JP5141487B2 - Manufacturing method of heat transfer plate - Google Patents

Manufacturing method of heat transfer plate Download PDF

Info

Publication number
JP5141487B2
JP5141487B2 JP2008259396A JP2008259396A JP5141487B2 JP 5141487 B2 JP5141487 B2 JP 5141487B2 JP 2008259396 A JP2008259396 A JP 2008259396A JP 2008259396 A JP2008259396 A JP 2008259396A JP 5141487 B2 JP5141487 B2 JP 5141487B2
Authority
JP
Japan
Prior art keywords
groove
heat medium
medium pipe
plate
lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008259396A
Other languages
Japanese (ja)
Other versions
JP2010089102A (en
Inventor
伸城 瀬尾
久司 堀
慎也 牧田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2008259396A priority Critical patent/JP5141487B2/en
Priority to CN201310548745.7A priority patent/CN103624396B/en
Priority to CN200980138293.7A priority patent/CN102159357B/en
Priority to PCT/JP2009/065474 priority patent/WO2010041529A1/en
Priority to KR1020117010225A priority patent/KR101249186B1/en
Priority to TW098130493A priority patent/TWI402477B/en
Publication of JP2010089102A publication Critical patent/JP2010089102A/en
Application granted granted Critical
Publication of JP5141487B2 publication Critical patent/JP5141487B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は、例えば熱交換器や加熱機器あるいは冷却機器などに用いられる伝熱板の製造方法に関する。   The present invention relates to a method for manufacturing a heat transfer plate used in, for example, a heat exchanger, a heating device, a cooling device, or the like.

熱交換、加熱あるいは冷却すべき対象物に接触し又は近接して配置される伝熱板は、その本体であるベース部材に例えば高温液や冷却水などの熱媒体を循環させる熱媒体用管を挿通させて形成されている。
かかる伝熱板の製造方法としては、例えば、特許文献1に記載された方法が知られている。図15は、特許文献1に係る伝熱板を示した図であって、(a)は、斜視図、(b)は断面図である。特許文献1に係る伝熱板100は、表面に開口する断面視矩形の蓋溝106と蓋溝106の底面に開口する凹溝108とを有するベース部材102と、凹溝108に挿入される熱媒体用管116と、蓋溝106に嵌合される蓋板110と、を備え、蓋溝106における両側壁105,105と蓋板110の両側面113,114とのそれぞれの突合せ面に沿って摩擦攪拌接合を施して形成されている。蓋溝106と蓋板110の突合せ面には、塑性化領域W,Wが形成されている。
A heat transfer plate arranged in contact with or close to an object to be heat exchanged, heated or cooled is provided with a heat medium pipe for circulating a heat medium such as high-temperature liquid or cooling water through a base member as a main body. It is formed by insertion.
As a method for manufacturing such a heat transfer plate, for example, a method described in Patent Document 1 is known. FIG. 15 is a view showing a heat transfer plate according to Patent Document 1, in which (a) is a perspective view and (b) is a cross-sectional view. A heat transfer plate 100 according to Patent Document 1 includes a base member 102 having a lid groove 106 having a rectangular cross-sectional view opened on the surface and a groove 108 opened on the bottom surface of the cover groove 106, and heat inserted into the groove 108. A medium pipe 116 and a lid plate 110 fitted in the lid groove 106, and along the abutting surfaces of the side walls 105, 105 and the side surfaces 113, 114 of the lid plate 110 in the lid groove 106. It is formed by friction stir welding. Plasticized regions W 0 and W 0 are formed on the abutting surfaces of the lid groove 106 and the lid plate 110.

特開2004−314115号公報JP 2004-314115 A

図15の(b)に示すように、伝熱板100には、凹溝108と熱媒体用管116の外側面と蓋板110の裏面とによって空隙部120が形成されているが、伝熱板100の内部に空隙部120が存在していると、熱媒体用管116から放熱された熱が蓋板110に伝わりにくくなるため、伝熱板100の熱交換効率が低下するという問題があった。したがって、凹溝108の深さや幅を熱媒体用管116の外径と同一に形成して、空隙部120が小さくなるように形成することが好ましい。   As shown in FIG. 15B, the heat transfer plate 100 has a gap 120 formed by the groove 108, the outer surface of the heat medium pipe 116, and the back surface of the lid plate 110. If the gap portion 120 exists inside the plate 100, the heat radiated from the heat medium pipe 116 becomes difficult to be transmitted to the cover plate 110, and the heat exchange efficiency of the heat transfer plate 100 is reduced. It was. Therefore, it is preferable that the depth and width of the concave groove 108 be formed to be the same as the outer diameter of the heat medium pipe 116 so that the gap 120 is made smaller.

一方、熱媒体用管116の少なくとも一部を湾曲させてベース部材102に埋め込む場合には、凹溝108に熱媒体用管116を挿入し、蓋溝106に蓋板110を配置する作業が困難となるため、凹溝108の深さや幅を熱媒体用管116の外径よりも大きく確保しなければならない。即ち、熱媒体用管116の少なくとも一部を湾曲させてベース部材102に埋め込む場合は、熱媒体用管116の外径に比べて凹溝108の深さや幅を大きくせざるを得ず、それに伴って空隙部120が大きくなってしまう。これにより、伝熱板100の熱交換効率の低下を招来するという問題があった。   On the other hand, when at least a part of the heat medium tube 116 is bent and embedded in the base member 102, it is difficult to insert the heat medium tube 116 into the concave groove 108 and dispose the cover plate 110 in the cover groove 106. Therefore, the depth and width of the groove 108 must be ensured to be larger than the outer diameter of the heat medium pipe 116. That is, when at least a part of the heat medium tube 116 is curved and embedded in the base member 102, the depth and width of the concave groove 108 must be made larger than the outer diameter of the heat medium tube 116. Along with this, the gap 120 becomes large. Thereby, there existed a problem that the fall of the heat exchange efficiency of the heat exchanger plate 100 was caused.

このような観点から本発明は、少なくとも一部が湾曲した熱媒体用管を備える場合であっても、伝熱板の熱交換効率が高く、かつ、容易に製造することができる伝熱板の製造方法を提供することを課題とする。   From this point of view, the present invention provides a heat transfer plate that has a high heat exchange efficiency and can be easily manufactured even when it includes a heat medium pipe that is at least partially curved. It is an object to provide a manufacturing method.

このような課題を解決するために本発明は、蓋溝の底面に凹溝が形成されたベース部材と裏面に凹溝が形成された蓋板とを、前記凹溝同士で中空の空間部が形成されるように重ね合わせるとともに、前記空間部に熱媒体用管を挿入する準備工程と、前記準備工程で形成された仮組構造体の表面及び裏面の少なくとも一方の面から挿入した流入攪拌用回転ツールを前記空間部に沿って移動させ、前記熱媒体用管の周囲に形成された空隙部に摩擦熱によって流動化させた塑性流動材を流入させる流入攪拌工程と、を含み、前記空間部の幅及び高さの少なくとも一方が、前記熱媒体用管の外径よりも大きいことを特徴とする。   In order to solve such problems, the present invention provides a base member having a concave groove formed on the bottom surface of the lid groove and a lid plate having a concave groove formed on the back surface. For the inflow agitation inserted from at least one of the front surface and the back surface of the temporary assembly structure formed in the preparatory step and the temporary assembly structure formed in the preparatory step, while superposing so as to be formed An inflow stirring step of moving a rotating tool along the space portion, and flowing a plastic fluidized material fluidized by frictional heat into a gap formed around the heat medium pipe, and the space portion At least one of the width and the height is larger than the outer diameter of the heat medium pipe.

かかる製造方法によれば、前記ベース部材の凹溝と前記蓋板の凹溝とで形成された空間部の幅及び高さの少なくとも一方が、前記熱媒体用管の外径よりも大きいため、熱媒体用管の一部が湾曲していても、準備工程を容易に行うことができる。また、流入攪拌工程により、熱媒体用管の周囲に形成された空隙部に、塑性流動材を流入させることで、当該空隙部を埋めることができるため、熱媒体用管とその周囲のベース部材及び蓋板との間で熱を効率よく伝達することができる。これにより、熱交換効率の高い伝熱板を製造することができ、例えば、熱媒体用管に冷却水を通して伝熱板及び冷却対象物を効率的に冷却できる。   According to such a manufacturing method, at least one of the width and height of the space formed by the concave groove of the base member and the concave groove of the lid plate is larger than the outer diameter of the heat medium pipe. Even if a part of the heat medium pipe is curved, the preparation process can be easily performed. Further, since the plastic fluidized material is caused to flow into the gap formed around the heat medium pipe by the inflow stirring step, the gap can be filled, so the heat medium pipe and the surrounding base member And heat can be efficiently transferred between the cover plate and the cover plate. Thereby, a heat exchanger plate with high heat exchange efficiency can be manufactured, for example, a heat exchanger plate and a cooling target can be efficiently cooled through cooling water through a heat medium pipe.

また本発明は、蓋溝が形成されたベース部材と裏面に凹溝が形成された蓋板とを、前記蓋溝の底面と前記凹溝とで中空の空間部が形成されるように重ね合わせるとともに、前記空間部に熱媒体用管を挿入する準備工程と、前記準備工程で形成された仮組構造体の表面及び裏面の少なくとも一方の面から挿入した流入攪拌用回転ツールを前記空間部に沿って移動させ、前記熱媒体用管の周囲に形成された空隙部に摩擦熱によって流動化させた塑性流動材を流入させる流入攪拌工程と、を含み、前記空間部の幅及び高さの少なくとも一方が、前記熱媒体用管の外径よりも大きいことを特徴とする。   In the present invention, the base member in which the lid groove is formed and the lid plate in which the concave groove is formed on the back surface are overlapped so that a hollow space is formed by the bottom surface of the lid groove and the concave groove. And a preparatory step for inserting the heat medium tube into the space portion, and an inflow agitation rotating tool inserted from at least one of the front and back surfaces of the temporarily assembled structure formed in the preparatory step into the space portion. And an inflow stirring step of flowing a plastic fluidized material fluidized by frictional heat into a gap formed around the heat medium pipe, and having at least a width and a height of the space portion One is larger than the outer diameter of the heat medium pipe.

かかる製造方法によれは、前記蓋溝の底面と前記蓋板に形成された凹溝とで形成された空間部の幅及び高さの少なくともいずれか一方が、前記熱媒体用管の外径よりも大きいため、熱媒体用管の一部が湾曲していても、準備工程を容易に行うことができる。また、流入攪拌工程により、熱媒体用管の周囲に形成された空隙部に、塑性流動材を流入させることで、当該空隙部を埋めることができるため、熱媒体用管とその周囲のベース部材及び蓋板との間で熱を効率よく伝達することができる。これにより、熱交換効率の高い伝熱板を製造することができ、例えば、熱媒体用管に冷却水を通して伝熱板及び冷却対象物を効率的に冷却できる。   According to this manufacturing method, at least one of the width and the height of the space portion formed by the bottom surface of the lid groove and the concave groove formed in the lid plate is greater than the outer diameter of the heat medium pipe. Therefore, even if a part of the heat medium pipe is curved, the preparation process can be easily performed. Further, since the plastic fluidized material is caused to flow into the gap formed around the heat medium pipe by the inflow stirring step, the gap can be filled, so the heat medium pipe and the surrounding base member And heat can be efficiently transferred between the cover plate and the cover plate. Thereby, a heat exchanger plate with high heat exchange efficiency can be manufactured, for example, a heat exchanger plate and a cooling target can be efficiently cooled through cooling water through a heat medium pipe.

また、前記流入攪拌工程では、前記流入攪拌用回転ツールの先端と、前記熱媒体用管に接する仮想鉛直面との最近接距離を1〜3mmに設定することが好ましい。また、前記流入攪拌工程では、前記流入攪拌用回転ツールの先端を、前記蓋溝の底面よりも深く挿入することが好ましい。かかる製造方法によれば、空隙部に塑性流動材を確実に流入させることができる。   In the inflow stirring step, it is preferable that a closest distance between a tip of the inflow stirring rotating tool and a virtual vertical plane in contact with the heat medium pipe is set to 1 to 3 mm. In the inflow stirring step, it is preferable to insert the tip of the inflow stirring rotary tool deeper than the bottom surface of the lid groove. According to this manufacturing method, the plastic fluidized material can surely flow into the gap.

また、前記流入攪拌工程の前に、前記蓋溝の側壁と前記蓋板の側面との突合部に沿って摩擦攪拌接合を行う接合工程を含むことが好ましい。また、前記接合工程では、前記蓋溝の側壁と前記蓋板の側面との突合部に沿って間欠的に摩擦攪拌接合を行うことが好ましい。   Moreover, it is preferable to include the joining process of performing friction stir welding along the abutting part of the side wall of the said cover groove | channel and the side surface of the said cover board before the said inflow stirring process. Moreover, in the said joining process, it is preferable to perform friction stir welding intermittently along the abutting part of the side wall of the said cover groove | channel, and the side surface of the said cover board.

かかる製造方法によれば、蓋板をベース部材に固定した状態で流入攪拌工程を行うことができるため、流入攪拌工程の作業性を高めることができる。   According to this manufacturing method, since the inflow stirring process can be performed with the lid plate fixed to the base member, the workability of the inflow stirring process can be improved.

また、前記流入攪拌用回転ツールよりも小型の回転ツールを用いて前記接合工程を行うことが好ましい。かかる製造方法によれば、流入攪拌工程では深い部分まで塑性流動化することができるとともに、接合工程での摩擦攪拌接合における塑性化領域は小さくて済むので、接合作業が容易になる。   Moreover, it is preferable to perform the said joining process using a rotary tool smaller than the said rotation tool for inflow stirring. According to such a manufacturing method, plastic fluidization can be achieved up to a deep portion in the inflow stirring step, and the plasticizing region in the friction stir welding in the joining step can be small, so that the joining operation is facilitated.

また、前記流入攪拌工程では、前記接合工程で形成された塑性化領域を、前記流入攪拌用回転ツールによって再攪拌することが好ましい。かかる製造方法によれば、蓋板を固定した状態で流入攪拌工程を行うことができるとともに、伝熱板に露出する塑性化領域を小さくすることができる。   In the inflow stirring step, it is preferable to re-stir the plasticized region formed in the joining step with the inflow stirring rotary tool. According to this manufacturing method, the inflow stirring step can be performed with the lid plate fixed, and the plasticized region exposed to the heat transfer plate can be reduced.

また、前記ベース部材に開口する上蓋溝の底面に前記蓋溝を開口させておき、前記流入攪拌工程後に、前記上蓋溝に上蓋板を配置する上蓋溝閉塞工程と、前記上蓋溝の側壁と前記上蓋板の側面との突合部に沿って摩擦攪拌接合を行う上蓋接合工程と、をさらに含むことが好ましい。   In addition, the lid groove is opened on the bottom surface of the upper lid groove opened in the base member, and after the inflow stirring step, an upper lid groove closing step in which an upper lid plate is disposed in the upper lid groove, and a side wall of the upper lid groove; It is preferable that the method further includes an upper lid joining step of performing friction stir welding along the abutting portion with the side surface of the upper lid plate.

かかる製造方法によれば、蓋板よりも幅広の上蓋板を用いてさらに摩擦攪拌接合を行うため、熱媒体用管を伝熱板のより深い位置に配置させることができる。   According to this manufacturing method, since the friction stir welding is further performed using the upper lid plate wider than the lid plate, the heat medium pipe can be arranged at a deeper position of the heat transfer plate.

本発明に係る伝熱板の製造方法によれば、熱媒体用管の一部が湾曲している場合であっても、伝熱板を容易に製造することができるとともに、熱交換効率の高い伝熱板を提供することができる。   According to the method for manufacturing a heat transfer plate according to the present invention, the heat transfer plate can be easily manufactured and the heat exchange efficiency is high even when a portion of the heat medium pipe is curved. A heat transfer plate can be provided.

[第一実施形態]
本発明の最良の実施形態について、図面を参照して詳細に説明する。図1は、第一実施形態に係る伝熱板を示した斜視図である。図2は、第一実施形態に係る伝熱板を示した分解斜視図である。図3の(a)は、第一実施形態に係る伝熱板を示した分解断面図であり、(b)は、第一実施形態に係るベース部材に熱媒体用管と蓋板を配置した断面図である。図4は、第一実施形態に係る伝熱板を示した断面図である。なお、説明における上下左右前後は、特に断りのない限り図1の矢印に従う。
[First embodiment]
The best embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view showing a heat transfer plate according to the first embodiment. FIG. 2 is an exploded perspective view showing the heat transfer plate according to the first embodiment. FIG. 3A is an exploded cross-sectional view showing the heat transfer plate according to the first embodiment, and FIG. 3B is a view in which a heat medium tube and a cover plate are arranged on the base member according to the first embodiment. It is sectional drawing. FIG. 4 is a cross-sectional view showing the heat transfer plate according to the first embodiment. In the description, up, down, left, and right, front and rear follow the arrows in FIG. 1 unless otherwise specified.

第一実施形態に係る伝熱板1は、図1乃至図4に示すように、表面3及び裏面4を有する厚板形状のベース部材2と、ベース部材2の蓋溝6に配置される蓋板10と、ベース部材2と蓋板10の間に挿入される熱媒体用管16とを主に備えている。熱媒体用管16は、平面視U字状を呈するように湾曲して形成されている。   As shown in FIGS. 1 to 4, the heat transfer plate 1 according to the first embodiment includes a thick plate-shaped base member 2 having a front surface 3 and a back surface 4, and a lid disposed in a lid groove 6 of the base member 2. It mainly includes a plate 10 and a heat medium pipe 16 inserted between the base member 2 and the lid plate 10. The heat medium pipe 16 is formed to be curved so as to have a U-shape in plan view.

ベース部材2と蓋板10は、図1及び図4に示すように、摩擦攪拌接合により生成された塑性化領域W1,W2によって一体形成されている。ここで、「塑性化領域」とは、回転ツールの摩擦熱によって加熱されて現に塑性化している状態と、回転ツールが通り過ぎて常温に戻った状態の両方を含むこととする。蓋板10の表面11には、前記の塑性化領域W1,W2よりも深く形成された塑性化領域W3,W4が形成されている。さらに、ベース部材2の裏面4には塑性化領域W5,W6が形成されている。   As shown in FIGS. 1 and 4, the base member 2 and the lid plate 10 are integrally formed by plasticized regions W <b> 1 and W <b> 2 generated by friction stir welding. Here, the “plasticization region” includes both a state heated by frictional heat of the rotary tool and actually plasticized, and a state where the rotary tool passes and returns to room temperature. On the surface 11 of the cover plate 10, plasticized regions W3 and W4 formed deeper than the plasticized regions W1 and W2 are formed. Further, plasticized regions W5 and W6 are formed on the back surface 4 of the base member 2.

ベース部材2は、例えば、アルミニウム合金(JIS:A6061)で形成されている。ベース部材2は、熱媒体用管16に流れる熱媒体の熱を外部に伝達させる役割、あるいは、外部の熱を熱媒体用管16に流れる熱媒体に伝達させる役割を果たす。図3に示すように、ベース部材2の表面3には、蓋溝6が凹設されており、蓋溝6の底面6cには熱媒体用管16の一方側(下半部)を収容する第一凹溝8が凹設されている。   The base member 2 is made of, for example, an aluminum alloy (JIS: A6061). The base member 2 plays a role of transferring the heat of the heat medium flowing through the heat medium pipe 16 to the outside, or a role of transferring external heat to the heat medium flowing through the heat medium pipe 16. As shown in FIG. 3, the cover groove 6 is recessed in the surface 3 of the base member 2, and one side (lower half) of the heat medium pipe 16 is accommodated in the bottom surface 6 c of the cover groove 6. A first concave groove 8 is provided in a recessed manner.

蓋溝6は、熱媒体用管16を覆う蓋板10が配置される部分であって、ベース部材2の長手方向に亘って連続して形成されている。蓋溝6は、断面視矩形を呈しており、蓋溝6の底面6cから垂直に立ち上がる側壁6a,6bを備えている。
第一凹溝8は、熱媒体用管16の下半部を収容する部分であって、平面視U字状を呈し、上方が開口するように断面視矩形に形成されている。第一凹溝8は、底面8cと、底面8cから垂直に立ち上がる立面8a,8bを備えている。
The lid groove 6 is a portion where the lid plate 10 covering the heat medium pipe 16 is disposed, and is continuously formed over the longitudinal direction of the base member 2. The lid groove 6 has a rectangular shape in sectional view, and includes side walls 6 a and 6 b that rise vertically from the bottom surface 6 c of the lid groove 6.
The first concave groove 8 is a portion that accommodates the lower half portion of the heat medium pipe 16 and has a U-shape in plan view, and is formed in a rectangular shape in cross section so that the upper side is open. The first concave groove 8 includes a bottom surface 8c and rising surfaces 8a and 8b that rise vertically from the bottom surface 8c.

蓋板10は、図2及び図3に示すように、ベース部材2と同様のアルミニウム合金からなり、ベース部材2の蓋溝6の断面と略同じ矩形断面に形成されている。蓋板10は、表面(上面)11、裏面(下面)12、側面13a及び側面13bを有するとともに、両端面は、ベース部材2の両端面と面一になるように形成されている。蓋板10の裏面12には、平面視U字状を呈し、第一凹溝8に重ね合わされる位置に対応して第二凹溝15が形成されている。   As shown in FIGS. 2 and 3, the cover plate 10 is made of the same aluminum alloy as that of the base member 2, and has a rectangular cross section substantially the same as the cross section of the cover groove 6 of the base member 2. The cover plate 10 has a front surface (upper surface) 11, a back surface (lower surface) 12, side surfaces 13 a, and side surfaces 13 b, and both end surfaces are formed to be flush with both end surfaces of the base member 2. On the back surface 12 of the cover plate 10, a second concave groove 15 is formed corresponding to a position that is U-shaped in a plan view and overlaps the first concave groove 8.

第二凹溝15は、図3の(a)及び(b)に示すように、熱媒体用管16の他方側(上半部)を収容する部分であって、下方が開口するように断面視矩形に形成されている。第二凹溝15は、天面15cと天面15cから垂直に立ち下がる立面15a,15bを備えている。   As shown in FIGS. 3A and 3B, the second concave groove 15 is a portion that accommodates the other side (upper half portion) of the heat medium pipe 16 and has a cross section that opens downward. It is formed in a viewing rectangle. The second groove 15 includes a top surface 15c and vertical surfaces 15a and 15b that vertically fall from the top surface 15c.

蓋板10は、図3の(a)及び(b)に示すように、蓋溝6に挿入される。蓋板10の側面13a,13bは、蓋溝6の側壁6a,6bと面接触するか又は微細な隙間をあけて対向する。ここで、図3の(b)に示すように、側面13aと側壁6aとの突合せ部を「突合部V1」とし、側面13bと側壁6bとの突合せ部を「突合部V2」とする。   The cover plate 10 is inserted into the cover groove 6 as shown in FIGS. The side surfaces 13a and 13b of the lid plate 10 are in surface contact with the side walls 6a and 6b of the lid groove 6 or face each other with a fine gap. Here, as shown in FIG. 3B, the abutting portion between the side surface 13a and the side wall 6a is referred to as “abutting portion V1”, and the abutting portion between the side surface 13b and the side wall 6b is referred to as “abutting portion V2”.

熱媒体用管16は、図2等に示すように、平面視U字状を呈する円筒管である。熱媒体用管16の材質は特に制限されるものではないが、本実施形態では銅製としている。熱媒体用管16は、中空部18に、例えば高温液、高温ガスなどの熱媒体を循環させて、ベース部材2及び蓋板10に熱を伝達させる部材、あるいは中空部18に、例えば冷却水、冷却ガスなどの熱媒体を循環させて、ベース部材2及び蓋板10から熱を伝達される部材である。なお、熱媒体用管16の中空部18に、例えばヒーターを通して、ヒーターから発生する熱をベース部材2及び蓋板10に伝達させる部材として利用してもよい。   As shown in FIG. 2 and the like, the heat medium pipe 16 is a cylindrical pipe having a U-shape in plan view. The material of the heat medium pipe 16 is not particularly limited, but is made of copper in the present embodiment. The heat medium pipe 16 is a member that circulates a heat medium such as a high-temperature liquid or a high-temperature gas in the hollow portion 18 to transmit heat to the base member 2 and the cover plate 10, or a cooling water in the hollow portion 18, for example. A member that circulates a heat medium such as a cooling gas to transmit heat from the base member 2 and the cover plate 10. Note that, for example, a heater may be passed through the hollow portion 18 of the heat medium pipe 16 to transmit heat generated from the heater to the base member 2 and the cover plate 10.

図3の(b)に示すように、ベース部材2に蓋板10を配置すると、ベース部材2の第一凹溝8と蓋板10の第二凹溝15とが合わさり、断面視矩形の空間部Kが形成される。空間部Kには、熱媒体用管16が収容される。   As shown in FIG. 3B, when the cover plate 10 is arranged on the base member 2, the first concave groove 8 of the base member 2 and the second concave groove 15 of the cover plate 10 are combined to form a rectangular space in cross section. Part K is formed. In the space K, the heat medium pipe 16 is accommodated.

ここで、第一凹溝8の深さは、熱媒体用管16の外径の1/2に形成されている。また、第一凹溝8の幅は、熱媒体用管16の外径の1.1倍となるように形成されている。一方、第二凹溝15の深さは、熱媒体用管16の半径の1.1倍に形成されている。また、第二凹溝15の幅は、熱媒体用管16の外径の1.1倍に形成されている。したがって、ベース部材2に熱媒体用管16及び蓋板10を配置すると、第一凹溝8と熱媒体用管16の下端は接触し、熱媒体用管16の左右端及び上端は、第一凹溝8及び第二凹溝15と微細な隙間をあけて離間する。言い換えると、空間部Kの幅及び高さは、熱媒体用管16の外径よりも大きく形成されている。   Here, the depth of the first concave groove 8 is formed to be ½ of the outer diameter of the heat medium pipe 16. Further, the width of the first groove 8 is formed to be 1.1 times the outer diameter of the heat medium pipe 16. On the other hand, the depth of the second concave groove 15 is formed to be 1.1 times the radius of the heat medium pipe 16. The width of the second concave groove 15 is 1.1 times the outer diameter of the heat medium pipe 16. Therefore, when the heat medium pipe 16 and the cover plate 10 are arranged on the base member 2, the first concave groove 8 and the lower end of the heat medium pipe 16 are in contact with each other, and the left and right ends and the upper end of the heat medium pipe 16 are The groove 8 and the second groove 15 are separated from each other with a fine gap. In other words, the width and height of the space K are formed larger than the outer diameter of the heat medium pipe 16.

矩形断面の空間部K内に、円形断面の熱媒体用管16を挿入しているため、熱媒体用管16の周囲には、空隙部が形成される。例えば、図2に示すように、熱媒体用管16内を流れる媒体の流動方向を「Y」とすると、熱媒体用管16の周囲に形成される空隙部のうち、流動方向Yに対して左上側に形成される部分を「第一空隙部P1」とし、右上側に形成される部分を「第二空隙部P2」とし、左下側に形成される部分を「第三空隙部P3」とし、右下側に形成される部分を「第四空隙部P4」とする。   Since the heat medium pipe 16 having a circular cross section is inserted into the space K having a rectangular cross section, a gap is formed around the heat medium pipe 16. For example, as shown in FIG. 2, when the flow direction of the medium flowing in the heat medium pipe 16 is “Y”, among the voids formed around the heat medium pipe 16, the flow direction Y The portion formed on the upper left side is referred to as “first gap P1”, the portion formed on the upper right side is referred to as “second gap P2”, and the portion formed on the lower left side is referred to as “third gap P3”. A portion formed on the lower right side is referred to as a “fourth gap P4”.

塑性化領域W1,W2は、図1及び図4に示すように、突合部V1,V2に摩擦攪拌接合を施した際に、ベース部材2及び蓋板10の一部が塑性流動して一体化された領域である。即ち、突合部V1,V2に沿って、後記する接合用回転ツール20(図5参照)を用いて摩擦攪拌接合を行うと、突合部V1,V2にかかるベース部材2及び蓋板10の金属材料が、接合用回転ツール20の摩擦熱により流動化して一体化されることで、ベース部材2と蓋板10が接合される。   As shown in FIGS. 1 and 4, the plasticized regions W <b> 1 and W <b> 2 are integrated by a part of the base member 2 and the lid plate 10 being plastically flowed when friction stir welding is performed on the abutting portions V <b> 1 and V <b> 2. This is the area that has been That is, when friction stir welding is performed along the abutting portions V1 and V2 using a welding rotary tool 20 (see FIG. 5) described later, the metal material of the base member 2 and the cover plate 10 applied to the abutting portions V1 and V2 However, the base member 2 and the cover plate 10 are joined by being fluidized and integrated by the frictional heat of the joining rotary tool 20.

塑性化領域W3,W4は、図1及び図4に示すように、蓋板10の表面11側から挿入した流入攪拌用回転ツール25(図5参照)を第二凹溝15に沿って移動させた際に形成されたものである。塑性化領域W3の一部は、熱媒体用管16の周囲に形成された第一空隙部P1に流入している。また、塑性化領域W4の一部は、熱媒体用管16の周囲に形成された第二空隙部P2に流入している。即ち、塑性化領域W3,W4は、蓋板10の一部が塑性流動して、第一空隙部P1及び第二空隙部P2にそれぞれ流入し、熱媒体用管16と接触している。   As shown in FIGS. 1 and 4, the plasticizing regions W <b> 3 and W <b> 4 move the inflow stirring rotary tool 25 (see FIG. 5) inserted from the surface 11 side of the cover plate 10 along the second concave groove 15. It was formed when A part of the plasticized region W3 flows into the first gap P1 formed around the heat medium pipe 16. Further, a part of the plasticizing region W4 flows into the second gap P2 formed around the heat medium pipe 16. That is, in the plasticized regions W3 and W4, a part of the cover plate 10 plastically flows, flows into the first gap P1 and the second gap P2, respectively, and is in contact with the heat medium pipe 16.

塑性化領域W5,W6は、ベース部材2の裏面4側から挿入した流入攪拌用回転ツール25を第一凹溝8に沿って移動させた際に形成されたものである。塑性化領域W5の一部は、熱媒体用管16の周囲に形成された第三空隙部P3に流入している。塑性化領域W6の一部は、熱媒体用管16の周囲に形成された第四空隙部P4に流入している。即ち、塑性化領域W5,W6は、ベース部材2の一部が塑性流動し、熱媒体用管16と接触している。   The plasticized regions W5 and W6 are formed when the inflow stirring rotary tool 25 inserted from the back surface 4 side of the base member 2 is moved along the first concave groove 8. A part of the plasticized region W5 flows into the third gap P3 formed around the heat medium pipe 16. A part of the plasticizing region W6 flows into a fourth gap P4 formed around the heat medium pipe 16. That is, in the plasticized regions W5 and W6, a part of the base member 2 plastically flows and is in contact with the heat medium pipe 16.

次に、伝熱板1の製造方法について、図5乃至図7を用いて説明する。図5は、第一実施形態に係る伝熱板の製造方法を示した断面図であって、(a)は、挿入工程、(b)は、蓋溝閉塞工程、(c)は、接合工程、(d)は、第一表面側流入攪拌工程を示した図である。図6は、第一実施形態に係る伝熱板の製造方法を示した断面図であって、(a)は、第二表面側流入攪拌工程、(b)は、第一裏面側流入攪拌工程、(c)は、第二裏面側流入攪拌工程を示した図である。図7は、第一実施形態に係る第一表面側流入攪拌工程を示した模式断面図である。   Next, a method for manufacturing the heat transfer plate 1 will be described with reference to FIGS. FIG. 5 is a cross-sectional view showing a method for manufacturing a heat transfer plate according to the first embodiment, where (a) is an insertion step, (b) is a lid groove closing step, and (c) is a joining step. (D) is the figure which showed the 1st surface side inflow stirring process. FIG. 6 is a cross-sectional view showing a method for manufacturing a heat transfer plate according to the first embodiment, wherein (a) is a second surface side inflow stirring step, and (b) is a first back side inflow stirring step. (C) is the figure which showed the 2nd back surface side inflow stirring process. FIG. 7 is a schematic cross-sectional view showing a first surface side inflow stirring step according to the first embodiment.

第一実施形態に係る伝熱板の製造方法は、ベース部材2及び蓋板10を形成するとともに、ベース部材2に熱媒体用管16及び蓋板10を配置する準備工程と、突合部V1,V2に沿って接合用回転ツール20を移動させて摩擦攪拌接合を行う接合工程と、蓋板10の表面11側及びベース部材2の裏面4側から流入攪拌用回転ツール25を移動させて第一空隙部P1〜第四空隙部P4に塑性流動材Qを流入させる流入攪拌工程とを含む。   The manufacturing method of the heat transfer plate according to the first embodiment includes a preparatory step of forming the base member 2 and the cover plate 10 and arranging the heat medium pipe 16 and the cover plate 10 on the base member 2, and the abutting portion V <b> 1. A joining step of moving the joining rotary tool 20 along V2 to perform friction stir welding, and a first step by moving the inflow stirring rotary tool 25 from the front surface 11 side of the cover plate 10 and the back surface 4 side of the base member 2. And an inflow agitation step for causing the plastic fluid material Q to flow into the gap P1 to the fourth gap P4.

(準備工程)
準備工程は、ベース部材2及び蓋板10を形成する切削工程と、ベース部材2に形成された第一凹溝8に熱媒体用管16を挿入する挿入工程と、蓋溝6に蓋板10を配置する蓋溝閉塞工程を含む。
(Preparation process)
The preparation process includes a cutting process for forming the base member 2 and the cover plate 10, an insertion process for inserting the heat medium pipe 16 into the first concave groove 8 formed in the base member 2, and the cover plate 10 in the cover groove 6. A lid groove closing step of arranging

切削工程では、図5の(a)に示すように、公知の切削加工により、厚板部材に蓋溝6を形成する。そして、蓋溝6の底面6cに、切削加工により断面視矩形を呈する第一凹溝8を形成する。これにより、蓋溝6と、蓋溝6の底面6cに開口された第一凹溝8を備えたベース部材2が形成される。
また、切削工程では、公知の切削加工により、板厚部材の裏面に断面視矩形を呈する第二凹溝15形成する。これにより、下方に開口する第二凹溝15を備えた蓋板10が形成される。
なお、第一実施形態においては、ベース部材2及び蓋板10を切削加工により形成したが、アルミニウム合金製の押出形材や鋳造品を用いてもよい。
In the cutting process, as shown in FIG. 5A, the lid groove 6 is formed in the thick plate member by a known cutting process. And the 1st ditch | groove 8 which exhibits a cross sectional view rectangle is formed in the bottom face 6c of the cover groove | channel 6 by cutting. As a result, the base member 2 including the lid groove 6 and the first concave groove 8 opened in the bottom surface 6c of the lid groove 6 is formed.
Further, in the cutting process, the second concave groove 15 having a rectangular shape in cross section is formed on the back surface of the plate thickness member by a known cutting process. Thereby, the cover board 10 provided with the 2nd ditch | groove 15 opened below is formed.
In the first embodiment, the base member 2 and the cover plate 10 are formed by cutting, but an extruded shape or cast product made of aluminum alloy may be used.

挿入工程では、図5の(a)に示すように、第一凹溝8に熱媒体用管16を挿入する。このとき、熱媒体用管16の下半部は、第一凹溝8の底面8cと接触し、第一凹溝8の立面8a,8bとは微細な隙間をあけて離間する。   In the insertion step, the heat medium pipe 16 is inserted into the first concave groove 8 as shown in FIG. At this time, the lower half of the heat medium pipe 16 is in contact with the bottom surface 8c of the first concave groove 8, and is separated from the standing surfaces 8a and 8b of the first concave groove 8 with a fine gap.

蓋溝閉塞工程では、図5の(b)に示すように、熱媒体用管16の上半部を蓋板10に形成された第二凹溝15に挿入しつつ、ベース部材2の蓋溝6内に蓋板10を配置する。このとき、熱媒体用管16と、蓋板10の裏面12に形成された第二凹溝15の両立面15a,15b及び天面15cとは微細な隙間をあけて離間する。また、蓋板10の表面11が、ベース部材2の表面3と面一になる。また、蓋溝6の側壁6a,6bと、蓋板10の側面13a,13bによって突合部V1,V2が形成される。   In the lid groove closing step, the lid groove of the base member 2 is inserted while the upper half of the heat medium pipe 16 is inserted into the second concave groove 15 formed in the lid plate 10 as shown in FIG. The lid plate 10 is disposed in the inside 6. At this time, the heat medium pipe 16 and the compatible surfaces 15a, 15b and the top surface 15c of the second concave groove 15 formed on the back surface 12 of the cover plate 10 are separated from each other with a fine gap. Further, the surface 11 of the cover plate 10 is flush with the surface 3 of the base member 2. Further, the abutting portions V1 and V2 are formed by the side walls 6a and 6b of the lid groove 6 and the side surfaces 13a and 13b of the lid plate 10.

(接合工程)
次に、図5の(c)に示すように、突合部V1,V2に沿って、摩擦攪拌接合を行う。摩擦攪拌接合は、接合用回転ツール20(公知の回転ツール)を用いて行う。接合用回転ツール20は、例えば、工具鋼からなり、円柱形のツール本体21と、ツール本体21の底面22の中心部から同心軸で垂下するピン23とを有する。ピン23は、先端に向けて幅狭となるテーパ状に形成されている。なお、ピン23の周面には、その軸方向に沿って図示しない複数の小溝や径方向に沿ったネジ溝が形成されていてもよい。
(Joining process)
Next, as shown in FIG. 5C, friction stir welding is performed along the abutting portions V1 and V2. Friction stir welding is performed using a welding rotary tool 20 (a known rotary tool). The joining rotary tool 20 is made of, for example, tool steel, and includes a cylindrical tool body 21 and a pin 23 depending on a concentric axis from the center of the bottom surface 22 of the tool body 21. The pin 23 is formed in a tapered shape that becomes narrower toward the tip. A plurality of small grooves (not shown) and screw grooves along the radial direction may be formed on the peripheral surface of the pin 23 along the axial direction.

摩擦攪拌接合は、ベース部材2及び蓋板10を図示しない治具により拘束した状態で、各突合部V1,V2に高速回転する接合用回転ツール20を押し込み、突合部V1,V2に沿って移動させる。高速回転するピン23により、その周囲のベース部材2及び蓋板10のアルミニウム合金材料は、摩擦熱によって加熱され流動化した後に冷却されて一体化する。   In the friction stir welding, with the base member 2 and the cover plate 10 being restrained by a jig (not shown), the joining rotary tool 20 is pushed into each of the abutting portions V1 and V2 and moved along the abutting portions V1 and V2. Let By the high-speed rotating pin 23, the surrounding base member 2 and the aluminum alloy material of the cover plate 10 are heated and fluidized by frictional heat and then cooled and integrated.

(流入攪拌工程)
流入攪拌工程では、ベース部材2、熱媒体用管16及び蓋板10からなる仮組構造体の表面及び裏面から流入攪拌用回転ツール25を移動させて第一空隙部P1〜第四空隙部P4に塑性流動材を流入させる。即ち、流入攪拌工程は、蓋板10の表面11で流入攪拌用回転ツール25を移動させて第一空隙部P1及び第二空隙部P2に塑性流動材Qを流入させる表面側流入攪拌工程と、ベース部材2の裏面4で流入攪拌用回転ツール25を移動させて第三空隙部P3及び第四空隙部P4に塑性流動材Qを流入させる裏面側流入攪拌工程を含むものである。
(Inflow stirring process)
In the inflow agitation step, the inflow agitation rotating tool 25 is moved from the front and back surfaces of the temporary assembly structure including the base member 2, the heat medium pipe 16 and the cover plate 10, and the first gap portion P1 to the fourth gap portion P4. A plastic fluidized material is allowed to flow into. That is, the inflow agitation step is a surface side inflow agitation step in which the inflow agitation rotating tool 25 is moved on the surface 11 of the cover plate 10 to cause the plastic fluid material Q to flow into the first gap P1 and the second gap P2. This includes a back side inflow agitation step in which the inflow agitation rotating tool 25 is moved on the back surface 4 of the base member 2 to allow the plastic fluid material Q to flow into the third gap part P3 and the fourth gap part P4.

なお、表面側流入攪拌工程のうち、第一空隙部P1に塑性流動材Qを流入させる工程を第一表面側流入攪拌工程とし、第二空隙部P2に塑性流動材Qを流入させる工程を第二表面側流入攪拌工程とする。また、第三空隙部P3に塑性流動材Qを流入させる工程を第一裏面側流入攪拌工程とし、第四空隙部P4に塑性流動材Qを流入させる工程を第二裏面側流入攪拌工程とする。   Of the surface side inflow stirring step, the step of flowing the plastic fluid material Q into the first gap portion P1 is referred to as the first surface side inflow stirring step, and the step of flowing the plastic fluid material Q into the second gap portion P2 is the first step. Two surface side inflow stirring step. Further, the step of flowing the plastic fluid material Q into the third gap P3 is referred to as a first back side inflow stirring step, and the step of flowing the plastic fluid material Q into the fourth gap P4 is referred to as a second back side inflow stirring step. .

第一表面側流入攪拌工程では、熱媒体用管16の流動方向Y(図2参照)に対して左上側に形成された第一空隙部P1に、摩擦攪拌によって流動化させた塑性流動材Qを流入させる。流入攪拌用回転ツール25は、例えば、工具鋼からなり、接合用回転ツール20と同等の形状を有しており、円柱形のツール本体26と、ツール本体26の底面27の中心部から同心軸で垂下するピン28とを有する。流入攪拌用回転ツール25は、接合用回転ツール20よりも大型のものが使用されている。   In the first surface side inflow agitation step, the plastic fluid material Q fluidized by friction agitation in the first gap P1 formed on the upper left side with respect to the flow direction Y of the heat medium pipe 16 (see FIG. 2). Inflow. The inflow stirring rotary tool 25 is made of, for example, tool steel and has a shape equivalent to that of the rotary tool 20 for joining. The cylindrical tool body 26 and a concentric shaft extending from the center of the bottom surface 27 of the tool body 26. And a pin 28 that hangs down. The inflow stirring rotary tool 25 is larger than the joining rotary tool 20.

第一表面側流入攪拌工程では、蓋板10の表面11で、高速回転する流入攪拌用回転ツール25を押し込み、下方の第二凹溝15に沿って平面視U字状の軌跡となるように流入攪拌用回転ツール25を移動させる。流入攪拌用回転ツール25は、ツール本体26の底面27(ショルダ)の投影部分の一部が第一空隙部P1と重なるように移動させる。このとき、高速回転するピン28により、その周囲の蓋板10のアルミニウム合金材料は、摩擦熱によって加熱され流動化される。流入攪拌用回転ツール25が、所定の深さで押し込まれているため、塑性流動化された塑性流動材Qは、第一空隙部P1に流入し、熱媒体用管16と接触する。   In the first surface side inflow agitation step, the inflow agitation rotating tool 25 that rotates at a high speed is pushed on the surface 11 of the cover plate 10 so as to form a U-shaped locus in plan view along the second concave groove 15 below. The inflow stirring rotary tool 25 is moved. The inflow stirring rotary tool 25 is moved so that a part of the projected portion of the bottom surface 27 (shoulder) of the tool body 26 overlaps the first gap P1. At this time, the aluminum alloy material of the surrounding cover plate 10 is heated and fluidized by frictional heat by the pin 28 rotating at high speed. Since the inflow and stirring rotary tool 25 is pushed in at a predetermined depth, the plastic fluidized material Q plastically fluidized flows into the first gap P1 and contacts the heat medium pipe 16.

ここで、図3の(b)に示すように、熱媒体用管16の左右端及び上端は、第一凹溝8及び第二凹溝15と微細な隙間をあけて配置されているが、塑性流動材Qが第一空隙部P1に流れ込むと、塑性流動材Qの熱が熱媒体用管16に奪われるため流動性が低下する。したがって、第一空隙部P1に流入した塑性流動材Qは、第二空隙部P2及び第三空隙部P3には流入せずに、第一空隙部P1に留まって充填され、硬化する。   Here, as shown in (b) of FIG. 3, the left and right ends and the upper end of the heat medium pipe 16 are arranged with a fine gap from the first concave groove 8 and the second concave groove 15. When the plastic fluid material Q flows into the first gap P1, the heat of the plastic fluid material Q is taken away by the heat medium pipe 16, so that the fluidity is lowered. Therefore, the plastic fluid material Q that has flowed into the first gap P1 does not flow into the second gap P2 and the third gap P3, but remains in the first gap P1 to be filled and hardened.

第二表面側流入攪拌工程では、図6の(a)に示すように、熱媒体用管16の流動方向Y(図2参照)に対して右上側に形成された第二空隙部P2に摩擦攪拌によって流動化された塑性流動材Qを流入させる。第二表面側流入攪拌工程は、第二空隙部P2に行うことを除いては、第一表面側流入攪拌工程と同等であるため説明を省略する。なお、表面側流入攪拌工程が終了したら、ベース部材2の表面3に形成されたバリを切削除去して表面3を平滑にするのが好ましい。   In the second surface-side inflow stirring step, as shown in FIG. 6A, the second gap P2 formed on the upper right side with respect to the flow direction Y (see FIG. 2) of the heat medium pipe 16 is rubbed. The plastic fluidized material Q fluidized by stirring is introduced. Since the second surface side inflow stirring step is the same as the first surface side inflow stirring step except that the second surface side inflow stirring step is performed in the second gap P2, description thereof will be omitted. In addition, after the surface side inflow stirring process is complete | finished, it is preferable to cut and remove the burr | flash formed in the surface 3 of the base member 2, and to make the surface 3 smooth.

裏面側流入攪拌工程では、図6の(b)に示すように、ベース部材2の表裏を逆にした後、裏面側流入攪拌工程を行う。即ち、裏面側流入攪拌工程では、ベース部材2の裏面4で第一凹溝8に沿って流入攪拌用回転ツール25を移動させて第三空隙部P3及び第四空隙部P4に摩擦熱によって流動化させた塑性流動材を流入させる。裏面側流入攪拌工程は、本実施形態では、第三空隙部P3に塑性流動材を流入させる第一裏面側流入攪拌工程と、第四空隙部P4に塑性流動材を流入させる第二裏面側流入攪拌工程を含む。   In the back side inflow stirring step, as shown in FIG. 6B, the back side inflow stirring step is performed after the front and back of the base member 2 are reversed. That is, in the back side inflow agitation step, the inflow agitation rotating tool 25 is moved along the first concave groove 8 on the back surface 4 of the base member 2 and flows into the third gap part P3 and the fourth gap part P4 by frictional heat. The plasticized fluidized material is introduced. In this embodiment, the back side inflow agitation step includes a first back side inflow agitation step for causing the plastic fluid material to flow into the third gap P3 and a second back side inflow for causing the plastic fluid material to flow into the fourth gap P4. Includes a stirring step.

第一裏面側流入攪拌工程では、摩擦攪拌によって流動化させた塑性流動材Qを第三空隙部P3に流入させる。第一裏面側流入攪拌工程では、ベース部材2の裏面4で高速回転する流入攪拌用回転ツール25を押し込み、第一凹溝8に沿って平面視U字状の軌跡となるように流入攪拌用回転ツール25を移動させる。流入攪拌用回転ツール25は、ツール本体26の底面27(ショルダ)の投影部分の一部が熱媒体用管16の第三空隙部P3と重なるように移動させる。このとき、高速回転するピン28により、その周囲のベース部材2のアルミニウム合金材料は、摩擦熱によって加熱され流動化される。流入攪拌用回転ツール25が、所定の深さで押し込まれているため、塑性流動化された塑性流動材Qは、第三空隙部P3に流入し、熱媒体用管16と接触する。   In the first back-side inflow stirring step, the plastic fluid material Q fluidized by friction stirring is caused to flow into the third gap P3. In the first back side inflow agitation step, the inflow agitation rotating tool 25 that rotates at high speed on the back surface 4 of the base member 2 is pushed in, and the inflow agitation is made so as to form a U-shaped trajectory in plan view along the first groove 8. The rotation tool 25 is moved. The inflow stirring rotary tool 25 is moved so that a part of the projected portion of the bottom surface 27 (shoulder) of the tool body 26 overlaps the third gap P3 of the heat medium pipe 16. At this time, the aluminum alloy material of the surrounding base member 2 is heated and fluidized by frictional heat by the pin 28 rotating at high speed. Since the inflow stirring rotary tool 25 is pushed in at a predetermined depth, the plastic fluidized material Q plastically fluidized flows into the third gap P3 and contacts the heat medium pipe 16.

第二裏面側流入攪拌工程では、図6の(c)に示すように、摩擦攪拌によって流動化された塑性流動材Qを第四空隙部P4に流入させる。第二裏面側流入攪拌工程は、第四空隙部P4に行うことを除いては、第一裏面側流入攪拌工程と同等であるため、説明を省略する。裏面側流入攪拌工程が終了したら、ベース部材2の裏面4に形成されたバリを切削除去して裏面4を平滑にするのが好ましい。   In the second back-side inflow stirring step, as shown in FIG. 6C, the plastic fluid material Q fluidized by friction stirring is caused to flow into the fourth gap P4. The second back-side inflow stirring process is the same as the first back-side inflow stirring process except that the second back-side inflow stirring process is performed in the fourth gap P4, and thus the description thereof is omitted. When the back side inflow stirring step is completed, it is preferable to cut and remove burrs formed on the back surface 4 of the base member 2 to make the back surface 4 smooth.

なお、表面側流入攪拌工程及び裏面側流入攪拌工程では、第一空隙部P1〜第四空隙部P4の形状や大きさ等に基づいて、流入攪拌用回転ツール25の押込み量及び挿入位置等を設定する。熱媒体用管16がつぶれない程度に、流入攪拌用回転ツール25を近づけて、第一空隙部P1〜第四空隙部P4に塑性流動材Qを隙間なく流入させることが好ましい。   In the front side inflow agitation step and the back side inflow agitation step, the pushing amount and insertion position of the inflow agitation rotating tool 25 are determined based on the shape and size of the first gap portion P1 to the fourth gap portion P4. Set. It is preferable that the inflow and stirring rotary tool 25 is brought close to the heat medium pipe 16 so that the heat medium pipe 16 is not crushed, and the plastic fluid material Q flows into the first gap portion P1 to the fourth gap portion P4 without gaps.

例えば、図7に示すように、流入攪拌用回転ツール25のピン28の先端を、第二凹溝15の天面15cよりも深く挿入するとともに、流入攪拌用回転ツール25のピン28の先端と、熱媒体用管16に接する仮想鉛直面との最近接距離Lが1〜3mmであることが好ましい。これにより、熱媒体用管16を潰さない程度に第一空隙部P1に塑性流動材を確実に流入させることができる。最近接距離Lが1mmより小さいと、流入攪拌用回転ツール25が熱媒体用管16に近すぎて、熱媒体用管16が潰れる可能性がある。また、最近接距離Lが3mmより大きいと、第一空隙部P1に塑性流動材が流入しない可能性がある。   For example, as shown in FIG. 7, the tip of the pin 28 of the inflow agitation rotating tool 25 is inserted deeper than the top surface 15c of the second concave groove 15, and the tip of the pin 28 of the inflow agitation rotating tool 25 is The closest distance L with respect to the virtual vertical surface in contact with the heat medium pipe 16 is preferably 1 to 3 mm. Thereby, the plastic fluidized material can surely flow into the first gap P1 to such an extent that the heat medium pipe 16 is not crushed. If the closest distance L is less than 1 mm, the inflow stirring rotary tool 25 may be too close to the heat medium pipe 16 and the heat medium pipe 16 may be crushed. If the closest distance L is greater than 3 mm, the plastic fluidized material may not flow into the first gap P1.

また、流入攪拌用回転ツール25の押込み量(押込み長さ)は、例えば第一表面側流入攪拌工程において、ツール本体26が押し退ける蓋板10(又はベース部材2)の金属の体積が、第一空隙部P1に充填される塑性流動化されたアルミニウム合金材料の体積、及び塑性化領域W3の幅方向両側に発生するバリの体積との和と同等になるような長さとなっている。   The indentation amount (indentation length) of the inflow agitation rotating tool 25 is such that, for example, in the first surface side inflow agitation step, the metal volume of the lid plate 10 (or base member 2) from which the tool body 26 is pushed back is the first. The length is equal to the sum of the volume of the plastic fluidized aluminum alloy material filled in the gap P1 and the volume of burrs generated on both sides in the width direction of the plasticized region W3.

以上説明した伝熱板の製造方法によれば、ベース部材2に形成された第一凹溝8と、蓋板10の裏面12に形成された第二凹溝15からなる空間部Kにおいて、空間部Kの幅及び高さを熱媒体用管16の外径よりも大きく形成したため、熱媒体用管16の一部が湾曲している場合であっても、前記した挿入工程及び蓋溝閉塞工程を容易に行うことができる。   According to the method for manufacturing a heat transfer plate described above, in the space K composed of the first groove 8 formed in the base member 2 and the second groove 15 formed in the back surface 12 of the cover plate 10, the space Since the width and height of the portion K are formed to be larger than the outer diameter of the heat medium pipe 16, even if a part of the heat medium pipe 16 is curved, the insertion step and the lid groove closing step described above. Can be easily performed.

また、表面側流入攪拌工程及び裏面側流入攪拌工程により、熱媒体用管16の周囲に形成された第一空隙部P1〜第四空隙部P4に塑性流動材Qを流入させることで、当該空隙部を埋めることができるため、伝熱板1の熱交換効率を高めることができる。   Further, the plastic fluidized material Q is caused to flow into the first gap portion P1 to the fourth gap portion P4 formed around the heat medium pipe 16 by the front-side inflow stirring step and the back-side inflow stirring step. Since the portion can be filled, the heat exchange efficiency of the heat transfer plate 1 can be increased.

また、本実施形態によれば、表面側流入攪拌工程の前に、比較的小さい接合用回転ツール20を用いて、蓋板10をベース部材2に接合しているので、表面側流入攪拌工程では、蓋板10が確実に固定された状態で摩擦攪拌を行うことができる。したがって、比較的大きい流入攪拌用回転ツール25を用いて大きい押込み力が作用する摩擦攪拌接合を、安定した状態で行うことができる。   Moreover, according to this embodiment, since the lid plate 10 is joined to the base member 2 using the relatively small rotating tool 20 for joining before the surface side inflow stirring step, in the surface side inflow stirring step, Friction stirring can be performed in a state where the cover plate 10 is securely fixed. Therefore, friction stir welding in which a large pushing force is applied using the relatively large inflow stirring rotary tool 25 can be performed in a stable state.

なお、本実施形態では、接合工程の後に表面側流入攪拌工程を行っているが、表面側流入攪拌工程の後に接合工程を行うようにしてもよい。このとき、蓋板10を長手方向から図示しない治具を用いて固定しておけば、蓋板10の幅方向は、ベース部材2によって固定されているので、表面側流入攪拌工程における摩擦攪拌を、蓋板10が確実に固定された状態で行うことができる。   In the present embodiment, the surface-side inflow stirring step is performed after the joining step, but the joining step may be performed after the surface-side inflow stirring step. At this time, if the cover plate 10 is fixed from the longitudinal direction using a jig (not shown), the width direction of the cover plate 10 is fixed by the base member 2, so that the friction stirring in the surface side inflow stirring step is performed. In this state, the cover plate 10 can be securely fixed.

また、本実施形態では、接合工程において、突合部V1,V2の全長に亘って、摩擦攪拌接合を施しているが、これに限定されるものではなく、突合部V1,V2に沿って所定の間隔を隔てて摩擦攪拌接合を間欠的に行って、ベース部材2に蓋板10の仮付けを施すようにしてもよい。このような伝熱板の製造方法によれば、接合工程に要する手間と時間を低減しつつ、蓋板10を確実に固定した状態で表面側流入攪拌工程を行うことができるとともに、前記した作用効果と同様に、加工環境が良好で精度の高い伝熱板1を製造することができる。   Further, in the present embodiment, the friction stir welding is performed over the entire length of the abutting portions V1 and V2 in the joining step, but the present invention is not limited to this, and a predetermined amount is provided along the abutting portions V1 and V2. The base plate 2 may be temporarily attached to the base member 2 by intermittently performing friction stir welding at intervals. According to such a method for manufacturing a heat transfer plate, the surface side inflow stirring step can be performed in a state in which the lid plate 10 is securely fixed while reducing the labor and time required for the joining step, and the above-described operation. Similar to the effect, the heat transfer plate 1 having a good processing environment and high accuracy can be manufactured.

また、本実施形態では、空間部Kの幅及び高さの両方を熱媒体用管16の外径よりも大きく形成しているが、少なくともいずれか一方を大きく形成すればよい。また、熱媒体用管16の断面形状は本実施形態では円形としているが、他の形状であってもよい。また、熱媒体用管16の平面視形状を本実施形態ではU字状としているが、例えば蛇行状や、円形状としてもよい。また、前記した第一凹溝8及び第二凹溝15の幅や深さ寸法はあくまで例示であって、本発明を限定するものではない。例えば、熱媒体用管16の平面視の形状が複雑になる場合は、それに伴って第一凹溝8及び第二凹溝15の幅や深さを適宜大きくしてもよい。また、本実施形態では、ベース部材2に熱媒体用管16及び蓋板10を配置するようにしたが、これに限定されるものではない。例えば、蓋板10の第二凹溝15に熱媒体用管16を挿入した後、蓋板10の上方からベース部材2を覆うように配置してもよい。   Moreover, in this embodiment, although both the width and height of the space part K are formed larger than the outer diameter of the heat medium pipe | tube 16, at least any one should just be formed larger. Moreover, although the cross-sectional shape of the heat medium pipe 16 is circular in this embodiment, other shapes may be used. Moreover, although the planar view shape of the pipe | tube 16 for heat-medium is made into U shape in this embodiment, for example, it may be meandering shape or circular shape. Further, the width and depth dimensions of the first concave groove 8 and the second concave groove 15 described above are merely examples, and do not limit the present invention. For example, when the shape of the heat medium pipe 16 in a plan view becomes complicated, the width and depth of the first concave groove 8 and the second concave groove 15 may be appropriately increased accordingly. In the present embodiment, the heat medium pipe 16 and the cover plate 10 are arranged on the base member 2, but the present invention is not limited to this. For example, the heat medium pipe 16 may be inserted into the second concave groove 15 of the cover plate 10 and then disposed so as to cover the base member 2 from above the cover plate 10.

[第二実施形態]
次に、本発明の第二実施形態について説明する。第二実施形態に係る伝熱板の製造方法は、裏面側流入攪拌工程を行っていない点、接合工程で形成された塑性化領域と表面側流入攪拌工程で形成された塑性化領域とが重複する点などで第一実施形態と相違する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. In the method for manufacturing a heat transfer plate according to the second embodiment, the back-side inflow stirring process is not performed, and the plasticized region formed in the joining process overlaps with the plasticized region formed in the front-side inflow stirring process. This is different from the first embodiment.

図8は、第二実施形態に係る伝熱板の製造方法を示した断面図であって、(a)は、切削工程、(b)は、蓋溝閉塞工程を示した図である。図9は、第二実施形態に係る伝熱板の製造方法を示した断面図であって、(a)は、接合工程、(b)は、第一表面側流入攪拌工程、(c)は、第二表面側流入攪拌工程を示す。また、具体的な図示はしないが、熱媒体用管16は、第一実施形態と同様に平面視U字状を呈するものとする。   FIG. 8 is a cross-sectional view showing a method for manufacturing a heat transfer plate according to the second embodiment, where (a) shows a cutting step and (b) shows a lid groove closing step. FIG. 9 is a cross-sectional view illustrating a method of manufacturing a heat transfer plate according to the second embodiment, where (a) is a joining step, (b) is a first surface side inflow stirring step, and (c) is a step. The 2nd surface side inflow stirring process is shown. Further, although not specifically illustrated, the heat medium pipe 16 is assumed to have a U-shape in plan view as in the first embodiment.

第二実施形態に係る伝熱板の製造方法は、図8及び図9に示すように、ベース部材2及び蓋板10を形成するとともに、ベース部材2に熱媒体用管16及び蓋板10を配置する準備工程と、突合部V1,V2に沿って接合用回転ツール20を移動させて摩擦攪拌接合を行う接合工程と、蓋板10の表面11で、流入攪拌用回転ツール25を移動させて第一空隙部P1及び第二空隙部P2に塑性流動材Qを流入させる表面側流入攪拌工程を含むものである。   As shown in FIGS. 8 and 9, the heat transfer plate manufacturing method according to the second embodiment forms the base member 2 and the cover plate 10, and the heat medium pipe 16 and the cover plate 10 are formed on the base member 2. A preparatory process to be arranged, a joining process for moving the joining rotary tool 20 along the abutting portions V1 and V2 to perform friction stir welding, and a surface 11 of the cover plate 10 to move the inflow stirring rotary tool 25 It includes a surface-side inflow stirring step for allowing the plastic fluid material Q to flow into the first gap P1 and the second gap P2.

(準備工程)
準備工程は、ベース部材2及び蓋板10を形成する切削工程と、ベース部材2に形成された第一凹溝8に熱媒体用管16を挿入する挿入工程と、蓋溝6に蓋板10を配置する蓋溝閉塞工程を含む。
(Preparation process)
The preparation process includes a cutting process for forming the base member 2 and the cover plate 10, an insertion process for inserting the heat medium pipe 16 into the first concave groove 8 formed in the base member 2, and the cover plate 10 in the cover groove 6. A lid groove closing step of arranging

切削工程では、図8の(a)に示すように、公知の切削加工により、板厚部材に蓋溝6を形成する。そして、蓋溝6の底面6cに切削加工により上方が開口し断面時U字状を呈する第一凹溝38を形成する。第一凹溝38の底部37は円弧状に切り欠かれており、熱媒体用管16と同等の曲率で形成されている。第一凹溝38の深さは、熱媒体用管16の外径よりも小さく形成されており、第一凹溝38の幅は熱媒体用管16の外径と略同等に形成されている。   In the cutting step, as shown in FIG. 8A, the lid groove 6 is formed in the plate thickness member by a known cutting process. Then, a first groove 38 is formed on the bottom surface 6c of the lid groove 6 by cutting to open the upper groove 38 having a U-shape in cross section. A bottom portion 37 of the first concave groove 38 is cut out in an arc shape and is formed with a curvature equivalent to that of the heat medium pipe 16. The depth of the first concave groove 38 is formed smaller than the outer diameter of the heat medium pipe 16, and the width of the first concave groove 38 is formed substantially equal to the outer diameter of the heat medium pipe 16. .

次に、公知の切削加工により、板厚部材の裏面に断面視矩形を呈する第二凹溝45を切り欠いて蓋板10を形成する。第二凹溝45の幅は、熱媒体用管16の外径と略同等に形成されている。また、第二凹溝45の深さは、図8の(b)に示すように、ベース部材2に熱媒体用管16及び蓋板10を挿入したときに、第二凹溝45の天面45cと熱媒体用管16とが微細な隙間をあけて離間するように形成されている。   Next, the cover plate 10 is formed by notching the second concave groove 45 having a rectangular shape in cross section on the back surface of the plate thickness member by a known cutting process. The width of the second concave groove 45 is formed substantially equal to the outer diameter of the heat medium pipe 16. Further, as shown in FIG. 8B, the depth of the second groove 45 is the top surface of the second groove 45 when the heat medium pipe 16 and the cover plate 10 are inserted into the base member 2. 45c and the heat medium pipe 16 are formed so as to be separated with a fine gap.

挿入工程では、図8の(b)に示すように、第一凹溝38に熱媒体用管16を挿入する。このとき、熱媒体用管16の下半部は、第一凹溝38の底部37と面接触する。なお、熱媒体用管16の上端は、蓋溝6の底面6cよりも上方に位置する。   In the inserting step, the heat medium pipe 16 is inserted into the first concave groove 38 as shown in FIG. At this time, the lower half of the heat medium pipe 16 is in surface contact with the bottom 37 of the first groove 38. The upper end of the heat medium pipe 16 is positioned above the bottom surface 6 c of the lid groove 6.

蓋溝閉塞工程では、図8の(b)に示すように、熱媒体用管16の上部を蓋板10に形成された第二凹溝45に挿入しつつ、ベース部材2の蓋溝6内に蓋板10を配置する。このとき、熱媒体用管16と、蓋板10の裏面12に形成された第二凹溝45の両立面45a,45b及び天面45cとは微細な隙間をあけて離間する。即ち、第一凹溝38と第二凹溝45とで形成された空間部K1の幅は、熱媒体用管16の外径と略同等に形成されており、空間部K1の高さHは、熱媒体用管16の外径よりも大きく形成されている。また、蓋板10の表面11は、ベース部材2の表面3と面一になる。   In the lid groove closing step, as shown in FIG. 8B, the upper part of the heat medium pipe 16 is inserted into the second concave groove 45 formed in the lid plate 10 while the lid groove 6 of the base member 2 is inside. The lid plate 10 is disposed on the surface. At this time, the heat medium pipe 16 and the compatible surfaces 45 a and 45 b and the top surface 45 c of the second concave groove 45 formed on the back surface 12 of the lid plate 10 are separated from each other with a fine gap. That is, the width of the space portion K1 formed by the first groove 38 and the second groove 45 is formed substantially equal to the outer diameter of the heat medium pipe 16, and the height H of the space K1 is The outer diameter of the heat medium pipe 16 is larger. Further, the surface 11 of the cover plate 10 is flush with the surface 3 of the base member 2.

ここで、空間部K1において、熱媒体用管16の周囲に形成される空隙部のうち、流動方向Y(図2参照)に対して左上側に形成される部分を第一空隙部P1とし、右上に形成される部分を第二空隙部P2とする。   Here, in the space K1, the portion formed on the upper left side with respect to the flow direction Y (see FIG. 2) in the space formed around the heat medium pipe 16 is defined as the first space P1, A portion formed in the upper right is defined as a second gap portion P2.

(接合工程)
次に、図9の(a)に示すように、突合部V1,V2に沿って接合用回転ツール20を用いて摩擦攪拌接合を行う。これにより、ベース部材2と蓋板10とを接合することができる。
(Joining process)
Next, as shown in FIG. 9 (a), friction stir welding is performed using the welding rotary tool 20 along the abutting portions V1 and V2. Thereby, the base member 2 and the cover plate 10 can be joined.

(表面側流入攪拌工程)
次に、図9の(b)及び(c)に示すように、蓋板10の表面11側から第二凹溝45に沿って摩擦攪拌を行う。表面側流入攪拌工程は、本実施形態では、第一空隙部P1に塑性流動材Qを流入させる第一表面側流入攪拌工程と、第二空隙部P2に塑性流動材Qを流入させる第二表面側流入攪拌工程とを含む。
(Surface-side inflow stirring process)
Next, as shown in FIGS. 9B and 9C, friction stirring is performed along the second groove 45 from the surface 11 side of the cover plate 10. In the present embodiment, the surface-side inflow stirring step is a first surface-side inflow stirring step for causing the plastic fluid material Q to flow into the first gap P1, and a second surface for causing the plastic fluid material Q to flow into the second gap P2. Side inflow stirring step.

第一表面側流入攪拌工程では、蓋板10の表面11側から高速回転する流入攪拌用回転ツール25を押し込み、第二凹溝45に沿って平面視U字状を呈するように、流入攪拌用回転ツール25を移動させる。流入攪拌用回転ツール25は、ツール本体26の底面27(ショルダ)の投影部分の一部を第一空隙部P1と重ねるとともに、摩擦攪拌によって形成される塑性化領域W3が塑性化領域W1,W2を含むように移動する。即ち、接合工程で形成された塑性化領域W1,W2上を、表面側流入攪拌工程において流入攪拌用回転ツール25が移動し、塑性化領域W1,W2が再攪拌されるようになっている。   In the first surface side inflow agitation step, the inflow agitation rotating tool 25 that rotates at a high speed from the surface 11 side of the lid plate 10 is pushed in, and the inflow agitation is made so as to exhibit a U shape in plan view along the second concave groove 45. The rotation tool 25 is moved. In the inflow stirring rotary tool 25, a part of the projected portion of the bottom surface 27 (shoulder) of the tool main body 26 is overlapped with the first gap portion P1, and the plasticized regions W3 formed by friction stirring are plasticized regions W1, W2. Move to include. That is, the inflow agitating rotary tool 25 moves on the plasticizing regions W1 and W2 formed in the joining step in the surface side inflow agitating step, and the plasticizing regions W1 and W2 are re-stirred.

このとき、高速回転するピン28により、その周囲の蓋板10及びベース部材2のアルミニウム合金材料は、摩擦熱によって加熱され流動化される。第二実施形態では、流入攪拌用回転ツール25の先端が、蓋溝6の底面6cよりも下方に位置するように押し込まれているため、塑性流動化された塑性流動材Qは、第一空隙部P1に確実に流入し熱媒体用管16と接触する。   At this time, the peripheral cover plate 10 and the aluminum alloy material of the base member 2 are heated and fluidized by frictional heat by the pin 28 rotating at high speed. In the second embodiment, since the tip of the inflow stirring rotary tool 25 is pushed so as to be positioned below the bottom surface 6c of the lid groove 6, the plastic fluidized material Q plastically fluidized is the first gap. It surely flows into the part P1 and comes into contact with the heat medium pipe 16.

ここで、図9の(b)に示すように、熱媒体用管16の上端は、第二凹溝45と微細な隙間をあけて配置されているが、塑性流動材Qが第一空隙部P1に流れ込むと、塑性流動材Qの熱が熱媒体用管16に奪われるため流動性が低下する。したがって、塑性流動材Qは、第二空隙部P2には流入せずに、第一空隙部P1に留まって充填され、硬化する。   Here, as shown in FIG. 9 (b), the upper end of the heat medium pipe 16 is arranged with a minute gap from the second concave groove 45, but the plastic fluid material Q is the first gap portion. When flowing into P1, the heat of the plastic fluidized material Q is taken away by the heat medium pipe 16, so that the fluidity is lowered. Therefore, the plastic fluid material Q does not flow into the second gap P2, but remains in the first gap P1 and is filled and cured.

第二表面側流入攪拌工程では、図9の(c)に示すように、熱媒体用管16の流動方向Y(図2参照)に対して右上側に形成された第二空隙部P2に摩擦攪拌によって流動化された塑性流動材Qを流入させる。第二表面側流入攪拌工程は、第二空隙部P2に行うことを除いては、第一表面側流入攪拌工程と同等であるため説明を省略する。   In the second surface side inflow stirring step, as shown in FIG. 9C, the second gap P2 formed on the upper right side with respect to the flow direction Y of the heat medium pipe 16 (see FIG. 2) is rubbed. The plastic fluidized material Q fluidized by stirring is introduced. Since the second surface side inflow stirring step is the same as the first surface side inflow stirring step except that the second surface side inflow stirring step is performed in the second gap P2, description thereof will be omitted.

以上説明した伝熱板の製造方法によれば、ベース部材2に形成された第一凹溝38と、蓋板10の裏面12に形成された第二凹溝45からなる空間部K1において、空間部K1の高さを熱媒体用管16の外径よりも大きく形成したため、熱媒体用管16の一部が湾曲している場合であっても、蓋溝閉塞工程を容易に行うことができる。
また、表面側流入攪拌工程により、熱媒体用管16の周囲に形成された第一空隙部P1及び第二空隙部P2に塑性流動材Qを流入させることで、当該空隙部を埋めることができるため、伝熱板31の熱交換効率を高めることができる。
According to the method for manufacturing a heat transfer plate described above, in the space portion K1 including the first concave groove 38 formed in the base member 2 and the second concave groove 45 formed in the back surface 12 of the lid plate 10, Since the height of the portion K1 is formed larger than the outer diameter of the heat medium pipe 16, the lid groove closing step can be easily performed even when a part of the heat medium pipe 16 is curved. .
In addition, the void portion can be filled by flowing the plastic fluid material Q into the first void portion P1 and the second void portion P2 formed around the heat medium pipe 16 by the surface side inflow stirring step. Therefore, the heat exchange efficiency of the heat transfer plate 31 can be increased.

また、表面側流入攪拌工程で形成される塑性化領域W3の中に、接合工程で形成される塑性化領域W1,W2を含ませることで、伝熱板31の表面に露出する塑性化領域を小さくすることができる。   Moreover, the plasticization area | region exposed on the surface of the heat exchanger plate 31 is included by including the plasticization area | regions W1 and W2 formed in a joining process in the plasticization area | region W3 formed in the surface side inflow stirring process. Can be small.

なお、本実施形態では、第一凹溝38の幅を熱媒体用管16の外径と略同等に形成したが、これに限定されるものではなく、第一凹溝38の幅を熱媒体用管16の外径よりも大きく形成してもよい。また、底部37の曲率を熱媒体用管16の曲率よりも小さくなるように形成してもよい。これにより、熱媒体用管16を挿入する挿入工程や、蓋板10を配置する蓋溝閉塞工程を容易に行うことができる。   In the present embodiment, the width of the first concave groove 38 is formed substantially equal to the outer diameter of the heat medium pipe 16, but the present invention is not limited to this. You may form larger than the outer diameter of the pipe 16 for work. Moreover, you may form so that the curvature of the bottom part 37 may become smaller than the curvature of the pipe | tube 16 for heat media. Thereby, the insertion process which inserts the pipe | tube 16 for heat media, and the cover groove | channel obstruction | occlusion process which arrange | positions the cover board 10 can be performed easily.

[第三実施形態]
次に、本発明の第三実施形態について説明する。第三実施形態に係る伝熱板の製造方法は、第一凹溝58及び第二凹溝65が共に曲面で形成されている点で第一実施形態と相違する。図10は、第三実施形態に係る伝熱板の製造方法を示した断面図であって、(a)は、切削工程、(b)は、接合工程、(c)は、表面側流入攪拌工程を示す。具体的な図示はしないが、熱媒体用管16は、第一実施形態と同様に平面視U字状を呈するものとする。
[Third embodiment]
Next, a third embodiment of the present invention will be described. The manufacturing method of the heat exchanger plate according to the third embodiment is different from the first embodiment in that both the first groove 58 and the second groove 65 are formed with curved surfaces. FIG. 10 is a cross-sectional view illustrating a method of manufacturing a heat transfer plate according to the third embodiment, where (a) is a cutting step, (b) is a joining step, and (c) is a surface-side inflow agitation. A process is shown. Although not specifically illustrated, it is assumed that the heat medium pipe 16 has a U-shape in plan view as in the first embodiment.

第三実施形態に係る伝熱板の製造方法は、図10に示すように、ベース部材2及び蓋板60を形成するとともに、ベース部材2に熱媒体用管16及び蓋板10を配置する準備工程と、突合部V1,V2に沿って接合用回転ツール20を移動させて摩擦攪拌接合を行う接合工程と、蓋板60の表面61で、第二凹溝65に沿って流入攪拌用回転ツール25を移動させて熱媒体用管16の周囲に形成された第一空隙部P1及び第二空隙部P2に摩擦熱によって流動化させた塑性流動材を流入させる表面側流入攪拌工程を含むものである。   As shown in FIG. 10, the method for manufacturing a heat transfer plate according to the third embodiment forms the base member 2 and the cover plate 60 and prepares to arrange the heat medium pipe 16 and the cover plate 10 on the base member 2. A joining step of moving the joining rotary tool 20 along the abutting portions V1 and V2 to perform friction stir welding, and a surface 61 of the lid plate 60 along the second concave groove 65 to rotate the inflow stirring rotary tool 25 includes a surface side inflow agitation step in which the plastic fluidized material fluidized by frictional heat is introduced into the first gap P1 and the second gap P2 formed around the heat medium pipe 16 by moving 25.

(準備工程)
準備工程は、ベース部材2及び蓋板60を形成する切削工程と、ベース部材2に形成された第一凹溝58に熱媒体用管16を挿入する挿入工程と、蓋溝6に蓋板60を配置する蓋溝閉塞工程を含む。
(Preparation process)
The preparation process includes a cutting process for forming the base member 2 and the cover plate 60, an insertion process for inserting the heat medium pipe 16 into the first concave groove 58 formed in the base member 2, and the cover plate 60 in the cover groove 6. A lid groove closing step of arranging

切削工程では、図10の(a)に示すように、ベース部材2に形成された蓋溝6の底面6cに第一凹溝58を形成する。第一凹溝58は、平面視U字状であって断面視半円形を呈する。第一凹溝58の半径は、熱媒体用管16の半径と同等に形成されている。
また、蓋板60の裏面62に第二凹溝65を形成する。第二凹溝65は、下方に向けて開口しており、開口部の幅は、熱媒体用管16の外径と略同等に形成されている。また、第二凹溝65の天面65cの曲率は、熱媒体用管16の曲率よりも大きくなるように形成されている。
In the cutting step, as shown in FIG. 10A, the first concave groove 58 is formed on the bottom surface 6 c of the lid groove 6 formed in the base member 2. The first concave groove 58 is U-shaped in a plan view and has a semicircular shape in sectional view. The radius of the first concave groove 58 is formed to be equal to the radius of the heat medium pipe 16.
Further, a second concave groove 65 is formed in the back surface 62 of the lid plate 60. The second concave groove 65 is opened downward, and the width of the opening is formed substantially equal to the outer diameter of the heat medium pipe 16. Further, the curvature of the top surface 65 c of the second concave groove 65 is formed to be larger than the curvature of the heat medium pipe 16.

挿入工程では、図10の(b)に示すように、第一凹溝58に熱媒体用管16の下半部を挿入する。熱媒体用管16の下半部は、第一凹溝58に面接触する。   In the inserting step, the lower half of the heat medium pipe 16 is inserted into the first concave groove 58 as shown in FIG. The lower half of the heat medium pipe 16 is in surface contact with the first concave groove 58.

蓋溝閉塞工程では、図10の(b)に示すように、熱媒体用管16の上半部を蓋板60に形成された第二凹溝65に挿入しつつ、蓋溝6に蓋板60を挿入する。第一凹溝58と第二凹溝65とを重ね合わせて形成された空間部K2の高さHは、熱媒体用管16の外径よりも大きくなるように形成されている。
ここで、熱媒体用管16の周囲に形成される空隙部のうち、流動方向Y(図2参照)に対して左上側に形成される部分を第一空隙部P1とし、右上側に形成される部分を第二空隙部P2とする。また、蓋板60の表面61が、ベース部材2の表面3と面一になる。
In the lid groove closing step, as shown in FIG. 10 (b), the upper half of the heat medium pipe 16 is inserted into the second concave groove 65 formed in the lid plate 60, and the lid plate is inserted into the lid groove 6. 60 is inserted. The height H of the space K2 formed by overlapping the first concave groove 58 and the second concave groove 65 is formed to be larger than the outer diameter of the heat medium pipe 16.
Here, of the gap formed around the heat medium pipe 16, the portion formed on the upper left side with respect to the flow direction Y (see FIG. 2) is defined as the first gap P1, and is formed on the upper right side. This portion is defined as a second gap portion P2. Further, the surface 61 of the cover plate 60 is flush with the surface 3 of the base member 2.

(接合工程)
次に、図10の(b)に示すように、接合用回転ツール20を用いて突合部V1,V2に沿って摩擦攪拌接合を行う。これにより、ベース部材2と蓋板60とを接合することができる。
(Joining process)
Next, as shown in FIG. 10B, friction stir welding is performed along the abutting portions V <b> 1 and V <b> 2 using the welding rotary tool 20. Thereby, the base member 2 and the cover plate 60 can be joined.

(表面側流入攪拌工程)
次に、図10の(c)に示すように、蓋板60の表面61側から第二凹溝65に沿って摩擦攪拌を行う。表面側流入攪拌工程は、本実施形態では、第一空隙部P1に塑性流動材Qを流入させる第一表面側流入攪拌工程と、第二空隙部P2に塑性流動材Qを流入させる第二表面側流入攪拌工程とを含む。
(Surface-side inflow stirring process)
Next, as shown in FIG. 10C, friction stir is performed along the second groove 65 from the surface 61 side of the cover plate 60. In the present embodiment, the surface-side inflow stirring step is a first surface-side inflow stirring step for causing the plastic fluid material Q to flow into the first gap P1, and a second surface for causing the plastic fluid material Q to flow into the second gap P2. Side inflow stirring step.

第一表面側流入攪拌工程における摩擦攪拌では、蓋板60の表面61側から高速回転する流入攪拌用回転ツール25を押し込み、第二凹溝65に沿って平面視U字状を呈するように、流入攪拌用回転ツール25を移動させる。流入攪拌用回転ツール25は、ツール本体26の底面27(ショルダ)の投影部分の一部が第一空隙部P1と重なるように移動する。このとき、高速回転するピン28により、その周囲の蓋板60のアルミニウム合金材料は、摩擦熱によって加熱され流動化される。流入攪拌用回転ツール25は、所定の深さで押し込まれているため、塑性流動化された塑性流動材Qが第一空隙部P1に流入し熱媒体用管16と接触する。   In the friction agitation in the first surface side inflow agitation step, the rotary tool 25 for inflow agitation that rotates at high speed from the surface 61 side of the cover plate 60 is pushed in, and a U-shape in plan view along the second concave groove 65 is obtained. The inflow stirring rotary tool 25 is moved. The inflow stirring rotary tool 25 moves so that a part of the projected portion of the bottom surface 27 (shoulder) of the tool body 26 overlaps the first gap P1. At this time, the aluminum alloy material of the surrounding cover plate 60 is heated and fluidized by frictional heat by the pin 28 rotating at a high speed. Since the inflow stirring rotary tool 25 is pushed in at a predetermined depth, the plastic fluidized material Q plastically fluidized flows into the first gap P1 and contacts the heat medium pipe 16.

第二表面側流入攪拌工程では、熱媒体用管16の流動方向Y(図2参照)に対して右上側に形成された第二空隙部P2に摩擦攪拌によって流動化された塑性流動材Qを流入させる。第二表面側流入攪拌工程は、第二空隙部P2に行うことを除いては、第一表面側流入攪拌工程と同等であるため、説明を省略する。表面側流入攪拌工程が終了したら、蓋板60の表面61に形成されたバリを切削除去して平滑にするのが好ましい。   In the second surface side inflow agitation step, the plastic fluid material Q fluidized by friction agitation is applied to the second gap P2 formed on the upper right side with respect to the flow direction Y of the heat medium pipe 16 (see FIG. 2). Let it flow. Since the second surface side inflow stirring step is the same as the first surface side inflow stirring step except that the second surface side inflow stirring step is performed in the second gap P2, description thereof is omitted. When the front-side inflow stirring step is completed, it is preferable that the burrs formed on the surface 61 of the lid plate 60 are removed by cutting and smoothing.

以上説明した伝熱板の製造方法によれば、第一凹溝58及び第二凹溝65をともに曲面となるように形成したとしても、第一凹溝58と第二凹溝65とで形成される空間部K2の高さHを熱媒体用管16の外径よりも大きく形成しているため、熱媒体用管16の一部が湾曲している場合であっても、蓋溝閉塞工程を容易に行うことができる。
また、表面側流入攪拌工程により、熱媒体用管16の周囲に形成された第一空隙部P1及び第二空隙部P2に塑性流動材Qを流入させることで、当該空隙部を埋めることができるため、伝熱板51の熱交換効率を高めることができる。
According to the method for manufacturing a heat transfer plate described above, even if both the first concave groove 58 and the second concave groove 65 are formed to be curved surfaces, the first concave groove 58 and the second concave groove 65 are formed. Since the height H of the space portion K2 formed is larger than the outer diameter of the heat medium pipe 16, the lid groove closing step is performed even when a part of the heat medium pipe 16 is curved. Can be easily performed.
In addition, the void portion can be filled by flowing the plastic fluid material Q into the first void portion P1 and the second void portion P2 formed around the heat medium pipe 16 by the surface side inflow stirring step. Therefore, the heat exchange efficiency of the heat transfer plate 51 can be increased.

[第四実施形態]
次に、本発明の第四実施形態について説明する。第四実施形態に係る伝熱板の製造方法は、前記した伝熱板1と略同等の構造を内包し、蓋板10の表面側にさらに上蓋板70を配置して、摩擦攪拌接合を施して接合した点で第一実施形態と相違する。図11は、第四実施形態に係る伝熱板を示した断面図であって、(a)は、分解図、(b)は、完成図である。なお、前記した伝熱板1と同等の構造を以下、下蓋部Mともいう。また、第一実施形態に係る伝熱板1と重複する部材については、同等の符号を付し、重複する説明は省略する。
[Fourth embodiment]
Next, a fourth embodiment of the present invention will be described. The manufacturing method of the heat transfer plate according to the fourth embodiment includes a structure substantially equivalent to the heat transfer plate 1 described above, further disposes the upper cover plate 70 on the surface side of the cover plate 10, and performs friction stir welding. It differs from the first embodiment in that it is applied and joined. FIG. 11 is a cross-sectional view showing a heat transfer plate according to the fourth embodiment, wherein (a) is an exploded view and (b) is a completed view. In addition, the structure equivalent to the above-described heat transfer plate 1 is also referred to as a lower lid portion M below. Moreover, about the member which overlaps with the heat exchanger plate 1 which concerns on 1st embodiment, an equivalent code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.

第四実施形態に係る伝熱板81は、図11の(a)及び(b)に示すように、ベース部材82と、第一凹溝8及び第二凹溝15に挿入された熱媒体用管16と、蓋板10と、蓋板10の上側に配置された上蓋板70とを有し、塑性化領域W1〜W8で摩擦攪拌接合により一体化されている。   As shown in FIGS. 11A and 11B, the heat transfer plate 81 according to the fourth embodiment is for the heat medium inserted into the base member 82, the first groove 8, and the second groove 15. It has the pipe | tube 16, the cover plate 10, and the upper cover plate 70 arrange | positioned above the cover plate 10, and is integrated by friction stir welding in the plasticization area | regions W1-W8.

ベース部材82は、例えばアルミニウム合金からなり、ベース部材82の表面83に、長手方向に亘って形成された上蓋溝76と、上蓋溝76の底面76cに長手方向に亘って連続して形成された蓋溝6と、蓋溝6の底面に平面視U字状で断面視矩形に形成された第一凹溝8とを有する。上蓋溝76は、断面視矩形を呈し、底面76cから垂直に立ち上がる側壁76a,76bを備えている。上蓋溝76の幅は、蓋溝6の幅よりも大きく形成されている。上蓋溝76の底面76cは、塑性化領域W3,W4の生成後に、面削加工されて、塑性化領域W3,W4の表面(上面)と面一となっている。   The base member 82 is made of, for example, an aluminum alloy, and is formed continuously on the surface 83 of the base member 82 in the longitudinal direction on the upper lid groove 76 formed in the longitudinal direction and on the bottom surface 76c of the upper lid groove 76 in the longitudinal direction. A lid groove 6 and a first groove 8 formed in a U-shape in a plan view and a rectangular shape in cross section are formed on the bottom surface of the lid groove 6. The upper lid groove 76 has a rectangular shape in cross section and includes side walls 76a and 76b that rise vertically from the bottom surface 76c. The width of the upper lid groove 76 is formed larger than the width of the lid groove 6. The bottom surface 76c of the upper cover groove 76 is chamfered after the plasticized regions W3 and W4 are generated, and is flush with the surface (upper surface) of the plasticized regions W3 and W4.

熱媒体用管16は、第一凹溝8及び第二凹溝15で形成された空間部Kに挿入されている。また、蓋板10の表面11及びベース部材2の裏面84から摩擦攪拌が施されて、熱媒体用管16の周囲に形成された第一空隙部P1〜第四空隙部P4に塑性流動材が流入されている。即ち、ベース部材82の内部に形成された下蓋部Mは、第一実施形態に係る伝熱板1と略同等の構成を備えている。   The heat medium pipe 16 is inserted into the space K formed by the first concave groove 8 and the second concave groove 15. In addition, friction stir is performed from the front surface 11 of the cover plate 10 and the back surface 84 of the base member 2, and the plastic fluid material is placed in the first gap portion P <b> 1 to the fourth gap portion P <b> 4 formed around the heat medium pipe 16. Inflow. That is, the lower lid portion M formed inside the base member 82 has a configuration substantially equivalent to that of the heat transfer plate 1 according to the first embodiment.

上蓋板70は、図11の(a)及び(b)に示すように、例えば、アルミニウム合金からなり、上蓋溝76の断面と略同じ矩形断面に形成されている。上蓋板70は、上蓋溝76に配置される部材であって、表面71と、裏面72と、この裏面72から垂直に形成された側面73a及び側面73bとを有する。即ち、上蓋板70の側面73a,73bは、上蓋溝76の側壁76a,76bと面接触されるか又は微細な隙間をあけて配置されている。ここで、側面73aと側壁76aとの突合せ部を「突合部V7」とし、側面73bと側壁76bとの突合せ部を「突合部V8」とする。突合部V7,V8は、摩擦攪拌接合により、塑性化領域W7,W8で一体化されている。   As shown in FIGS. 11A and 11B, the upper lid plate 70 is made of, for example, an aluminum alloy and has a rectangular cross section substantially the same as the cross section of the upper lid groove 76. The upper lid plate 70 is a member disposed in the upper lid groove 76, and has a front surface 71, a back surface 72, and a side surface 73 a and a side surface 73 b formed perpendicularly from the back surface 72. That is, the side surfaces 73 a and 73 b of the upper lid plate 70 are in surface contact with the side walls 76 a and 76 b of the upper lid groove 76 or are arranged with a fine gap. Here, the abutting portion between the side surface 73a and the side wall 76a is referred to as “abutting portion V7”, and the abutting portion between the side surface 73b and the side wall 76b is referred to as “abutting portion V8”. The abutting portions V7 and V8 are integrated in the plasticized regions W7 and W8 by friction stir welding.

伝熱板81の製造方法は、伝熱板1と同等の製造方法により、ベース部材82の下部に下蓋部Mを形成した後、上蓋板70を挿入する上蓋溝閉塞工程と、突合部V7,V8に沿って摩擦攪拌接合を行う上蓋接合工程を含むものである。   The manufacturing method of the heat transfer plate 81 includes the upper cover groove closing step of inserting the upper cover plate 70 after the lower cover portion M is formed in the lower portion of the base member 82 by the manufacturing method equivalent to the heat transfer plate 1, It includes an upper lid joining step in which friction stir welding is performed along V7 and V8.

上蓋溝閉塞工程では、下蓋部Mを形成した後、上蓋溝76に上蓋板70を配置する。この際、上蓋溝76の底面76c、蓋板10及び塑性化領域W1〜W4の表面は、前記した接合工程及び表面側流入攪拌工程により平面状でない(凹凸がある)ので、上蓋溝76の底面76c、蓋板10及び塑性化領域W1〜W4の表面を削って平坦にする面削加工を施す。   In the upper lid groove closing step, the upper lid plate 70 is disposed in the upper lid groove 76 after the lower lid portion M is formed. At this time, the bottom surface 76c of the upper cover groove 76, the surface of the cover plate 10 and the plasticized regions W1 to W4 are not flat (there is unevenness) due to the above-described joining process and surface side inflow stirring process. 76 c, the chamfering process is performed to flatten the surfaces of the lid plate 10 and the plasticized regions W1 to W4.

上蓋接合工程は、突合部V7,V8に沿って接合用回転ツール(図示せず)を移動させて摩擦攪拌接合を行う。上蓋接合工程における接合用回転ツールの埋設深さは、ピンの長さ及び上蓋板70の厚み等の各種条件によって、適宜設定すればよい。   In the upper lid joining process, friction stir welding is performed by moving a joining rotary tool (not shown) along the abutting portions V7 and V8. What is necessary is just to set suitably the embedding depth of the rotation tool for joining in an upper cover joining process according to various conditions, such as the length of a pin and the thickness of the upper cover board 70. FIG.

実施形態に係る伝熱板81によれば、下蓋部Mの上方にさらに上蓋板70を配置して、摩擦攪拌接合を行うことにより、より深い位置に熱媒体用管16を配置させることができる。   According to the heat transfer plate 81 according to the embodiment, the upper cover plate 70 is further disposed above the lower cover portion M, and the friction medium is joined to dispose the heat medium pipe 16 at a deeper position. Can do.

[第五実施形態]
次に、本発明の第五実施形態について説明する。第五実施形態に係る伝熱板の製造方法は、ベース部材に凹溝が形成されていない点で第一実施形態と相違する。
[Fifth embodiment]
Next, a fifth embodiment of the present invention will be described. The method for manufacturing a heat transfer plate according to the fifth embodiment is different from the first embodiment in that a concave groove is not formed in the base member.

図12は、第五実施形態に係る伝熱板の製造方法を示した断面図であって、(a)は、切削工程及び挿入工程を示し、(b)は、蓋溝閉塞工程後に表裏を逆にした状態を示し、(c)は、表面側流入攪拌工程を示した図である。図13は、第五実施形態に係る伝熱板を示した断面図である。また、具体的な図示はしないが、熱媒体用管16は、第一実施形態と同様に平面視U字状を呈するものとする。   FIG. 12 is a cross-sectional view showing a method of manufacturing a heat transfer plate according to the fifth embodiment, where (a) shows a cutting step and an insertion step, and (b) shows the front and back after a lid groove closing step. The state reversed is shown, (c) is the figure which showed the surface side inflow stirring process. FIG. 13 is a cross-sectional view showing a heat transfer plate according to the fifth embodiment. Further, although not specifically illustrated, the heat medium pipe 16 is assumed to have a U-shape in plan view as in the first embodiment.

第五実施形態に係る伝熱板の製造方法は、図12及び図13に示すように、ベース部材132及び蓋板133を形成するとともに、蓋板133にベース部材132を配置する準備工程と、突合部V1,V2に沿って接合用回転ツール20(図5参照)を移動させて摩擦攪拌接合を行う接合工程と、蓋板133の表面137側及びベース部材132の裏面140側から流入攪拌用回転ツール25を移動させて第一空隙部P1〜第四空隙部P4に塑性流動材Qを流入させる流入攪拌工程とを含む。   As shown in FIGS. 12 and 13, the method for manufacturing a heat transfer plate according to the fifth embodiment forms a base member 132 and a cover plate 133, and prepares a base member 132 on the cover plate 133. A joining step of moving the joining rotary tool 20 (see FIG. 5) along the abutting portions V1 and V2 to perform friction stir welding, and for inflow stirring from the front surface 137 side of the cover plate 133 and the back surface 140 side of the base member 132 An inflow stirring step of moving the rotary tool 25 to cause the plastic fluid material Q to flow into the first gap portion P1 to the fourth gap portion P4.

(準備工程)
切削工程では、図12の(a)に示すように、公知の切削加工により、板厚部材に蓋溝134を切り欠いてベース部材132を形成する。蓋溝134は、蓋板133が挿入されるように蓋板133の断面形状と略同等に形成する。
また、切削工程では、板厚部材に断面視矩形であってベース部材132に向けて開口する第二凹溝135を切り欠いて蓋板133を形成する。第二凹溝135の深さ及び幅は、熱媒体用管16よりも大きく形成されている。
(Preparation process)
In the cutting process, as shown in FIG. 12A, the base member 132 is formed by notching the lid groove 134 in the plate thickness member by a known cutting process. The lid groove 134 is formed substantially the same as the cross-sectional shape of the lid plate 133 so that the lid plate 133 is inserted.
Further, in the cutting step, the cover plate 133 is formed by cutting out the second concave groove 135 that is rectangular in a sectional view and opens toward the base member 132 in the plate thickness member. The depth and width of the second concave groove 135 are formed larger than the heat medium pipe 16.

挿入工程では、図12の(a)に示すように、蓋板133の第二凹溝135に熱媒体用管16を挿入する。   In the insertion step, the heat medium pipe 16 is inserted into the second concave groove 135 of the cover plate 133 as shown in FIG.

蓋溝閉塞工程では、図12の(a)及び(b)に示すように、蓋板133の上方からベース部材132を挿入するとともに、ベース部材132、蓋板133及び熱媒体用管16からなる仮組構造体の表裏を逆にする。第二凹溝135と蓋溝134の底面134cとで形成された空間部Kには熱媒体用管16が挿入されている。この際、図12の(b)に示すように、熱媒体用管16の下端は、蓋溝134の底面134cと接触し、上端は、第二凹溝135の天面135cと離間する。また、熱媒体用管16の左右端は、第二凹溝135の立面135a,135bと離間する。
なお、ベース部材132の蓋溝134の側壁134a,134bと、蓋板133の側面133a,133bによって突合部V1,V2が形成される。
In the lid groove closing step, as shown in FIGS. 12A and 12B, the base member 132 is inserted from above the lid plate 133, and includes the base member 132, the lid plate 133, and the heat medium pipe 16. The front and back of the temporary assembly structure are reversed. The heat medium pipe 16 is inserted into the space K formed by the second concave groove 135 and the bottom surface 134c of the lid groove 134. At this time, as shown in FIG. 12B, the lower end of the heat medium pipe 16 is in contact with the bottom surface 134 c of the lid groove 134, and the upper end is separated from the top surface 135 c of the second concave groove 135. Further, the left and right ends of the heat medium pipe 16 are separated from the rising surfaces 135 a and 135 b of the second concave groove 135.
The abutting portions V1 and V2 are formed by the side walls 134a and 134b of the lid groove 134 of the base member 132 and the side surfaces 133a and 133b of the lid plate 133.

(接合工程)
接合工程では、図12の(b)及び(c)に示すように、突合部V1,V2に沿って接合用回転ツール20(図5参照)を用いて摩擦攪拌接合を行う。接合工程については、前記した第一実施形態の接合工程と同様であるため詳細な説明を省略する。
(Joining process)
In the joining step, as shown in FIGS. 12B and 12C, friction stir welding is performed using the joining rotary tool 20 (see FIG. 5) along the abutting portions V1 and V2. Since the joining process is the same as the joining process of the first embodiment described above, detailed description thereof is omitted.

(流入攪拌工程)
流入攪拌工程では、ベース部材132、熱媒体用管16及び蓋板133からなる仮組構造体の表面及び裏面から流入攪拌用回転ツール25を移動させて第一空隙部P1〜第四空隙部P4に塑性流動材Qを流入させる。
流入攪拌工程については第一実施形態に係る流入攪拌工程と略同等であるため詳細な説明を省略する。図13に示すように、流入攪拌工程を行うことにより、伝熱板145が形成される。
(Inflow stirring process)
In the inflow agitation step, the inflow agitation rotating tool 25 is moved from the front surface and the back surface of the temporary assembly structure including the base member 132, the heat medium pipe 16, and the cover plate 133, and the first gap portion P1 to the fourth gap portion P4. The plastic fluidized material Q is caused to flow into.
Since the inflow stirring process is substantially the same as the inflow stirring process according to the first embodiment, detailed description thereof is omitted. As shown in FIG. 13, the heat transfer plate 145 is formed by performing the inflow stirring step.

以上説明した第五実施形態に係る製造方法によれば、蓋溝134に凹溝を設けず、蓋板133のみに第二凹溝135を設ける場合であっても、第二凹溝135の幅及び深さを熱媒体用管16の外径より大きく形成することで、第一実施形態と略同等の効果を得ることができる。   According to the manufacturing method according to the fifth embodiment described above, the width of the second groove 135 is not provided in the cover groove 134 and the second groove 135 is provided only in the cover plate 133. By forming the depth larger than the outer diameter of the heat medium pipe 16, it is possible to obtain substantially the same effect as that of the first embodiment.

なお、本実施形態では、前記したように伝熱板145を形成したが、これに限定されるものではない。例えば、ベース部材132の蓋溝134を上方に向けた状態で、蓋溝134の底面134cに熱媒体用管16を配置した後に、蓋板133に形成された第二凹溝135に熱媒体用管16を挿入しつつ、蓋板133を配置してもよい。
また、第二凹溝135は、本実施形態では断面視矩形に形成したが、これに限定されるものではなく曲面を含むように形成してもよい。また、流入攪拌工程は、ベース部材132、熱媒体用管16及び蓋板133からなる仮組構造体の表面及び裏面から行ったが、空間部Kと熱媒体用管16の形状によってはいずれか一方から行うだけでもよい。
In the present embodiment, the heat transfer plate 145 is formed as described above, but the present invention is not limited to this. For example, after the heat medium pipe 16 is disposed on the bottom surface 134c of the cover groove 134 with the cover groove 134 of the base member 132 facing upward, the heat medium pipe 16 is formed in the second groove 135 formed in the cover plate 133. The lid plate 133 may be disposed while the tube 16 is inserted.
Moreover, although the 2nd ditch | groove 135 was formed in the cross sectional view rectangle in this embodiment, it is not limited to this, You may form so that a curved surface may be included. The inflow stirring step was performed from the front and back surfaces of the temporary assembly structure including the base member 132, the heat medium pipe 16 and the cover plate 133, but depending on the shape of the space K and the heat medium pipe 16, You can do it from one side only.

[第六実施形態]
次に、本発明の第六実施形態について説明する。第六実施形態に係る伝熱板の製造方法は、第五実施形態に係る伝熱板145(図13参照)と略同等の構造を内包し、蓋板133の表面137側にさらに上蓋板70を配置して、摩擦攪拌接合を施して接合した点で第五実施形態と相違する。図14は、第六実施形態に係る伝熱板を示した断面図である。
[Sixth embodiment]
Next, a sixth embodiment of the present invention will be described. The method for manufacturing a heat transfer plate according to the sixth embodiment includes a structure substantially equivalent to that of the heat transfer plate 145 (see FIG. 13) according to the fifth embodiment, and further includes an upper cover plate on the surface 137 side of the cover plate 133. It differs from 5th embodiment by the point which has arrange | positioned 70 and performed friction stir welding. FIG. 14 is a cross-sectional view showing a heat transfer plate according to the sixth embodiment.

第六実施形態に係る伝熱板150は、ベース部材132と、蓋板133と、蓋板133の第二凹溝135に挿入された熱媒体用管16と、蓋板133の上側に配置された上蓋板70とを有し、塑性化領域W1〜W8で摩擦攪拌接合により一体化されている。   The heat transfer plate 150 according to the sixth embodiment is disposed on the upper side of the base member 132, the cover plate 133, the heat medium pipe 16 inserted in the second concave groove 135 of the cover plate 133, and the cover plate 133. And the upper lid plate 70, and are integrated by friction stir welding in the plasticized regions W1 to W8.

ベース部材132は、蓋板133を収容する蓋溝134の上方にさらに、上蓋溝76を備えている。上蓋溝76には、上蓋溝76と略同等の断面形状からなる上蓋板70が配置されている。上蓋溝76の側壁と上蓋板70との側面との突合部V7,V8は摩擦攪拌接合により一体化されている。   The base member 132 further includes an upper lid groove 76 above the lid groove 134 that accommodates the lid plate 133. In the upper lid groove 76, an upper lid plate 70 having a cross-sectional shape substantially equivalent to that of the upper lid groove 76 is disposed. The abutting portions V7 and V8 of the side wall of the upper lid groove 76 and the side surface of the upper lid plate 70 are integrated by friction stir welding.

第六実施形態に係る伝熱板150は、第五実施形態に係る伝熱板145の構成を内包する点を除いては、第四実施形態と略同等であるため詳細な説明を省略する。第六実施形態によれば、熱媒体用管16をより深い位置に配置することができる。   The heat transfer plate 150 according to the sixth embodiment is substantially the same as the fourth embodiment except that the configuration of the heat transfer plate 145 according to the fifth embodiment is included, and thus detailed description thereof is omitted. According to the sixth embodiment, the heat medium pipe 16 can be arranged at a deeper position.

以上、本発明に係る実施形態について説明したが、これに限定されるものではなく本発明の趣旨を逸脱しない範囲において、適宜変更が可能である。例えば、前記した実施形態では、熱媒体用管16の一部を湾曲させたものを用いたが、直線状のものを用いてもよい。また例えば、前記した実施形態では、流入攪拌工程で使用する流入攪拌用回転ツール25を接合工程で使用する接合用回転ツール20よりも大型のものとしているが、接合工程で流入攪拌用回転ツール25を使用するようにしてもよい。このようにすれば、各工程で使用する回転ツールを統一することができ、回転ツールの交換時間を省略することができ、施工時間を短縮できる。   The embodiment according to the present invention has been described above. However, the present invention is not limited to this, and can be appropriately changed without departing from the spirit of the present invention. For example, in the above-described embodiment, the curved part of the heat medium pipe 16 is used, but a linear one may be used. Further, for example, in the above-described embodiment, the inflow agitation rotating tool 25 used in the inflow agitation process is larger than the joining rotation tool 20 used in the joining process, but the inflow agitation rotation tool 25 in the joining process. May be used. If it does in this way, the rotation tool used at each process can be unified, the exchange time of a rotation tool can be omitted, and construction time can be shortened.

第一実施形態に係る伝熱板を示した斜視図である。It is the perspective view which showed the heat exchanger plate which concerns on 1st embodiment. 第一実施形態に係る伝熱板を示した分解斜視図である。It is the disassembled perspective view which showed the heat exchanger plate which concerns on 1st embodiment. (a)は、第一実施形態に係る伝熱板を示した分解断面図であり、(b)は、第一実施形態に係るベース部材に熱媒体用管と蓋板を配置した断面図である。(A) is a disassembled sectional view showing the heat transfer plate according to the first embodiment, (b) is a sectional view in which the heat medium pipe and the cover plate are arranged on the base member according to the first embodiment. is there. 第一実施形態に係る伝熱板を示した断面図である。It is sectional drawing which showed the heat exchanger plate which concerns on 1st embodiment. 第一実施形態に係る伝熱板の製造方法を示した断面図であって、(a)は、挿入工程、(b)は、蓋溝閉塞工程、(c)は、接合工程、(d)は、第一表面側流入攪拌工程を示した図である。It is sectional drawing which showed the manufacturing method of the heat exchanger plate which concerns on 1st embodiment, Comprising: (a) is an insertion process, (b) is a cover groove blockade process, (c) is a joining process, (d). These are figures which showed the 1st surface side inflow stirring process. 第一実施形態に係る伝熱板の製造方法を示した断面図であって、(a)は、第二表面側流入攪拌工程、(b)は、第一裏面側流入攪拌工程、(c)は、第二裏面側流入攪拌工程を示した図である。It is sectional drawing which showed the manufacturing method of the heat exchanger plate which concerns on 1st embodiment, Comprising: (a) is a 2nd surface side inflow stirring process, (b) is a 1st back surface side inflow stirring process, (c). These are figures which showed the 2nd back surface side inflow stirring process. 第一実施形態に係る第一表面側流入攪拌工程を示した模式断面図である。It is the schematic cross section which showed the 1st surface side inflow stirring process which concerns on 1st embodiment. 第二実施形態に係る伝熱板の製造方法を示した断面図であって、(a)は、切削工程、(b)は、蓋溝閉塞工程を示した図である。It is sectional drawing which showed the manufacturing method of the heat exchanger plate which concerns on 2nd embodiment, Comprising: (a) is a cutting process, (b) is the figure which showed the cover groove | channel obstruction | occlusion process. 第二実施形態に係る伝熱板の製造方法を示した断面図であって、(a)は、接合工程、(b)は、第一表面側流入攪拌工程、(c)は、第二表面側流入攪拌工程を示す。It is sectional drawing which showed the manufacturing method of the heat exchanger plate which concerns on 2nd embodiment, Comprising: (a) is a joining process, (b) is a 1st surface side inflow stirring process, (c) is a 2nd surface. A side inflow stirring process is shown. 第三実施形態に係る伝熱板の製造方法を示した断面図であって、(a)は、切削工程、(b)は、接合工程、(c)は、表面側流入攪拌工程を示す。It is sectional drawing which showed the manufacturing method of the heat exchanger plate which concerns on 3rd embodiment, (a) is a cutting process, (b) is a joining process, (c) shows the surface side inflow stirring process. 第四実施形態に係る伝熱板を示した断面図であって、(a)は、分解図、(b)は、完成図である。It is sectional drawing which showed the heat exchanger plate which concerns on 4th embodiment, Comprising: (a) is an exploded view, (b) is a completion figure. 第五実施形態に係る伝熱板の製造方法を示した断面図であって、(a)は、切削工程及び挿入工程を示し、(b)は、蓋溝閉塞工程後に表裏を逆にした状態を示し、(c)は、表面側流入攪拌工程を示した図である。It is sectional drawing which showed the manufacturing method of the heat exchanger plate which concerns on 5th embodiment, Comprising: (a) shows a cutting process and an insertion process, (b) is the state which reversed the front and back after the cover groove | channel closing process (C) is the figure which showed the surface side inflow stirring process. 第五実施形態に係る伝熱板を示した断面図である。It is sectional drawing which showed the heat exchanger plate which concerns on 5th embodiment. 第六実施形態に係る伝熱板を示した断面図である。It is sectional drawing which showed the heat exchanger plate which concerns on 6th embodiment. 特許文献1に係る伝熱板を示した図であって、(a)は、斜視図、(b)は断面図である。It is the figure which showed the heat exchanger plate which concerns on patent document 1, Comprising: (a) is a perspective view, (b) is sectional drawing.

1 伝熱板
2 ベース部材
6 蓋溝
6a (蓋溝の)側壁
6b (蓋溝の)側壁
6c (蓋溝の)底面
8 第一凹溝
10 蓋板
11 (蓋板の)表面
12 (蓋板の)裏面
13a (蓋板の)側面
13b (蓋板の)側面
15 第二凹溝
16 熱媒体用管
20 接合用回転ツール
25 流入攪拌用回転ツール
70 上蓋板
73a (上蓋板の)側面
73b (上蓋板の)側面
76 上蓋溝
76a (上蓋溝の)側壁
76b (上蓋溝の)側壁
81 伝熱板
82 ベース部材
K 空間部
P 空隙部
Q 塑性流動材
V 突合部
W 塑性化領域

DESCRIPTION OF SYMBOLS 1 Heat-transfer plate 2 Base member 6 Lid groove 6a Side wall 6b (Land groove) Side wall 6c (Land groove) Bottom surface 8 First groove 10 Lid plate 11 Lid surface 11 (Lid plate) ) Back surface 13a (Cover plate) side surface 13b (Cover plate) side surface 15 Second concave groove 16 Heat medium tube 20 Joining rotary tool 25 Inlet stirring rotary tool 70 Upper lid plate 73a (Upper lid plate) side surface 73b Side surface of the upper lid plate 76 Upper lid groove 76a Side wall of the upper lid groove 76b Side wall of the upper lid groove 81 Heat transfer plate 82 Base member K Space portion P Cavity portion Q Plastic fluidizing material V Butt portion W Plasticization region

Claims (9)

蓋溝の底面に凹溝が形成されたベース部材と裏面に凹溝が形成された蓋板とを、前記凹溝同士で中空の空間部が形成されるように重ね合わせるとともに、前記空間部に熱媒体用管を挿入する準備工程と、
前記準備工程で形成された仮組構造体の表面及び裏面の少なくとも一方の面から挿入した流入攪拌用回転ツールを前記空間部に沿って移動させ、前記熱媒体用管の周囲に形成された空隙部に摩擦熱によって流動化させた塑性流動材を流入させる流入攪拌工程と、を含み、
前記空間部の幅及び高さの少なくとも一方が、前記熱媒体用管の外径よりも大きいことを特徴とする伝熱板の製造方法。
A base member having a concave groove formed on the bottom surface of the lid groove and a lid plate having a concave groove formed on the back surface are overlaid so that a hollow space portion is formed between the concave grooves, and in the space portion. A preparation step of inserting the heat medium pipe;
A gap formed around the heat medium pipe by moving the inflow stirring rotary tool inserted from at least one of the front surface and the back surface of the temporary assembly structure formed in the preparation step along the space. An inflow agitation step for introducing a plastic fluidized material fluidized by frictional heat into the part,
At least one of the width | variety and height of the said space part is larger than the outer diameter of the said pipe | tube for heat media, The manufacturing method of the heat exchanger plate characterized by the above-mentioned.
蓋溝が形成されたベース部材と裏面に凹溝が形成された蓋板とを、前記蓋溝の底面と前記凹溝とで中空の空間部が形成されるように重ね合わせるとともに、前記空間部に熱媒体用管を挿入する準備工程と、
前記準備工程で形成された仮組構造体の表面及び裏面の少なくとも一方の面から挿入した流入攪拌用回転ツールを前記空間部に沿って移動させ、前記熱媒体用管の周囲に形成された空隙部に摩擦熱によって流動化させた塑性流動材を流入させる流入攪拌工程と、を含み、
前記空間部の幅及び高さの少なくとも一方が、前記熱媒体用管の外径よりも大きいことを特徴とする伝熱板の製造方法。
The base member on which the lid groove is formed and the lid plate on which the concave groove is formed on the back surface are overlapped so that a hollow space portion is formed by the bottom surface of the lid groove and the concave groove, and the space portion A preparation step of inserting the heat medium pipe into
A gap formed around the heat medium pipe by moving the inflow stirring rotary tool inserted from at least one of the front surface and the back surface of the temporary assembly structure formed in the preparation step along the space. An inflow agitation step for introducing a plastic fluidized material fluidized by frictional heat into the part,
At least one of the width | variety and height of the said space part is larger than the outer diameter of the said pipe | tube for heat media, The manufacturing method of the heat exchanger plate characterized by the above-mentioned.
前記流入攪拌工程では、前記流入攪拌用回転ツールの先端と、前記熱媒体用管に接する仮想鉛直面との最近接距離を1〜3mmに設定することを特徴とする請求項1又は請求項2に記載の伝熱板の製造方法。   3. The closest distance between the distal end of the inflow stirring rotary tool and the virtual vertical plane in contact with the heat medium pipe is set to 1 to 3 mm in the inflow stirring step. The manufacturing method of the heat exchanger plate as described in 2. 前記流入攪拌工程では、前記流入攪拌用回転ツールの先端を、前記蓋溝の底面よりも深く挿入することを特徴とする請求項1又は請求項3のいずれか一項に記載の伝熱板の製造方法。   In the said inflow stirring process, the front-end | tip of the said inflow stirring rotary tool is inserted deeper than the bottom face of the said cover groove | channel, The heat exchanger plate as described in any one of Claim 1 or Claim 3 characterized by the above-mentioned. Production method. 前記流入攪拌工程の前に、前記蓋溝の側壁と前記蓋板の側面との突合部に沿って摩擦攪拌接合を行う接合工程を含むことを特徴とする請求項1乃至請求項4のいずれか一項に記載の伝熱板の製造方法。   5. The joining step of performing friction stir welding along the abutting portion between the side wall of the lid groove and the side surface of the lid plate before the inflow stirring step. The manufacturing method of the heat exchanger plate as described in one term. 前記接合工程では、前記蓋溝の側壁と前記蓋板の側面との突合部に沿って間欠的に摩擦攪拌接合を行うことを特徴とする請求項5に記載の伝熱板の製造方法。   6. The method for manufacturing a heat transfer plate according to claim 5, wherein in the joining step, friction stir welding is intermittently performed along an abutting portion between a side wall of the lid groove and a side surface of the lid plate. 前記流入攪拌用回転ツールよりも小型の回転ツールを用いて前記接合工程を行うことを特徴とする請求項5又は請求項6に記載の伝熱板の製造方法。   The method for manufacturing a heat transfer plate according to claim 5 or 6, wherein the joining step is performed using a rotating tool smaller than the rotating tool for inflow stirring. 前記流入攪拌工程では、前記接合工程にて形成された塑性化領域を、前記流入攪拌用回転ツールによって再攪拌することを特徴とする請求項5乃至請求項7のいずれか一項に記載の伝熱板の製造方法。   In the said inflow stirring process, the plasticization area | region formed in the said joining process is re-stirred with the said inflow stirring rotating tool, The transmission as described in any one of Claim 5 thru | or 7 characterized by the above-mentioned. Manufacturing method of hot plate. 前記ベース部材に開口する上蓋溝の底面に前記蓋溝を開口させておき、
前記流入攪拌工程後に、前記上蓋溝に上蓋板を配置する上蓋溝閉塞工程と、
前記上蓋溝の側壁と前記上蓋板の側面との突合部に沿って摩擦攪拌接合を行う上蓋接合工程と、をさらに含むことを特徴とする請求項1乃至請求項8のいずれか一項に記載の伝熱板の製造方法。
Open the lid groove on the bottom surface of the upper lid groove that opens in the base member,
After the inflow stirring step, an upper lid groove closing step of disposing an upper lid plate in the upper lid groove;
The upper lid joining step of performing friction stir welding along the abutting portion between the side wall of the upper lid groove and the side surface of the upper lid plate, according to any one of claims 1 to 8. The manufacturing method of the heat-transfer board of description.
JP2008259396A 2008-10-06 2008-10-06 Manufacturing method of heat transfer plate Active JP5141487B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2008259396A JP5141487B2 (en) 2008-10-06 2008-10-06 Manufacturing method of heat transfer plate
CN201310548745.7A CN103624396B (en) 2008-10-06 2009-09-04 The manufacture method of heat transfer plate
CN200980138293.7A CN102159357B (en) 2008-10-06 2009-09-04 Method of manufacturing heat transfer plate
PCT/JP2009/065474 WO2010041529A1 (en) 2008-10-06 2009-09-04 Method of manufacturing heat transfer plate
KR1020117010225A KR101249186B1 (en) 2008-10-06 2009-09-04 Method of manufacturing heat transfer plate
TW098130493A TWI402477B (en) 2008-10-06 2009-09-10 Manufacture of heat transfer plates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008259396A JP5141487B2 (en) 2008-10-06 2008-10-06 Manufacturing method of heat transfer plate

Publications (2)

Publication Number Publication Date
JP2010089102A JP2010089102A (en) 2010-04-22
JP5141487B2 true JP5141487B2 (en) 2013-02-13

Family

ID=42252328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008259396A Active JP5141487B2 (en) 2008-10-06 2008-10-06 Manufacturing method of heat transfer plate

Country Status (1)

Country Link
JP (1) JP5141487B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5953060B2 (en) * 2012-02-09 2016-07-13 株式会社Uacj Processing method of workpiece
KR101881679B1 (en) * 2013-10-21 2018-07-24 니폰게이긴조쿠가부시키가이샤 Method for manufacturing heat transfer plate
JP6015638B2 (en) * 2013-12-02 2016-10-26 日本軽金属株式会社 Manufacturing method of heat transfer plate
JP6052232B2 (en) 2014-01-27 2016-12-27 日本軽金属株式会社 Joining method
JP6015622B2 (en) * 2013-10-21 2016-10-26 日本軽金属株式会社 Manufacturing method of heat transfer plate
CN110440474A (en) * 2019-07-23 2019-11-12 中船重工鹏力(南京)超低温技术有限公司 High specific heat pushing piston and preparation method thereof and regenerative refrigerator

Also Published As

Publication number Publication date
JP2010089102A (en) 2010-04-22

Similar Documents

Publication Publication Date Title
JP4962423B2 (en) Manufacturing method of heat transfer plate
JP5163419B2 (en) Manufacturing method of heat transfer plate
JP5141487B2 (en) Manufacturing method of heat transfer plate
WO2010041529A1 (en) Method of manufacturing heat transfer plate
JP6489219B2 (en) Joining method, liquid cooling jacket manufacturing method, and liquid cooling jacket
KR20100016504A (en) Method of producing heat transfer plate and heat transfer plate
JP5168212B2 (en) Manufacturing method of liquid cooling jacket
JP5440676B2 (en) Heat transfer plate manufacturing method and heat transfer plate
WO2009142070A1 (en) Method for producing heat exchanger plate, and heat exchanger plate
JP5012339B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP5195098B2 (en) Manufacturing method of heat transfer plate
TWI402476B (en) The method of manufacturing the heat transfer plate and the heat conducting plate
JP5071132B2 (en) Manufacturing method of heat transfer plate
JP2019141886A (en) Liquid-cooled jacket manufacturing method
JP4888422B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP6617834B2 (en) Manufacturing method of heat transfer plate
JP2009195940A (en) Manufacturing method of heat transfer plate
JP2017159351A (en) Manufacturing method of liquid-cooled jacket
JP6365752B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP5071274B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP6201882B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP5125760B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP2017042782A (en) Method for manufacturing heat exchanger
WO2021171637A1 (en) Method for manufacturing heat exchanger
JP2009291800A (en) Heat transmit plate manufacturing method and heat transmit plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5141487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350