger 202.

電源部40は、メインバッテリである蓄電装置102の出力電圧よりも低い電圧を出力する補機バッテリであり、DC/DCコンバータ回路114によって降圧された電圧によって充電されている。電源部40の出力電圧は、制御部20に供給される。   The power supply unit 40 is an auxiliary battery that outputs a voltage lower than the output voltage of the power storage device 102 that is a main battery, and is charged by the voltage stepped down by the DC / DC converter circuit 114. The output voltage of the power supply unit 40 is supplied to the control unit 20.

制御部20は、蓄電装置側回路100と制御線16を介して接続され、蓄電装置側回路100を制御する機能を有する。さらに、制御部20は、充電装置側回路200と制御線18を介して接続され、充電装置側回路200を制御する機能を有する。ここでは、制御部20の機能のうち、特に、外部商用電源を用い蓄電装置102のSOCが所定の値(例えば80%)となるようにSOCを推定しながら充電を行うプラグイン充電中に、外部商用電源の電力変動がSOCの推定に与える影響を抑えるように、変動抑制係数を設定する機能について説明する。なお、ここでは、プラグイン充電を行う場合に、充電期間を前半と後半の2段階に分けて充電が行われ、前半充電期間は例えば1kWの電力で充電が行われ、後半充電期間は例えば500Wの電力で充電が行われる。また、ここでは蓄電装置側回路100と充電装置側回路200は1つの制御部で制御するものとして説明するが2つの制御部で制御するものとしてもよい。   The control unit 20 is connected to the power storage device side circuit 100 via the control line 16 and has a function of controlling the power storage device side circuit 100. Further, the control unit 20 is connected to the charging device side circuit 200 via the control line 18 and has a function of controlling the charging device side circuit 200. Here, among the functions of the control unit 20, particularly during plug-in charging in which charging is performed while estimating the SOC so that the SOC of the power storage device 102 becomes a predetermined value (for example, 80%) using an external commercial power supply, A function for setting a fluctuation suppression coefficient so as to suppress the influence of power fluctuation of the external commercial power supply on the estimation of the SOC will be described. Here, when plug-in charging is performed, the charging period is divided into two stages of the first half and the second half, and the first half charging period is charged with, for example, 1 kW, and the second half charging period is 500 W, for example. Charging is performed with the power of. In addition, here, the power storage device side circuit 100 and the charging device side circuit 200 are described as being controlled by one control unit, but may be controlled by two control units.

制御部20は、変動抑制演算処理部212と、変動抑制係数設定処理部214と、充電状態推定処理部216とを含んで構成される。   The control unit 20 includes a fluctuation suppression calculation processing unit 212, a fluctuation suppression coefficient setting processing unit 214, and a charging state estimation processing unit 216.

変動抑制演算処理部212は、電圧センサ105によって検出された蓄電装置102の両端電圧V(蓄電装置102の閉回路電圧CCV)と、変動抑制係数設定処理部204によって設定された変動抑制係数tと、前回の演算によって求められた充電状態推定用演算値VfLと、を用いて蓄電装置102の充電状態推定用演算値Vf(今回の演算によって求める充電状態推定用演算値)を演算する機能を有する。具体的には、変動抑制演算処理部212は、Vf=(1−t)*VfL+t*Vの演算式を用いて、充電状態推定用演算値Vfを求める。The fluctuation suppression calculation processing unit 212 includes a voltage V across the power storage device 102 (closed circuit voltage CCV of the power storage device 102) detected by the voltage sensor 105, and a fluctuation suppression coefficient t set by the fluctuation suppression coefficient setting processing unit 204. A function for calculating a charge state estimation calculation value Vf (a charge state estimation calculation value obtained by the current calculation) of the power storage device 102 using the charge state estimation calculation value Vf L obtained by the previous calculation. Have. Specifically, the fluctuation suppression calculation processing unit 212 obtains the charge state estimation calculation value Vf using the calculation formula of Vf = (1−t) * Vf L + t * V.

変動抑制係数設定処理部214は、蓄電装置102へのプラグイン充電の前半充電期間は、初期設定用の係数値を変動抑制係数として設定する機能を有する。   The fluctuation suppression coefficient setting processing unit 214 has a function of setting a coefficient value for initial setting as a fluctuation suppression coefficient during the first half charging period of plug-in charging to the power storage device 102.

また、変動抑制係数設定処理部214は、蓄電装置102へのプラグイン充電の前半充電期間内に充電状態推定用演算値Vfが降下した場合に、プラグイン充電の後半充電期間に充電状態推定用演算値Vfの演算を行う際に、蓄電装置の両端電圧Vと充電状態推定用演算値VfLとのうち、蓄電装置の両端電圧Vの比率が小さくなるように変動抑制係数tを変更する機能を有する。具体的には、変動抑制係数設定処理部214は、蓄電装置102へのプラグイン充電の前半充電期間内に充電状態推定用演算値Vfが降下した場合に算出した係数変更基準値Bに基づいて、変動抑制係数tの値を小さく変更する。ここで、変動抑制係数設定処理部214は、蓄電装置102へのプラグイン充電の前半充電期間内に充電状態推定用演算値Vfが降下した回数がxである場合に、プラグイン充電の前半充電期間内において充電状態推定用演算値Vfが降下した値の合計値をxで割った降下平均値Aを係数変更基準値Bとして算出する。なお、動抑制係数設定処理部214は、単に、蓄電装置102へのプラグイン充電の前半充電期間内に充電状態推定用演算値Vfが降下した回数であるxを係数変更基準値Bとしてもよい。このように係数変更基準値Bを決定できるのは、蓄電装置102へのプラグイン充電中は、プラグインハイブリッド自動車は電力を使う操作がないため、蓄電装置102の両端電圧Vが降下することはないと考えられるからである。In addition, the fluctuation suppression coefficient setting processing unit 214 is for charging state estimation during the latter half charging period of plug-in charging when the calculation value Vf for charging state estimation falls within the first half charging period of plug-in charging to the power storage device 102. when performing the calculation of the calculation value Vf, of the voltage V across the charging state estimation operation value Vf L of the power storage device, the ability to change the variation suppression coefficient t so that the ratio of the voltage V across the power storage device is reduced Have Specifically, the fluctuation suppression coefficient setting processing unit 214 is based on the coefficient change reference value B calculated when the charging state estimation calculation value Vf drops during the first half charging period of plug-in charging to the power storage device 102. Then, the value of the fluctuation suppression coefficient t is changed to be small. Here, the fluctuation suppression coefficient setting processing unit 214 performs the first half charge of the plug-in charge when the number of times the charge state estimation calculation value Vf drops within the first charge period of the plug-in charge to the power storage device 102 is x. A drop average value A obtained by dividing a total value of values where the calculation value Vf for charge state estimation falls within the period by x is calculated as a coefficient change reference value B. Note that the dynamic suppression coefficient setting processing unit 214 may simply set x, which is the number of times the charge state estimation calculation value Vf drops, during the first half charging period of plug-in charging to the power storage device 102 as the coefficient change reference value B. . The coefficient change reference value B can be determined in this way because the plug-in hybrid vehicle does not use power during plug-in charging of the power storage device 102, and therefore the voltage V across the power storage device 102 does not drop. It is because it is thought that there is not.

充電状態推定処理部216は、変動抑制演算処理部212の演算によって求められた充電状態推定用演算値Vfに基づいて蓄電装置102のSOCを推定する機能を有する。また、充電状態推定処理部216は、蓄電装置102のSOCが所定の値(例えば80%)まで充電されていると判断した場合には、充電器202に対して蓄電装置102への電力供給を停止させる制御を行う機能を有する。   The charging state estimation processing unit 216 has a function of estimating the SOC of the power storage device 102 based on the charging state estimation calculation value Vf obtained by the calculation of the fluctuation suppression calculation processing unit 212. In addition, when it is determined that the SOC of the power storage device 102 is charged to a predetermined value (for example, 80%), the charging state estimation processing unit 216 supplies power to the power storage device 102 with respect to the charger 202. It has a function to control to stop.

続いて、上記構成の充電制御システム10の作用について図1,2を用いて説明する。図2は、蓄電装置102へのプラグイン充電の前半充電期間内において、横軸に時間をとり、縦軸に充電状態推定用演算値Vfをとった場合にVfの変化を示す図である。ここで、図2に示されるように、蓄電装置102へのプラグイン充電の前半充電期間内では、充電状態推定用演算値Vfの値が3回(x=3)降下しており、各回の降下量はそれぞれd1、d2、d3であるから降下平均値A=(d1+d2+d3)/3が係数変更基準値Bとなる。Next, the operation of the charging control system 10 having the above configuration will be described with reference to FIGS. FIG. 2 is a diagram illustrating a change in Vf when time is plotted on the horizontal axis and the calculation value Vf for charge state estimation is plotted on the vertical axis within the first half charging period of plug-in charging to the power storage device 102. Here, as shown in FIG. 2, the value of the charge state estimation calculation value Vf drops three times (x = 3) within the first half charging period of the plug-in charging to the power storage device 102. Since the descent amounts are d 1 , d 2 , and d 3 , the average descent value A = (d 1 + d 2 + d 3 ) / 3 is the coefficient change reference value B.

そして、変動抑制係数設定処理部214は、上記係数変更基準値Bの大きさに比例して、蓄電装置102へのプラグイン充電の後半充電期間に用いる変動抑制係数tを小さく変更する。これにより、変動抑制演算処理部212が充電状態推定用演算値Vfを求める際の演算式「(1−t)*VfL+t*V」のうちV(蓄電装置102の閉回路電圧CCV)が与える影響を小さくすることができる。これにより、充電状態推定用演算値Vfを用いて蓄電装置102のSOCを推定する際に、外部商用電源の電力変動が与える影響を小さくすることができる。したがって、充電制御システム10の構成によれば、蓄電装置102のSOCの推定精度をより向上させることができる。Then, the fluctuation suppression coefficient setting processing unit 214 changes the fluctuation suppression coefficient t used in the second half charging period of plug-in charging to the power storage device 102 to be smaller in proportion to the magnitude of the coefficient change reference value B. As a result, V (closed circuit voltage CCV of power storage device 102) of arithmetic expression “(1-t) * Vf L + t * V” when fluctuation suppression calculation processing unit 212 obtains charge state estimation calculation value Vf is: The influence given can be reduced. Thereby, when estimating SOC of power storage device 102 using charge state estimation calculation value Vf, it is possible to reduce the influence of power fluctuations of the external commercial power source. Therefore, according to the configuration of charge control system 10, the SOC estimation accuracy of power storage device 102 can be further improved.

上記のように充電制御システム10の構成によれば、蓄電装置102へのプラグイン充電中は、プラグインハイブリッド自動車は電力を使う操作が行われないものとして説明したが、プラグイン充電中に、蓄電装置102の電力を使うような操作、例えばルームランプの点灯、ヘッドライトの点灯等の操作が行われている場合は、当該電力消費操作が行われていることを検知して、制御部20による変動抑制係数tの設定変更を停止するものとしてもよい。   According to the configuration of the charging control system 10 as described above, the plug-in hybrid vehicle has been described as not performing an operation using power during plug-in charging to the power storage device 102. However, during plug-in charging, When an operation that uses the power of the power storage device 102, for example, an operation such as lighting a room lamp or lighting a headlight, is performed, the control unit 20 detects that the power consumption operation is performed. It is also possible to stop changing the setting of the fluctuation suppression coefficient t.

10 充電制御システム、16,18 制御線、20 制御部、23,24,27 正極側ライン、25,26,29 負極側ライン、40 電源部、50 外部充電ケーブル部、52 コネクタ、54 CCID、56 プラグ、100 蓄電装置側回路、102 蓄電装置、103 蓄電側リレー回路部、104 第1リレー回路部、105 電圧センサ、106 リレー、107 第2リレー回路部、108 抵抗素子、110 第3リレー回路部、112 蓄電側コンデンサ、114 DC/DCコンバータ回路、116 A/C回路、118 昇降圧コンバータ回路、120 第1インバータ回路、122 第2インバータ回路、124 第1モータジェネレータ、126 第2モータジェネレータ、200 充電装置側回路、202 充電器、204 変動抑制係数設定処理部、205 充電側リレー回路部、206 第1リレー回路部、207 インレット、208 第2リレー回路部、212 変動抑制演算処理部、214 変動抑制係数設定処理部、216 充電状態推定処理部。   DESCRIPTION OF SYMBOLS 10 Charging control system, 16, 18 Control line, 20 Control part, 23, 24, 27 Positive side line, 25, 26, 29 Negative side line, 40 Power supply part, 50 External charging cable part, 52 Connector, 54 CCID, 56 Plug, 100 power storage device side circuit, 102 power storage device, 103 power storage side relay circuit unit, 104 first relay circuit unit, 105 voltage sensor, 106 relay, 107 second relay circuit unit, 108 resistance element, 110 third relay circuit unit , 112 Power storage side capacitor, 114 DC / DC converter circuit, 116 A / C circuit, 118 Buck-boost converter circuit, 120 First inverter circuit, 122 Second inverter circuit, 124 First motor generator, 126 Second motor generator, 200 Charger side circuit, 202 charger, 204 Fluctuation suppression coefficient setting processing unit, 205 charging side relay circuit unit, 206 first relay circuit unit, 207 inlet, 208 second relay circuit unit, 212 fluctuation suppression calculation processing unit, 214 fluctuation suppression coefficient setting processing unit, 216 charge state estimation Processing part.

Claims (4)

外部商用電源から供給される電力を用いて充電可能な蓄電装置と、
蓄電装置の両端電圧を検出する電圧検出部と、
外部商用電源の電力変動が蓄電装置の両端電圧に与えた影響を演算上抑制させるための変動抑制係数を設定する変動抑制係数設定部と、
電圧検出部によって検出された蓄電装置の両端電圧と、変動抑制係数設定部によって設定された変動抑制係数と、前回の演算によって求められた充電状態推定用演算値と、を用いて蓄電装置の充電状態推定用演算値を演算する変動抑制演算部と、
充電状態推定用演算値に基づいて蓄電装置の充電状態を推定する充電状態推定部と、
を備え、
変動抑制係数設定部は、
蓄電装置の充電中の所定の期間内に充電状態推定用演算値が降下した場合に、当該所定の期間以降に充電状態推定用演算値の演算を行う際に、電圧検出部によって検出された蓄電装置の両端電圧と前回の演算によって求められた充電状態推定用演算値とのうち、電圧検出部によって検出された蓄電装置の両端電圧の比率が小さくなるように変動抑制係数を変更することを特徴とする充電制御システム。
A power storage device that can be charged using electric power supplied from an external commercial power source;
A voltage detector for detecting a voltage across the power storage device;
A fluctuation suppression coefficient setting unit for setting a fluctuation suppression coefficient for suppressing the influence of the power fluctuation of the external commercial power supply on the voltage across the power storage device, and
Charging the power storage device using the both-end voltage of the power storage device detected by the voltage detection unit, the fluctuation suppression coefficient set by the fluctuation suppression coefficient setting unit, and the calculation value for charge state estimation obtained by the previous calculation A fluctuation suppression calculation unit for calculating a calculation value for state estimation;
A charge state estimation unit for estimating a charge state of the power storage device based on a calculation value for charge state estimation;
With
The fluctuation suppression coefficient setting unit
When the calculation value for charge state estimation falls within a predetermined period during charging of the power storage device, the power storage detected by the voltage detection unit when calculating the calculation value for charge state estimation after the predetermined period The variation suppression coefficient is changed so that the ratio of the both-ends voltage of the power storage device detected by the voltage detection unit becomes smaller among the both-ends voltage of the device and the calculation value for charge state estimation obtained by the previous calculation. And charge control system.
請求項1に記載の充電制御システムにおいて、
電圧検出部によって検出された蓄電装置の両端電圧をVとし、
変動抑制係数をtとし、
前回の演算によって求められた充電状態推定用演算値をVfLとし、
今回の演算によって求める充電状態推定用演算値をVfとした場合に、
変動抑制演算部は、
Vf=(1−t)*VfL+t*V
を用いて、Vfを求め、
変動抑制係数設定部は、
蓄電装置の充電中の所定の期間内に充電状態推定用演算値Vfが降下した場合に算出した係数変更基準値に基づいて、変動抑制係数tの値を小さく変更することを特徴とする充電制御システム。
The charge control system according to claim 1,
The voltage across the power storage device detected by the voltage detector is V,
Let t be the fluctuation suppression coefficient.
The calculation value for charge state estimation obtained by the previous calculation is Vf L ,
When the calculation value for charge state estimation obtained by this calculation is Vf,
The fluctuation suppression calculation unit
Vf = (1-t) * Vf L + t * V
To obtain Vf,
The fluctuation suppression coefficient setting unit
Charge control characterized by changing the value of the fluctuation suppression coefficient t to be smaller based on the coefficient change reference value calculated when the charge state estimation calculation value Vf falls within a predetermined period during charging of the power storage device system.
請求項2に記載の充電制御システムにおいて、
変動抑制係数設定部は、
所定の期間内に充電状態推定用演算値Vfが降下した回数がxである場合に、所定の期間内において充電状態推定用演算値Vfが降下した値の合計値をxで割った降下平均値を係数変更基準値とすることを特徴とする充電制御システム。
In the charge control system according to claim 2,
The fluctuation suppression coefficient setting unit
When the number of times that the charge state estimation calculation value Vf has fallen within a predetermined period is x, the average drop value obtained by dividing the total value of the values where the charge state estimation calculation value Vf has fallen within the predetermined period by x As a coefficient change reference value.
請求項2に記載の充電制御システムにおいて、
変動抑制係数設定部は、
所定の期間内に充電状態推定用演算値Vfが降下した回数がxである場合に、xを係数変更基準値とすることを特徴とする充電制御システム。
In the charge control system according to claim 2,
The fluctuation suppression coefficient setting unit
A charge control system, wherein x is a coefficient change reference value when the number of times the charge state estimation calculation value Vf drops within a predetermined period is x.
JP2011510768A 2010-06-11 2010-06-11 Charge control system Expired - Fee Related JP5196011B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/059910 WO2011155051A1 (en) 2010-06-11 2010-06-11 Charge control system

Publications (2)

Publication Number Publication Date
JP5196011B2 true JP5196011B2 (en) 2013-05-15
JPWO2011155051A1 JPWO2011155051A1 (en) 2013-08-01

Family

ID=45097680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011510768A Expired - Fee Related JP5196011B2 (en) 2010-06-11 2010-06-11 Charge control system

Country Status (4)

Country Link
US (1) US8704496B2 (en)
JP (1) JP5196011B2 (en)
CN (1) CN102405416B (en)
WO (1) WO2011155051A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5891931B2 (en) * 2012-04-27 2016-03-23 ソニー株式会社 Display control device, display control method, display control program, and portable terminal
JP2015166710A (en) * 2014-03-04 2015-09-24 ソニー株式会社 Electric storage member state estimation apparatus, battery pack, electric vehicle, electric storage device, and electric storage member state estimation method
JP6919590B2 (en) * 2018-02-08 2021-08-18 トヨタ自動車株式会社 How to charge the vehicle and power storage device
JP2023000567A (en) * 2021-06-18 2023-01-04 トヨタ自動車株式会社 Power supply unit and vehicle

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08251713A (en) 1995-03-15 1996-09-27 Yamaha Motor Co Ltd Current controller for electric vehicle
US5504413A (en) * 1995-07-25 1996-04-02 Motorola, Inc. Battery charging system with power management of plural peripheral devices
JP3251499B2 (en) 1996-05-31 2002-01-28 矢崎総業株式会社 Battery remaining capacity measurement device
JP3369484B2 (en) * 1998-09-02 2003-01-20 本田技研工業株式会社 Control device for hybrid drive vehicle
JP3806578B2 (en) * 2000-05-22 2006-08-09 スズキ株式会社 Battery remaining capacity estimation device
JP4523738B2 (en) 2001-06-07 2010-08-11 パナソニック株式会社 Secondary battery remaining capacity control method and apparatus
US6639386B2 (en) * 2001-11-02 2003-10-28 Sanyo Electric Co., Ltd. Rechargeable battery device equipped with life determination function
US6646419B1 (en) * 2002-05-15 2003-11-11 General Motors Corporation State of charge algorithm for lead-acid battery in a hybrid electric vehicle
JP4767558B2 (en) * 2005-03-07 2011-09-07 日立ビークルエナジー株式会社 Power supply state detection device, power supply device, and initial characteristic extraction device used for power supply device
EP1777116A1 (en) * 2005-10-19 2007-04-25 C.R.F. Società Consortile per Azioni A system for managing the supply of electrical energy in a motor vehicle
JP4816128B2 (en) * 2006-02-21 2011-11-16 株式会社デンソー Vehicle power generation control device
US8264203B2 (en) * 2006-03-31 2012-09-11 Valence Technology, Inc. Monitoring state of charge of a battery
JP4949902B2 (en) * 2007-03-16 2012-06-13 日本碍子株式会社 Secondary battery power control method
JP4544273B2 (en) * 2007-06-20 2010-09-15 トヨタ自動車株式会社 VEHICLE POWER SUPPLY DEVICE AND CHARGING STATE ESTIMATION METHOD FOR POWER STORAGE DEVICE IN VEHICLE POWER SUPPLY DEVICE
JP4442646B2 (en) * 2007-06-20 2010-03-31 株式会社デンソー Vehicle power generation control device and control system
KR100985667B1 (en) * 2007-08-22 2010-10-05 주식회사 엘지화학 Apparatus for estimating of battery's open circuit voltage, Apparatus for estimating of batter's state of charge and Method for controlling the same
JP2009296699A (en) 2008-06-02 2009-12-17 Panasonic Corp Charging control circuit, power supply, and charging control method
KR100986373B1 (en) * 2008-06-02 2010-10-08 현대자동차주식회사 Method For Determining State Of Charge Of A Battery For A Vehicle

Also Published As

Publication number Publication date
US8704496B2 (en) 2014-04-22
JPWO2011155051A1 (en) 2013-08-01
US20130069599A1 (en) 2013-03-21
CN102405416A (en) 2012-04-04
CN102405416B (en) 2014-04-16
WO2011155051A1 (en) 2011-12-15

Similar Documents

Publication Publication Date Title
JP5682433B2 (en) Charge control system
US10988043B2 (en) Vehicle and method of charging electric power storage device
JP6414460B2 (en) Battery deterioration state determination device and deterioration state determination method
US20130320911A1 (en) Charge controller for vehicle
US20160049821A1 (en) Electrical storage system, and full charge capacity estimation method for electrical storage device
WO2014155434A1 (en) Vehicle
WO2008018250A1 (en) Solar photovoltaic power generation system, vehicle, solar photovoltaic power generation system control method, and computer readable recording medium having recorded therein program for causing computer to execute that control method
JP6187377B2 (en) Vehicle charging device
EP2449393A1 (en) Battery control system and vehicle
US20150288281A1 (en) Voltage conversion control apparatus
JP5196011B2 (en) Charge control system
JP2012244648A (en) Full charge control device for on-vehicle battery
JPWO2015087488A1 (en) Power supply
JP2009254212A (en) Electric vehicle
JP7070388B2 (en) Charging system
JP2005073328A (en) Power supply for electric vehicle
JP4758407B2 (en) Electric car
JP2011229275A (en) Charging system for electric vehicle
JP2017150975A (en) High-rate deterioration index estimation controller
JP5673504B2 (en) Vehicle charging device
CN112334374A (en) Drive control device and railway vehicle drive device
JP2015021861A (en) Secondary battery remaining capacity detector
JP2010178432A (en) Residual capacity detector for power supply for electric vehicle
JP2010119180A (en) Control device of vehicle
JP2008278732A (en) Electric vehicle

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees