JP5195098B2 - Manufacturing method of heat transfer plate - Google Patents

Manufacturing method of heat transfer plate Download PDF

Info

Publication number
JP5195098B2
JP5195098B2 JP2008180176A JP2008180176A JP5195098B2 JP 5195098 B2 JP5195098 B2 JP 5195098B2 JP 2008180176 A JP2008180176 A JP 2008180176A JP 2008180176 A JP2008180176 A JP 2008180176A JP 5195098 B2 JP5195098 B2 JP 5195098B2
Authority
JP
Japan
Prior art keywords
groove
lid
plate
welding
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008180176A
Other languages
Japanese (ja)
Other versions
JP2010017739A (en
Inventor
伸城 瀬尾
久司 堀
慎也 牧田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2008180176A priority Critical patent/JP5195098B2/en
Publication of JP2010017739A publication Critical patent/JP2010017739A/en
Application granted granted Critical
Publication of JP5195098B2 publication Critical patent/JP5195098B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は、例えば熱交換器や加熱機器あるいは冷却機器などに用いられる伝熱板の製造方法に関する。   The present invention relates to a method for manufacturing a heat transfer plate used in, for example, a heat exchanger, a heating device, a cooling device, or the like.

熱交換、加熱あるいは冷却すべき対象物に接触し又は近接して配置される伝熱板は、その本体であるベース部材に例えば高温液や冷却水などの熱媒体を循環させる熱媒体用管を挿通させて形成されている。   A heat transfer plate arranged in contact with or close to an object to be heat exchanged, heated or cooled is provided with a heat medium pipe for circulating a heat medium such as high-temperature liquid or cooling water through a base member as a main body. It is formed by insertion.

図11は、従来の伝熱板を示した図であって、(a)は斜視図、(b)は断面図である。従来の伝熱板100は、表面に開口する断面視矩形の蓋溝106と蓋溝106の底面に開口する凹溝108とを有するベース部材102と、凹溝108に挿入される熱媒体用管116と、蓋溝106に挿入される蓋板110と、を備え、蓋溝106における両側壁105,105と蓋板110の両側面113,114とのそれぞれの突合せ面に沿って摩擦攪拌接合を施すことにより、塑性化領域W,Wが形成されている(特許文献1参照)。 FIG. 11 is a view showing a conventional heat transfer plate, where (a) is a perspective view and (b) is a cross-sectional view. A conventional heat transfer plate 100 includes a base member 102 having a lid groove 106 having a rectangular cross-section opening on the surface and a concave groove 108 opening on the bottom surface of the lid groove 106, and a heat medium tube inserted into the concave groove 108. 116 and a lid plate 110 to be inserted into the lid groove 106, and friction stir welding is performed along the abutting surfaces of both side walls 105, 105 in the lid groove 106 and both side surfaces 113, 114 of the lid plate 110. By applying, plasticized regions W 0 and W 0 are formed (see Patent Document 1).

特開2004−314115号公報JP 2004-314115 A

図11の(b)に示すように、伝熱板100には、凹溝108と熱媒体用管116の外周面と蓋板110の下面とによって空隙部120が形成されているが、伝熱板100の内部に空隙部120が存在していると、熱媒体用管116から放熱された熱が蓋板110及びベース部材102に伝わりにくくなるため、伝熱板100の熱交換効率が低下するという問題があった。   As shown in FIG. 11 (b), the heat transfer plate 100 has a gap 120 formed by the groove 108, the outer peripheral surface of the heat medium pipe 116, and the lower surface of the lid plate 110. If the gap portion 120 exists inside the plate 100, the heat radiated from the heat medium pipe 116 becomes difficult to be transmitted to the lid plate 110 and the base member 102, so that the heat exchange efficiency of the heat transfer plate 100 decreases. There was a problem.

このような観点から、本発明は、熱交換効率が高い伝熱板の製造方法を提供することを課題とする。   From such a viewpoint, an object of the present invention is to provide a method for manufacturing a heat transfer plate with high heat exchange efficiency.

このような課題を解決する本発明に係る伝熱板の製造方法は、ベース部材の表面側に開口する蓋溝の底面に形成された凹溝に、熱媒体用管を挿入する挿入工程と、前記蓋溝に蓋板を配置する蓋溝閉塞工程と、前記蓋溝の側壁と前記蓋板の側面との突合部に沿って溶接を行って前記ベース部材と前記蓋板とを接合する溶接接合工程と、前記蓋板の表面で、前記凹溝に沿って流入攪拌用回転ツールを移動させて前記熱媒体用管の周囲に形成されている空隙部に、摩擦熱によって流動化させた塑性流動材を流入させる流入攪拌工程と、を有することを特徴とする。 The manufacturing method of the heat transfer plate according to the present invention that solves such a problem includes an insertion step of inserting a heat medium pipe into a concave groove formed on the bottom surface of the lid groove that opens on the surface side of the base member, A lid groove closing step of disposing a lid plate in the lid groove, and a welding joint for joining the base member and the lid plate by performing welding along the abutting portion between the side wall of the lid groove and the side surface of the lid plate. a step, on the surface of the cover plate, wherein by moving the inflow stirring rotation tool along the concave groove, the gap portion which is formed around the heat medium pipe, plastic that is fluidized by frictional heat And an inflow stirring step for allowing the fluidized material to flow in.

かかる製造方法によれば、蓋板とベース部材とを溶接により一体化するとともに、流入攪拌工程を行うことにより、熱媒体用管の周囲に形成されている空隙部に塑性流動材を流入させて、熱媒体用管の周囲の空隙を小さくすることができる。これにより、伝熱板の熱交換効率を高めることができる。 According to such a manufacturing method, as well as integrated by welding the cover plate and the base member, by performing the inflow stirring process, allowed to flow into plastic flow material in the gap portion which is formed around the heat medium pipe The space around the heat medium pipe can be reduced. Thereby, the heat exchange efficiency of a heat exchanger plate can be improved.

また、前記流入攪拌工程の前に、前記溶接接合工程を行うことが好ましい。かかる製造方法によれば、予め蓋板をベース部材に接合しておくことで蓋板が移動しないため、流入攪拌工程を容易に行うことができる。   Moreover, it is preferable to perform the said welding joining process before the said inflow stirring process. According to this manufacturing method, since the lid plate does not move by previously joining the lid plate to the base member, the inflow stirring step can be easily performed.

また、前記溶接接合工程において、前記蓋溝の側壁と前記蓋板の側面との突合部に沿って間欠的に溶接を行うことが好ましい。かかる製造方法によれば、溶接接合工程に要する手間と時間を低減することができる。 In the welding and joining step, it is preferable that welding is intermittently performed along the abutting portion between the side wall of the lid groove and the side surface of the lid plate. According to this manufacturing method, the labor and time required for the welding and joining process can be reduced.

また、前記突合部は、前記蓋溝の側壁と前記蓋板の側面とが離間して形成された離間溝を備えており、前記溶接接合工程では、前記離間溝に肉盛溶接を行うことが好ましい。   The abutting portion includes a separation groove formed by separating a side wall of the lid groove and a side surface of the lid plate, and overlay welding is performed on the separation groove in the welding joining step. preferable.

かかる製造方法によれば、離間溝に溶接金属を充填させることができるため、溶接接合工程を容易に行うことができる。   According to this manufacturing method, the welding metal can be filled in the separation groove, and therefore the welding joining process can be easily performed.

また、前記流入攪拌工程において、前記流入攪拌用回転ツールの先端を、前記蓋溝の底面よりも深く挿入することが好ましい。かかる製造方法によれば、流入攪拌用回転ツールで蓋板の底面よりも深い部分まで確実に塑性流動化することができる。   In the inflow stirring step, it is preferable to insert the tip of the inflow stirring rotary tool deeper than the bottom surface of the lid groove. According to this manufacturing method, plastic fluidization can be reliably performed up to a portion deeper than the bottom surface of the lid plate with the inflow stirring rotary tool.

また、前記流入攪拌工程において、前記溶接接合工程にて生成した溶接金属を、前記流入攪拌用回転ツールによって摩擦攪拌することが好ましい。かかる製造方法によれば、溶接金属が伝熱板の表面に露出することを防ぐことができる。   In the inflow stirring step, the weld metal generated in the welding joining step is preferably frictionally stirred by the inflow stirring rotary tool. According to this manufacturing method, it is possible to prevent the weld metal from being exposed on the surface of the heat transfer plate.

また、前記ベース部材の前記蓋溝よりも表面側に、前記蓋溝よりも幅広に形成された上蓋溝が形成されている場合には、前記流入攪拌工程後に、前記上蓋溝に上蓋板を挿入する上蓋溝閉塞工程と、前記上蓋溝の側壁と前記上蓋板の側面との突合部に沿って接合用回転ツールを相対移動させて摩擦攪拌接合を行う上蓋接合工程と、を含むことが好ましい。   Further, when an upper lid groove formed wider than the lid groove is formed on the surface side of the base member with respect to the lid groove, an upper lid plate is attached to the upper lid groove after the inflow stirring step. An upper lid groove closing step for inserting, and an upper lid joining step for performing friction stir welding by relatively moving the rotary tool for joining along the abutting portion between the side wall of the upper lid groove and the side surface of the upper lid plate. preferable.

かかる製造方法によれば、蓋板の表面側において、蓋板よりも幅広の上蓋板を用いてさらに摩擦攪拌接合を施すため、より深い位置に熱媒体用管を配置させることができる。   According to this manufacturing method, since the friction stir welding is further performed on the surface side of the lid plate using the upper lid plate wider than the lid plate, the heat medium pipe can be arranged at a deeper position.

本発明に係る伝熱板の製造方法によれば、熱交換効率が高い伝熱板を製造することができる。   According to the method for manufacturing a heat transfer plate according to the present invention, a heat transfer plate with high heat exchange efficiency can be manufactured.

[第一実施形態]
本発明の最良の実施形態について、図面を参照して詳細に説明する。図1は、第一実施形態に係る伝熱板を示した斜視図である。図2は、第一実施形態に係る伝熱板を示した図であって、(a)は分解断面図、(b)は模式配置図を示す。図3は、第一実施形態に係る伝熱板を示した模式断面図である。
[First embodiment]
The best embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view showing a heat transfer plate according to the first embodiment. Drawing 2 is a figure showing the heat exchanger plate concerning a first embodiment, (a) is an exploded sectional view and (b) shows a schematic arrangement figure. FIG. 3 is a schematic cross-sectional view showing the heat transfer plate according to the first embodiment.

第一実施形態に係る伝熱板1は、図1乃至図3に示すように、表面3及び裏面4を有する厚板形状のベース部材2と、ベース部材2の表面3に開口した蓋溝6に配置される蓋板10と、蓋溝6の底面5cに開口する凹溝8に挿入される熱媒体用管16とを主に備え、摩擦攪拌接合により形成された塑性化領域W,Wによって一体形成されている。ここで、「塑性化領域」とは、回転ツールの摩擦熱によって加熱されて現に塑性化している状態と、回転ツールが通り過ぎて常温に戻った状態の両方を含むこととする。 As shown in FIGS. 1 to 3, the heat transfer plate 1 according to the first embodiment includes a thick plate-shaped base member 2 having a front surface 3 and a back surface 4, and a lid groove 6 opened on the front surface 3 of the base member 2. And a plasticizing region W 1 , W formed by friction stir welding, mainly including a lid plate 10 disposed on the bottom plate 5 and a heat medium pipe 16 inserted into a concave groove 8 opened in the bottom surface 5c of the lid groove 6. 2 are integrally formed. Here, the “plasticization region” includes both a state heated by frictional heat of the rotary tool and actually plasticized, and a state where the rotary tool passes and returns to room temperature.

ベース部材2は、例えば、アルミニウム合金(JIS:A6061)で形成されている。ベース部材2は、熱媒体用管16に流れる熱媒体の熱を外部に伝達させる役割、あるいは、外部の熱を熱媒体用管16に流れる熱媒体に伝達させる役割を果たすものであって、図2に示すように、熱媒体用管16を内部に収容する。ベース部材2の表面3には、蓋溝6が凹設されており、蓋溝6の底面5cの中央には、蓋溝6よりも幅狭の凹溝8が凹設されている。蓋溝6は、熱媒体用管16を覆う蓋板10が配置される部分であって、ベース部材2の長手方向に亘って連続して形成されている。蓋溝6は、断面視矩形を呈しており、蓋溝6の底面5cから垂直に立ち上がる側壁5a,5bを備えている。   The base member 2 is made of, for example, an aluminum alloy (JIS: A6061). The base member 2 serves to transmit the heat of the heat medium flowing through the heat medium pipe 16 to the outside, or plays a role of transferring external heat to the heat medium flowing through the heat medium pipe 16. As shown in FIG. 2, the heat medium pipe 16 is accommodated therein. A lid groove 6 is recessed in the surface 3 of the base member 2, and a recessed groove 8 narrower than the lid groove 6 is recessed in the center of the bottom surface 5 c of the lid groove 6. The lid groove 6 is a portion where the lid plate 10 covering the heat medium pipe 16 is disposed, and is continuously formed over the longitudinal direction of the base member 2. The lid groove 6 has a rectangular shape in a sectional view, and includes side walls 5 a and 5 b that rise vertically from the bottom surface 5 c of the lid groove 6.

凹溝8は、熱媒体用管16が挿入される部分であって、ベース部材2の長手方向に亘って連続して形成されている。凹溝8は、上方が開口した断面視U字状の溝であって、下端には熱媒体用管16の外周と同等の曲率半径を有する半円形の底部7が形成されている。これにより、熱媒体用管16と凹溝8の底部7とを密接させることができる。凹溝8の開口部分は、熱媒体用管16の外径と略同等の幅で形成されている。また、凹溝8の深さは、熱媒体用管16の外径と略同等に形成されている。   The concave groove 8 is a portion into which the heat medium pipe 16 is inserted, and is formed continuously over the longitudinal direction of the base member 2. The concave groove 8 is a U-shaped groove having an opening at the top, and a semicircular bottom 7 having a radius of curvature equivalent to the outer periphery of the heat medium pipe 16 is formed at the lower end. Thereby, the heat medium pipe 16 and the bottom 7 of the groove 8 can be brought into close contact with each other. The opening portion of the concave groove 8 is formed with a width substantially equal to the outer diameter of the heat medium pipe 16. Further, the depth of the concave groove 8 is formed substantially equal to the outer diameter of the heat medium pipe 16.

蓋板10は、図2及び図3に示すように、ベース部材2と同様のアルミニウム合金からなり、略平板状を呈する。蓋板10は、断面視矩形を呈し、上面(表面)11、下面(底面)12、側面13a及び側面13bを有する。蓋板10の幅は、本実施形態では、蓋溝6の幅よりも小さくなるように形成されている。蓋板10の厚みは、蓋溝6の深さと略同等に形成されている。   As shown in FIGS. 2 and 3, the lid plate 10 is made of an aluminum alloy similar to the base member 2 and has a substantially flat plate shape. The cover plate 10 has a rectangular shape in cross section, and has an upper surface (front surface) 11, a lower surface (bottom surface) 12, a side surface 13a, and a side surface 13b. In this embodiment, the width of the lid plate 10 is formed to be smaller than the width of the lid groove 6. The thickness of the lid plate 10 is formed substantially equal to the depth of the lid groove 6.

熱媒体用管16は、例えば、銅管にて構成されており、図2に示すように、断面視円形の中空部18を有する円筒管である。熱媒体用管16の外径は、凹溝8の幅及び深さと略同等に形成されており、図3に示すように、熱媒体用管16の下半部と凹溝8の底部7とが面接触するか又は微細な隙間をあけて対向する。また、熱媒体用管16の上端と蓋板10の下面12とが面接触するか又は微細な隙間をあけて対向する。   The heat medium pipe 16 is formed of, for example, a copper pipe, and is a cylindrical pipe having a hollow portion 18 having a circular cross section as shown in FIG. The outer diameter of the heat medium pipe 16 is formed to be substantially equal to the width and depth of the groove 8, and as shown in FIG. 3, the lower half of the heat medium pipe 16 and the bottom 7 of the groove 8 Face each other or face each other with a fine gap. Further, the upper end of the heat medium pipe 16 and the lower surface 12 of the cover plate 10 are in surface contact with each other or face each other with a fine gap.

熱媒体用管16は、中空部18に、例えば高温液や高温ガスなどの熱媒体を循環させて、ベース部材2及び蓋板10に熱を伝達させる部材、あるいは中空部18に、例えば冷却水や冷却ガスなどの熱媒体を循環させて、ベース部材2及び蓋板10から熱を伝達される部材である。また、熱媒体用管16の中空部18に、例えばヒーターを通して、ヒーターから発生する熱をベース部材2及び蓋板10に伝達させる部材として利用してもよい。   The heat medium pipe 16 is a member that circulates a heat medium such as a high-temperature liquid or a high-temperature gas in the hollow portion 18 to transmit heat to the base member 2 and the cover plate 10, or a cooling water in the hollow portion 18, for example. Or a heat medium such as cooling gas is circulated and heat is transmitted from the base member 2 and the cover plate 10. Further, for example, a heater may be passed through the hollow portion 18 of the heat medium pipe 16 to transmit heat generated from the heater to the base member 2 and the cover plate 10.

図2の(b)に示すように、ベース部材2に熱媒体用管16を挿入するとともに、蓋溝6の幅方向の中心と蓋板10の幅方向の中心とが重なるように配置すると、蓋溝6の側壁5aと蓋板10の側面13aとが突き合わされて突合部Vが形成される。また、蓋溝6の側壁5bと蓋板10の側面13bとが突き合わされて突合部Vが形成される。また、本実施形態では、蓋溝6の幅に対して蓋板10の幅が小さく形成されているため、突合部Vには、蓋溝6の側壁5aと蓋溝6の底面5cと蓋板10の側面13aとからなる離間溝Uが形成される。また同様に、突合部Vには、蓋溝6の側壁5bと蓋溝6の底面5cと蓋板10の側面13bとからなる離間溝Uが形成される。 As shown in FIG. 2B, when the heat medium pipe 16 is inserted into the base member 2, and the center in the width direction of the lid groove 6 and the center in the width direction of the lid plate 10 are overlapped, butted and the side surface 13a of the side wall 5a and the cover plate 10 of Futamizo 6 butting portion V 1 is formed by. Further, butting portion V 2 is formed by butted and the side surface 13b of the side wall 5b and the lid plate 10 of Futamizo 6. In the present embodiment, since the width of the cover plate 10 is smaller than the width of the cover groove 6, the abutting portion V 1 includes a side wall 5 a of the cover groove 6, a bottom surface 5 c of the cover groove 6, and a cover. spaced grooves U 1 consisting of the side surface 13a of the plate 10 is formed. Similarly, the butting portion V 2, spaced grooves U 2 consisting of the side surface 13b of the bottom surface 5c and the cover plate 10 of the side wall 5b and Futamizo 6 Futamizo 6 is formed.

離間溝U,Uは、後記する溶接接合工程において溶接金属が充填される部分である。離間溝U,Uの幅は、特に限定されるものではないが、本実施形態では後記する流入攪拌用回転ツール25(図5の(b)参照)のピン28の先端の幅よりも小さく形成されている。これにより、ベース部材2及び蓋板10に対して確実に摩擦攪拌を行うことができる。また、離間溝U,Uは、本実施形態では、断面視矩形に形成されているが、これに限定されるものではない。離間溝U,Uは、例えば上方に向けて溝幅が大きくなるように形成してもよい。これにより、溶接作業を容易に行うことができる。 The separation grooves U 1 and U 2 are portions that are filled with a weld metal in a welding joining process described later. The widths of the separation grooves U 1 and U 2 are not particularly limited. In this embodiment, however, the width of the separation grooves U 1 and U 2 is larger than the width of the tip of the pin 28 of the inflow stirring rotary tool 25 (see FIG. 5B) described later. It is formed small. Thereby, friction stirring can be reliably performed with respect to the base member 2 and the cover plate 10. Further, in the present embodiment, the separation grooves U 1 and U 2 are formed in a rectangular shape in cross section, but the present invention is not limited to this. The separation grooves U 1 and U 2 may be formed, for example, so that the groove width increases upward. Thereby, welding work can be performed easily.

なお、本実施形態においては、凹溝8と熱媒体用管16の下半部を面接触させるとともに、蓋板10と熱媒体用管16とを接触させるように形成したが、これに限定さるものではない。例えば、凹溝8の深さを、熱媒体用管16の外径と同等か、あるいはその1.2倍までの範囲となるようにしてもよい。また、凹溝8の幅を、熱媒体用管16の外径と同等か、あるいはその1.1倍までの範囲となるようにしてもよい。   In the present embodiment, the concave groove 8 and the lower half of the heat medium pipe 16 are brought into surface contact and the cover plate 10 and the heat medium pipe 16 are brought into contact with each other, but the present invention is not limited to this. It is not a thing. For example, the depth of the concave groove 8 may be the same as the outer diameter of the heat medium pipe 16 or a range up to 1.2 times the outer diameter. Further, the width of the groove 8 may be the same as the outer diameter of the heat medium pipe 16 or a range up to 1.1 times the outer diameter.

塑性化領域W,Wは、図1及び図3に示すように、突合部V,Vに対して後記する流入攪拌工程を行った際に、ベース部材2、蓋板10及び溶接金属Tの一部が塑性流動して一体化された領域である。突合部V,V(溶接金属T,T)に沿って、後記する流入攪拌工程を行うと、突合部V,Vの周辺にかかるベース部材2、蓋板10及び溶接金属Tの金属材料が摩擦熱により塑性流動化されて、空隙部P,Pに塑性流動材が流入する。そして、当該塑性流動材が、再び固まって一体化される。 As shown in FIGS. 1 and 3, the plasticized regions W 1 and W 2 are formed in the base member 2, the cover plate 10, and the weld when the inflow stirring process described later is performed on the abutting portions V 1 and V 2 . This is a region where a part of the metal T is integrated by plastic flow. When an inflow stirring process described later is performed along the abutting portions V 1 and V 2 (welded metal T 1 and T 2 ), the base member 2, the cover plate 10, and the weld metal around the abutting portions V 1 and V 2 are performed. The metal material of T is plastically fluidized by frictional heat, and the plastic fluidizing material flows into the voids P 1 and P 2 . Then, the plastic fluid material is solidified again and integrated.

次に、伝熱板1の製造方法について、図4を用いて説明する。図4は、第一実施形態に係る伝熱板の製造方法を示した断面図であって、(a)は、切削工程を示した図であり、(b)は、熱媒体用管を挿入した挿入工程を示した図であり、(c)は、蓋溝閉塞工程を示した図である。図5は、第一実施形態に係る伝熱板の製造方法を示した断面図であって、(a)は、溶接接合工程を示した図であり、(b)は、流入攪拌工程を示した図であり、(c)は、完成図である。図6は、第一実施形態に係る溶接接合工程を示した斜視図である。   Next, the manufacturing method of the heat exchanger plate 1 is demonstrated using FIG. 4A and 4B are cross-sectional views showing a method for manufacturing a heat transfer plate according to the first embodiment, wherein FIG. 4A is a view showing a cutting process, and FIG. 4B is a drawing for inserting a heat medium pipe. (C) is the figure which showed the cover groove | channel obstruction | occlusion process. FIG. 5 is a cross-sectional view showing a method of manufacturing a heat transfer plate according to the first embodiment, wherein (a) is a view showing a welding joining process, and (b) is an inflow stirring process. (C) is a completed drawing. FIG. 6 is a perspective view showing a welding joining process according to the first embodiment.

第一実施形態に係る伝熱板の製造方法は、ベース部材2を形成する切削工程と、ベース部材2に形成された凹溝8に熱媒体用管16を挿入する挿入工程と、蓋溝6に蓋板10を挿入する蓋溝閉塞工程と、突合部V,Vに沿って溶接を行ってベース部材2と蓋板10とを接合する溶接接合工程と、蓋板10の上面11で凹溝8に沿って流入攪拌用回転ツール25を移動させて空隙部Pに塑性流動材Qを流入させる流入攪拌工程とを含むものである。 The heat transfer plate manufacturing method according to the first embodiment includes a cutting process for forming the base member 2, an insertion process for inserting the heat medium pipe 16 into the groove 8 formed in the base member 2, and the lid groove 6. A lid groove closing step in which the lid plate 10 is inserted, a welding joining step in which the base member 2 and the lid plate 10 are joined by welding along the abutting portions V 1 and V 2 , and an upper surface 11 of the lid plate 10. And an inflow stirring step of moving the inflow stirring rotating tool 25 along the concave groove 8 to allow the plastic fluid material Q to flow into the gap P.

(切削工程)
まず、図4の(a)に示すように、公知のエンドミル加工により、厚板部材に蓋溝6を形成する。そして、蓋溝6の底面に、エンドミル加工等により半円形断面を備えた凹溝8を形成する。これにより、蓋溝6と、蓋溝6の底面に開口された凹溝8とを備えたベース部材2が形成される。凹溝8は、断面半円形の底部7を備えており、底部7の上端から一定の幅で上方に向けて開口されている。
なお、ベース部材2を第一実施形態においては切削加工により形成したが、アルミニウム合金の押出形材を用いてもよい。
(Cutting process)
First, as shown in FIG. 4A, the lid groove 6 is formed in the thick plate member by a known end mill process. Then, a concave groove 8 having a semicircular cross section is formed on the bottom surface of the lid groove 6 by end milling or the like. Thereby, the base member 2 provided with the cover groove 6 and the concave groove 8 opened in the bottom face of the cover groove 6 is formed. The concave groove 8 includes a bottom portion 7 having a semicircular cross section, and is opened upward from the upper end of the bottom portion 7 with a certain width.
Although the base member 2 is formed by cutting in the first embodiment, an extruded shape of an aluminum alloy may be used.

(挿入工程)
次に、図4の(b)に示すように、凹溝8に熱媒体用管16を挿入する。熱媒体用管16の下半部は、凹溝8の下半分を形成する底部7と面接触する。
(Insertion process)
Next, as shown in FIG. 4B, the heat medium pipe 16 is inserted into the groove 8. The lower half of the heat medium pipe 16 is in surface contact with the bottom 7 forming the lower half of the groove 8.

(蓋溝閉塞工程)
次に、図4の(c)に示すように、ベース部材2の蓋溝6の中央に、アルミニウム合金からなる蓋板10を挿入する。この際、蓋板10の上面11が、ベース部材2の表面3と面一なるとともに、蓋板10の下面12と熱媒体用管16が接触する。蓋板10の幅は、蓋溝6の幅よりも小さく形成されているため、突合部Vには、蓋溝6の側壁5a、底面5c及び蓋板10の側面13aからなる離間溝Uが形成される。また、突合部Vには、蓋溝6の側壁5b、底面5c及び蓋板10の側面13bからなる離間溝Uが形成される。
(Cover groove closing process)
Next, as shown in FIG. 4C, a lid plate 10 made of an aluminum alloy is inserted into the center of the lid groove 6 of the base member 2. At this time, the upper surface 11 of the cover plate 10 is flush with the surface 3 of the base member 2, and the lower surface 12 of the cover plate 10 and the heat medium pipe 16 are in contact with each other. Since the width of the cover plate 10 is smaller than the width of the cover groove 6, the abutting portion V 1 includes a separation groove U 1 including a side wall 5 a, a bottom surface 5 c of the cover groove 6, and a side surface 13 a of the cover plate 10. Is formed. Further, the abutting portion V <b> 2 is formed with a separation groove U <b> 2 including a side wall 5 b, a bottom surface 5 c of the lid groove 6, and a side surface 13 b of the lid plate 10.

(溶接接合工程)
次に、図5の(a)及び図6に示すように、突合部V,Vに沿って溶接を行って、ベース部材2と蓋板10とを接合する。本実施形態では、突合部V,Vに離間溝U,Uが形成されているため、例えばTIG溶接又はMIG溶接などの肉盛溶接を行って離間溝U,Uにそれぞれ溶接金属T,Tを充填する。また、本実施形態の溶接接合工程では、ベース部材2の長手方向全長に亘って肉盛溶接を行っている。溶接接合工程では、溶接金属T,Tがベース部材2の表面3よりも突出するように形成すると、摩擦攪拌の際の金属不足を補うことができるため好ましい。
(Welding process)
Next, as shown in FIG. 5A and FIG. 6, welding is performed along the abutting portions V 1 and V 2 to join the base member 2 and the lid plate 10. In this embodiment, since the separation grooves U 1 and U 2 are formed in the abutting portions V 1 and V 2 , for example, overlay welding such as TIG welding or MIG welding is performed, and the separation grooves U 1 and U 2 are respectively formed. The weld metals T 1 and T 2 are filled. Further, in the welding joining process of the present embodiment, build-up welding is performed over the entire length of the base member 2 in the longitudinal direction. In the welding joining process, it is preferable to form the weld metals T 1 and T 2 so as to protrude from the surface 3 of the base member 2 because the metal shortage during friction stirring can be compensated.

なお、離間溝U,Uのいずれか一方に対して溶接を行う場合は、溶接作業中に蓋板10が移動しないように、いずれか他方の離間溝にスペーサを介設することが好ましい。溶接接合工程は、肉盛溶接に限定されるものではなく、公知の溶接であればよい。また、溶接作業は、複数回に分けて溶接金属T,Tを充填してもよい。 In addition, when welding with respect to any one of the separation grooves U 1 and U 2 , it is preferable to provide a spacer in one of the other separation grooves so that the lid plate 10 does not move during the welding operation. . The welding joining process is not limited to overlay welding, and may be any known welding. Further, the welding work may be divided into a plurality of times and filled with the weld metals T 1 and T 2 .

(流入攪拌工程)
次に、図5の(b)に示すように、蓋板10の上面11上で、凹溝8の長手方向に沿って流入攪拌用回転ツール25を用いて摩擦攪拌接合を行い、空隙部P,Pに摩擦熱によって塑性化された塑性流動材Qを流入させる。
流入攪拌用回転ツール25は、例えば、工具鋼からなり、円柱形のツール本体26と、その底面27の中心部から同心軸で垂下するピン28とを有する。ピン28は、先端に向けて幅狭となるテーパ状に形成されている。なお、ピン28の周面には、その軸方向に沿って図示しない複数の小溝や径方向に沿ったネジ溝が形成されていてもよい。また、本実施形態では、流入攪拌用回転ツール25は、蓋板10の上面11に押し込んで摩擦攪拌接合を施す際に、ピン28の下端部(流入攪拌用回転ツール25の先端)が、蓋溝6の底面5cよりも低くなる大きさのものを採用している。
(Inflow stirring process)
Next, as shown in FIG. 5B, friction stir welding is performed on the upper surface 11 of the cover plate 10 along the longitudinal direction of the concave groove 8 using the inflow stirring rotary tool 25, and the gap P 1 and P 2 are made to flow the plastic fluidized material Q plasticized by frictional heat.
The inflow stirring rotary tool 25 is made of, for example, tool steel, and includes a cylindrical tool body 26 and a pin 28 that hangs down from the center of the bottom surface 27 on a concentric axis. The pin 28 is formed in a tapered shape that becomes narrower toward the tip. A plurality of small grooves (not shown) and screw grooves along the radial direction may be formed on the peripheral surface of the pin 28 along the axial direction. Further, in this embodiment, when the inflow agitation rotating tool 25 is pushed into the upper surface 11 of the lid plate 10 and friction stir welding is performed, the lower end portion of the pin 28 (the tip of the inflow agitation rotating tool 25) is the lid. The thing of the magnitude | size which becomes lower than the bottom face 5c of the groove | channel 6 is employ | adopted.

流入攪拌工程における摩擦攪拌接合は、蓋板10の上面(表面)11で、高速回転する流入攪拌用回転ツール25を押し込み、下方の凹溝8の長手方向に沿って流入攪拌用回転ツール25を移動させる。即ち、流入攪拌用回転ツール25は、ツール本体26の底面27(ショルダ)の投影部分の一部が熱媒体用管16の空隙部P,Pと重なるように配置され、熱媒体用管16の斜め上方で移動される。このとき、高速回転する流入攪拌用回転ツール25のピン28により、その周囲の蓋板10、ベース部材2及び溶接金属T,Tの各金属材料は、摩擦熱によって加熱され流動化される。 In the friction stir welding in the inflow stirring process, the upper surface (surface) 11 of the cover plate 10 is pushed into the inflow stirring rotary tool 25 rotating at high speed, and the inflow stirring rotary tool 25 is moved along the longitudinal direction of the lower groove 8. Move. That is, the inflow agitation rotating tool 25 is arranged so that a part of the projected portion of the bottom surface 27 (shoulder) of the tool body 26 overlaps the gaps P 1 and P 2 of the heat medium pipe 16. 16 is moved diagonally above. At this time, the peripheral cover plate 10, the base member 2, and the metal materials of the weld metals T 1 and T 2 are heated and fluidized by frictional heat by the pins 28 of the inflow stirring rotary tool 25 rotating at high speed. .

流入攪拌用回転ツール25は、ツール本体26の底面27が、蓋板10の上面11よりも低くなるように押し込まれる。その押込み量(長さ)は、ツール本体26が押し退ける蓋板10の金属の体積が、熱媒体用管16の周囲の一方の空隙部P(P)に充填される塑性流動化されたアルミニウム合金材料の体積、および塑性化領域W(W)の幅方向両側に発生するバリの体積との和と同等になるような長さとなっている。そして、流動化された塑性流動材Qは、流入攪拌用回転ツール25のツール本体26の底面27の押込み力によって、空隙部P(P)へと押し出されて流入される。前記の摩擦攪拌接合は、凹溝8の幅方向両側でそれぞれ施されて、熱媒体用管16の上側に位置する一対の空隙部P,Pに塑性流動材Qが流入される。流入攪拌工程における摩擦攪拌接合の後に、塑性化領域W,Wの幅方向両側に発生したバリを取り除くことが好ましい。 The inflow stirring rotary tool 25 is pushed so that the bottom surface 27 of the tool body 26 is lower than the top surface 11 of the lid plate 10. The pushing amount (length) is plastic fluidized so that the metal volume of the cover plate 10 from which the tool body 26 is pushed back is filled in one of the voids P 1 (P 2 ) around the heat medium pipe 16. The length is equivalent to the sum of the volume of the aluminum alloy material and the volume of burrs generated on both sides in the width direction of the plasticized region W 1 (W 2 ). Then, the fluidized plastic fluid material Q is pushed into the gap portion P 1 (P 2 ) by the pushing force of the bottom surface 27 of the tool body 26 of the inflow stirring rotary tool 25. The friction stir welding is performed on both sides of the groove 8 in the width direction, and the plastic fluid material Q flows into the pair of gaps P 1 and P 2 located above the heat medium pipe 16. It is preferable to remove burrs generated on both sides in the width direction of the plasticized regions W 1 and W 2 after the friction stir welding in the inflow stirring step.

なお、流入攪拌用回転ツール25と熱媒体用管16とを近接させて摩擦攪拌を行うと、熱媒体用管16が変形する可能性がある。そのため、流入攪拌用回転ツール25の挿入位置及び押込み量は、流入攪拌用回転ツール25の大きさや蓋板10及び凹溝8の幅の寸法に応じて適宜設定すればよい。本実施形態のように、突合部V,V(離間溝U,U)と流入攪拌用回転ツール25の幅方向の中心とが重なるように配置させて流入撹拌工程を行えば、ベース部材2、蓋板10及び溶接金属T,Tがバランスよく攪拌されるため好ましい。 Note that if the inflow stirring rotary tool 25 and the heat medium pipe 16 are brought close to each other and friction stirring is performed, the heat medium pipe 16 may be deformed. Therefore, the insertion position and the pushing amount of the inflow agitation rotating tool 25 may be appropriately set according to the size of the inflow agitation rotating tool 25 and the width of the lid plate 10 and the groove 8. As in the present embodiment, if the inflow agitation step is performed with the abutting portions V 1 , V 2 (separation grooves U 1 , U 2 ) and the center in the width direction of the inflow agitation rotating tool 25 overlapping, Since the base member 2, the cover plate 10, and the weld metals T 1 and T 2 are agitated with good balance, it is preferable.

以上説明した伝熱板によれば、図5の(c)等に示すように、突合部V,Vに沿って塑性化領域W,Wが形成されて、ベース部材2と蓋板10とが接合されるとともに、空隙部P,Pに塑性流動材Qが流入して充填されるため、熱媒体用管16とベース部材2および蓋板10とが隙間なく密着することになるので、熱交換効率の高い伝熱板1を形成することができる。 According to the heat transfer plate described above, as shown in FIG. 5C and the like, the plasticized regions W 1 and W 2 are formed along the abutting portions V 1 and V 2 , and the base member 2 and the lid Since the plate 10 is joined and the plastic fluid Q flows into and fills the gaps P 1 and P 2 , the heat medium pipe 16, the base member 2, and the lid plate 10 are in close contact with each other without any gap. Therefore, the heat transfer plate 1 having high heat exchange efficiency can be formed.

さらに、本実施形態によれば、流入攪拌工程に先だって溶接接合工程を行って、ベース部材2と蓋板10とを予め接合することができるため、流入攪拌工程では蓋板10が移動することなく好適に作業を行うことができる。また、本実施形態では、蓋溝6の幅よりも蓋板10の幅を小さく形成して離間溝U,Uを設け、当該離間溝U,Uに溶接金属T,Tを充填するようにしたため、溶接接合工程を容易に行うことができる。また、溶接金属T,Tを蓋板10の上面11よりも突出させることで、流入攪拌工程の際の金属不足を補うことができる。 Furthermore, according to the present embodiment, the base member 2 and the lid plate 10 can be joined in advance by performing the welding joining step prior to the inflow stirring step, so that the lid plate 10 does not move in the inflow stirring step. Work can be suitably performed. Further, in this embodiment, the spaced grooves U 1, U 2 provided the width of the cover plate 10 than the width of Futamizo 6 formed small to, weld metal T 1 in the spaced grooves U 1, U 2, T 2 Therefore, the welding joining process can be easily performed. Further, by causing the weld metals T 1 and T 2 to protrude from the upper surface 11 of the lid plate 10, it is possible to make up for the metal shortage during the inflow stirring process.

また、本実施形態では、塑性化領域W,Wの内部に、溶接金属T,Tが含まれるように流入攪拌用回転ツール25の挿入位置を設定したため、溶接金属T,Tが外部に露出するのを防ぐことができる。 Moreover, in this embodiment, since the insertion position of the rotation tool 25 for inflow stirring is set so that the weld metals T 1 and T 2 are included in the plasticized regions W 1 and W 2 , the weld metals T 1 and T 2 can be prevented from being exposed to the outside.

図7は、第一実施形態に係る伝熱板を用いた伝熱ユニットを示した平面図である。
伝熱板1は、例えば、図7に示すように、複数の伝熱板1を連結して伝熱ユニット90を形成して使用される。伝熱ユニット90は、複数の伝熱板1をベース部材2の短手方向に並設し、各ベース部材2の長手方向の両端から突出した熱媒体用管16を平面視U字状の連結パイプ91で連結して形成される。このような、伝熱ユニット90によれば、一の連通した熱媒体用管96が形成されているため、熱媒体用管96に熱媒体を流通させることにより、ベース部材2及び蓋板10に接触又は近接する図示しない対象物を迅速に冷却又は加熱することができる。
FIG. 7 is a plan view showing a heat transfer unit using the heat transfer plate according to the first embodiment.
As shown in FIG. 7, for example, the heat transfer plate 1 is used by connecting a plurality of heat transfer plates 1 to form a heat transfer unit 90. The heat transfer unit 90 includes a plurality of heat transfer plates 1 arranged in parallel in the short direction of the base member 2, and the heat medium pipes 16 protruding from both ends in the longitudinal direction of the base members 2 are connected in a U shape in plan view. It is formed by connecting with a pipe 91. According to such a heat transfer unit 90, since one heat medium pipe 96 is formed, the heat medium is circulated through the heat medium pipe 96, so that the base member 2 and the cover plate 10 can be connected to each other. An object (not shown) in contact with or in close proximity can be quickly cooled or heated.

なお、伝熱板1の連結方法は、あくまで例示であって他の連結方法によって伝熱ユニットを形成してもよい。また、伝熱ユニット90においては、連結パイプ91が伝熱板1の外部に露出しているが、熱媒体用管16をS字状に形成して熱媒体用管16が伝熱板1の内部に納まるように形成してもよい。   In addition, the connection method of the heat exchanger plate 1 is an illustration to the last, and you may form a heat transfer unit with another connection method. Further, in the heat transfer unit 90, the connection pipe 91 is exposed to the outside of the heat transfer plate 1, but the heat medium pipe 16 is formed in an S shape so that the heat medium pipe 16 is the heat transfer plate 1. You may form so that it may fit inside.

[第二実施形態]
次に、第二実施形態に係る伝熱板について説明する。図8は、第二実施形態に係る伝熱板を示した図であって、(a)は、分解断面図、(b)は、断面図である。
図8に示す第二実施形態に係る伝熱板61は、前記した伝熱板1と略同等の構造を内包し、蓋板10の表面側にさらに上蓋板70を配置して、摩擦攪拌接合を施して接合した点で第一実施形態と相違する。
なお、前記した伝熱板1と同等の構造を下蓋部Mともいう。また、第一実施形態に係る伝熱板1と重複する部材については、同等の符号を付し、重複する説明は省略する。
[Second Embodiment]
Next, the heat transfer plate according to the second embodiment will be described. FIG. 8 is a view showing a heat transfer plate according to the second embodiment, in which (a) is an exploded sectional view and (b) is a sectional view.
The heat transfer plate 61 according to the second embodiment shown in FIG. 8 includes a structure substantially equivalent to the above-described heat transfer plate 1, and an upper cover plate 70 is further arranged on the surface side of the cover plate 10, and friction stirring is performed. It differs from 1st embodiment by the point which gave and joined.
The structure equivalent to the above-described heat transfer plate 1 is also referred to as a lower lid portion M. Moreover, about the member which overlaps with the heat exchanger plate 1 which concerns on 1st embodiment, an equivalent code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.

伝熱板61は、ベース部材62と、凹溝8に挿入された熱媒体用管16と、蓋板10と、蓋板10の表面側に配置された上蓋板70とを有し、塑性化領域W〜Wで摩擦攪拌接合により一体化されている。
ベース部材62は、図8の(a)に示すように、例えばアルミニウム合金からなり、ベース部材62の表面63に、長手方向に亘って形成された上蓋溝65と、上蓋溝65の底面65cに長手方向に亘って連続して形成された蓋溝6と、蓋溝6の底面に長手方向に亘って形成された凹溝8とを有する。上蓋溝65は、断面視矩形を呈し、底面65cから垂直に立ち上がる側壁65a,65bを備えている。上蓋溝65の幅は、蓋溝6の幅よりも大きく形成されている。
The heat transfer plate 61 includes a base member 62, a heat medium pipe 16 inserted into the groove 8, the lid plate 10, and an upper lid plate 70 disposed on the surface side of the lid plate 10, and is plastic. The integrated regions W 1 to W 4 are integrated by friction stir welding.
As shown in FIG. 8A, the base member 62 is made of, for example, an aluminum alloy, and has an upper lid groove 65 formed in the longitudinal direction on the surface 63 of the base member 62 and a bottom surface 65c of the upper lid groove 65. It has the cover groove | channel 6 formed continuously over the longitudinal direction, and the concave groove 8 formed in the bottom face of the cover groove | channel 6 over the longitudinal direction. The upper lid groove 65 has a rectangular shape in sectional view, and includes side walls 65a and 65b that rise vertically from the bottom surface 65c. The width of the upper lid groove 65 is formed larger than the width of the lid groove 6.

図8に示すように、ベース部材62の下部に形成された凹溝8には、熱媒体用管16が挿入されており、蓋板10によって閉塞され、摩擦攪拌接合により塑性化領域W,Wで接合されている。即ち、ベース部材62の内部に形成された下蓋部Mは、第一実施形態に係る伝熱板1と略同等に形成されている。 As shown in FIG. 8, the heat medium pipe 16 is inserted into the groove 8 formed in the lower part of the base member 62, is closed by the cover plate 10, and is plasticized region W 1 , by friction stir welding. Joined with W 2 . That is, the lower lid portion M formed inside the base member 62 is formed substantially equivalent to the heat transfer plate 1 according to the first embodiment.

なお、上蓋溝65の底面65cには、摩擦攪拌接合を行ったことにより、段差(溝)やバリが発生している可能性がある。したがって、例えば塑性化領域W,Wの表面を基準に、上蓋溝65の底面65cに面削加工を施して平滑に形成することが好ましい。これにより、上蓋板70の下面72と、面削後の上蓋溝65の底面とを隙間なく配置することができる。 Note that a step (groove) or a burr may be generated on the bottom surface 65c of the upper lid groove 65 due to the friction stir welding. Therefore, for example, it is preferable that the bottom surface 65c of the upper cover groove 65 is chamfered and formed smoothly with reference to the surfaces of the plasticized regions W 1 and W 2 . Thereby, the lower surface 72 of the upper cover board 70 and the bottom face of the upper cover groove 65 after chamfering can be arrange | positioned without gap.

上蓋板70は、図8に示すように、例えば、アルミニウム合金からなり、上蓋溝65の断面と略同じ矩形断面を形成し、下面72から垂直に形成された側面73a及び側面73bを有する。上蓋板70は、上蓋溝65に嵌合される。即ち、上蓋板70の側面73a,73bは、上蓋溝65の側壁65a,65bと面接触されるか又は微細な隙間をあけて配置されている。ここで、側面73aと側壁65aとの突合せ面を、上側突合部Vとする。また、側面73bと側壁65bとの突合せ面を、上側突合部Vとする。上側突合部V,Vは、摩擦攪拌接合により、塑性化領域W,Wで一体化されている。 As shown in FIG. 8, the upper cover plate 70 is made of, for example, an aluminum alloy, has a rectangular cross section substantially the same as the cross section of the upper cover groove 65, and has a side surface 73 a and a side surface 73 b formed perpendicularly from the lower surface 72. The upper lid plate 70 is fitted in the upper lid groove 65. That is, the side surfaces 73 a and 73 b of the upper lid plate 70 are in surface contact with the side walls 65 a and 65 b of the upper lid groove 65 or are arranged with a fine gap. Here, the abutting faces of the side surface 73a and the side wall 65a, and the upper butt portions V 3. Further, the abutting faces of the side face 73b and the sidewall 65b, and upper butt portion V 4. The upper abutting portions V 3 and V 4 are integrated in the plasticized regions W 3 and W 4 by friction stir welding.

伝熱板61の製造方法は、伝熱板1と同等の製造方法により、ベース部材62の下部に下蓋部Mを形成した後、上蓋溝66の底面65cを面削する面削工程と、上蓋板70を配置する上蓋溝閉塞工程と、上側突合部V,Vに沿って摩擦攪拌接合を施す上蓋本接合工程を含むものである。 The method of manufacturing the heat transfer plate 61 includes a chamfering step of chamfering the bottom surface 65c of the upper cover groove 66 after forming the lower cover portion M at the lower portion of the base member 62 by a manufacturing method equivalent to the heat transfer plate 1. This includes an upper lid groove closing step in which the upper lid plate 70 is disposed, and an upper lid main joining step in which friction stir welding is performed along the upper abutting portions V 3 and V 4 .

(面削工程)
面削工程では、上蓋溝65の底面65cに形成された段差(溝)やバリを切削除去して、底面65cを平滑にする。
(Chamfering process)
In the chamfering step, the step (groove) and burrs formed on the bottom surface 65c of the upper lid groove 65 are cut and removed to smooth the bottom surface 65c.

(上溝閉塞工程)
上蓋溝閉塞工程では、面削工程をした後、上蓋溝65の底面に上蓋板70を配置する。面削工程を行ったことにより、上蓋板70の下面72と、上蓋溝65の底面とを隙間なく配置することができる。
(Upper groove closing process)
In the upper lid groove closing step, after the chamfering step, the upper lid plate 70 is disposed on the bottom surface of the upper lid groove 65. By performing the chamfering step, the lower surface 72 of the upper lid plate 70 and the bottom surface of the upper lid groove 65 can be arranged without a gap.

(上蓋本接合工程)
上蓋本接合工程では、上側突合部V,Vに沿って接合用回転ツール(図示省略)を移動させて摩擦攪拌接合を施す。接合用回転ツールは、本実施形態では、流入攪拌用回転ツール25(図5参照)よりも小型の回転ツールである。上蓋本接合工程における接合用回転ツールの押込み深さは、当該接合用回転ツールのピンの長さ及び上蓋板70の厚み等を考慮して適宜設定すればよい。なお、上蓋本接合工程では、流入攪拌用回転ツール25を用いて摩擦攪拌接合を行ってもよい。
(Upper cover book joining process)
In the upper lid main joining step, friction stir welding is performed by moving a joining rotary tool (not shown) along the upper abutting portions V 3 and V 4 . In this embodiment, the joining rotary tool is a smaller rotary tool than the inflow stirring rotary tool 25 (see FIG. 5). The indentation depth of the joining rotary tool in the upper lid main joining process may be appropriately set in consideration of the length of the pins of the joining rotating tool, the thickness of the upper lid plate 70, and the like. In the upper lid main joining step, friction stir welding may be performed using the inflow stirring rotary tool 25.

実施形態に係る伝熱板61によれば、下蓋部Mの上方にさらに上蓋板70を配置して、摩擦攪拌接合を施すことにより、より深い位置に熱媒体用管16を配置させることができる。   According to the heat transfer plate 61 according to the embodiment, the upper cover plate 70 is further disposed above the lower cover portion M, and the heat medium pipe 16 is disposed at a deeper position by performing friction stir welding. Can do.

[第三実施形態]
次に、第三実施形態に係る伝熱板について説明する。図9は、第三実施形態に係る伝熱板を示した断面図である。図9に示す第三実施形態に係る伝熱板81は、第一実施形態に係る伝熱板1よりも蓋板10の幅が大きく形成されており、溶接金属T,Tが塑性化領域W,Wの外部に露出する点で第一実施形態と相違する。
[Third embodiment]
Next, the heat transfer plate according to the third embodiment will be described. FIG. 9 is a cross-sectional view showing a heat transfer plate according to the third embodiment. The heat transfer plate 81 according to the third embodiment shown in FIG. 9 is formed such that the width of the cover plate 10 is larger than that of the heat transfer plate 1 according to the first embodiment, and the weld metals T 1 and T 2 are plasticized. It differs from the first embodiment in that it is exposed to the outside of the areas W 1 and W 2 .

即ち、蓋溝6の幅及び蓋板10の幅寸法が大きい場合には、熱媒体用管16から離れた位置に突合部V,Vが形成されるため、塑性化領域W,Wの外部に溶接金属T,Tが形成される。 That is, when the width of the lid groove 6 and the width of the lid plate 10 are large, the abutting portions V 1 and V 2 are formed at positions away from the heat medium pipe 16, so that the plasticized regions W 1 and W 2 are formed. 2 , weld metals T 1 and T 2 are formed.

第三実施形態に係る伝熱板81の製造方法は、溶接金属T,Tが塑性化領域W,Wと重複しないことを除いては、第一実施形態に係る伝熱板1の製造方法と略同等であるため説明を省略する。
なお、第三実施形態では、流入攪拌工程を行った後に、溶接接合工程を行ってもよい。また、溶接接合工程では、第一実施形態と同様に、ベース部材2の表面3よりも突出する程度に肉盛溶接を行った後、溶接金属T,Tの突出した部分を切削して、伝熱板81の表面を面一に形成するのが好ましい。
The manufacturing method of the heat transfer plate 81 according to the third embodiment is the same as that of the heat transfer plate 1 according to the first embodiment, except that the weld metals T 1 and T 2 do not overlap with the plasticized regions W 1 and W 2. Since this is substantially the same as the manufacturing method of, description thereof is omitted.
In the third embodiment, the welding joining process may be performed after the inflow stirring process. Moreover, in the welding process, as in the first embodiment, after overlay welding to the extent that also protrudes from the surface 3 of the base member 2, by cutting the protruding portion of the weld metal T 1, T 2 The surface of the heat transfer plate 81 is preferably formed flush with each other.

以上、本発明の実施形態について説明したが、本発明の趣旨に反しない範囲において適宜変更が可能である。例えば、図10は、溶接接合工程の変形例を示した斜視図である。図10に示すように、溶接接合工程の肉盛溶接を突合部V,Vの長手方向に間欠的に行ってもよい。このように間欠的に行うことで、溶接作業を省略化することができる。 Although the embodiments of the present invention have been described above, modifications can be made as appropriate without departing from the spirit of the present invention. For example, FIG. 10 is a perspective view showing a modification of the welding joining process. As shown in FIG. 10, build-up welding in the welding joining process may be intermittently performed in the longitudinal direction of the abutting portions V 1 and V 2 . By performing intermittently in this way, the welding operation can be omitted.

また、本実施形態では、蓋溝6の幅よりも蓋板10の幅を小さく形成することで、離間溝U,Uを形成したが、これに限定されるものではなく、蓋溝6と蓋板10の幅を略同等に形成して蓋溝6と蓋板10とを隙間なく突き合わせてもよい。そして、蓋溝6と蓋板10とが突き合わされた突合部に対して溶接を行えばよい。また、溶接接合工程は、本実施形態では肉盛溶接によって行ったが、他の公知の溶接でもよい。 In the present embodiment, the separation grooves U 1 and U 2 are formed by forming the width of the lid plate 10 to be smaller than the width of the lid groove 6. However, the present invention is not limited to this, and the lid groove 6 is not limited thereto. The lid plate 10 may be formed to have substantially the same width, and the lid groove 6 and the lid plate 10 may be abutted with no gap therebetween. And what is necessary is just to weld with respect to the butt | matching part with which the cover groove | channel 6 and the cover board 10 were faced | matched. Moreover, although the welding joining process was performed by overlay welding in this embodiment, other well-known welding may be sufficient.

第一実施形態に係る伝熱板を示した斜視図である。It is the perspective view which showed the heat exchanger plate which concerns on 1st embodiment. 第一実施形態に係る伝熱板を示した図であって、(a)は分解断面図、(b)は模式配置図を示す。It is the figure which showed the heat exchanger plate which concerns on 1st embodiment, Comprising: (a) is an exploded sectional view, (b) shows a schematic arrangement drawing. 第一実施形態に係る伝熱板を示した模式断面図である。It is the schematic cross section which showed the heat exchanger plate which concerns on 1st embodiment. 第一実施形態に係る伝熱板の製造方法を示した断面図であって、(a)は、切削工程を示した図であり、(b)は、熱媒体用管を挿入した挿入工程を示した図であり、(c)は、蓋溝閉塞工程を示した図である。It is sectional drawing which showed the manufacturing method of the heat exchanger plate which concerns on 1st embodiment, (a) is the figure which showed the cutting process, (b) is the insertion process which inserted the pipe | tube for heat media. It is the figure shown, (c) is the figure which showed the cover groove | channel closing process. 第一実施形態に係る伝熱板の製造方法を示した断面図であって、(a)は、溶接接合工程を示した図であり、(b)は、流入攪拌工程を示した図であり、(c)は、完成図である。It is sectional drawing which showed the manufacturing method of the heat exchanger plate which concerns on 1st embodiment, (a) is the figure which showed the welding joining process, (b) is the figure which showed the inflow stirring process. , (C) is a completed drawing. 第一実施形態に係る溶接接合工程を示した斜視図である。It is the perspective view which showed the welding joining process which concerns on 1st embodiment. 第一実施形態に係る伝熱板を用いた伝熱ユニットを示した平面図である。It is the top view which showed the heat-transfer unit using the heat-transfer board which concerns on 1st embodiment. 第二実施形態に係る伝熱板を示した図であって、(a)は、分解断面図、(b)は、断面図である。It is the figure which showed the heat exchanger plate which concerns on 2nd embodiment, Comprising: (a) is an exploded sectional view, (b) is sectional drawing. 第三実施形態に係る伝熱板を示した断面図である。It is sectional drawing which showed the heat exchanger plate which concerns on 3rd embodiment. 溶接接合工程の変形例を示した斜視図である。It is the perspective view which showed the modification of the welding joining process. 従来の伝熱板を示した図であって、(a)は斜視図、(b)は断面図である。It is the figure which showed the conventional heat exchanger plate, Comprising: (a) is a perspective view, (b) is sectional drawing.

符号の説明Explanation of symbols

1 伝熱板
2 ベース部材
5a (蓋溝の)側壁
5b (蓋溝の)側壁
6 蓋溝
8 凹溝
10 蓋板
13a (蓋板の)側面
13b (蓋板の)側面
16 熱媒体用管
25 流入攪拌用回転ツール
61 伝熱板
65 上蓋溝
65a 側壁
65b 側壁
70 上蓋板
73a 側面
73b 側面
P 空隙部
Q 塑性流動材
U 離間溝
V 突合部
W 塑性化領域
DESCRIPTION OF SYMBOLS 1 Heat-transfer plate 2 Base member 5a Side wall of lid groove 5b Side wall of lid groove 6 Cover groove 8 Concave groove 10 Cover plate 13a Side surface of lid plate 13b Side surface of lid plate 16 Heat medium pipe 25 Rotating tool for inflow stirring 61 Heat transfer plate 65 Upper lid groove 65a Side wall 65b Side wall 70 Upper lid plate 73a Side surface 73b Side surface P Cavity portion Q Plastic fluidizing material U Separation groove V Butting portion W Plasticization region

Claims (7)

ベース部材の表面側に開口する蓋溝の底面に形成された凹溝に、熱媒体用管を挿入する挿入工程と、
前記蓋溝に蓋板を配置する蓋溝閉塞工程と、
前記蓋溝の側壁と前記蓋板の側面との突合部に沿って溶接を行って前記ベース部材と前記蓋板とを接合する溶接接合工程と、
前記蓋板の表面で、前記凹溝に沿って流入攪拌用回転ツールを移動させて前記熱媒体用管の周囲に形成されている空隙部に、摩擦熱によって流動化させた塑性流動材を流入させる流入攪拌工程と、を有することを特徴とする伝熱板の製造方法。
An insertion step of inserting the heat medium pipe into the concave groove formed on the bottom surface of the lid groove opening on the surface side of the base member;
A lid groove closing step of disposing a lid plate in the lid groove;
A welding and joining step for joining the base member and the lid plate by performing welding along the abutting portion between the side wall of the lid groove and the side surface of the lid plate;
The surface of said cover plate, said moving the inflow stirring rotation tool along the concave groove, the gap portion which is formed around the heat medium pipe, the plastic flow materials which are fluidized by frictional heat A heat transfer plate manufacturing method, comprising: an inflow stirring step for inflow.
前記流入攪拌工程の前に、前記溶接接合工程を行うことを特徴とする請求項1に記載の伝熱板の製造方法。   The method for manufacturing a heat transfer plate according to claim 1, wherein the welding joining step is performed before the inflow stirring step. 前記溶接接合工程において、前記蓋溝の側壁と前記蓋板の側面との突合部に沿って間欠的に溶接を行うことを特徴とする請求項1又は請求項2に記載の伝熱板の製造方法。 The heat transfer plate manufacturing method according to claim 1 or 2, wherein in the welding and joining step, welding is intermittently performed along a butt portion between a side wall of the lid groove and a side surface of the lid plate. Method. 前記突合部は、前記蓋溝の側壁と前記蓋板の側面とが離間して形成された離間溝を備えており、
前記溶接接合工程では、前記離間溝に肉盛溶接を行うことを特徴とする請求項1乃至請求項3のいずれか一項に記載の伝熱板の製造方法。
The abutting portion includes a separation groove formed by separating a side wall of the lid groove and a side surface of the lid plate,
The method for manufacturing a heat transfer plate according to any one of claims 1 to 3, wherein in the welding and joining step, build-up welding is performed on the spacing groove.
前記流入攪拌工程において、前記流入攪拌用回転ツールの先端を、前記蓋溝の底面よりも深く挿入することを特徴とする請求項1乃至請求項4のいずれか一項に記載の伝熱板の製造方法。   5. The heat transfer plate according to claim 1, wherein in the inflow stirring step, a tip of the inflow stirring rotating tool is inserted deeper than a bottom surface of the lid groove. Production method. 前記流入攪拌工程において、前記溶接接合工程にて生成した溶接金属を、前記流入攪拌用回転ツールによって摩擦攪拌することを特徴とする請求項1乃至請求項5のいずれか一項に記載の伝熱板の製造方法。   The heat transfer according to any one of claims 1 to 5, wherein, in the inflow stirring step, the weld metal generated in the welding joining step is frictionally stirred by the inflow stirring rotary tool. A manufacturing method of a board. 前記流入攪拌工程後に、
前記ベース部材の前記蓋溝よりも表面側に、前記蓋溝よりも幅広に形成された上蓋溝に前記蓋板を覆う上蓋板を挿入する上蓋溝閉塞工程と、
前記上蓋溝の側壁と前記上蓋板の側面との突合部に沿って接合用回転ツールを移動させて前記ベース部材と前記上蓋板との摩擦攪拌接合を施す上蓋接合工程と、をさらに有することを特徴とする請求項1乃至請求項6のいずれか1項に記載の伝熱板の製造方法。
After the inflow stirring step,
An upper lid groove closing step of inserting an upper lid plate that covers the lid plate into an upper lid groove formed wider than the lid groove on the surface side of the lid groove of the base member;
An upper lid joining step for moving the joining rotary tool along the abutting portion between the side wall of the upper lid groove and the side surface of the upper lid plate to perform friction stir welding between the base member and the upper lid plate; The method for manufacturing a heat transfer plate according to any one of claims 1 to 6, wherein the heat transfer plate is manufactured as described above.
JP2008180176A 2008-07-10 2008-07-10 Manufacturing method of heat transfer plate Active JP5195098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008180176A JP5195098B2 (en) 2008-07-10 2008-07-10 Manufacturing method of heat transfer plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008180176A JP5195098B2 (en) 2008-07-10 2008-07-10 Manufacturing method of heat transfer plate

Publications (2)

Publication Number Publication Date
JP2010017739A JP2010017739A (en) 2010-01-28
JP5195098B2 true JP5195098B2 (en) 2013-05-08

Family

ID=41703125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008180176A Active JP5195098B2 (en) 2008-07-10 2008-07-10 Manufacturing method of heat transfer plate

Country Status (1)

Country Link
JP (1) JP5195098B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103747914B (en) 2011-08-19 2017-05-03 日本轻金属株式会社 Friction stir welding method
JP6283328B2 (en) * 2015-04-01 2018-02-21 日本軽金属株式会社 Friction stir welding method
JP6948832B2 (en) 2017-05-22 2021-10-13 株式会社Uacj鋳鍛 Heat transfer plate for vacuum equipment and its manufacturing method
JP2018141624A (en) * 2018-06-06 2018-09-13 日本軽金属株式会社 Radiator
JP7377533B2 (en) * 2020-03-03 2023-11-10 京浜ラムテック株式会社 Method for manufacturing metal structures
CN115213546B (en) * 2022-08-12 2023-07-18 燕山大学 Tool for forming and processing metal inner heat dissipation pore canal and friction stir welding equipment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1147961A (en) * 1997-08-04 1999-02-23 Showa Alum Corp Manufacture of plate type heat pipe
JP3307330B2 (en) * 1998-06-01 2002-07-24 日本軽金属株式会社 Friction stir welding method and joining structure for thick workpieces
JP3761736B2 (en) * 1999-02-16 2006-03-29 株式会社日立製作所 Friction stir welding method
JP3818084B2 (en) * 2000-12-22 2006-09-06 日立電線株式会社 Cooling plate and manufacturing method thereof, and sputtering target and manufacturing method thereof
JP4325260B2 (en) * 2003-04-15 2009-09-02 日本軽金属株式会社 Manufacturing method of heat transfer element
JP4305273B2 (en) * 2004-05-11 2009-07-29 日本軽金属株式会社 Manufacturing method of heat exchange plate and manufacturing method of heat exchanger
JP4808949B2 (en) * 2004-10-12 2011-11-02 助川電気工業株式会社 Method for manufacturing a heating element having an embedded heater
JP2007136544A (en) * 2005-02-01 2007-06-07 Hitachi Ltd Friction stir welding method

Also Published As

Publication number Publication date
JP2010017739A (en) 2010-01-28

Similar Documents

Publication Publication Date Title
JP4962423B2 (en) Manufacturing method of heat transfer plate
JP5163419B2 (en) Manufacturing method of heat transfer plate
WO2010041529A1 (en) Method of manufacturing heat transfer plate
KR101411143B1 (en) Method of producing heat transfer plate and heat transfer plate
JP5195098B2 (en) Manufacturing method of heat transfer plate
KR20150034223A (en) Method for producing heat exchanger plate and method for friction stir welding
WO2009142070A1 (en) Method for producing heat exchanger plate, and heat exchanger plate
JP2020032429A (en) Heat exchanger plate manufacturing method
JP5440676B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP5012339B2 (en) Heat transfer plate manufacturing method and heat transfer plate
WO2019123678A1 (en) Method for manufacturing liquid cooling jacket
JP5141487B2 (en) Manufacturing method of heat transfer plate
KR101213247B1 (en) Heat exchange plate manufacturing method and heat exchange plate
JP4888422B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP5071132B2 (en) Manufacturing method of heat transfer plate
JP6617834B2 (en) Manufacturing method of heat transfer plate
JP2009195940A (en) Manufacturing method of heat transfer plate
JP5071249B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP5071274B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP6365752B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP5125760B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP2018065163A (en) Heat exchanger plate manufacturing method and friction stir welding method
JP2018108594A (en) Manufacturing method for heat transfer plate and friction stir welding method
JP2015213929A (en) Heat exchanger plate manufacturing method, and heat exchanger plate
JP2017042782A (en) Method for manufacturing heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5195098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350