JP5194677B2 - Oxygen gas blowing lance and hot metal desiliconization method - Google Patents

Oxygen gas blowing lance and hot metal desiliconization method Download PDF

Info

Publication number
JP5194677B2
JP5194677B2 JP2007249367A JP2007249367A JP5194677B2 JP 5194677 B2 JP5194677 B2 JP 5194677B2 JP 2007249367 A JP2007249367 A JP 2007249367A JP 2007249367 A JP2007249367 A JP 2007249367A JP 5194677 B2 JP5194677 B2 JP 5194677B2
Authority
JP
Japan
Prior art keywords
oxygen gas
refractory
hot metal
blowing lance
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007249367A
Other languages
Japanese (ja)
Other versions
JP2009079259A (en
Inventor
聖司 細原
太 小笠原
勲 尾花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007249367A priority Critical patent/JP5194677B2/en
Publication of JP2009079259A publication Critical patent/JP2009079259A/en
Application granted granted Critical
Publication of JP5194677B2 publication Critical patent/JP5194677B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Furnace Charging Or Discharging (AREA)

Description

本発明は、溶融金属を精錬する際に溶融金属中に酸素ガスを吹き込む酸素ガス吹き込みランス、及び、この酸素ガス吹き込みランスを使用した溶銑の脱珪処理方法に関するものである。   The present invention relates to an oxygen gas blowing lance for blowing oxygen gas into molten metal when refining molten metal, and a hot metal desiliconization method using the oxygen gas blowing lance.

近年、鋼材の高級化に伴う燐含有量低下対策或いは製鋼プロセスの合理化を目的として、溶銑の脱燐処理が、転炉または溶銑鍋若しくは混銑車(「トーピードカー」ともいう)などにおいて広く行われている。また、この脱燐処理を効率的に行うために、脱燐処理の前に予め溶銑中の珪素を除去する脱珪処理も行われている。溶銑中の燐及び珪素は酸化反応によって除去されるので、溶銑の脱燐処理及び脱珪処理は、溶銑に酸素ガスや酸化鉄などの酸素源を供給し、酸素源によって溶銑中の燐或いは珪素を酸化除去させている。その際に、反応効率を高める或いは生成するスラグの組成を調整するために、生石灰などのフラックスも添加されている。   In recent years, hot metal dephosphorization has been widely carried out in converters, hot metal pans or kneading vehicles (also called “torpedo cars”) for the purpose of reducing phosphorus content accompanying the upgrading of steel materials or rationalizing the steel making process. Yes. Moreover, in order to perform this dephosphorization process efficiently, the desiliconization process which removes the silicon in a hot metal beforehand is also performed before the dephosphorization process. Since phosphorus and silicon in the hot metal are removed by an oxidation reaction, the dephosphorization process and desiliconization process of the hot metal supply oxygen source such as oxygen gas or iron oxide to the hot metal, and phosphorus or silicon in the hot metal is supplied by the oxygen source. Is removed by oxidation. At that time, a flux such as quicklime is also added to increase the reaction efficiency or adjust the composition of the slag to be generated.

溶銑の脱燐処理及び脱珪処理において溶銑に酸素ガスを供給する方法は、大きく分けて2種類に分類される。1つの方法は、溶銑とは非接触の上吹きランスなどから酸素ガスを溶銑浴面に向けて吹き付ける方法、所謂上吹きする方法(「上吹き送酸法」と呼ぶ)である。他の方法は、溶銑中に浸漬させた吹き込みランスや反応容器の底部などに設けた羽口から、溶銑中に酸素ガスを直接吹き込む方法(「吹き込み送酸法」と呼ぶ)である。それぞれの方法には、それぞれの特長があり、吹き込み送酸法の場合には、酸素ガスの添加効率が高い、攪拌力が向上するなどの利点がある一方、浸漬部の熱負荷が大きく、耐用回数が限られるなどの問題がある。これに対して、上吹き送酸法の場合には、上吹きランスへの熱負荷が小さく、長期間にわたって使用できるという利点があるが、酸素ガスの添加効率が低い、攪拌力が得られないなどの問題がある。   Methods for supplying oxygen gas to hot metal in hot metal dephosphorization and desiliconization are roughly classified into two types. One method is a method in which oxygen gas is blown toward the hot metal bath surface from a non-contact upper blowing lance or the like, a so-called top blowing method (referred to as “top blowing acid method”). The other method is a method in which oxygen gas is directly blown into the hot metal from a blow lance immersed in the hot metal or a tuyere provided at the bottom of the reaction vessel (referred to as “blow acid feeding method”). Each method has its own characteristics, and in the case of the blow-in acid transfer method, there are advantages such as high oxygen gas addition efficiency and improved stirring power, while the heat load of the immersion part is large and the service life is long. There are problems such as limited number of times. On the other hand, in the case of the top blowing acid method, there is an advantage that the heat load to the top blowing lance is small and it can be used for a long period of time, but the addition efficiency of oxygen gas is low and the stirring power cannot be obtained. There are problems such as.

酸素ガスを供給する際に、上吹き送酸法とするか、吹き込み送酸法とするかは、上記の特長を考慮して決められるが、例えば混銑車の場合のように、処理容器の形状から上吹き送酸法では反応効率が悪く、吹き込み送酸法を採用せざるを得ないこともある。混銑車の場合には、その容器形状が攪拌・混合されにくく、それに加えて溶銑の収容量に対して開口部が少なく、上吹き送酸法では所望する反応効率が得られないからである。   When supplying oxygen gas, whether to use the top-blowing acid method or the blow-in acid method is determined in consideration of the above-mentioned features. For example, as in the case of a chaotic vehicle, the shape of the processing vessel Therefore, the top blowing acid method has poor reaction efficiency, and the blowing acid method may have to be adopted. In the case of a kneading vehicle, the shape of the container is difficult to stir and mix, and in addition to that, the number of openings is small with respect to the capacity of the molten iron, and the desired reaction efficiency cannot be obtained by the top blowing acid method.

吹き込み送酸法で使用する吹き込みランスは、前述したように浸漬部の損耗が激しいことから、これを改善する手段が提案されている。例えば、特許文献1には、溶融金属中に浸漬する先端部と、該先端部を保持するホルダー部とからなる吹き込みランスにおいて、前記先端部を単管構造とし、その全表面をカロライズ処理し、更にその外周を耐火物で被覆することにより、吹き込みランス先端部の溶損防止を図る技術が開示されている。また、特許文献2には、吹き込みランスを、外周に耐火物が被覆された2重管構造とし、内管からは精錬剤と酸素ガスを吹き込み、外管からは炭化水素系ガスを吹き込むことで、吹き込みランス先端部の溶損防止を図る技術が開示されている。特許文献2の技術は、炭化水素系ガスは加熱されると分解し、分解する際に吸熱するので、この吸熱を利用して吹き込みランス先端部を冷却するという技術である。
実開平6−6447号公報 特開昭58−221210号公報
As described above, since the blow lance used in the blow acid method has a high wear of the immersion part, means for improving this has been proposed. For example, in Patent Document 1, in a blowing lance composed of a tip portion immersed in molten metal and a holder portion that holds the tip portion, the tip portion has a single tube structure, and the entire surface thereof is calorized, Furthermore, a technique for preventing the blown lance tip from being melted by covering the outer periphery with a refractory is disclosed. Further, in Patent Document 2, the blowing lance has a double pipe structure with a refractory coated on the outer periphery, a refining agent and oxygen gas are blown from the inner pipe, and a hydrocarbon-based gas is blown from the outer pipe. A technique for preventing melting of the tip of the blowing lance is disclosed. The technique of Patent Document 2 is a technique in which a hydrocarbon-based gas is decomposed when heated and absorbs heat when it is decomposed, so that the end of the blowing lance is cooled using this endotherm.
Japanese Utility Model Publication No. 6-6447 JP 58-22212 A

しかしながら、上記の従来技術には以下の問題点がある。即ち、溶融金属中に精錬剤とともに酸素ガスを吹き込むに当たり、特許文献1のように、浸漬部をカロライズパイプとしてその周囲を耐火物で被覆する技術においては、供給する酸素源としては酸化鉄が主体であり、酸素ガス比率、つまり総酸素ガス供給量(酸化鉄(酸素ガスに換算)供給量+酸素ガス供給量)に対する酸素ガス供給量の割合は、20〜30%が上限である。酸素ガス比率を高めた場合には、発熱が激しく単管構造では耐え切れない。酸化反応による発熱を有効利用するためには酸素ガス比率は100%が望ましいが、この技術では酸素ガスのみの吹き込みに対する耐用性が十分でない。   However, the above prior art has the following problems. That is, when oxygen gas is blown into the molten metal together with the refining agent, as in Patent Document 1, in the technique in which the immersion portion is a calorized pipe and the periphery thereof is covered with a refractory, iron oxide is supplied as an oxygen source to be supplied. The upper limit of the oxygen gas ratio, that is, the ratio of the oxygen gas supply amount to the total oxygen gas supply amount (iron oxide (converted to oxygen gas) supply amount + oxygen gas supply amount) is 20 to 30%. When the oxygen gas ratio is increased, the heat generation is intense and the single tube structure cannot withstand. In order to effectively use the heat generated by the oxidation reaction, the oxygen gas ratio is preferably 100%, but this technique does not have sufficient durability against the blowing of oxygen gas alone.

また、特許文献2に開示された方法では、炭素水素系ガスの分解吸熱により、吹き込みランス先端部においては冷却が行われるが、炭化水素系ガスの分解による吸熱効果は最先端部つまり吹き出し部が主であり、吹き込みランスに被覆した耐火物の冷却には寄与しない。従って、耐火物自体の耐用性確保が必要であるが、特許文献2では耐火物の組成を具体的に開示していない。   In the method disclosed in Patent Document 2, the tip of the blowing lance is cooled by the decomposition endotherm of the hydrocarbon gas, but the endothermic portion, that is, the blowing portion, is effective for the endothermic effect due to the decomposition of the hydrocarbon gas. It is the main and does not contribute to the cooling of the refractory coated on the blowing lance. Therefore, although it is necessary to ensure the durability of the refractory itself, Patent Document 2 does not specifically disclose the composition of the refractory.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、溶銑などの溶融金属中に酸素ガスを吹き込む酸素ガス吹き込みランスにおいて、耐用性が高く、従来に比べて多数回の使用が可能であり、製造コストの削減に寄与する酸素ガス吹き込みランスを提供するとともに、該吹き込みランスを使用した溶銑の脱珪処理方法を提供することである。   The present invention has been made in view of the above circumstances, and the object of the present invention is to provide a high durability in an oxygen gas blowing lance for blowing oxygen gas into molten metal such as hot metal, which is used many times as compared with the prior art. It is possible to provide an oxygen gas blowing lance that contributes to the reduction of manufacturing costs, and to provide a hot metal desiliconization method using the blowing lance.

上記課題を解決するための第1の発明に係る酸素ガス吹き込みランスは、溶融金属中に酸素ガスを吹き込むための酸素ガス吹き込みランスであって、内管及び外管からなる2重管構造であり、内管からは酸素ガスが吹き込まれ、内管と外管との間隙からは炭化水素系ガスが吹き込まれ、外管の外周にはMgOを10〜50質量%、Cを1〜10質量%含有するAl23 −MgO−C系耐火物が被覆されていることを特徴とするものである。 An oxygen gas blowing lance according to the first invention for solving the above-mentioned problems is an oxygen gas blowing lance for blowing oxygen gas into a molten metal, and has a double pipe structure comprising an inner tube and an outer tube. The oxygen gas is blown from the inner tube, the hydrocarbon gas is blown from the gap between the inner tube and the outer tube, and MgO is 10 to 50% by mass and C is 1 to 10% by mass on the outer periphery of the outer tube. The Al 2 O 3 —MgO—C-based refractory material to be contained is covered.

第2の発明に係る酸素ガス吹き込みランスは、第1の発明において、前記Al23 −MgO−C系耐火物が、前記吹き込みランスの先端部に被覆され、この先端部に続く前記吹き込みランスの胴部には、前記外管の外周にSiO2を10〜40質量%含有するAl23 −SiO2 系耐火物が被覆されていることを特徴とするものである。 In the oxygen gas blowing lance according to the second invention, in the first invention, the Al 2 O 3 —MgO—C refractory is coated on a tip portion of the blowing lance, and the blowing lance following the tip portion is provided. The outer body of the outer tube is coated with an Al 2 O 3 —SiO 2 refractory containing 10 to 40% by mass of SiO 2 on the outer periphery of the outer tube.

第3の発明に係る溶銑の脱珪処理方法は、第1または第2の発明に記載された酸素ガス吹き込みランスを溶銑中に浸漬させ、該吹き込みランスの内管から溶銑中に酸素ガスを吹き込むとともに、内管と外管との間隙から炭化水素系ガスを吹き込んで溶銑中の珪素を酸化除去することを特徴とするものである。   According to a third aspect of the present invention, there is provided a hot metal desiliconization method in which the oxygen gas blowing lance described in the first or second invention is immersed in the hot metal, and oxygen gas is blown into the hot metal from the inner pipe of the blowing lance. At the same time, hydrocarbon gas is blown from the gap between the inner pipe and the outer pipe to oxidize and remove silicon in the hot metal.

本発明によれば、溶融金属中に酸素ガスを吹き込む酸素ガス吹き込みランスを2重管構造とし、2重管構造の外管に炭化水素系ガスを流し、炭化水素系ガスの分解による吸熱反応を利用して酸素ガス吹き込みランスを冷却するとともに、溶融金属に対する溶損性に優れる、MgOを10〜50質量%、Cを1〜10質量%含有するAl23 −MgO−C系耐火物で少なくとも先端部の外表面を被覆するので、酸素ガス吹き込みランスの損耗速度を従来に比べて大幅に低減することができる。その結果、精錬反応に使用する酸素ガスを、高効率で且つ撹拌力を向上可能な方法で長期間にわたって同一の吹き込みランスで添加可能となる。特に、溶銑の脱珪処理で本発明の酸素ガス吹き込みランスを使用することにより、脱珪反応による発熱を有効利用することが可能となる。 According to the present invention, the oxygen gas injection lance for injecting oxygen gas into the molten metal has a double tube structure, and the hydrocarbon gas is allowed to flow through the outer tube of the double tube structure, and the endothermic reaction due to the decomposition of the hydrocarbon gas is performed. This is an Al 2 O 3 —MgO—C refractory containing 10 to 50% by mass of MgO and 1 to 10% by mass of C, which is used to cool an oxygen gas blowing lance and is excellent in melting damage to molten metal. Since at least the outer surface of the tip portion is coated, the wear rate of the oxygen gas blowing lance can be greatly reduced as compared with the prior art. As a result, the oxygen gas used for the refining reaction can be added with the same blowing lance over a long period of time by a method that can improve the stirring power with high efficiency. In particular, by using the oxygen gas blowing lance of the present invention in the hot metal desiliconization treatment, it is possible to effectively use the heat generated by the desiliconization reaction.

以下、本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described.

本発明者等は、混銑車に収容された溶銑に酸素ガス吹き込みランスを浸漬させ、該ガス吹き込みランスから酸素ガスを溶銑に吹き込んで行う溶銑の脱珪処理において、ガス吹き込みランスの長寿命化について研究・検討を行った。   The present inventors have made it possible to extend the life of the gas blowing lance in the desiliconization process of the hot metal performed by immersing the oxygen gas blowing lance in the hot metal contained in the kneading wheel and blowing oxygen gas from the gas blowing lance into the hot metal. Researched and studied.

その結果、特許文献1のように外表面をカロライズ処理しても、酸素ガスを大量に吹き込む場合は損耗が著しいため、その効果は少ないことが分かった。即ち、酸素ガス吹き込みランスの耐用性を向上させるためには、少なくとも溶銑中に浸漬させる部位の外表面には、耐火物の被覆層を形成させる必要のあることが分かった。   As a result, even if the outer surface was calorized as in Patent Document 1, it was found that the effect was small when oxygen gas was blown in a large amount because the wear was significant. In other words, in order to improve the durability of the oxygen gas blowing lance, it has been found that it is necessary to form a refractory coating layer at least on the outer surface of the portion immersed in the hot metal.

また、吹き込み先端部は特に冷却を必要とし、耐火物を被覆したとしても耐用性に乏しく、従って、少なくとも2重管構造とし、冷却用の炭化水素系ガスを内管と外管との間隙に流す必要のあることが分かった。これは、炭化水素系ガスが分解する際の吸熱反応により、少なくとも酸素ガス吹き込みランスの最先端部(吹き出し部)は冷却され、これにより、最先端部の溶損が抑制されることが確認されたからである。   In addition, the tip of the blowing requires particularly cooling, and even if it is covered with a refractory, it has poor durability. Therefore, it has at least a double pipe structure, and the hydrocarbon gas for cooling is placed in the gap between the inner pipe and the outer pipe. I found it necessary to flow. It is confirmed that at least the most advanced part (blowing part) of the oxygen gas blowing lance is cooled by the endothermic reaction when the hydrocarbon-based gas is decomposed, thereby suppressing the melting of the most advanced part. This is because the.

しかしながら、これらの対策のみでは目的とする耐用性は得られず、そこで、使用済みの吹き込みランスを調査し、長寿命化を阻害している原因を調査した。調査結果から、吹き込みランス浸漬部の損耗形態は、溶銑及びスラグによる溶損と、物理的に破壊するスポーリングの2種理の損耗形態が観察された。   However, these measures alone did not provide the intended durability, and therefore, the used blowing lances were investigated to investigate the causes that hindered the extension of the service life. From the results of the investigation, two types of wear patterns were observed as the wear pattern of the blown lance immersion part: molten metal and slag, and physically spalling.

更なる調査の結果、ランス先端部の溶損に関して、最先端部以外では炭化水素系ガスの冷却効果はほとんど得られておらず、酸素ガス吹き込みランスに被覆した耐火物の最も溶損の激しい部位は、最先端部ではなく、炭化水素系ガスの冷却効果が得られない、先端からやや離れた部位であることが分かった。この知見から、酸素ガス吹き込みランスの耐用性を向上させるためには、少なくとも最も溶損の激しい部位を被覆する耐火物自体の溶損速度を減少させることが必要であることが分かった。つまり、溶銑に対する耐溶損性に優れる耐火物とする必要のあることが分かった。   As a result of further investigation, regarding the erosion damage at the tip of the lance, the cooling effect of the hydrocarbon gas has hardly been obtained except at the most advanced part, and the most refractory part of the refractory coated on the oxygen gas blowing lance has been obtained. Was not the most advanced part, and was found to be a part slightly away from the tip where the cooling effect of hydrocarbon gas could not be obtained. From this knowledge, it was found that in order to improve the durability of the oxygen gas blowing lance, it is necessary to reduce the melting rate of the refractory itself covering at least the most severely damaged site. In other words, it has been found that it is necessary to use a refractory that has excellent resistance to erosion against hot metal.

そこで、耐火物材質の適正化を図るための試験を実施した。試験は混銑車に収容された溶銑を脱珪処理する際に使用する酸素ガス吹き込みランスで行った。図1及び図2に試験で使用した各酸素ガス吹き込みランスの概略断面図を示し、図3に混銑車に収容された溶銑を脱珪処理する状況を示す。   Therefore, a test was conducted to optimize the refractory material. The test was conducted with an oxygen gas blowing lance used for desiliconization of hot metal contained in a kneading wheel. 1 and 2 are schematic cross-sectional views of each oxygen gas blowing lance used in the test, and FIG. 3 shows a situation where the hot metal contained in the kneading vehicle is desiliconized.

図1は、本発明に係る酸素ガス吹き込みランスの概略断面図、図2は、本発明に係る別の酸素ガス吹き込みランスの概略断面図であり、図1及び図2において、符号1は酸素ガス吹き込みランス、2は内管、3は外管、4は耐火物被覆層である。耐火物被覆層4は不定形耐火物であっても、また定形耐火物であってもどちらでも構わない。図2に示す酸素ガス吹き込みランス1では、耐火物被覆層4は、先端部側の先端部耐火物被覆層4Aと胴部側の胴部耐火物被覆層4Bとに別れ、それぞれ異なる種類の耐火物で構成されている。その他の構造は両者で同一である。図2の符号1Cは、ランス開口部中心であり、dは、ランス開口部中心1Cからランス先端までの距離である。内管2の内部を酸素ガス(必要に応じて精錬剤)が流れ、内管2と外管3との間隙を炭化水素系ガスが流れ、酸素ガス及び炭化水素系ガスは、酸素ガス吹き込みランス1の先端部から溶銑中に吹き込まれるようになっている。図1及び図2に示す酸素ガス吹き込みランス1は、先端部近傍で内管2及び外管3が分岐し、ランス開口部がそれぞれ逆方向に開口した、所謂「T字型ランス」である。   FIG. 1 is a schematic cross-sectional view of an oxygen gas blowing lance according to the present invention, FIG. 2 is a schematic cross-sectional view of another oxygen gas blowing lance according to the present invention, and in FIGS. Blowing lance, 2 is an inner tube, 3 is an outer tube, and 4 is a refractory coating layer. The refractory coating layer 4 may be either an irregular refractory or a regular refractory. In the oxygen gas blowing lance 1 shown in FIG. 2, the refractory coating layer 4 is divided into a tip portion refractory coating layer 4A on the tip portion side and a trunk portion refractory coating layer 4B on the trunk portion side. It consists of things. Other structures are the same in both cases. 2 denotes the center of the lance opening, and d denotes the distance from the center of the lance opening 1C to the tip of the lance. Oxygen gas (a refining agent if necessary) flows through the inner pipe 2, hydrocarbon gas flows through the gap between the inner pipe 2 and the outer pipe 3, and oxygen gas and hydrocarbon gas are supplied with an oxygen gas blowing lance. 1 is blown into the hot metal from the tip. The oxygen gas blowing lance 1 shown in FIGS. 1 and 2 is a so-called “T-shaped lance” in which an inner tube 2 and an outer tube 3 are branched in the vicinity of a tip, and lance openings are opened in opposite directions.

また、図3において、5は混銑車、6は溶銑であり、混銑車5に収容された溶銑6に、図1または図2に示す酸素ガス吹き込みランス1の先端部を浸漬させ、内管2から酸素ガスを吹き込み、内管2と外管3との間隙から炭化水素系ガスを吹き込み、溶銑6に脱珪処理を実施している様子を示している。この場合、左右のランス開口部を水平方向に向けて酸素ガスを供給する。   In FIG. 3, 5 is a kneading wheel and 6 is a hot metal. The tip of the oxygen gas blowing lance 1 shown in FIG. 1 or 2 is immersed in the hot metal 6 accommodated in the kneading wheel 5, and the inner tube 2 It shows a state in which oxygen gas is blown from the inside and hydrocarbon gas is blown from the gap between the inner pipe 2 and the outer pipe 3 to carry out desiliconization treatment on the hot metal 6. In this case, oxygen gas is supplied with the left and right lance openings directed horizontally.

この溶銑脱珪処理において、耐火物被覆層4、或いは、先端部耐火物被覆層4A及び胴部耐火物被覆層4Bの組成を変化させ、酸素ガス吹き込みランス1の耐用性を調査した。試験では、混銑車5に収容された約300トンの溶銑6に内管2から30Nm3 /minの流量で酸素ガスを吹き込み、また、内管2と外管3との間隙から3〜4Nm3/minの流量でプロパンガスを吹き込み、脱珪処理した。尚、Nm3は、標準状態における体積に換算した体積を単位m3で示すものである。内管2及び外管3はステンレス鋼鋼管を使用した。この脱珪処理における試験条件を表1に示す。 In this hot metal desiliconization treatment, the composition of the refractory coating layer 4, or the tip refractory coating layer 4A and the trunk refractory coating layer 4B was changed, and the durability of the oxygen gas blowing lance 1 was investigated. In the test, oxygen gas was blown into the hot metal 6 of about 300 tons accommodated in the kneading wheel 5 at a flow rate of 30 Nm 3 / min from the inner pipe 2, and 3-4 Nm 3 from the gap between the inner pipe 2 and the outer pipe 3. Propane gas was blown at a flow rate of / min for desiliconization treatment. Nm 3 indicates the volume converted to the volume in the standard state in the unit m 3 . The inner tube 2 and the outer tube 3 were stainless steel tubes. Table 1 shows the test conditions in this desiliconization treatment.

Figure 0005194677
Figure 0005194677

試験において、図1に示す酸素ガス吹き込みランス1の耐火物被覆層4としては、Al23 −SiO2 系耐火物(Al23 −20質量%SiO2 )と、Al23 −MgO系耐火物(Al23 −5質量%MgO)と、Al23 −MgO−C系耐火物とで試験した。Al23 −MgO−C系耐火物では、MgOの含有量を5、10、30、50、60質量%に変更し、またMgOの含有量が30質量%の条件下でCの含有量を1、5、10、15質量%に変更し、耐火物被覆層4の損耗速度に及ぼすMgO含有量及びC含有量の影響を調査した。 In the test, as the refractory coating layer 4 of the oxygen gas blowing lance 1 shown in FIG. 1, Al 2 O 3 —SiO 2 refractory (Al 2 O 3 -20 mass% SiO 2 ) and Al 2 O 3 — MgO-based refractory and (Al 2 O 3 -5 wt% MgO), were tested in the Al 2 O 3 -MgO-C based refractory. In the Al 2 O 3 —MgO—C refractory, the Mg content is changed to 5, 10, 30, 50, and 60% by mass, and the C content under the condition that the MgO content is 30% by mass. Was changed to 1, 5, 10, and 15% by mass, and the influence of the MgO content and the C content on the wear rate of the refractory coating layer 4 was investigated.

また、図2に示す酸素ガス吹き込みランス1における先端部耐火物被覆層4Aとしては、Al23 −30質量%MgO−3質量%C系耐火物を用い、胴部耐火物被覆層4BとしてはAl23 −20質量%SiO2系耐火物を用いた。先端部耐火物被覆層4Aと胴部耐火物被覆層4Bとの境界は、(1)溶銑の湯面位置、(2)ランス開口部中心1Cからランス先端までの距離をdとしたときにランス開口部中心1Cから距離(d)の2倍離れた位置(「先端近傍位置」と称す)、(3)この先端近傍位置と湯面位置との中間位置(「中間点位置」と称す)の3水準とした。尚、溶銑の湯面とは、スラグ表面ではなく、溶銑そのものの湯面である。試験結果を表2に示す。 Moreover, as a tip part refractory coating layer 4A in the oxygen gas blowing lance 1 shown in FIG. 2, an Al 2 O 3 -30 mass% MgO-3 mass% C-based refractory is used, and a trunk refractory coating layer 4B is used. It was used Al 2 O 3 -20 wt% SiO 2 based refractory. The boundary between the tip refractory coating layer 4A and the trunk refractory coating layer 4B is (1) the position of the hot metal surface of the hot metal, and (2) the lance when the distance from the center 1C of the lance opening to the tip of the lance is d. A position (referred to as “near end position”) that is twice the distance (d) from the center 1C of the opening, and (3) an intermediate position (referred to as “intermediate position”) between the position near the front end and the molten metal surface position. Three levels were set. The hot metal surface of the hot metal is not the slag surface but the hot surface of the hot metal itself. The test results are shown in Table 2.

Figure 0005194677
Figure 0005194677

表2に示すように、全体がAl23 −20質量%SiO2 系耐火物(試験No.1)の場合には、1チャージ当たりの平均損耗速度が200mm(以下、「mm/ch」と記す)であったが、MgOが10〜50質量%、Cが1〜10質量%配合されたAl23 −MgO−C系耐火物では、損耗速度が7mm/ch以下であった。但し、Al23 −MgO−C系耐火物であっても、MgOが10質量%未満の場合及びC含有量が10質量%を越える場合には、損耗速度が速くなることが分かった。また、Al23 −MgO−C系耐火物であっても、MgOが50質量%を超えた場合には、耐火物のヤング率が増加するために耐火物被覆層4の割れが顕著となり、スポーリングによる割れが進行して耐用性の向上は期待できないことが分かった。また、MgOが10〜50質量%、Cが1〜10質量%配合されたAl23 −MgO−C系耐火物では、比較材のAl23 −5質量%MgO系耐火物に比べても損耗量が少ないことが確認できた。 As shown in Table 2, when the whole is Al 2 O 3 -20 mass% SiO 2 refractory (test No. 1), the average wear rate per charge is 200 mm (hereinafter referred to as “mm / ch”). However, in the Al 2 O 3 —MgO—C refractory compounded with 10 to 50% by mass of MgO and 1 to 10% by mass of C, the wear rate was 7 mm / ch or less. However, even in the case of Al 2 O 3 —MgO—C refractories, it was found that when MgO is less than 10% by mass and the C content exceeds 10% by mass, the wear rate increases. Further, even in the case of Al 2 O 3 —MgO—C refractories, when MgO exceeds 50 mass%, the Young's modulus of the refractory increases, so that cracking of the refractory coating layer 4 becomes remarkable. It was found that cracking due to spalling progressed and improvement in durability could not be expected. In addition, the Al 2 O 3 —MgO—C refractory containing 10 to 50% by mass of MgO and 1 to 10% by mass of C is compared with the Al 2 O 3 -5% by mass of MgO refractory as a comparative material. However, it was confirmed that the amount of wear was small.

これらの結果から、耐火物被覆層4としては、MgOを10〜50質量%、Cを1〜10質量%含有するAl23 −MgO−C系耐火物が最適であり、この耐火物を使用することで、酸素ガス吹き込みランス1の耐用性が向上することが分かった。一般的に、MgOは耐食性を向上させるが、耐スポーリング性には劣る。Cを含有させることにより耐スポーリング性が向上されて寿命延長に繋がる。即ち、C含有量が1質量%未満では亀裂発生抑止効果が不十分である。一方、C含有量が10質量%より多いと損耗速度が大きくなる。これは、Cが酸素ガス及び生成する酸化性スラグにより酸化されること及びC量が多いと耐火物の強度が低下することにより、振動や発生する熱応力による亀裂が入りやすくなるためである。MgOの含有量が規定されるのは、耐溶損性、耐熱性を向上させるためにはMgO量をできるだけ多くしたいが、前述の通りC含有量の上限が規定され、それに応じて亀裂防止の観点からMgOの上限値が規定される。つまり、C量を10質量%以下とすると、亀裂防止の観点からMgO量は50質量%が上限になる。 From these results, as the refractory coating layer 4, an Al 2 O 3 —MgO—C refractory containing 10 to 50% by mass of MgO and 1 to 10% by mass of C is most suitable. It was found that the durability of the oxygen gas blowing lance 1 was improved by using it. In general, MgO improves corrosion resistance but is inferior in spalling resistance. By containing C, the spalling resistance is improved and the life is extended. That is, if the C content is less than 1% by mass, the effect of inhibiting crack generation is insufficient. On the other hand, when the C content is more than 10% by mass, the wear rate increases. This is because C is oxidized by oxygen gas and the generated oxidizing slag, and if the amount of C is large, the strength of the refractory is lowered, so that cracks due to vibration and generated thermal stress are likely to occur. The content of MgO is specified because it is desired to increase the amount of MgO as much as possible in order to improve the erosion resistance and heat resistance. However, as described above, the upper limit of the C content is specified, and accordingly, the viewpoint of crack prevention To the upper limit of MgO. That is, if the C amount is 10% by mass or less, the upper limit of the MgO amount is 50% by mass from the viewpoint of preventing cracks.

尚、最も良好な結果となったのは、先端部側にAl23 −MgO−C系耐火物を用い、胴部側にAl23 −SiO2系耐火物を用いた場合(試験No.11〜13)であり、全体をAl23 −MgO−C耐火物で被覆した場合よりも、更に損耗速度が低く良好な結果であった。これは、以下の理由によると考えられる。上記の適正範囲にあるAl23 −MgO−C系耐火物に比べても基本的にAl23 −SiO2系耐火物は耐スポーリング性に優れ、特に、湯面直上で付加される熱衝撃に対しては有効である。このために、胴部をAl23 −SiO2系耐火物とすることで、更に酸素ガス吹き込みランス1の耐久性が向上するものと考えられる。但し、SiO2 の含有量が10質量%未満では耐スポーリング性の向上効果は少なく、一方、SiO2の含有量が40質量%を越えると耐火物自体の耐火度が低下するので、SiO2 を10〜40質量%含有するAl23 −SiO2系耐火物を使用することが好ましい。 The best results were obtained when an Al 2 O 3 —MgO—C refractory was used on the tip side and an Al 2 O 3 —SiO 2 refractory was used on the body side (test No. 11-13), and the wear rate was lower and better than when the whole was coated with an Al 2 O 3 —MgO—C refractory. This is considered to be due to the following reason. Basically, Al 2 O 3 —SiO 2 refractories are superior in spalling resistance compared to Al 2 O 3 —MgO—C refractories in the above-mentioned proper range, and in particular, they are added just above the hot water surface. It is effective against thermal shock. For this reason, it is considered that the durability of the oxygen gas blowing lance 1 is further improved by using the Al 2 O 3 —SiO 2 refractory as the body portion. However, little improvement effect of spalling resistance in the content of SiO 2 is less than 10 wt%, whereas, since the content of SiO 2 exceeds 40% by weight refractoriness of the refractory itself decreases, SiO 2 It is preferable to use an Al 2 O 3 —SiO 2 refractory containing 10 to 40% by mass.

本発明はこれらの試験結果に基づくものであり、発明に係る酸素ガス吹き込みランス1は、前述した図1及び図2に示すように、内管2及び外管3からなる2重管構造であり、内管2からは酸素ガス(及び必要に応じ精錬剤)が吹き込まれ、内管2と外管3との間隙からは炭化水素系ガスが吹き込まれ、外管3の外周にはMgOを10〜50質量%、Cを1〜10質量%含有するAl23 −MgO−C系耐火物が被覆されているか、或いは図2に示すように、先端部がAl23 −MgO−C系耐火物で被覆され、残りの胴部がAl23 −SiO2系耐火物で被覆されていることを特徴とする。 The present invention is based on these test results, and the oxygen gas blowing lance 1 according to the present invention has a double-pipe structure composed of an inner tube 2 and an outer tube 3 as shown in FIGS. In addition, oxygen gas (and a refining agent if necessary) is blown from the inner pipe 2, hydrocarbon gas is blown from the gap between the inner pipe 2 and the outer pipe 3, and MgO is added to the outer periphery of the outer pipe 3. Al 2 O 3 —MgO—C refractory containing ˜50% by mass and 1 to 10% by mass of C is coated, or the tip is Al 2 O 3 —MgO—C as shown in FIG. It is characterized in that it is covered with a refractory material and the remaining body is covered with an Al 2 O 3 —SiO 2 refractory material.

図2に示す酸素ガス吹き込みランス1の場合、胴部側のAl23 −SiO2系耐火物としてはSiO2 を10〜40質量%含有する場合が有効である。また、耐スポーリング性の観点から、胴部耐火物被覆層4Bは、少なくとも溶銑の湯面以上の部位を被覆することが好ましく、一方、先端部耐火物被覆層4Aは、耐溶損性の観点から先端部から充分な範囲までを被覆することが好ましい。従って、図2に示す形状の酸素ガス吹き込みランス1において、少なくともランス開口部中心1Cから前記距離(d)の2倍離れた位置(先端近傍位置)までを、先端部耐火物被覆層4Aで被覆することが好ましい。即ち、図2の酸素ガス吹き込みランス1において、先端部耐火物被覆層4Aと胴部耐火物被覆層4Bとの境界は、先端近傍位置と溶銑の湯面位置との間に位置させることが好ましい。 In the case of the oxygen gas blowing lance 1 shown in FIG. 2, it is effective to contain 10 to 40% by mass of SiO 2 as the Al 2 O 3 —SiO 2 refractory on the body side. Further, from the viewpoint of spalling resistance, it is preferable that the trunk portion refractory coating layer 4B covers at least a portion of the hot metal surface of the molten iron, while the tip refractory coating layer 4A has a viewpoint of resistance to melting. It is preferable to cover from the tip part to a sufficient range. Accordingly, in the oxygen gas blowing lance 1 having the shape shown in FIG. 2, at least a position (position near the tip) that is twice the distance (d) from the center 1C of the lance is covered with the tip refractory coating layer 4A. It is preferable to do. That is, in the oxygen gas blowing lance 1 of FIG. 2, the boundary between the tip refractory coating layer 4A and the trunk refractory coating layer 4B is preferably located between the position near the tip and the molten metal surface position. .

尚、先端部耐火物被覆層4Aと胴部耐火物被覆層4Bとが、境界部で連続的に移行することが好ましい。これは、先端部耐火物被覆層4A及び胴部耐火物被覆層4Bとして不定形耐火物を用い、外管3の周囲に設けられた型枠に不定形耐火物を流し込んで酸素ガス吹き込みランス1を作製する際に、途中で不定形耐火物の材質を変更することで容易に実現することができる。   In addition, it is preferable that 4 A of front-end | tip refractory coating layers and the trunk | drum refractory coating layer 4B transfer continuously in a boundary part. This is because an amorphous refractory is used as the tip refractory coating layer 4A and the trunk refractory coating layer 4B, and the amorphous refractory is poured into a mold provided around the outer tube 3 to blow an oxygen gas. Can be easily realized by changing the material of the amorphous refractory during the process.

本発明で用いるAl2 3 −MgO−C系耐火物、Al23 −SiO2系耐火物とも、不純物を7質量%以下程度含有することは問題ない。また、図1及び図2の何れの形態においても、耐火物層の厚みは25mm以上程度が好ましい。 Both Al 2 O 3 —MgO—C-based refractory and Al 2 O 3 —SiO 2 refractory used in the present invention have no problem in containing about 7% by mass or less of impurities. Moreover, in any form of FIG.1 and FIG.2, the thickness of a refractory layer has preferable about 25 mm or more.

本発明に係る酸素ガス吹き込みランス1は、溶融金属中に酸素ガスまたは酸素ガスとともに精錬剤を供給して行う精錬であるならばどのような精錬であっても適用可能であるが、特に、溶銑の脱珪処理における酸素ガス供給手段として適用することが最適である。溶銑の脱珪処理で生成されるスラグはSiO2 を主体としており、本発明において耐火物被覆層4或いは先端部耐火物被覆層4Aとして使用する、MgOを10〜50質量%含有し、且つCを1〜10質量%含有するAl23 −MgO−C系耐火物は、SiO2 を主体とするスラグに対する耐溶損性に優れるからである。ここで、精錬剤とは、酸素源となる酸化鉄や生石灰、石灰石などのフラックスのことである。 The oxygen gas blowing lance 1 according to the present invention is applicable to any refining as long as it is a refining performed by supplying a refining agent together with oxygen gas or oxygen gas into the molten metal. It is optimal to apply as an oxygen gas supply means in the desiliconization process. The slag produced by the desiliconization treatment of the hot metal is mainly composed of SiO 2 , contains 10 to 50% by mass of MgO used as the refractory coating layer 4 or the tip refractory coating layer 4A in the present invention, and C This is because an Al 2 O 3 —MgO—C refractory containing 1 to 10% by mass is excellent in resistance to erosion against slag mainly composed of SiO 2 . Here, the refining agent is a flux of iron oxide, quick lime, limestone, or the like that serves as an oxygen source.

また、本発明に係る酸素ガス吹き込みランス1は、特に、混銑車における脱珪処理など、多量の送酸(例えば、10Nm3/min以上、好ましくは15Nm3/min以上)により処理を進行させる用途に好適である。 Further, the oxygen gas blowing lance 1 according to the present invention, applications in particular, such as desiliconization process in torpedo cars, large amounts of oxygen-flow (e.g., 10 Nm 3 / min or more, preferably of 15 Nm 3 / min or more) to advance the process by It is suitable for.

本発明に係る酸素ガス吹き込みランス1を用いて溶銑6の脱珪処理を行う場合、上記の試験と同一方法で、つまり内管2から酸素ガスを吹き込み、内管2と外管3との間隙から炭化水素系ガスを吹き込んで脱珪処理を行うが、その際に、非浸漬型の上吹きランスによる酸素ガス添加などの他の酸素ガス供給手段を併用しても構わない。また、図1及び図2に示す酸素ガス吹き込みランス1はT字型ランスであったが、先端部まで内管2及び外管3が分岐しない形状としてもよく、また、その場合に先端部を曲げた形状としてもよい。   When performing the desiliconization treatment of the hot metal 6 using the oxygen gas blowing lance 1 according to the present invention, oxygen gas is blown from the inner tube 2 by the same method as the above test, and the gap between the inner tube 2 and the outer tube 3. The desiliconization treatment is carried out by blowing a hydrocarbon gas from the above, and at that time, other oxygen gas supply means such as oxygen gas addition by a non-immersion type upper blowing lance may be used in combination. 1 and 2 is a T-shaped lance. However, the inner tube 2 and the outer tube 3 may not be branched to the tip portion, and in this case, the tip portion may be It may be a bent shape.

また、内管2及び外管3はステンレス鋼鋼管である必要はなく、例えば炭素鋼鋼管であっても問題ない。また更に、内管2からの酸素ガスの吹き込み流量を低下させる際に、窒素ガス、Arガスといった不活性ガスを酸素ガスに混合させてもよいし、酸素富化空気などの酸素含有ガスを適宜利用してもよい。酸素濃度は必要とされる酸素量から適宜決定すればよい。内管2からの酸素ガス吹き込み流量の変更に伴って外管3からの炭化水素系ガスの吹き込み流量を低下させる際にも、窒素ガス、Arガスといった不活性ガスを炭化水素系ガスに混合させてもよい。炭化水素ガスの量の目安としては、内管2から供給される酸素ガスの5〜20体積%程度とすることが好ましい。炭化水素ガスとしては、プロパン(C38 )、メタン(CH4 )、エタン(C26 )、ブタン(C410)などが比較的低温で熱分解し、分解吸熱も大きいため製鋼プロセスでは利用しやすい。 Further, the inner tube 2 and the outer tube 3 do not need to be stainless steel tubes, and there is no problem even if they are, for example, carbon steel tubes. Furthermore, when reducing the flow rate of the oxygen gas blown from the inner pipe 2, an inert gas such as nitrogen gas or Ar gas may be mixed with the oxygen gas, or an oxygen-containing gas such as oxygen-enriched air may be appropriately used. May be used. What is necessary is just to determine an oxygen concentration suitably from the amount of oxygen required. When the flow rate of the hydrocarbon gas blown from the outer tube 3 is reduced in accordance with the change in the flow rate of the oxygen gas blown from the inner tube 2, an inert gas such as nitrogen gas or Ar gas is mixed with the hydrocarbon gas. May be. As a standard of the amount of the hydrocarbon gas, it is preferable that the amount of the oxygen gas supplied from the inner pipe 2 is about 5 to 20% by volume. As hydrocarbon gas, propane (C 3 H 8 ), methane (CH 4 ), ethane (C 2 H 6 ), butane (C 4 H 10 ), etc. are thermally decomposed at a relatively low temperature and have a large decomposition endotherm. Easy to use in steelmaking process.

本発明に係る酸素ガス吹き込みランス1により、転炉底吹き羽口のような設備を用いることなく、長期間に亘って1つの酸素ガス吹き込みランス1から酸素ガスを溶銑中に吹き込むことが可能となる。また、酸素ガスを吹き込むことにより、熱余裕の創出が可能となる。その結果、鉄スクラップ溶解のための熱として使用可能となり、鉄鋼材料製造時のCO2 発生量の低減に寄与する。また酸素ガス吹き込みランス1の寿命が延びることで、ランス交換作業の頻度軽減、更に、常に浸漬深さを大きく確保できるといった利点がある。 With the oxygen gas blowing lance 1 according to the present invention, oxygen gas can be blown into the hot metal from one oxygen gas blowing lance 1 over a long period of time without using equipment such as a converter bottom blowing tuyere. Become. Moreover, it is possible to create a heat margin by blowing oxygen gas. As a result, it can be used as heat for melting iron scrap, contributing to a reduction in the amount of CO 2 generated during the manufacture of steel materials. Further, since the life of the oxygen gas blowing lance 1 is extended, there are advantages that the frequency of lance replacement work is reduced and that the immersion depth can always be kept large.

前述した図1及び図2に示す酸素ガス吹き込みランスを用い、混銑車に収容された溶銑の脱珪処理を実施(本発明例1〜9)した。   Using the oxygen gas blowing lance shown in FIG. 1 and FIG. 2, the hot metal contained in the kneading wheel was desiliconized (Invention Examples 1 to 9).

酸素ガス吹き込みランスの耐火物被覆層は、本発明例1では、Al23 −10質量%MgO−1質量%C系不定形耐火物の単層で施工し、本発明例2では、Al23 −15質量%MgO−2質量%C系不定形耐火物の単層で施工し、本発明例3では、Al23−30質量%MgO−3質量%C系不定形耐火物の単層で施工し、本発明例4では、Al23 −50質量%MgO−5質量%C系不定形耐火物の単層で施工し、本発明例5では、Al23 −30質量%MgO−10質量%C系不定形耐火物の単層で施工し、本発明例6では、Al23−50質量%MgO−10質量%C系不定形耐火物の単層で施工し、本発明例7では、先端から溶銑湯面までをAl23 −50質量%MgO−10質量%C系不定形耐火物、溶銑湯面より上方をAl23 −10質量%SiO2系不定形耐火物で施工し、本発明例8では、先端から溶銑湯面までをAl23 −50質量%MgO−10質量%C系不定形耐火物、溶銑湯面より上方をAl23 −20質量%SiO2系不定形耐火物で施工し、本発明例9では、先端から溶銑湯面までをAl23 −50質量%MgO−10質量%C系不定形耐火物、溶銑湯面より上方をAl23 −40質量%SiO2系不定形耐火物で施工した。脱珪処理においては、内管から酸素ガスを吹き込みながら、内管と外管との間隙からプロパンガスを吹き込んだ。 The refractory coating layer of the oxygen gas blowing lance was constructed as a single layer of an Al 2 O 3 -10 mass% MgO-1 mass% C-based amorphous refractory in Example 1 of the present invention. 2 O 3 -15% by mass MgO-2% by mass C-type amorphous refractory, and in Invention Example 3, Al 2 O 3 -30% by mass MgO-3% by mass C-type amorphous refractory In Example 4 of the present invention, Al 2 O 3 -50 mass% MgO-5 mass% C-based amorphous refractory is applied. In Example 5 of the present invention, Al 2 O 3 — It was applied by a single layer of 30 wt% MgO-10 wt% C system castable refractory, the present invention example 6, a single layer of Al 2 O 3 -50 wt% MgO-10 wt% C system monolithic refractories construction and, in the present invention example 7, the Al 2 O 3 -50 wt% MgO-10 wt% C system castable refractory from the tip to the hot metal melt surface, the hot metal bath level The upper and applied by Al 2 O 3 -10 wt% SiO 2 based monolithic refractory, the present invention Example 8, from the tip to the hot metal melt surface Al 2 O 3 -50 wt% MgO-10 wt% C system not The upper part of the fixed refractory and the hot metal surface is made of Al 2 O 3 -20 mass% SiO 2 -based amorphous refractory, and in Example 9 of the present invention, from the tip to the hot metal surface is Al 2 O 3 -50 mass%. The upper part of the MgO-10 mass% C-based amorphous refractory and the hot metal surface was constructed with Al 2 O 3 -40 mass% SiO 2 -based irregular refractory. In the desiliconization process, propane gas was blown from the gap between the inner pipe and the outer pipe while oxygen gas was blown from the inner pipe.

また、比較のために、Al23 −5質量%MgO系不定形耐火物の単層で耐火物被覆層を施工した酸素ガス吹き込みランスを用いた脱珪処理(比較例1)、Al23 −60質量%MgO−10質量%C系不定形耐火物の単層で耐火物被覆層を施工した酸素ガス吹き込みランスを用いた脱珪処理(比較例2)、Al23 −30質量%MgO−15質量%C系不定形耐火物の単層で耐火物被覆層を施工した酸素ガス吹き込みランスを用いた脱珪処理(比較例3)、先端から溶銑湯面までをAl23 −50質量%MgO−10質量%C系不定形耐火物、溶銑湯面より上方をAl23 −5質量%SiO2系不定形耐火物で施工した酸素ガス吹き込みランスを用いた脱珪処理(比較例4)、先端から溶銑湯面までをAl23 −50質量%MgO−10質量%C系不定形耐火物、溶銑湯面より上方をAl23 −50質量%SiO2系不定形耐火物で施工した酸素ガス吹き込みランスを用いた脱珪処理(比較例5)も実施した。比較例1〜5は、耐火物被覆層の耐火物材質を変更した以外は、本発明例1〜9と同一の条件で実施した。 For comparison, Al 2 O 3 -5 wt% MgO-based desiliconization treatment using oxygen gas injection lance that applying a refractory coating layer of a single layer of castable refractory (Comparative Example 1), Al 2 O 3 -60 wt% MgO-10 wt% C system desiliconization treatment using oxygen gas injection lance that applying a refractory coating layer of a single layer of castable refractory (Comparative example 2), Al 2 O 3 -30 Desiliconization treatment using an oxygen gas blowing lance with a refractory coating layer formed of a single layer of mass% MgO-15 mass% C-based amorphous refractory (Comparative Example 3), from the tip to the hot metal surface Al 2 O 3 -50 wt% MgO-10 wt% C system castable refractory, using oxygen gas injection lance was constructed the above the hot metal bath level in the Al 2 O 3 -5 wt% SiO 2 based monolithic refractory desiliconization treatment (Comparative example 4), from the tip to the hot metal melt surface Al 2 O 3 -50 wt% M O-10 wt% C system castable refractory, desiliconization treatment using oxygen gas blowing lance was constructed the above the hot metal bath level in the Al 2 O 3 -50 wt% SiO 2 based monolithic refractory (Comparative Example 5 ). Comparative Examples 1-5 were carried out under the same conditions as Invention Examples 1-9, except that the refractory material of the refractory coating layer was changed.

本発明例1〜9、比較例1〜5において、酸素ガス吹き込みランスの寿命について比較評価した。表3に試験条件及び試験結果を示す。   In Invention Examples 1-9 and Comparative Examples 1-5, the life of the oxygen gas blowing lance was comparatively evaluated. Table 3 shows test conditions and test results.

Figure 0005194677
Figure 0005194677

本発明例1〜4では、ランス寿命は1本のランス当たり平均で10チャージ(以下、「ch/本」と記す)以上であり、また、本発明例5〜6では、ランス寿命は平均で8ch/本以上であった。これに対して、比較例1ではランス寿命は平均で6.9ch/本、比較例2では平均で3.2ch/本、比較例3では平均で3.4ch/本であり、本発明例の優位性が確認できた。本発明例1〜4と本発明例5〜6とを比較すると、本発明例1〜4の方がより長寿命であるが、これは、C量が多くなると、耐火物の強度が低下することにより振動や発生する熱応力による亀裂が入りやすくなるためである。   In Invention Examples 1 to 4, the lance life is 10 charges (hereinafter referred to as “ch / piece”) or more on average per lance, and in Invention Examples 5 to 6, the lance life is average. It was 8ch / book or more. In contrast, in Comparative Example 1, the average lance life is 6.9 ch / line, in Comparative Example 2 is 3.2 ch / line on average, and in Comparative Example 3 is 3.4 ch / line on average. The superiority was confirmed. Comparing Invention Examples 1 to 4 and Invention Examples 5 to 6, Invention Examples 1 to 4 have a longer life, but this increases the strength of the refractory as the amount of C increases. This is because cracks due to vibration and generated thermal stress are likely to occur.

また、本発明例7では、ランス寿命は平均で11.2ch/本、本発明例8では、平均で10.3ch/本、本発明例9では、平均で10.8ch/本であり、複合被覆にすることで、より一層ランス寿命は向上した。但し、複合被覆としても胴部がAl23 −5質量%SiO2系不定形耐火物の比較例4、及び、胴部がAl23 −50質量%SiO2系不定形耐火物の比較例5では比較例1よりもランス寿命は悪化しており、複合被覆する場合にも適切な耐火物を選択する必要があることが分かった。 Further, in Example 7 of the present invention, the average lance life is 11.2 ch / line, in Example 8 of the present invention is 10.3 ch / line on average, and in Example 9 of the present invention is 10.8 ch / line on average. By using the coating, the lance life was further improved. However, as the composite coating, the barrel is made of Al 2 O 3 -5 mass% SiO 2 amorphous refractory 4 and the trunk is made of Al 2 O 3 -50 mass% SiO 2 amorphous refractory. In Comparative Example 5, the lance life was worse than that in Comparative Example 1, and it was found that it was necessary to select an appropriate refractory even in the case of composite coating.

本発明に係る酸素ガス吹き込みランスの概略断面図である。It is a schematic sectional drawing of the oxygen gas blowing lance which concerns on this invention. 本発明に係る別の酸素ガス吹き込みランスの概略断面図である。It is a schematic sectional drawing of another oxygen gas blowing lance which concerns on this invention. 本発明に係る酸素ガス吹き込みランスを用いて混銑車に収容された溶銑を脱珪処理する状況を示す図である。It is a figure which shows the condition which desiliconizes the hot metal accommodated in the kneading vehicle using the oxygen gas blowing lance which concerns on this invention.

符号の説明Explanation of symbols

1 酸素ガス吹き込みランス
1C ランス開口部中心
2 内管
3 外管
4 耐火物被覆層
4A 先端部耐火物被覆層
4B 胴部耐火物被覆層
5 混銑車
6 溶銑
DESCRIPTION OF SYMBOLS 1 Oxygen gas blowing lance 1C Center of lance opening 2 Inner pipe 3 Outer pipe 4 Refractory coating layer 4A Tip refractory coating layer 4B Trunk refractory coating layer 5 Chaotic wheel 6 Hot metal

Claims (3)

溶融金属中に酸素ガスを吹き込むための酸素ガス吹き込みランスであって、内管及び外管からなる2重管構造であり、内管からは酸素ガスが吹き込まれ、内管と外管との間隙からは炭化水素系ガスが吹き込まれ、外管の外周にはMgOを10〜50質量%、Cを1〜10質量%含有するAl23 −MgO−C系耐火物が被覆されていることを特徴とする酸素ガス吹き込みランス。 An oxygen gas blowing lance for blowing oxygen gas into a molten metal, which has a double-pipe structure comprising an inner tube and an outer tube, and oxygen gas is blown from the inner tube, and a gap between the inner tube and the outer tube From which the hydrocarbon gas is blown, and the outer circumference of the outer tube is coated with an Al 2 O 3 —MgO—C refractory containing 10 to 50% by mass of MgO and 1 to 10% by mass of C. Oxygen gas blowing lance characterized by 前記Al23 −MgO−C系耐火物が、前記吹き込みランスの先端部に被覆され、この先端部に続く前記吹き込みランスの胴部には、前記外管の外周にSiO2を10〜40質量%含有するAl23 −SiO2 系耐火物が被覆されていることを特徴とする、請求項1に記載の酸素ガス吹き込みランス。 The Al 2 O 3 —MgO—C refractory is coated on the tip of the blowing lance, and the body of the blowing lance following the tip is made of 10 to 40 SiO 2 on the outer circumference of the outer tube. The oxygen gas blowing lance according to claim 1, wherein the refractory containing Al 2 O 3 —SiO 2 containing at mass% is coated. 請求項1または請求項2に記載された酸素ガス吹き込みランスを溶銑中に浸漬させ、該吹き込みランスの内管から溶銑中に酸素ガスを吹き込むとともに、内管と外管との間隙から炭化水素系ガスを吹き込んで溶銑中の珪素を酸化除去することを特徴とする、溶銑の脱珪処理方法。   The oxygen gas blowing lance according to claim 1 or 2 is immersed in the hot metal, oxygen gas is blown into the hot metal from the inner tube of the blowing lance, and a hydrocarbon system is introduced from the gap between the inner tube and the outer tube. A desiliconization method for hot metal, which comprises oxidizing and removing silicon in the hot metal by blowing gas.
JP2007249367A 2007-09-26 2007-09-26 Oxygen gas blowing lance and hot metal desiliconization method Expired - Fee Related JP5194677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007249367A JP5194677B2 (en) 2007-09-26 2007-09-26 Oxygen gas blowing lance and hot metal desiliconization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007249367A JP5194677B2 (en) 2007-09-26 2007-09-26 Oxygen gas blowing lance and hot metal desiliconization method

Publications (2)

Publication Number Publication Date
JP2009079259A JP2009079259A (en) 2009-04-16
JP5194677B2 true JP5194677B2 (en) 2013-05-08

Family

ID=40654236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007249367A Expired - Fee Related JP5194677B2 (en) 2007-09-26 2007-09-26 Oxygen gas blowing lance and hot metal desiliconization method

Country Status (1)

Country Link
JP (1) JP5194677B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5412300B2 (en) * 2010-01-13 2014-02-12 東京窯業株式会社 Gas blow lance

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002115011A (en) * 2000-10-11 2002-04-19 Sumitomo Metal Ind Ltd Structure for tuyere lining in refining furnace
JP2003221271A (en) * 2002-01-31 2003-08-05 Shinagawa Refract Co Ltd Carbon-containing brick
WO2007100113A1 (en) * 2006-02-27 2007-09-07 Jfe Steel Corporation Blowing lance for refining, blowing lance apparatus for refining, method of desiliconizing of molten iron, and method of pretreatment of molten iron

Also Published As

Publication number Publication date
JP2009079259A (en) 2009-04-16

Similar Documents

Publication Publication Date Title
JP5440733B2 (en) Hot metal refining method
KR101021349B1 (en) Injection lance for refining, injection lance equipment for refining, hot-metal desiliconization process, and hot-metal pretreatment process
JP5109408B2 (en) Oxygen gas blowing lance for refining and method of desiliconization of hot metal
JP2008144224A (en) Process for producing extra-low-sulfur low-nitrogen high-cleanliness steel through melting
JP2011038142A (en) Converter steelmaking method with the use of large quantity of iron scrap
JP4715384B2 (en) Method for dephosphorizing hot metal and top blowing lance for dephosphorization
JP2012031452A (en) Method of dephosphorizing hot metal
KR100728130B1 (en) Method for Refining Molten Steel in Converter
JP2009084670A (en) Oxygen gas blowing lance and molten iron desiliconization method
JP5194677B2 (en) Oxygen gas blowing lance and hot metal desiliconization method
JP4487812B2 (en) Method for producing low phosphorus hot metal
JP4923623B2 (en) Smelting lance equipment and method for desiliconization of hot metal
JP5292752B2 (en) Oxygen gas blowing lance and hot metal desiliconization method
TWI685577B (en) Smelting method of high manganese steel
JP4345769B2 (en) Melting method of ultra low sulfur high clean steel
JP2018024898A (en) Dephosphorization method of molten pig iron excellent in dephosphorization efficiency and iron content yield
JP2009191289A (en) Method and apparatus for desulfurizing molten steel
JP2018035376A (en) Hot metal dephosphorization method
JP4042587B2 (en) Ladle refining method for molten steel
JP3772750B2 (en) Refining lance
JPS6353243B2 (en)
JP5223228B2 (en) Hot metal desiliconization method
JP5332487B2 (en) Hot metal desiliconization method
JPS6056051A (en) Production of medium- and low-carbon ferromanganese
JP4025713B2 (en) Dephosphorization method of hot metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100823

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5194677

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees