JP5188970B2 - Polyolefin microporous film wound product for battery separator and method for producing the same - Google Patents

Polyolefin microporous film wound product for battery separator and method for producing the same Download PDF

Info

Publication number
JP5188970B2
JP5188970B2 JP2008526746A JP2008526746A JP5188970B2 JP 5188970 B2 JP5188970 B2 JP 5188970B2 JP 2008526746 A JP2008526746 A JP 2008526746A JP 2008526746 A JP2008526746 A JP 2008526746A JP 5188970 B2 JP5188970 B2 JP 5188970B2
Authority
JP
Japan
Prior art keywords
polyolefin microporous
wound
microporous membrane
winding
wound product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008526746A
Other languages
Japanese (ja)
Other versions
JPWO2008013114A1 (en
Inventor
佳史 西村
晃 高橋
靖 新原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei E Materials Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2008526746A priority Critical patent/JP5188970B2/en
Publication of JPWO2008013114A1 publication Critical patent/JPWO2008013114A1/en
Application granted granted Critical
Publication of JP5188970B2 publication Critical patent/JP5188970B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • H01M10/0409Machines for assembling batteries for cells with wound electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Cell Separators (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

本発明は、電池セパレータに使用されるポリオレフィン製微多孔膜捲回物、すなわち、ポリオレフィン又はポリオレフィンを含む樹脂組成物からなる微多孔膜を巻芯に捲回したもの、に関する。特にリチウムイオン二次電池用セパレータとして好適に使用されるポリオレフィン製微多孔膜捲回物及びその製造方法に関する。   The present invention relates to a polyolefin microporous membrane wound product used for a battery separator, that is, a microporous membrane comprising a polyolefin or a resin composition containing polyolefin wound around a core. In particular, the present invention relates to a polyolefin microporous membrane wound product suitably used as a lithium ion secondary battery separator and a method for producing the same.

ポリオレフィン製微多孔膜は、種々の電池用セパレータとして使用されている。特に、ポリオレフィン樹脂が有機溶媒に対する耐性に優れ、また電子絶縁性にも優れることなどから、特にリチウムイオン二次電池において多用されている。
近年、リチウムイオン二次電池の主用途である携帯電話やパソコン、その他携帯機器の多機能化、軽量化、低コスト化に伴い、電池には高容量化、高エネルギー密度化が強く求められている。その中で高容量化、高エネルギー化に対し、セパレータには薄膜化が要求されている。一方、セパレータと電極とを一緒に捲回した捲回物(電極・セパレータ捲回物)は電池の缶の中に入るために、電極・セパレータ捲回物の外径の精度が要求されるようになってきている。
Polyolefin microporous membranes are used as various battery separators. In particular, polyolefin resins are frequently used in lithium ion secondary batteries because they have excellent resistance to organic solvents and excellent electronic insulation.
In recent years, as mobile phones, personal computers, and other portable devices, which are the main applications of lithium ion secondary batteries, have become more multifunctional, lighter, and lower in cost, batteries are strongly required to have higher capacity and higher energy density. Yes. Among them, the separator is required to have a thin film for high capacity and high energy. On the other hand, since the wound product (electrode / separator wound product) obtained by winding the separator and the electrode together enters the battery can, the accuracy of the outer diameter of the electrode / separator wound product is required. It is becoming.

また、最近では大型のリチウムイオン二次電池を自動車用、貯蔵用に使用することも検討されており、その際に使用するセパレータは巾の広いもの、巻長の長いものになっている。このような大型のリチウムイオン二次電池の普及を広めるためにも捲回物の外径が精度よく作製でき、缶挿入時の不良率を下げ、低コスト化をはかることが必要になってきている。
例えば、特許文献1は、電池セパレータ等の製造をする際の作業性等の向上を目的として、最大外径と最小外径が特定の範囲に入るポリオレフィン製微多孔膜捲回物を提案している。しかしながら、上記捲回物は、外径精度が十分ではなかった。
特開2004−99799号公報
Recently, the use of large-sized lithium ion secondary batteries for automobiles and storage has been studied, and separators used at that time have wide widths and long winding lengths. In order to spread the spread of such large-sized lithium ion secondary batteries, it is necessary to accurately produce the outer diameter of the wound product, to reduce the defective rate at the time of can insertion, and to reduce the cost. Yes.
For example, Patent Document 1 proposes a polyolefin microporous membrane wound product in which a maximum outer diameter and a minimum outer diameter fall within a specific range for the purpose of improving workability when manufacturing a battery separator or the like. Yes. However, the wound product has insufficient outer diameter accuracy.
JP 2004-99799 A

本発明の課題は、電極・セパレータ捲回物の缶挿入時の挿入不良を低減できるポリオレフィン製微多孔膜捲回物を提供することである。更には、電極・セパレータ捲回物の外径を用いて厚み管理を行うことができるポリオレフィン製微多孔膜捲回物及びその製造方法を提供することである。   An object of the present invention is to provide a polyolefin microporous membrane wound product that can reduce poor insertion at the time of inserting a can of an electrode / separator wound product. Furthermore, the object is to provide a polyolefin microporous membrane roll that can be controlled in thickness using the outer diameter of the electrode / separator roll and a method for producing the same.

本発明者らは、電極・セパレータ捲回物の外径精度を高める上で、その材料となるポリオレフィン製微多孔膜(セパレータ)捲回物の外径精度の管理が極めて重要であることに着目して鋭意検討した結果、上記課題を解決しうることを見いだし本発明に到った。特に、特開2006−88255号公報に開示されているスリットロール外径測定機を用いて測定した外径と巻長から計算した厚み情報を用いることにより、電極と一緒に捲回した捲回物の外径が精度よく管理できることを見出し、本発明にいたった。   The inventors of the present invention pay attention to the management of the outer diameter accuracy of the polyolefin microporous membrane (separator) wound material, which is a material for improving the outer diameter accuracy of the electrode / separator wound product. As a result of extensive studies, the present inventors have found that the above problems can be solved and have reached the present invention. In particular, a wound product wound together with the electrode by using thickness information calculated from an outer diameter and a winding length measured using a slit roll outer diameter measuring machine disclosed in JP-A-2006-88255. The present inventors have found that the outer diameter of can be controlled with high accuracy and have arrived at the present invention.

また、本発明者らは、マザーロール(所望幅にスリットされる前のロール)に捲回されたポリオレフィン製微多孔膜をその全幅にわたって所定幅にスリットした後、スリットされた各ポリオレフィン微多孔膜を巻き取って捲回物を製造する場合において、捲回物の外径精度を高めるためには、各捲回物毎に巻き取り張力を制御すればよいことを見い出した。
すなわち、従来、マザーロールに捲回されたポリオレフィン製微多孔膜をその全幅にわたって所定幅にスリットした後、スリットされた各ポリオレフィン製微多孔膜捲回物を巻き取って捲回物を製造する場合、各ポリオレフィン製微多孔膜の巻き取り張力は、同時に捲回される複数の捲回物全体として制御されるか、又は、特定の捲回物に合わせて全て均一に制御されているが、本発明者らの研究により、このような制御方法では、個別制御の対象となっていない捲回物については固く捲回されたり、ゆるく捲回され、その外径を管理することができていないことが判明した。
In addition, the present inventors slit each polyolefin microporous membrane slit after slitting the polyolefin microporous membrane wound around a mother roll (roll before slitting to a desired width) to a predetermined width over the entire width. In the case of manufacturing a wound product by winding a roll, it has been found that in order to increase the accuracy of the outer diameter of the wound product, the winding tension should be controlled for each wound product.
That is, when a polyolefin microporous membrane wound around a mother roll is conventionally slit to a predetermined width over its entire width, and then wound around each polyolefin microporous membrane wound product to produce a wound product The winding tension of each polyolefin microporous film is controlled as a whole of a plurality of wound products that are wound at the same time, or is uniformly controlled according to a specific wound product. According to the research by the inventors, in such a control method, the wound object that is not subject to individual control is hardly wound or loosely wound, and its outer diameter cannot be managed. There was found.

すなわち、本発明は以下の通りである。
巻芯にポリオレフィン製微多孔膜を捲回した捲回物であって、下記式(1)により算出される膜厚みT(μm)と一枚で評価した膜厚みt(μm)との差(膜厚みの差)の絶対値(μm)が1.5μm以下であることを特徴とする電池用セパレータ用ポリオレフィン製微多孔膜捲回物。
T(μm)=π(D2−d2)/4L (1)
(上記式(1)中、Dは多孔膜を含めた巻芯に捲回した捲回物の外径(mm)を、dは巻芯の外径(mm)を、Lは捲回物の巻長(m)を各々指す)
That is, the present invention is as follows.
A wound product obtained by winding a polyolefin microporous film on a core, and the difference between the film thickness T (μm) calculated by the following formula (1) and the film thickness t (μm) evaluated by one sheet ( A polyolefin microporous membrane wound product for battery separators , characterized in that the absolute value (μm) of the difference in membrane thickness is 1.5 μm or less.
T (μm) = π (D 2 −d 2 ) / 4L (1)
(In the above formula (1), D is the outer diameter (mm) of the wound product wound around the core including the porous membrane, d is the outer diameter (mm) of the wound core, and L is the wound product. (Each refers to the winding length (m))

また、本発明は以下の通りである。
マザーロールに捲回されたポリオレフィン製微多孔膜をその全幅にわたって所定幅にスリットする工程と、
該所定幅にスリットされた各ポリオレフィン製微多孔膜を、巻き取り張力を各捲回物毎に制御しつつ捲回する工程と、
を含む電池用セパレータ用ポリオレフィン製微多孔膜捲回物の製造方法。
The present invention is as follows.
Slitting a polyolefin microporous film wound around a mother roll into a predetermined width over its entire width;
Winding each polyolefin microporous membrane slit to the predetermined width while controlling the winding tension for each wound product;
A process for producing a polyolefin microporous membrane wound product for battery separators comprising:

本発明のポリオレフィン製微多孔膜捲回物を用いれば、缶挿入時の挿入不良の少ない電極・セパレータ一体型捲回物を製造できるという効果を奏する。更には、本発明によれば、電極・セパレータ一体型捲回物の外径を用いて厚み管理を行うことができるという効果を奏する。また、本発明の製造方法は、前記ポリオレフィン製微多孔膜捲回物を効率よく製造できるという効果を奏する。本発明の手法を電極等にも応用すれば、さらに正確に電極・セパレータ一体型捲回物の外径管理を行うこともできる。   By using the polyolefin microporous film wound product of the present invention, it is possible to produce an electrode / separator-integrated wound product with little insertion failure during can insertion. Furthermore, according to the present invention, there is an effect that the thickness can be controlled by using the outer diameter of the electrode / separator integrated wound article. In addition, the production method of the present invention has an effect that the polyolefin microporous membrane wound product can be produced efficiently. If the method of the present invention is applied to an electrode or the like, the outer diameter of the electrode / separator integrated wound product can be more accurately controlled.

以下に本発明を詳細に記述する。
[ポリオレフィン製微多孔膜捲回物]
本発明のポリオレフィン製微多孔膜捲回物は、管などの円柱状の巻芯にポリオレフィン製微多孔膜を捲回した捲回物であって、下記式(1)により算出される膜厚みT(μm)と一枚で評価した膜厚みt(μm)との差(膜厚みの差)の絶対値(μm)が1.5μm以下であることを特徴とする。
T(μm)=π(D−d)/4L (1)
(上記式(1)中、Dは多孔膜を含めた巻芯に捲回した捲回物の外径(mm)を、dは巻芯の外径(mm)を、Lは捲回物の巻長(m)を各々指す。)
膜厚みの差(T−t)が1.5μmより大きくなると、捲回物の捲回がゆる過ぎるため、これを用いて電極・セパレータ捲回物とした場合に、電極・セパレータ捲回物の外径管理ができなくなり、缶挿入時に、挿入できない等の不良が増加してしまう。一方、膜厚みの差(T−t)が−1.5μmより小さい場合には、捲回物の捲回が固過ぎるため、捲回物の透過性不良を招く。膜厚みの差の絶対値は、好ましくは1.2μm以下、さらに好ましくは1.0μm以下、最も好ましくは0.5μm以下である。
The present invention is described in detail below.
[Polyolefin microporous film wound product]
The polyolefin microporous membrane wound product of the present invention is a wound product obtained by winding a polyolefin microporous membrane on a cylindrical core such as a tube, and has a membrane thickness T calculated by the following formula (1). The absolute value (μm) of the difference (film thickness difference) between (μm) and the film thickness t (μm) evaluated as a single sheet is 1.5 μm or less.
T (μm) = π (D 2 −d 2 ) / 4L (1)
(In the above formula (1), D is the outer diameter (mm) of the wound product wound around the core including the porous membrane, d is the outer diameter (mm) of the wound core, and L is the wound product. Refers to each winding length (m).)
When the difference in film thickness (Tt) is larger than 1.5 μm, the wound product is too loose. When this is used as an electrode / separator product, Outer diameter management becomes impossible, and defects such as inability to insert during can insertion increase. On the other hand, when the difference in film thickness (T−t) is smaller than −1.5 μm, the wound product is too hard to be wound, resulting in poor permeability of the wound product. The absolute value of the difference in film thickness is preferably 1.2 μm or less, more preferably 1.0 μm or less, and most preferably 0.5 μm or less.

膜厚みの差(T−t)の絶対値が小さく0に近いほど、ポリオレフィン製微多孔膜が巻き緩みや巻き締まりなく捲回されていることになるが、本発明においては、ポリオレフィン製微多孔膜捲回物は、やや巻き締まりしていることが好ましい。具体的には、T−tの値(μm)が−0.5≦T−t<0であることが好ましい。   As the absolute value of the difference in film thickness (Tt) is smaller and closer to 0, the polyolefin microporous film is wound without being loosened or tightened. In the present invention, the polyolefin microporous film is wound. It is preferable that the wound film is slightly tightened. Specifically, the value of Tt (μm) is preferably −0.5 ≦ Tt <0.

なお、本発明において「巻芯」とは、ポリオレフィン製微多孔膜を捲回物にする際に使用するコアであり、円柱形状のものをいう。好ましい具体例としては、紙管、プラスチック管等の管が挙げられる。   In the present invention, the “core” is a core used when a polyolefin microporous film is wound, and refers to a cylindrical shape. Preferred examples include tubes such as paper tubes and plastic tubes.

本発明は、電極・セパレータ捲回物の缶挿入時の挿入不良を低減する点から、マザーロールに捲回されたポリオレフィン製微多孔膜をスリットして得られる、上記のポリオレフィン製微多孔膜捲回物2個以上からなる捲回物群であって、巻きずれが5mm以内であること、かつ上記膜厚みの差(μm)の標準偏差が0.7μm以下、更には0.5μm以下であるポリオレフィン製微多孔膜捲回物群を好ましい態様とする。ここで、マザーロールとは、ユーザーの所望の巾にスリットされる前のロールのことをいい、通常350mm巾以上で、さらには600mm巾以上である。巻きずれとは、巻芯にポリオレフィン製微多孔膜を捲回した捲回物において、捲回されたポリオレフィン微多孔膜の全長にわたって、捲回されたポリオレフィン微多孔膜の端の位置のずれをいう。すなわち、捲回されたポリオレフィン微多孔膜の一方端部の、捲回物の幅方向の最も外側に位置する部分と最も内側に位置する部分の間の幅方向の距離をいう。更に、個々の捲回物としてみた場合だけではなく、マザーロール全幅を構成する複数の捲回物(捲回物群)としてみた場合にも、膜厚みの差が小さいことが好ましいことはいうまでもない。   The present invention provides the above-mentioned polyolefin microporous membrane obtained by slitting a polyolefin microporous membrane wound around a mother roll from the viewpoint of reducing poor insertion at the time of inserting a can of an electrode / separator roll. It is a wound product group consisting of two or more wounds, and the winding deviation is within 5 mm, and the standard deviation of the difference in film thickness (μm) is 0.7 μm or less, and further 0.5 μm or less. A polyolefin microporous film wound product group is a preferred embodiment. Here, the mother roll refers to a roll before being slit to a width desired by the user, and is usually 350 mm or more, and further 600 mm or more. Unwinding refers to a shift in the position of the end of the wound polyolefin microporous film over the entire length of the wound polyolefin microporous film in a wound product obtained by winding a polyolefin microporous film on the core. . That is, it means the distance in the width direction between the outermost part and the innermost part of the wound polyolefin microporous membrane at one end of the wound product in the width direction. Furthermore, it is preferable that the difference in film thickness is small not only when viewed as individual wound products but also when viewed as a plurality of wound products (wound product group) constituting the entire width of the mother roll. Nor.

本発明において、「多孔膜を含めた巻芯に捲回した捲回物の外径」Dとは、ポリオレフィン製微多孔膜を軸に捲回したポリオレフィン製微多孔膜捲回物を円柱とした場合の直径をいうが、その断面が真円でない場合には、断面に外接する面積が最小となる外接長方形の短辺と長辺の平均値とする。具体的には、捲回物の両端から3mm以上内側の部分について、以下に示すような方法を用いて、微多孔膜の幅方向に等間隔の複数点において捲回物の直径を測定し、その平均値を算出することにより求められる。   In the present invention, “the outer diameter of the wound product wound around the core including the porous membrane” D is a polyolefin microporous membrane wound product wound around the polyolefin microporous membrane as a cylinder. When the cross section is not a perfect circle, the average value of the short side and long side of the circumscribed rectangle that minimizes the area circumscribing the cross section is used. Specifically, for the portion 3 mm or more from both ends of the wound product, using the method as shown below, measure the diameter of the wound product at a plurality of points at equal intervals in the width direction of the microporous membrane, It is obtained by calculating the average value.

本発明のポリオレフィン製微多孔膜捲回物の外径Dは、例えば、図1に示すような特開2006−88255号公報に記載された外径測定装置により、精度良くかつ効率的に測定できる。図1は捲回物の外径を測定する部分についての基本構成部分の概略を示すものである。すなわち投光機1Aより投光されたレーザー又は可視光を受光機1Bで受光し、捲回物2の影を測定することにより捲回物の外径を測定する。これら投光機、受光機はレーザー寸法測定機、またはデジタル寸法測定機等として一般的に市販されているものを用いることが出来る。
例えば、2組の投光機1Aと受光機1Bよりなる寸法測定装置を捲回物2の回転軸方向に平行に移動させることにより捲回物の回転軸(巻芯)方向全ての位置で線上に外径を測定する。寸法測定装置が捲回物2に対して相対的に移動するのであれば、寸法測定装置を移動させても捲回物2を移動させても構わない。また、測定する捲回物によっては、操作性を考慮して捲回物を横置きにするなどして、測定装置を作成することもできる。投光機、受光機よりなる寸法測定装置を移動させる速度は、必要な捲回物の測定精度、測定時間などによって適宜決定する。なお、外径の測定は外接長方形の短辺と長辺とに対応する2方向について行い、その平均値を使用するこが、通常は、寸法測定機で測定を行う捲回物2の測定範囲は、捲回物の1箇所の外径を連続的に測定すれば十分である。なぜなら捲回物の外径差はフィルムの厚みの差が何枚にも重なることによって出来ており、その断面は実質的に真円であり、外径はどの位置で測定してもほとんど同一であるためである。
The outer diameter D of the polyolefin microporous membrane wound product of the present invention can be accurately and efficiently measured by an outer diameter measuring device described in JP-A-2006-88255 as shown in FIG. 1, for example. . FIG. 1 shows an outline of the basic components of the portion for measuring the outer diameter of the wound article. That is, the laser or visible light projected from the projector 1A is received by the light receiver 1B, and the outer diameter of the wound object is measured by measuring the shadow of the wound object 2. As these projectors and receivers, commercially available laser dimension measuring machines, digital dimension measuring machines or the like can be used.
For example, by moving a dimension measuring device composed of two sets of a projector 1A and a light receiver 1B in parallel with the direction of the axis of rotation of the wound object 2, the line is aligned at all positions in the direction of the axis of rotation of the wound object (core). Measure the outer diameter. As long as the dimension measuring device moves relative to the wound object 2, the dimension measuring apparatus may be moved or the wound object 2 may be moved. In addition, depending on the wound object to be measured, a measuring device can be created by placing the wound object horizontally in consideration of operability. The speed at which the dimension measuring device including the projector and the light receiver is moved is appropriately determined depending on the required measurement accuracy of the wound object, the measurement time, and the like. The outer diameter is measured in two directions corresponding to the short side and long side of the circumscribed rectangle, and the average value is used. Usually, the measurement range of the wound object 2 is measured with a dimension measuring machine. It is sufficient to continuously measure the outer diameter of one place of the wound product. This is because the difference in the outer diameter of the wound product is due to the difference in the thickness of the film, the cross section is substantially a perfect circle, and the outer diameter is almost the same regardless of the position. Because there is.

また、本発明の捲回物群の外径を測定する場合の好適な一例を図2に示す。寸法測定機を精度良く稼動させるためには、捲回物群は2組の受光機1Aと受光機1Bのほぼ中央部に設置することが好ましく、例えば、2組の受光機1Aと受光機1Bの中央にスリットロールを固定するための軸などを設置するなどして捲回物群を固定することができる。2組の受光機1Aと受光機1Bの幅を移動すれば、径の異なる捲回物からなる捲回物群を一度に測定することも可能である。図3にはこのような複数の捲回物からなる捲回物群を同時に測定した結果の一例を示してある。図中のAの部分は捲回物間の間隙の測定データであり、各捲回物間の断続部分を連続的に複数捲回物間の連続測定データから削除する算出処理部を備えることが望ましい。そのためには、測定データの立上り、立下りの測定データを省くことにより、複数の捲回物外径とする算出方法や、測定データの微分処理を行い、外径測定の変化の急激に起こっている部分を省くことにより複数の捲回物外径とする算出方法をとることができる。また、スリット時に連を分けた場合、それぞれの連毎に1本の捲回軸に巻取られるので、各連の測定情報をフィルム捲回物の膜厚み情報と位置関係を一致させ、連続連の膜厚み情報として処理できる処理部を備えることが望ましい。これらの装置には測定データの表示部分を備えていてもよい。   Moreover, a suitable example in the case of measuring the outer diameter of the wound product group of the present invention is shown in FIG. In order to operate the dimension measuring machine with high accuracy, it is preferable that the wound object group is installed at substantially the center of the two sets of the light receiver 1A and the light receiver 1B. For example, the two sets of the light receiver 1A and the light receiver 1B. The wound group can be fixed by installing a shaft or the like for fixing the slit roll at the center of the sheet. By moving the widths of the two sets of the light receiver 1A and the light receiver 1B, it is also possible to measure a wound object group made of wound objects having different diameters at a time. FIG. 3 shows an example of a result obtained by simultaneously measuring a wound product group including a plurality of such wound products. The portion A in the figure is measurement data of the gap between the wound items, and it is provided with a calculation processing unit that continuously deletes the intermittent portion between the wound items from the continuous measurement data between the plurality of wound items. desirable. For that purpose, by omitting the measurement data at the rise and fall of the measurement data, the calculation method to obtain the outer diameter of multiple wound objects and the differential processing of the measurement data, the change of the outer diameter measurement is abrupt. By omitting the present portion, a calculation method for obtaining a plurality of wound article outer diameters can be taken. In addition, when the reams are divided at the time of slitting, each ream is wound on one winding shaft. Therefore, the measurement information of each ream is matched with the film thickness information of the film wound product, and the positional relationship is set. It is desirable to provide a processing unit that can process the film thickness information. These apparatuses may be provided with a display portion for measurement data.

本発明において、「一枚で評価した膜厚みt」とは、捲回物を構成するポリオレフィン製微多孔膜の膜厚みtのことであり、例えば、ポリオレフィン製微多孔膜捲回物の最外周の微多孔膜について、幅方向に等間隔に複数点において膜厚みを測定し、その平均値を算出することにより求められる。   In the present invention, the “film thickness t evaluated by one sheet” means the film thickness t of the polyolefin microporous film constituting the wound product, for example, the outermost periphery of the polyolefin microporous membrane wound product For the microporous membrane, the thickness is measured at a plurality of points at equal intervals in the width direction, and the average value is calculated.

本発明において、ポリオレフィン製微多孔膜の膜厚みの測定方法に限定はなく、例えば、後述の実施例に示す方法のほか、例えば、微多孔膜上に測定端子を載せ、その動作を読み取り、膜厚みに換算することによっても精度よく測定できる。測定端子の動きの読み取りには、例えば、光学式検知器を用いることができる。また、測定端子により微多孔膜に負荷される単位面積あたりの圧力は、一定の範囲内になるように制御されていることが好ましい。さらに、測定は恒温室において行われることが好ましい。   In the present invention, the method for measuring the film thickness of the polyolefin microporous film is not limited. For example, in addition to the method shown in the examples described later, for example, a measurement terminal is placed on the microporous film, the operation is read, and the film is read. It can also be measured accurately by converting to thickness. For example, an optical detector can be used to read the movement of the measurement terminal. Moreover, it is preferable that the pressure per unit area loaded on the microporous membrane by the measurement terminal is controlled to be within a certain range. Furthermore, the measurement is preferably performed in a temperature-controlled room.

図6は、微多孔膜の膜厚みtを測定するための装置の一例の基本構成部分の側面図を示したものである。支持台21に設置した支柱22に、端子部固定部25、光学式検知器固定部29を取り付ける。
次に、微多孔膜の膜厚みtを精度よく測定する方法を図7、8を用いて説明する。図7は試料台23に微多孔膜を置いた状態を示す図であり、図8は測定端子ロッド24を微多孔膜上に載せた状態を示す図である。図7、8に示すように、試料台23と測定端子ロッド24の間に測定試料である微多孔膜37を載置し、測定端子ロッド手動上下指示ロッド25を動かして、微多孔膜37を測定端子ロッド24と試料台23とで挟み、測定端子ロッド24に直結した面圧調整部固定部32の上下の動きを、例えば面圧調整部固定部32からの反射光などを利用して、光学式検知部30により読み取り、膜厚みに換算して膜厚みを読み取る。その光学式検知部の測定テクノロジーについては、例えば、キーエンス社の総合パーソナル等のカタログに紹介されているように、共焦点測定方式、三角測距方式、オートコリメート方式、光波測距方式等の方式等を使用することができる。最適な例では、三角測距方式の光学検知器を使用するのが望ましい。三角測距方式とは、投光されたレーザー光の対象物の表面での拡散反射光の一部を受光レンズで集光し、CCD上に結像させる方式で、対象物が変位すると、拡散反射光の集光する角度が変位し、CCD上の結像位置が移動し、その移動を検出し、移動量を膜厚みに対応するように換算し、膜厚みとして読み取る。この際に使用する光学式検知部30の分解能は1μm以下であることが好ましく、より好ましくは0.1μm以下、さらに好ましくは0.01μm以下である。また、測定端子ロッド24と試料台23とで微多孔膜37とを挟んだ後、所定時間経過、例えば5秒〜1分、好ましくは5〜30秒後に測定することが好ましい。好ましい光学検知器の具体例としては、キーエンス社製LK−G15が挙げられる。
微多孔膜の厚みを再現性、精度良く測定するためには、試料台23と測定端子ロッド24が平行であることが重要である。そのためには図6に示すように測定端子平行度調整機能27を設け微調整が可能なようにすることが好ましい。試料台23の水平性を水準計にて出した後、試料台と測定端子ロッドの平行度を調整することがより好ましい。測定端子ロッドの径は特に限定されないが、1〜20mmであることが好ましく、更には1〜10mmであることが好ましい。図6〜8の例では、測定端子ロッドとして、その直径が5mmのものを用い、垂直度を検査したものを使用した。
さらに、光学式検知部により測定端子ロッドの動きを読む場合には、日間差が生じないように恒温室で膜厚みを測定することが望ましい。
FIG. 6 shows a side view of a basic component part of an example of an apparatus for measuring the film thickness t of the microporous film. A terminal portion fixing portion 25 and an optical detector fixing portion 29 are attached to the support column 22 installed on the support base 21.
Next, a method for accurately measuring the film thickness t of the microporous film will be described with reference to FIGS. FIG. 7 is a view showing a state in which a microporous membrane is placed on the sample stage 23, and FIG. 8 is a view showing a state in which the measurement terminal rod 24 is placed on the microporous membrane. As shown in FIGS. 7 and 8, a microporous film 37 as a measurement sample is placed between the sample stage 23 and the measurement terminal rod 24, and the measurement terminal rod manual up / down instruction rod 25 is moved to The vertical movement of the surface pressure adjusting unit fixing part 32 sandwiched between the measurement terminal rod 24 and the sample stage 23 and directly connected to the measuring terminal rod 24 is obtained using, for example, reflected light from the surface pressure adjusting part fixing unit 32, etc. The film is read by the optical detector 30 and converted into the film thickness to read the film thickness. As for the measurement technology of the optical detector, for example, as introduced in the catalog of Keyence Corporation's general personal, confocal measurement method, triangular distance measurement method, auto collimation method, light wave distance measurement method, etc. Etc. can be used. In an optimal example, it is desirable to use a triangulation optical detector. The triangulation method is a method in which a part of the diffuse reflected light of the projected laser beam on the surface of the object is collected by a light receiving lens and imaged on the CCD. When the object is displaced, it is diffused. The angle at which the reflected light is collected is displaced, the imaging position on the CCD moves, the movement is detected, the amount of movement is converted to correspond to the film thickness, and is read as the film thickness. The resolution of the optical detection unit 30 used at this time is preferably 1 μm or less, more preferably 0.1 μm or less, and still more preferably 0.01 μm or less. In addition, the measurement is preferably performed after a predetermined time has elapsed, for example, 5 seconds to 1 minute, preferably 5 to 30 seconds, after the microporous membrane 37 is sandwiched between the measurement terminal rod 24 and the sample stage 23. A specific example of a preferable optical detector is LK-G15 manufactured by Keyence Corporation.
In order to measure the thickness of the microporous membrane with high reproducibility and accuracy, it is important that the sample stage 23 and the measurement terminal rod 24 are parallel. For this purpose, it is preferable to provide a measurement terminal parallelism adjustment function 27 as shown in FIG. It is more preferable to adjust the parallelism between the sample stage and the measurement terminal rod after the level of the sample stage 23 is obtained with a level meter. The diameter of the measuring terminal rod is not particularly limited, but is preferably 1 to 20 mm, and more preferably 1 to 10 mm. In the examples of FIGS. 6 to 8, the measurement terminal rod having a diameter of 5 mm was used and the perpendicularity of which was inspected was used.
Furthermore, when the movement of the measuring terminal rod is read by the optical detector, it is desirable to measure the film thickness in a temperature-controlled room so as not to cause a difference between days.

また、微多孔膜の厚みを複数台の測定装置を使用して再現性、精度良く測定するためには、微多孔膜にあたる測定端子ロッドの面圧を一定とすることが好ましい。図6〜8の例においては、測定端子ロッド24のアナログ表示部26の上部に測定端子ロッド24に面圧調整のための重りをのせるための面圧調整部28を設け、測定端子ロッド24の面圧が一定になるように調整し、面圧調整部固定部32で固定する。図6〜8の例においては、面圧調整部28にて測定端子ロッド24の面圧が調整できるように、図7に示すように、アナログ表示部26の内部において測定端子ロッド24が一体となったものを使用した。測定端子ロッド24の面圧を所定圧とするための他の方法としては、例えば、複数の測定装置で用いられる測定端子ロッド自体が同じ重さとなるようにすることも可能である。   In order to measure the thickness of the microporous film with a plurality of measuring devices with high reproducibility and accuracy, it is preferable that the surface pressure of the measurement terminal rod corresponding to the microporous film is constant. 6 to 8, the measurement terminal rod 24 is provided with a surface pressure adjusting unit 28 for placing a weight for adjusting the surface pressure on the measurement terminal rod 24 above the analog display unit 26 of the measurement terminal rod 24. The surface pressure is adjusted so as to be constant, and is fixed by the surface pressure adjusting unit fixing unit 32. 6-8, the measurement terminal rod 24 is integrated with the inside of the analog display unit 26 as shown in FIG. 7 so that the surface pressure of the measurement terminal rod 24 can be adjusted by the surface pressure adjustment unit 28. I used what became. As another method for setting the surface pressure of the measurement terminal rod 24 to a predetermined pressure, for example, the measurement terminal rods used in a plurality of measurement apparatuses can have the same weight.

[ポリオレフィン製微多孔膜捲回物の製造方法]
本発明における、巻き緩みや過度の巻き締まりがなく、外径精度の高いポリオレフィン製微多孔膜捲回物は、マザーロールに捲回されたポリオレフィン製微多孔膜をその全幅にわたって所定幅にスリットした後、スリットされた各ポリオレフィン微多孔膜を巻芯に捲回するに際して、ポリオレフィン製微多孔膜の巻き取り張力を各捲回物毎に制御することにより製造することができる。
各捲回物毎に巻き取り張力を制御する方法に限定はない。例えば、スリットされた各ポリオレフィン微多孔膜を、各々回転駆動部を有する個別の巻芯に捲回し、それぞれの回転駆動部により個別の巻芯を回転させることにより、巻き取り張力を各捲回物毎に制御することができる。また、スリットされた各ポリオレフィン微多孔膜を共通の回転駆動部を有する巻芯や共通の回転駆動部を有する回転軸に固定された複数の巻芯に捲回する場合であれば、別途、各ポリオレフィン微多孔膜毎に個別の張力制御装置を設けることにより、巻き取り張力を各捲回物毎に制御することができる。
[Production method of polyolefin microporous membrane wound product]
In the present invention, there is no winding looseness or excessive tightening, and the polyolefin microporous membrane wound product with high outer diameter accuracy is obtained by slitting a polyolefin microporous membrane wound around a mother roll to a predetermined width over its entire width. Thereafter, when each slit microporous polyolefin membrane is wound around a winding core, it can be produced by controlling the winding tension of the microporous polyolefin membrane for each wound product.
There is no limitation on the method of controlling the winding tension for each wound item. For example, each polyolefin microporous membrane that has been slit is wound on individual winding cores each having a rotation drive unit, and the individual winding cores are rotated by the respective rotation drive units, whereby the winding tension can be adjusted for each wound product. It can be controlled every time. Further, if each slitted polyolefin microporous membrane is wound around a winding core having a common rotational drive unit or a plurality of cores fixed to a rotary shaft having a common rotational drive unit, By providing a separate tension control device for each polyolefin microporous membrane, the winding tension can be controlled for each wound product.

本発明の捲回物は、特にポリオレフィン製微多孔膜を個別駆動式スリット機によりスリットし、管(巻芯)に捲回することにより、好適に得られる。個別駆動式スリット機は、マザーロール全幅にわたってスリットする際に、スリットロール毎のテンションコントロールが可能であるため、本発明のポリオレフィン製微多孔膜捲回物を効率よく製造するのに適している。
個別駆動式スリットの例としては、図4に示されるような、複数個の駆動伝達部6を有する。駆動伝達部6は、例えばパウダークラッチ等を使用しており、共通のACモーターで動くロール9に連結され、管チャック部8にセットされた管(図示せず)の巻取りは駆動伝達部からタイミングベルト7等により駆動できるようにして行うことができる。パウダークラッチを使用した場合には、電気信号によりその出力トルクを制御できる。したがって、各個別の管巻取り部に対して張力検出を行い、電気的にフィードバックをかけることにより、各個別の管巻取り部の張力に応じた捲回が可能になる。図5には、このような装置の概略図を示してある。マザーロール11から繰り出されたスリット前のポリオレフィン製微多孔膜は、カッター14により所望の巾にスリットされ、個別アーム部13(各個別の巻取り部)を有する、共通の軸(図示せず)に支持された管に捲回される。これに対して、従来の同軸駆動タイプのスリット機は、マザーロール全幅にわたってスリットし、共通の巻取り部を有する管に捲回する際に、隣り合う複数の捲回物のうちで特定の捲回物に合わせてテンションコントロールがなされるため、得られる捲回物は固く捲回されたり、ゆるく捲回されたりするので外径を管理し難く、本発明の捲回物を好適に得ることが難しい。また、巻きずれも生じやすい。
The wound product of the present invention is particularly preferably obtained by slitting a polyolefin microporous membrane with an individually driven slit machine and winding it into a tube (core). The individual drive type slitting machine is suitable for efficiently producing the polyolefin microporous film wound product of the present invention because the tension control for each slit roll is possible when slitting the entire width of the mother roll.
As an example of the individual drive type slit, it has a plurality of drive transmission parts 6 as shown in FIG. The drive transmission unit 6 uses, for example, a powder clutch or the like, is connected to a roll 9 that is moved by a common AC motor, and winds a tube (not shown) set on the tube chuck unit 8 from the drive transmission unit. It can be performed by being driven by the timing belt 7 or the like. When a powder clutch is used, the output torque can be controlled by an electric signal. Therefore, winding is performed according to the tension of each individual tube winding unit by detecting the tension for each individual tube winding unit and applying an electrical feedback. FIG. 5 shows a schematic diagram of such a device. The polyolefin microporous membrane before slitting drawn out from the mother roll 11 is slit to a desired width by the cutter 14 and has a common shaft (not shown) having individual arm portions 13 (each individual winding portion). Wound onto a tube supported by On the other hand, the conventional coaxial drive type slitting machine slits over the entire width of the mother roll, and winds it around a pipe having a common winding part. Since tension control is performed in accordance with the wound material, the wound material obtained is hard wound or loosely wound, so it is difficult to control the outer diameter, and the wound material of the present invention can be suitably obtained. difficult. Also, winding slip is likely to occur.

なお、本発明において個別駆動式スリット機とは、ウェブをスリットして捲回する装置であって、スリット後の各ウェブを、各々回転駆動部を有する個別の巻芯に捲回するものをいう。   In the present invention, the individual drive type slitting machine is an apparatus that slits and winds a web, and rolls each web after slitting into individual winding cores each having a rotation drive unit. .

ポリオレフィン製微多孔膜を巻き取る際の巻き取り張力は、マザーロールの繰り出し張力を、125(N/m)以下程度、個々の捲回物の巻き取り張力を、繰り出し張力と概ね等しく(好ましくは±20%以内)することが好ましい。巻き取り張力の具体的な値は、例えば、巻き取り張力を上記の範囲内で変化させて複数回捲回を行い、得られた捲回物の巻きの固さを測定し、その結果に基づいて決定することができる。   The winding tension when winding the polyolefin microporous film is about 125 (N / m) or less for the winding tension of the mother roll, and the winding tension of each wound product is almost equal to the feeding tension (preferably Within ± 20%). The specific value of the winding tension is, for example, based on the result of measuring the hardness of the wound product obtained by performing winding a plurality of times while changing the winding tension within the above range. Can be determined.

本発明においてポリオレフィン製微多孔膜捲回物の固さは、巻芯から5mmの距離において、34N以下であることが好ましい。この固さより固く捲回すると、捲回物の巻形状の不良が起こる。
また、ポリオレフィン製微多孔膜捲回の巻芯から10mmの距離における固さ(F(10))と、巻芯から20mmの距離における固さ(F(20))の差(F(10)−F(20))が、0.05N以上2N以下であることが好ましい。F(10)−F(20)の値がこの範囲にあると、巻ズレ、段ズレコ抜け等の不良が減少する。
ここで、捲回物の固さとは、捲回物の巻き状態を評価するための指標の1つであり、先端の直径が0.04〜0.07mm、針先角度が25〜27°、針先Rが0.04〜0.07mmの針を捲回物の側面に1cm突き刺すのに必要な力(N)をいう。また、巻芯からの距離とは、捲回物の側面において、巻芯表面から巻芯断面(円)の接線に垂直な方向の距離をいう。
捲回物の固さは、例えば、コンバーテック、1996年12月号の「スリッター/リワインダー やさしい基礎技術講座 第7回 巻取ロールの品質に紹介されているような「スミス・ロール固さテスター」に準ずる以下の方法にて測定することができる。
図9に捲回物の固さを測定するための装置の概略図を示す。捲回物の固さ測定装置101は、フォースゲージに針を取り付けたものである。捲回物の固さは、測定装置101の針の先端を測定位置に突き刺し、針が1cm挿入するまで測定装置101を垂直に押し下げ、その時のピーク値の荷重を測定することによって行う。このような装置としては、例えば、日本計測システム(株)のHF−10のデジタルフォースゲージにコクヨ製の安全ピンの「ヒンー13」全長38mmの針側を切り取ったものを用いることができる。
In the present invention, the hardness of the polyolefin microporous membrane wound product is preferably 34 N or less at a distance of 5 mm from the core. If it winds harder than this hardness, the winding shape defect of the wound material will occur.
Further, the difference between the hardness (F (10)) at a distance of 10 mm from the winding core of the polyolefin microporous membrane and the hardness (F (20)) at a distance of 20 mm from the winding core (F (10) − F (20)) is preferably 0.05N or more and 2N or less. When the value of F (10) -F (20) is within this range, defects such as winding misalignment and step misalignment decrease.
Here, the hardness of the wound product is one of the indices for evaluating the wound state of the wound product, the tip diameter is 0.04 to 0.07 mm, the needle tip angle is 25 to 27 °, The force (N) required to pierce the side of the wound object by 1 cm with a needle whose tip R is 0.04 to 0.07 mm. Further, the distance from the core means a distance in a direction perpendicular to the tangent line of the core cross section (circle) from the surface of the core on the side surface of the wound product.
The hardness of the wound material is, for example, “Smith Roll Hardness Tester” as introduced in “Converter, Rewinder, Basic Technology Course 7th Wind Roll Quality” in December 1996. It can be measured by the following method according to the above.
FIG. 9 shows a schematic view of an apparatus for measuring the hardness of the wound product. The wound material hardness measurement apparatus 101 is a force gauge having a needle attached thereto. The hardness of the wound material is determined by piercing the tip of the needle of the measuring device 101 into the measuring position, pressing the measuring device 101 vertically until the needle is inserted 1 cm, and measuring the load at the peak value at that time. As such an apparatus, for example, an HF-10 digital force gauge manufactured by Japan Measuring System Co., Ltd., a safety pin “Hin 13” with a 38 mm length of the needle side cut out can be used.

さらに、マザーロールに捲回されたポリオレフィン製微多孔膜を個別駆動式スリット機によりスリットしてポリオレフィン製微多孔膜捲回物を製造する際に、マザーロール全幅にわたってスリットされた巻きずれが5mm以内である捲回物群において、下記式(1)により算出される膜厚みT(μm)と一枚で評価した膜厚みt(μm)との差(膜厚みの差)の標準偏差が0.7μm以下、更には0.5μm以下となるようにすることは、電極・セパレータ一体型捲回物の缶挿入時の挿入不良を一層低減できる捲回物を提供できる点で好ましい。
T(μm)=π(D−d)/4L (1)
(上記式(1)中、Dは多孔膜を含めた巻芯に捲回した捲回物の外径(mm)を、dは巻芯の外径(mm)を、Lは捲回物の巻長(m)を各々指す)
本発明においては、捲回性、コストの点から、ポリオレフィン製微多孔膜を捲回するための巻芯のサイズが外径91.8mm以上であることが好ましい。使用する巻芯は、通常は内径により称される。外径91.8mmの紙管であれば通常内径76.2mmであり、紙厚みは5〜15mmの範囲にあり、強度により調整される。使用する管は、通常市販されている公差が±0.5mmさらに好ましくは±0.3mmの紙管や、プラスチック管を使用すれば良いが、公差が少ない方が好ましい。
Furthermore, when a polyolefin microporous membrane wound around a mother roll is slit by an individually driven slitting machine to produce a polyolefin microporous membrane wound product, the winding deviation slit across the entire width of the mother roll is within 5 mm. The standard deviation of the difference (film thickness difference) between the film thickness T (μm) calculated by the following formula (1) and the film thickness t (μm) evaluated by one sheet is 0. It is preferable that the thickness is 7 μm or less, and further 0.5 μm or less, in that a wound product can be provided that can further reduce insertion failure when inserting a can of the electrode / separator integrated wound product.
T (μm) = π (D 2 −d 2 ) / 4L (1)
(In the above formula (1), D is the outer diameter (mm) of the wound product wound around the core including the porous membrane, d is the outer diameter (mm) of the wound core, and L is the wound product. (Each refers to the winding length (m))
In the present invention, the winding core for winding the polyolefin microporous membrane is preferably 91.8 mm or more in outer diameter from the viewpoint of winding property and cost. The core used is usually referred to by its inner diameter. In the case of a paper tube having an outer diameter of 91.8 mm, the inner diameter is usually 76.2 mm, the paper thickness is in the range of 5 to 15 mm, and is adjusted by the strength. The tube to be used may be a paper tube or a plastic tube having a tolerance of ± 0.5 mm, more preferably ± 0.3 mm, which is usually commercially available, but it is preferable that the tolerance is small.

本発明の捲回物は、缶挿入時の挿入不良を低減できる電極・セパレータ一体型捲回物を提供できるという効果を奏するが、このような効果は、巾の広いセパレータ(例えば60〜160mm)、巻長の長いセパレータ(例えば500〜3000m、好適には800〜2500m)を用いた電極・セパレータ捲回物用として用いられた場合に、特に顕著である。
本発明のポリオレフィン製微多孔膜捲回物を用いれば、巻芯にポリオレフィン製微多孔膜を捲回した捲回物において、多孔膜を含めた巻芯に捲回した捲回物の外径と巻芯の外径と巻長から算出した膜厚み(μm)を明記することも可能となり、缶挿入時に、挿入不良を低減できる電極・セパレータ捲回物を提供できる。
The wound product of the present invention has the effect of providing an electrode / separator-integrated wound product that can reduce poor insertion at the time of can insertion, but such an effect is a wide separator (for example, 60 to 160 mm). In particular, this is particularly noticeable when used as an electrode / separator roll using a separator having a long winding length (for example, 500 to 3000 m, preferably 800 to 2500 m).
Using the polyolefin microporous membrane wound product of the present invention, in the wound product obtained by winding the polyolefin microporous membrane on the winding core, the outer diameter of the wound product wound on the winding core including the porous membrane and It is also possible to specify the film thickness (μm) calculated from the outer diameter and the winding length of the winding core, and it is possible to provide an electrode / separator wound product that can reduce insertion failure during can insertion.

[ポリオレフィン製微多孔膜]
本発明におけるポリオレフィン製微多孔膜の孔径は、0.001〜1μmであることが好ましく、0.01〜0.1μmであることがより好ましい。本発明において微多孔膜の孔径r(μm)は、キャピラリー内部の流体は、流体の平均自由工程がキャピラリーの孔径より大きいときはクヌーセンの流れに、小さい時はポアズイユの流れに従うことが知られていることを利用して、微多孔膜の透気度測定における空気の流れがクヌーセンの流れに、また微多孔膜の透水度測定における水の流れがポアズイユの流れに従うと仮定して、次に示す式で表すものとする。
r=2ν×(Rliq/Rgas)×(16η/3Ps)×106
ここで、Rgasは空気の透過速度定数(m/(m・sec・Pa))、Rliqは水の透過速度定数(m/(m・sec・Pa))、νは空気の分子速度(m/sec)、ηは水の粘度(Pa・sec)(=0.8950mPa・sec at 25℃)、Psは標準圧力(Pa)(=101325Pa)であり、それぞれ次式で示される。
Rgas=0.0001/(透気度×(6.424×10−4)×(0.01276×101325))
なお、透気度はJIS P−8117に準拠し、求められる。
Rliq=透水度/100
なお、透水度は次のように求められる。直径41mmのステンレス製の透液セルに、あらかじめアルコールに浸しておいた微多孔膜をセットし、該膜のアルコールを水で洗浄した後、約50000Paの差圧で水を透過させ、120sec間経過した際の透水量(cm)より、単位時間・単位圧力・単位面積当たりの透水量を計算し、これを透水度とした。
ν=((8R×T)/(π×M))1/2
なお、Rは気体定数(=8.314)、Tは絶対温度(K)、πは円周率、Mは空気の平均分子量(=2.896×10−2kg/mol)である。
[Polyolefin microporous membrane]
The pore size of the polyolefin microporous membrane in the present invention is preferably 0.001 to 1 μm, and more preferably 0.01 to 0.1 μm. In the present invention, the pore diameter r (μm) of the microporous membrane is known to follow the Knudsen flow when the mean free path of the fluid is larger than the capillary pore size, and follow the Poiseuille flow when the fluid is smaller. Assuming that the air flow in measuring the permeability of a microporous membrane follows the Knudsen flow, and the water flow in measuring the permeability of a microporous membrane follows the Poiseuille flow, It shall be expressed by a formula.
r = 2ν × (Rliq / Rgas) × (16η / 3Ps) × 106
Here, Rgas is the air permeation rate constant (m 3 / (m 2 · sec · Pa)), Rliq is the water permeation rate constant (m 3 / (m 2 · sec · Pa)), and ν is the air molecule. The velocity (m / sec), η is the viscosity of water (Pa · sec) (= 0.8950 mPa · sec at 25 ° C.), and Ps is the standard pressure (Pa) (= 101325 Pa).
Rgas = 0.0001 / (air permeability × (6.424 × 10−4) × (0.01276 × 101325))
In addition, air permeability is calculated | required based on JISP-8117.
Rliq = water permeability / 100
In addition, water permeability is calculated | required as follows. A microporous membrane previously immersed in alcohol is set in a stainless steel permeation cell having a diameter of 41 mm, and after the alcohol in the membrane is washed with water, water is allowed to permeate at a differential pressure of about 50000 Pa, and 120 seconds have elapsed. The water permeability per unit time, unit pressure, and unit area was calculated from the water permeability (cm 3 ) at the time, and this was taken as the water permeability.
ν = ((8R × T) / (π × M)) 1/2
Here, R is a gas constant (= 8.314), T is an absolute temperature (K), π is a circumference ratio, and M is an average molecular weight of air (= 2.896 × 10 −2 kg / mol).

ポリオレフィン製微多孔膜の気孔率は、25%以上75%以下であることが好ましい。ここで、気孔率(%)は、以下の式で表される。
気孔率(%)=[{V−(M/ρ)}/V]×100
式中、Vは微多孔膜の体積(cm)、Mは微多孔膜の質量(g)、ρは微多孔膜を構成する樹脂又は樹脂組成物の密度(g/cm)である。
具体的には、例えば、10cm×10cm角の試料を微多孔膜から切り取り、その体積(cm)と質量(g)を求め、それらと、膜を構成するポリオレフィン樹脂組成物の密度(g/cm)より、上式を用いて算出することができるなお、本発明においては、微多孔膜がポリエチレンからなる場合、ポリエチレンの密度は0.95として計算する。また、ポリオレフィン製微多孔膜の膜厚みtは、3μm以上200μm以下であることが好ましい。
The porosity of the polyolefin microporous membrane is preferably 25% or more and 75% or less. Here, the porosity (%) is expressed by the following equation.
Porosity (%) = [{V− (M / ρ)} / V] × 100
In the formula, V is the volume (cm 3 ) of the microporous membrane, M is the mass (g) of the microporous membrane, and ρ is the density (g / cm 3 ) of the resin or resin composition constituting the microporous membrane.
Specifically, for example, a 10 cm × 10 cm square sample is cut from the microporous membrane, and its volume (cm 3 ) and mass (g) are obtained, and the density of the polyolefin resin composition constituting the membrane (g / g) cm 3 ), which can be calculated using the above formula. In the present invention, when the microporous membrane is made of polyethylene, the density of polyethylene is calculated as 0.95. The film thickness t of the polyolefin microporous membrane is preferably 3 μm or more and 200 μm or less.

ポリオレフィン製微多孔膜のTD方向の動摩擦係数は、0.6以下であることが好ましく、さらに0.1〜0.4であることが好ましい。TD方向の動摩擦係数は、例えば、幅50mm×測定方向200mmの試料について、カトーテック株式会社製、KES−SE摩擦試験機を用い、荷重50g、接触子面積10×10=100mm(0.5mmφのピアノ線20本巻きつけ)、接触子送りスピード1mm/sec、張力6kPa、温度25℃の条件で測定することができる。なお、TD方向の動摩擦係数が0.1〜0.4のポリオレフィン製微多孔膜は、巻きズレ等の不良が発生しやすいので、特に、本発明の捲回物の製造方法により捲回することが好ましい。The dynamic friction coefficient in the TD direction of the polyolefin microporous membrane is preferably 0.6 or less, more preferably 0.1 to 0.4. The dynamic friction coefficient in the TD direction is, for example, for a sample having a width of 50 mm and a measurement direction of 200 mm using a KES-SE friction tester manufactured by Kato Tech Co., Ltd., load 50 g, contact area 10 × 10 = 100 mm 2 (0.5 mmφ 20 piano wires), contact feed speed 1 mm / sec, tension 6 kPa, temperature 25 ° C. In addition, since the polyolefin microporous film having a dynamic friction coefficient in the TD direction of 0.1 to 0.4 tends to cause defects such as winding deviation, it is particularly wound by the method for manufacturing a wound product of the present invention. Is preferred.

また、もし、異物を巻き込んだ場合、過度に固く捲回された捲回物では微多孔膜が傷つきやすく、電池用セパレータとして用いた場合、耐電圧不良品の割合が増加する。この傾向は、特に一軸延伸のみを施した縦横の引張強度が10倍以上異なる異方性の高い微多孔膜に顕著に起こる。
したがって、本発明の巻き締まりのない捲回物やその製造方法は、特に、ポリオレフィン製微多孔膜として、縦方向の引張強度(MD引張強度)と幅方向の引張強度(TD引張強度)との比(MD引張強度/TD引張強度)が10以上であるものを用いる場合に適している。
In addition, if a foreign matter is involved, the microporous membrane is easily damaged by a wound product that is wound too hard, and when used as a battery separator, the proportion of defective withstand voltage increases. This tendency remarkably occurs particularly in highly anisotropic microporous membranes in which the longitudinal and transverse tensile strengths subjected to only uniaxial stretching differ by 10 times or more.
Therefore, the wound product without tightening of the present invention and the method for producing the same, particularly as a polyolefin microporous membrane, have a longitudinal tensile strength (MD tensile strength) and a tensile strength in the width direction (TD tensile strength). It is suitable for the case where the ratio (MD tensile strength / TD tensile strength) is 10 or more.

本発明に用いられるポリオレフィン製微多孔膜は、たとえば、以下のようにして作製することができる。
ポリオレフィンとしては、ポリオレフィン単独物及び2種類以上のポリオレフィン混合物を使用することができる。主たる成分のポリオレフィンとして、例えばポリエチレン、ポリプロピレン、ポリ−4−メチル−1−ペンテンなどが挙げられる。主たる成分以外のポリオレフィンとして、製膜性を損なうことなく、また本発明の目的を損なわない範囲で、各種のポリオレフィンを配合することができる。例えば、孔閉塞特性の向上を目的したα−オレフィンコモノマーの含量が高い低融点ポリエチレンや、耐熱性の向上を目的としたポリプロピレン及びポリ−4−メチル−1−ペンテン等を配合することができる。また、ポリオレフィン以外のポリマー材料や他の有機及び無機材料についても、電池用セパレータとしての性能を損なうことなく、製膜性を損なうことなく、そして本発明の目的を損なわない範囲で配合することができる。微多孔膜を構成するポリオレフィン組成物には、必要に応じて、フェノール系やリン系やイオウ系等の酸化防止剤、ステアリン酸カルシウムやステアリン酸亜鉛等の金属石鹸類、紫外線吸収剤、光安定剤、帯電防止剤、防曇剤、着色顔料等の公知の添加剤を混合して使用できる。
The polyolefin microporous membrane used in the present invention can be produced, for example, as follows.
As the polyolefin, a single polyolefin or a mixture of two or more types of polyolefins can be used. Examples of the main component polyolefin include polyethylene, polypropylene, and poly-4-methyl-1-pentene. As polyolefins other than the main components, various polyolefins can be blended without impairing the film-forming property and without impairing the object of the present invention. For example, low melting point polyethylene having a high α-olefin comonomer content for the purpose of improving pore closing properties, polypropylene and poly-4-methyl-1-pentene for the purpose of improving heat resistance can be blended. In addition, polymer materials other than polyolefin and other organic and inorganic materials can be blended without impairing the performance as a battery separator, without impairing the film forming property, and within the range not impairing the object of the present invention. it can. The polyolefin composition constituting the microporous film includes, as necessary, antioxidants such as phenolic, phosphorous, and sulfur, metal soaps such as calcium stearate and zinc stearate, ultraviolet absorbers, and light stabilizers. In addition, known additives such as an antistatic agent, an antifogging agent, and a coloring pigment can be mixed and used.

本発明のポリオレフィン製微多孔膜の製造方法には、特に制限はなく、いわゆる乾式法、湿式法等が採用できる。いわゆる湿式法により製造方法としては、例えば、上記ポリオレフィンに対して、その融点以上の温度で、可塑剤と呼ばれる溶媒に溶解し、得られた溶液を結晶化温度以下にまで冷却して高分子ゲルを生成し、該高分子ゲルを用いて成膜を行い(成膜工程)、得られた膜を延伸した(延伸工程)後、可塑剤を除去する(可塑剤除去工程)ことによってポリオレフィン製微多孔膜を作製することができる。
ここでいう可塑剤は、その沸点以下の温度でポリオレフィンと均一な溶液を形成し得る有機化合物を意味し、その具体例として、デカリン、キシレン、ジオクチルフタレート、ジブチルフタレート、ステアリルアルコール、オレイルアルコール、デシルアルコール、ノニルアルコール、ジフェニルエーテル、n−デカン、n−ドデカン、パラフィン油などが挙げられる。また、可塑剤除去工程から再生した可塑剤を用いることもできる。
高分子ゲル中の可塑剤の割合は特に限定はされないが、20重量%〜90重量%が好ましく、より好ましくは50重量%〜80重量%である。可塑剤の割合が20重量%以下では適当な気孔率を有する微多孔膜を得るのが難しい傾向にあり、90重量%以上では熱溶液の粘度が低下してシートの連続成形が困難となる傾向にある。
以下、ポリオレフィン製微多孔膜の製造方法の一例を上記製膜工程、延伸工程及び可塑剤除去工程に分けて説明する。
There is no restriction | limiting in particular in the manufacturing method of the polyolefin microporous film of this invention, So-called dry method, wet method, etc. are employable. The so-called wet method can be prepared by, for example, dissolving the above-mentioned polyolefin in a solvent called a plasticizer at a temperature equal to or higher than its melting point, and cooling the resulting solution to a temperature equal to or lower than the crystallization temperature. The polymer gel is used to form a film (film formation process), and the resulting film is stretched (stretching process), and then the plasticizer is removed (plasticizer removal process). A porous membrane can be produced.
The plasticizer here means an organic compound that can form a uniform solution with polyolefin at a temperature below its boiling point, and specific examples thereof include decalin, xylene, dioctyl phthalate, dibutyl phthalate, stearyl alcohol, oleyl alcohol, decyl. Examples include alcohol, nonyl alcohol, diphenyl ether, n-decane, n-dodecane, and paraffin oil. Moreover, the plasticizer reproduced | regenerated from the plasticizer removal process can also be used.
The proportion of the plasticizer in the polymer gel is not particularly limited, but is preferably 20% by weight to 90% by weight, and more preferably 50% by weight to 80% by weight. When the proportion of the plasticizer is 20% by weight or less, it tends to be difficult to obtain a microporous film having an appropriate porosity, and when it is 90% by weight or more, the viscosity of the hot solution is lowered and it is difficult to continuously form the sheet. It is in.
Hereinafter, an example of a method for producing a polyolefin microporous film will be described by dividing it into the film forming process, the stretching process and the plasticizer removing process.

[成膜工程]
成膜方法は特に限定されないが、例えば押出機に混合ポリオレフィン粉末と可塑剤とを供給し、両者を200℃程度の温度で溶融混錬した後、通常のハンガーコートダイから冷却ロールの上へキャストすることによって数十μmから数mmの膜厚のシートを連続的に成形することができる。
[Film formation process]
The film forming method is not particularly limited. For example, the mixed polyolefin powder and the plasticizer are supplied to an extruder, melted and kneaded at a temperature of about 200 ° C., and then cast from a normal hanger coat die onto a cooling roll. By doing so, a sheet having a film thickness of several tens of μm to several mm can be continuously formed.

[延伸工程]
次に得られたシートを少なくとも一軸方向に延伸することによって延伸膜とする。延伸方法は特に限定はされないが、テンター法、ロール法、圧延法等が使用できる。このうち、テンター法による同時2軸延伸が好ましい。延伸温度は常温から高分子ゲルの融点までの温度、好ましくは80〜140℃、さらに好ましくは100〜130℃である。延伸倍率は面積による倍率で4〜400倍であることが好ましく、より好ましくは8〜200倍、さらに好ましくは16〜100倍である。延伸倍率が4倍以下ではセパレータとしての強度が不十分であり、400倍以上では延伸が困難であるだけでなく、得られた微多孔膜の気孔率が低い等の弊害が生じやすい傾向にある。
[Stretching process]
Next, the obtained sheet is stretched at least in a uniaxial direction to obtain a stretched film. Although the extending | stretching method is not specifically limited, A tenter method, a roll method, a rolling method etc. can be used. Among these, simultaneous biaxial stretching by a tenter method is preferable. The stretching temperature is a temperature from room temperature to the melting point of the polymer gel, preferably 80 to 140 ° C, more preferably 100 to 130 ° C. The draw ratio is preferably 4 to 400 times, more preferably 8 to 200 times, and still more preferably 16 to 100 times, depending on the area. If the draw ratio is 4 times or less, the strength as a separator is insufficient, and if it is 400 times or more, not only is the drawing difficult, but also the resulting microporous membrane has a tendency to cause problems such as low porosity. .

[可塑剤除去工程]
次に、延伸膜から可塑剤を除去することによって微多孔膜を得る。可塑剤の除去方法は特に限定されない。例えば可塑剤としてパラフィン油やジオクチルフタレートを使用する場合は、これらを塩化メチレンやメチルエチルケトン等の有機溶媒で抽出すればよいが、得られた微多孔膜をその融点温度以下の温度で過熱乾燥することによってより十分に除去することもできる。また、例えば可塑剤としてデカリン等の低沸点化合物を使用する場合は、微多孔膜の融点温度以下の温度で加熱乾燥するだけで除去することができる。低コストを実現するため、使用した有機溶剤は回収して再度可塑剤除去に使用してもよい。透過性を改善したり、寸法安定性を高めるため、以上述べた製法によって得られたポリオレフィン製微多孔膜に、必要に応じて融点温度以下の温度で熱処理を施すことも好ましい。
[Plasticizer removal process]
Next, a microporous film is obtained by removing the plasticizer from the stretched film. The method for removing the plasticizer is not particularly limited. For example, when paraffin oil or dioctyl phthalate is used as a plasticizer, these may be extracted with an organic solvent such as methylene chloride or methyl ethyl ketone, but the resulting microporous film is dried by heating at a temperature below its melting temperature. Can also be removed more fully. For example, when a low boiling point compound such as decalin is used as a plasticizer, it can be removed simply by heating and drying at a temperature lower than the melting point temperature of the microporous membrane. In order to realize low cost, the used organic solvent may be recovered and used again for removing the plasticizer. In order to improve the permeability or increase the dimensional stability, it is also preferable to heat-treat the polyolefin microporous film obtained by the above-described production method at a temperature not higher than the melting point as necessary.

以下、実施例及び比較例によって本発明を具体的に説明するが、これらは本発明の範囲を制限しない。本発明で用いた各種物性は、以下の試験方法に基づいて測定した。
(1)一枚で評価した膜厚t(μm)
スリットされた微多孔膜から膜を25cm切り出して東洋精機製の微小測厚器(タイプKBM)を用いて室温23℃で10点測定し、平均値をtとした。
(2)多孔膜を含めた管に捲回した捲回物の外径と巻芯の外径と巻長から算出した膜厚みT(μm)
予め外径を測定した巻芯d(mm)に、スリットされ捲回されたポリオレフィン製微多孔膜を含んだ外径D(mm)を、特開2006−88255号公報に記載の外径測定装置により測定する。捲回巻長をL(m)とすると
T(μm)=π(D−d)/4L
によりTを求める。
スリットされ捲回されたポリオレフィン製微多孔膜を含んだ外径Dの測定は、両端の耳立ちを除外するため両端から内側に3mm入った部分の外径を巾方向に1mmごとに測定し、その平均値をDとした。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, these do not restrict | limit the scope of the present invention. Various physical properties used in the present invention were measured based on the following test methods.
(1) Film thickness t (μm) evaluated by one sheet
A 25 cm portion of the membrane was cut out from the slit microporous membrane, and 10 points were measured at a room temperature of 23 ° C. using a micro thickness gauge (type KBM) manufactured by Toyo Seiki. The average value was t.
(2) Film thickness T (μm) calculated from the outer diameter of the wound product wound around the tube including the porous film, the outer diameter of the core and the winding length
An outer diameter D (mm) including a polyolefin microporous membrane that has been slit and wound on a core d (mm) whose outer diameter has been measured in advance is used as an outer diameter measuring device described in JP-A-2006-88255. Measure with When the winding length is L (m), T (μm) = π (D 2 −d 2 ) / 4L
T is obtained by
The measurement of the outer diameter D including the polyolefin microporous membrane that has been slit and wound is performed by measuring the outer diameter of the portion 3 mm inward from both ends in order to exclude the ears at both ends in every 1 mm in the width direction. The average value was D.

(3)電極・セパレータ捲回物の作製
正極の作製:活物質としてリチウムコバルト複合酸化物LiCoO2を92.2重量%、導電剤としてリン片状グラファイトとアセチレンブラックをそれぞれ2.3重量%、バインダーとしてポリフッ化ビニリデン(PVDF)3.2重量%をN−メチルピロリドン(NMP)中に分散させてスラリーを調製した。このスラリーを正極集電体となる厚さ20μmのアルミニウム箔の片面にダイコーターで塗付し、130℃で3分間乾燥後、ロールプレス機で圧縮成形した。このとき、正極の活物質塗付量は250g/m,活物質嵩密度は3.00g/cmになるようにする。これを幅約60mmに切断して帯状にした。
負極の作製:活物質として人造グラファイト96.9重量%、バインダーとしてカルボキシメチルセルロースのアンモニウム塩1.4重量%とスチレン−ブタジエン共重合体ラテックス1.7重量%を精製水中に分散させてスラリーを調製した。このスラリーを負極集電体となる厚さ12μmの銅箔の片面にダイコーターで塗付し、120℃で3分間乾燥後、ロールプレス機で圧縮成形した。このとき、負極の活物質塗付量は106g/m,活物質嵩密度は1.35g/cmになるようにした。これを幅約60mmに切断して帯状にした。
電極・セパレータ捲回物作製:上記の微多孔膜セパレータ,帯状正極及び帯状負極を、帯状負極、セパレータ、帯状正極、セパレータの順に重ねて渦巻状に複数回捲回することで電極・セパレータ捲回物を作製した。
(3) Preparation of electrode / separator wound material Preparation of positive electrode: lithium cobalt composite oxide LiCoO2 as active material 92.2 wt%, flake graphite and acetylene black 2.3 wt% as conductive agent, binder A slurry was prepared by dispersing 3.2% by weight of polyvinylidene fluoride (PVDF) in N-methylpyrrolidone (NMP). This slurry was applied to one side of a 20 μm thick aluminum foil serving as a positive electrode current collector with a die coater, dried at 130 ° C. for 3 minutes, and then compression molded with a roll press. At this time, the active material coating amount of the positive electrode is 250 g / m 2 and the active material bulk density is 3.00 g / cm 3 . This was cut into a width of about 60 mm to form a strip.
Production of negative electrode: 96.9% by weight of artificial graphite as active material, 1.4% by weight of ammonium salt of carboxymethyl cellulose and 1.7% by weight of styrene-butadiene copolymer latex as a binder were dispersed in purified water to prepare a slurry. did. This slurry was applied to one side of a 12 μm thick copper foil serving as a negative electrode current collector with a die coater, dried at 120 ° C. for 3 minutes, and then compression molded with a roll press. At this time, the active material application amount of the negative electrode was set to 106 g / m 2 , and the active material bulk density was set to 1.35 g / cm 3 . This was cut into a width of about 60 mm to form a strip.
Electrode / separator wound material production: The above-mentioned microporous membrane separator, strip-shaped positive electrode and strip-shaped negative electrode are wound in a spiral shape by overlapping the strip-shaped negative electrode, separator, strip-shaped positive electrode, and separator in this order. A product was made.

(4)電極・セパレータ捲回物の缶挿入性
上記捲回物を用意した18mmφの缶に、作製した捲回物をチャックではさみ、自動的に挿入する缶挿入機を使用して評価した。
缶挿入不良 100巻中0巻以下 最良
2巻以下 良好
それ以外 不良
とした。
(4) Can Insertability of Electrode / Separator Wound Product Can be evaluated by using a can insertion machine that automatically inserts the produced wound product with a chuck between 18 mmφ cans prepared with the above wound product.
Can insertion failure 0 or less out of 100
2 volumes or less
Other than that, it was regarded as defective.

(5)粘度平均分子量Mv
実施例、比較例で使用したポリエチレンについて、ASTM−D4020に基づき、デカリン溶媒における135℃での極限粘度[η]を求め、以下の式により粘度平均分子量Mvを算出した。
[η]=6.77×10−4Mv0.67
(6)捲回物の固さ
日本計測システム(株)のHF−10のデジタルフォースゲージに、コクヨ製の安全ピンの「ヒンー13」全長38mmの針側を切り取ったものを取り付け、測定装置とした。これを捲回物の側面に突き刺し、針が1cm挿入するまで垂直に押し下げ、ピーク値の荷重を測定した。なお、コクヨ製の安全ピンの「ヒンー13」全長38mmの針側の先の形状は、針先角度が26°、針先Rが0.04〜0.07mmで、針先断面の直径は0.047mmであった。
(7)透気度(sec/100cc)
JIS P−8117に準拠し、ガーレー式透気度計(東洋精器(株)製、G−B2(商標))により測定した。
(8)(MD引張強度/TD引張強度)比
JIS K7127に準拠し、島津製作所製の引張試験機、オートグラフAG−A型(商標)を用いて、MD引張強度測定用サンプル及びTD引張強度測定用サンプル(形状;幅10mm×長さ100mm)の引張強度を測定した。チャック間距離を50mmとし、サンプルの両端部(各25mm幅)の片面にセロハンテープ(日東電工包装システム(株)製、商品名:N.29)を貼ったものを用いた。更に、試験中のサンプル滑りを防止するために、引張試験機のチャック内側に、厚み1mmのフッ素ゴムを貼り付けた。
引張強度(MPa)を、サンプル破断時に与えられていた引張力を、試験前のサンプル断面積で除することにより求め、MD引張強度とTD引張強度の値の比を計算した。なお、測定は、温度23±2℃、チャック圧0.30MPa、引張速度200mm/分(チャック間距離を50mm確保できないサンプルにあっては、ひずみ速度400%/分)で行った。
(5) Viscosity average molecular weight Mv
Based on ASTM-D4020, the intrinsic viscosity [η] at 135 ° C. in a decalin solvent was determined for the polyethylene used in Examples and Comparative Examples, and the viscosity average molecular weight Mv was calculated by the following formula.
[Η] = 6.77 × 10 −4 Mv 0.67
(6) Hardness of wound material A KOKUYO safety pin "Hin 13" with a 38mm length of the needle side cut off is attached to the HF-10 digital force gauge of Japan Measurement System Co., Ltd. did. This was stabbed into the side of the wound product, and pushed down vertically until the needle was inserted 1 cm, and the load at the peak value was measured. The tip of the KOKUYO safety pin “Hin 13” with a total length of 38 mm on the needle side has a needle tip angle of 26 °, a needle tip R of 0.04 to 0.07 mm, and a needle tip cross-sectional diameter of 0. 0.047 mm.
(7) Air permeability (sec / 100cc)
Based on JIS P-8117, it measured with the Gurley type air permeability meter (Toyo Seiki Co., Ltd. product, G-B2 (trademark)).
(8) (MD tensile strength / TD tensile strength) ratio In accordance with JIS K7127, using a tensile tester manufactured by Shimadzu Corporation, Autograph AG-A type (trademark), a sample for measuring MD tensile strength and TD tensile strength The tensile strength of the measurement sample (shape: width 10 mm × length 100 mm) was measured. The distance between chucks was set to 50 mm, and cellophane tape (manufactured by Nitto Denko Packaging System Co., Ltd., trade name: N.29) was applied to one side of both ends (25 mm width) of the sample. Furthermore, in order to prevent sample slipping during the test, 1 mm-thick fluororubber was affixed inside the chuck of the tensile tester.
The tensile strength (MPa) was obtained by dividing the tensile force applied at the time of sample break by the sample cross-sectional area before the test, and the ratio of the values of MD tensile strength and TD tensile strength was calculated. The measurement was performed at a temperature of 23 ± 2 ° C., a chuck pressure of 0.30 MPa, and a tensile speed of 200 mm / min (in the case of a sample where the distance between chucks cannot be secured 50 mm, the strain rate is 400% / min).

[実施例1]
[ポリオレフィン製微多孔膜の作製]
Mv27万のポリエチレン35重量%、Mv95万のポリエチレン65重量%の混合物をタンブラーブレンダーを用いてドライブレンドし、ポリオレフィン組成物を得た。得られた組成物30重量%と流動パラフィン70重量%を、二軸押し出し機にて均一な溶融混練を行い、ポリエチレン溶融混練物を得た。溶融混練条件は、設定温度200℃、スクリュー回転数170rpm、吐出量15kg/hrで行った。続いて、溶融混練物を、220℃に保持されたT−ダイ(幅250mm)を用い、溶融混練物をシート状に押し出した。
表面温度60℃に制御された金属ロールで溶融混練物を圧着、冷却することにより、厚み1000μmの厚み安定性に優れたゲルシートを得た。
次に同時ニ軸延伸機を用いて、延伸温度125℃で7×7倍に延伸し、続いて、メチルエチルケトン槽に導き、メチルエチルケトン中に充分に浸漬して流動パラフィンを抽出除去し、その後メチルエチルケトンを乾燥除去した。
さらに、テンター延伸機で、横方向に120℃で1.5倍延伸を行い、125℃で熱固定を行い、横幅1.2m、膜厚み18μm、気孔率40%、孔径0.05μmの微多孔膜を得た。また、微多孔膜のTD方向の動摩擦係数は0.4であった。
[Example 1]
[Preparation of microporous membrane made of polyolefin]
A mixture of 35% by weight of polyethylene having an Mv of 270,000 and 65% by weight of polyethylene having an Mv of 950,000 was dry blended using a tumbler blender to obtain a polyolefin composition. 30% by weight of the obtained composition and 70% by weight of liquid paraffin were uniformly melt-kneaded with a twin screw extruder to obtain a polyethylene melt-kneaded product. The melt-kneading conditions were a set temperature of 200 ° C., a screw rotation speed of 170 rpm, and a discharge rate of 15 kg / hr. Subsequently, the melt-kneaded product was extruded into a sheet using a T-die (width: 250 mm) maintained at 220 ° C.
The melt-kneaded material was pressure-bonded and cooled with a metal roll controlled at a surface temperature of 60 ° C. to obtain a gel sheet having a thickness stability of 1000 μm.
Next, using a simultaneous biaxial stretching machine, the film was stretched 7 × 7 times at a stretching temperature of 125 ° C., then led to a methyl ethyl ketone bath, sufficiently immersed in methyl ethyl ketone to extract and remove liquid paraffin, and then methyl ethyl ketone was removed. Removed dry.
Further, the film was stretched 1.5 times at 120 ° C. in the transverse direction with a tenter stretching machine, heat fixed at 125 ° C., microporous having a width of 1.2 m, a film thickness of 18 μm, a porosity of 40%, and a pore diameter of 0.05 μm. A membrane was obtained. The dynamic friction coefficient in the TD direction of the microporous film was 0.4.

[ポリオレフィン製微多孔膜捲回物の作製]
複数連に細断したポリオレフィン製微多孔膜を複数本の巻芯に巻き取る際に、個別に張力コントロールできるように、各個別の巻取部において張力検出器を設け、個別に各細断されたポリオレフィン製微多孔膜の張力を検出し、その検出値に基づき、各駆動源の出力トルクを制御できるようにした。
作製したポリオレフィン製微多孔膜を個別駆動スリッターで巾60mmにスリットし、紙製管(サイズ等:3B)に捲回してポリオレフィン製微多孔膜捲回物を得た。d、Lはそれぞれ102mm、1000mであった。
8本のマザーロールをスリットして160巻のポリオレフィン製微多孔膜捲回物を製造したところ、5mm以上の巻きずれが発生したものは1巻のみだった。この中から巻きずれが5mm以内の捲回スリット物を150巻抽出し、D、T、tを測定・算出したところ、Dは181.2〜182.9mmでTは17.6〜18.1μm、tは17〜19μmであり、|T−t|の最大値は1.2μmで、標準偏差は0.4μmであった。また、F(5)の平均値は25N、F(10)−F(20)の平均値は1Nだった。
なお、スリッターにおける繰り出し張力はマザーロールの全幅1.2mに対し100Nとし、60mm幅の各捲回物の張力はいずれも5Nとなるように制御した。
[電極・セパレータ捲回物の作製・評価]
(3)の電極・セパレータ捲回物の作製に基づき、電極・セパレータ捲回物を作成し、次に(4)電極・セパレータ捲回物の缶挿入性に基づき評価したところ、不良は0で最良であった。
[Production of polyolefin microporous membrane wound product]
In order to individually control the tension when winding a polyolefin microporous membrane that has been shredded into multiple strands onto multiple cores, a tension detector is provided in each individual winding section, and each individual shredding is performed. Further, the tension of the polyolefin microporous membrane was detected, and the output torque of each drive source could be controlled based on the detected value.
The prepared polyolefin microporous membrane was slit to a width of 60 mm with an individual drive slitter and wound into a paper tube (size, etc .: 3B) to obtain a polyolefin microporous membrane wound product. d and L were 102 mm and 1000 m, respectively.
When 160 rolls of polyolefin microporous membrane wound product were manufactured by slitting 8 mother rolls, only one roll had a winding deviation of 5 mm or more. From this, 150 winding slits with a winding deviation of 5 mm or less were extracted, and D, T, and t were measured and calculated. As a result, D was 181.2 to 182.9 mm and T was 17.6 to 18.1 μm. , T was 17 to 19 μm, the maximum value of | T−t | was 1.2 μm, and the standard deviation was 0.4 μm. Moreover, the average value of F (5) was 25N, and the average value of F (10) -F (20) was 1N.
The feeding tension in the slitter was controlled to 100 N with respect to the total width of 1.2 m of the mother roll, and the tension of each 60 mm wide wound product was controlled to 5 N.
[Production and evaluation of wound electrode and separator]
Based on the production of the electrode / separator roll of (3), an electrode / separator roll was prepared, and then evaluated based on the can / insertability of the electrode / separator roll (4). It was the best.

[比較例1]
実施例1で作製したポリオレフィン製微多孔膜を、同軸スリッターで巾60mmにスリットし管(サイズ等:3B)に捲回してポリオレフィン製微多孔膜捲回物を得た。d、Lはそれぞれ102mm、1000mであった。
9本のマザーロールをスリットして180巻のポリオレフィン製微多孔膜捲回物を製造したところ、5mm以上の巻きずれが発生したものは12巻だった。巻きずれが5mm以内の捲回スリット物を150巻抽出し、D、T、tを測定・算出したところ、Dは180.2〜183.9mmでTは17.2〜18.5μm、tは17〜19μmであり、|T−t|の最大値は1.6μmで、標準偏差は0.8μmであった。
なお、本比較例で使用した同軸スリッターとは、スリット後のウエブを交互に振り分けて回転駆動部を有する2本の回転軸に固定された複数の巻芯に一括して巻き取るものである。スリッターにおける繰り出し張力はマザーロールの全幅1.2mに対し100Nとし、捲回物の巻き取り張力は各回転軸に対して50Nとして、捲回物毎の巻き取り張力制御は行わなかった。
実施例1と同様にして捲回物缶挿入性を評価したところ3巻不良が起こり、不良であった。
[Comparative Example 1]
The polyolefin microporous membrane produced in Example 1 was slit to a width of 60 mm with a coaxial slitter and wound on a tube (size, etc .: 3B) to obtain a polyolefin microporous membrane wound product. d and L were 102 mm and 1000 m, respectively.
Nine mother rolls were slit to produce 180 rolls of polyolefin microporous membrane wound product, and there were 12 rolls with a winding displacement of 5 mm or more. When 150 winding rolls with a winding deviation of 5 mm or less were extracted and D, T, and t were measured and calculated, D was 180.2 to 183.9 mm, T was 17.2 to 18.5 μm, and t was The maximum value of | T−t | was 1.6 μm, and the standard deviation was 0.8 μm.
The coaxial slitter used in this comparative example is one in which the web after slitting is alternately distributed and wound around a plurality of cores fixed to two rotating shafts each having a rotation drive unit. The feeding tension in the slitter was 100 N for the total width of the mother roll of 1.2 m, the winding tension of the wound material was 50 N for each rotating shaft, and the winding tension control for each wound material was not performed.
When the inserted property of the wound product can was evaluated in the same manner as in Example 1, 3 winding defects occurred and were defective.

[実施例2]
[ポリオレフィン製微多孔膜の作製]
Mv27万のポリエチレン35重量%、Mv95万のポリエチレン65重量%の混合物をタンブラーブレンダーを用いてドライブレンドし、ポリオレフィン組成物を得た。得られた組成物30重量%と流動パラフィン70重量%を、二軸押し出し機にて均一な溶融混練を行い、ポリエチレン溶融混練物を得た。溶融混練条件は、設定温度200℃、スクリュー回転数170rpm、吐出量15kg/hrで行った。続いて、溶融混練物を、220℃に保持されたT−ダイ(幅250mm)を用い、溶融混練物をシート状に押し出した。
表面温度60℃に制御された金属ロールで溶融混練物を圧着、冷却することにより、厚み1100μmの厚み安定性に優れたゲルシートを得た。
次に同時ニ軸延伸機を用いて、延伸温度125℃で7×7倍に延伸し、続いて、メチルエチルケトン槽に導き、メチルエチルケトン中に充分に浸漬して流動パラフィンを抽出除去し、その後メチルエチルケトンを乾燥除去した。
さらに、テンター延伸機で、横方向に120℃で1.5倍延伸を行い、125℃で熱固定を行い、横幅1.2m、膜厚み20μm、気孔率40%、孔径0.05μmの微多孔膜を得た。また、微多孔膜のTD方向の動摩擦係数は0.4であった。
[Example 2]
[Preparation of microporous membrane made of polyolefin]
A mixture of 35% by weight of polyethylene having an Mv of 270,000 and 65% by weight of polyethylene having an Mv of 950,000 was dry blended using a tumbler blender to obtain a polyolefin composition. 30% by weight of the obtained composition and 70% by weight of liquid paraffin were uniformly melt-kneaded with a twin screw extruder to obtain a polyethylene melt-kneaded product. The melt-kneading conditions were a set temperature of 200 ° C., a screw rotation speed of 170 rpm, and a discharge rate of 15 kg / hr. Subsequently, the melt-kneaded product was extruded into a sheet using a T-die (width: 250 mm) maintained at 220 ° C.
A melt-kneaded product was pressure-bonded and cooled with a metal roll controlled at a surface temperature of 60 ° C. to obtain a gel sheet having a thickness stability of 1100 μm and excellent thickness stability.
Next, using a simultaneous biaxial stretching machine, the film was stretched 7 × 7 times at a stretching temperature of 125 ° C., then led to a methyl ethyl ketone bath, sufficiently immersed in methyl ethyl ketone to extract and remove liquid paraffin, and then methyl ethyl ketone was removed. Removed dry.
Further, using a tenter stretching machine, the film was stretched 1.5 times at 120 ° C. in the transverse direction, heat-set at 125 ° C., microporous having a width of 1.2 m, a film thickness of 20 μm, a porosity of 40%, and a pore diameter of 0.05 μm. A membrane was obtained. The dynamic friction coefficient in the TD direction of the microporous film was 0.4.

[ポリオレフィン製微多孔膜捲回物の作製]
上記方法により作製したポリオレフィン製微多孔膜を個別駆動スリッターで巾60mmにスリットし、プラスチック製管(サイズ等:6B)に捲回してポリオレフィン製微多孔膜捲回物を得た。d、Lはそれぞれ150mm、1000mであった。
8本のマザーロール8をスリットして160巻のポリオレフィン製微多孔膜捲回物を製造したところ、5mm以上の巻きずれが発生したものは2巻だった。巻きずれが5mm以内の捲回スリット物を150巻抽出し、D、T、tを測定・算出したところ、Dは216.2〜219.3mmでTは19.0〜20.1μm、tは19.7〜21μmであり、|T−t|の最大値は1.4μmで、標準偏差は0.3μmであった。また、F(5)の平均値は24N、F(10)−F(20)の平均値は0.9Nだった。
なお、スリッターにおける繰り出し張力はマザーロールの全幅1.2mに対し100Nとし、60mm幅の各捲回物の張力はいずれも5Nとなるように制御した。
[電極・セパレータ捲回物の作製・評価]
(3)の電極・セパレータ捲回物の作製に基づき、電極・セパレータ捲回物を作成し、次に(4)電極・セパレータ捲回物の缶挿入性に基づき評価したところ、不良は1で良好であった。
[Production of polyolefin microporous membrane wound product]
The polyolefin microporous membrane produced by the above method was slit to a width of 60 mm with an individual drive slitter and wound into a plastic tube (size, etc .: 6B) to obtain a polyolefin microporous membrane wound product. d and L were 150 mm and 1000 m, respectively.
When 160 rolls of a polyolefin microporous membrane wound product were manufactured by slitting the 8 mother rolls 8, there were 2 rolls with a winding displacement of 5 mm or more. When 150 winding rolls with a winding deviation of 5 mm or less were extracted and D, T, and t were measured and calculated, D was 216.2 to 219.3 mm, T was 19.0 to 20.1 μm, and t was The maximum value of | T−t | was 1.4 μm, and the standard deviation was 0.3 μm. The average value of F (5) was 24N, and the average value of F (10) -F (20) was 0.9N.
The feeding tension in the slitter was controlled to 100 N with respect to the total width of 1.2 m of the mother roll, and the tension of each 60 mm wide wound product was controlled to 5 N.
[Production and evaluation of wound electrode and separator]
Based on the preparation of the electrode / separator roll of (3), an electrode / separator roll was prepared, and then evaluated based on the can / insertability of the electrode / separator roll (4). It was good.

[比較例2]
実施例2で作製したポリオレフィン製微多孔膜を、同軸スリッターで巾60mmにスリットし管(サイズ等:6B)に捲回してポリオレフィン製微多孔膜捲回物を得た。d、L
はそれぞれ150mm、1000mであった。
9本のマザーロールをスリットして180巻のポリオレフィン製微多孔膜捲回物を製造したところ、5mm以上の巻きずれが発生したものは8巻だった。巻きずれが5mm以内の捲回スリット物を150巻抽出し、D、T、tを測定・算出したところ、Dは215.5〜220.1mmでTは18.2〜20.7μm、tは19.7〜21μmであり、|T−t|の最大値は1.9μmで、標準偏差は0.8μmであった。
なお、スリッターにおける繰り出し張力はマザーロールの全幅1.2mに対し100Nとし、捲回物の巻き取り張力は各回転軸に対して50Nとして、捲回物毎の巻き取り張力制御は行わなかった。
実施例1と同様にして捲回物缶挿入性を評価したところ3巻不良が起こり、不良であった。
[Comparative Example 2]
The polyolefin microporous membrane produced in Example 2 was slit to a width of 60 mm with a coaxial slitter and wound into a tube (size, etc .: 6B) to obtain a polyolefin microporous membrane wound product. d, L
Were 150 mm and 1000 m, respectively.
Nine mother rolls were slit to produce 180 rolls of polyolefin microporous membrane wound product. When the winding deviation of 5 mm or more occurred, there were 8 rolls. When 150 winding wounds with a winding deviation of 5 mm or less were extracted and D, T, and t were measured and calculated, D was 215.5 to 220.1 mm, T was 18.2 to 20.7 μm, and t was The maximum value of | T−t | was 1.9 μm, and the standard deviation was 0.8 μm.
The feeding tension in the slitter was set to 100 N with respect to the total width of the mother roll of 1.2 m, the winding tension of the wound product was set to 50 N with respect to each rotating shaft, and the winding tension control for each wound product was not performed.
When the inserted property of the wound product can was evaluated in the same manner as in Example 1, 3 winding defects occurred and were defective.

[実施例3]
Mv27万のポリエチレン12.8重量%、Mv95万のポリエチレンMvがの超高分子量ポリエチレン19.2重量%、フタル酸ジオクチル(DOP)48重量%、微粉シリカ20重量%を混合造粒した後、先端にTダイを装着した2軸押出機にて溶融混練した後に押出し、両側から加熱したロールで圧延し、厚さ110μmのシート状に成形した。該成型物からDOP、微粉シリカを抽出除去し微多孔膜を作製した。該微多孔膜を2枚重ねて110℃で4.5倍縦方向に延伸した後、133℃で横方向に1.7倍延伸し、最後に135℃にて熱処理した。横幅1.2m、膜厚み18μm、気孔率50%、孔径0.1μmの微多孔膜を得た。また、微多孔膜のTD方向の動摩擦係数は0.2であった。
[ポリオレフィン製微多孔膜捲回物の作製]
上記方法により作製したポリオレフィン製微多孔膜を個別駆動スリッターで巾60mmにスリットし、プラスチック製管(サイズ等:3B)に捲回してポリオレフィン製微多孔膜捲回物を得た。d、Lはそれぞれ102mm、1000mであった。
8本のマザーロールをスリットして160巻のポリオレフィン製微多孔膜捲回物を製造したところ、5mm以上の巻きずれが発生したものは2巻だった。巻きずれが5mm以内の捲回スリット物を150巻抽出し、D、T、tを測定・算出したところ、Dは181.2〜183.2mmでTは17.6〜18.2μm、tは17〜19μmであり、|T−t|の最大値は1.3μmで、標準偏差は0.5μmであった。また、F(5)の平均値は25N、F(10)−F(20)の平均値は2Nだった。
なお、スリッターにおける繰り出し張力はマザーロールの全幅1.2m幅に対し100Nとし、60mm幅の各捲回物の巻芯の張力はいずれも5Nとなるように制御した。
[電極・セパレータ捲回物の作製・評価]
(3)の電極・セパレータ捲回物の作製に基づき、電極・セパレータ捲回物を作成し、次に(4)電極・セパレータ捲回物の缶挿入性に基づき評価したところ、不良は1で良好であった。
[Example 3]
After mixing and granulating 12.8% by weight of polyethylene of Mv 270,000, 19.2% by weight of polyethylene Mv of Mv 950,000, 19.2% by weight of dioctyl phthalate (DOP), and 20% by weight of fine silica, the tip The mixture was melt-kneaded by a twin-screw extruder equipped with a T-die, extruded, rolled with rolls heated from both sides, and formed into a sheet having a thickness of 110 μm. DOP and fine silica were extracted and removed from the molded product to prepare a microporous membrane. Two microporous membranes were stacked and stretched 4.5 times in the longitudinal direction at 110 ° C, then stretched 1.7 times in the transverse direction at 133 ° C, and finally heat treated at 135 ° C. A microporous membrane having a lateral width of 1.2 m, a membrane thickness of 18 μm, a porosity of 50%, and a pore diameter of 0.1 μm was obtained. The dynamic friction coefficient in the TD direction of the microporous film was 0.2.
[Production of polyolefin microporous membrane wound product]
The polyolefin microporous membrane produced by the above method was slit to a width of 60 mm with an individual drive slitter and wound into a plastic tube (size, etc .: 3B) to obtain a polyolefin microporous membrane wound product. d and L were 102 mm and 1000 m, respectively.
When 160 mother rolls of polyolefin microporous film were manufactured by slitting 8 mother rolls, there were 2 rolls in which a winding deviation of 5 mm or more occurred. When 150 winding rolls with a winding deviation of 5 mm or less were extracted and D, T, and t were measured and calculated, D was 181.2 to 183.2 mm, T was 17.6 to 18.2 μm, and t was The maximum value of | T−t | was 1.3 μm, and the standard deviation was 0.5 μm. Moreover, the average value of F (5) was 25N, and the average value of F (10) -F (20) was 2N.
In addition, the feeding tension in the slitter was controlled to 100 N with respect to the total width of the mother roll of 1.2 m, and the tension of the core of each wound product having a width of 60 mm was controlled to be 5 N.
[Production and evaluation of wound electrode and separator]
Based on the preparation of the electrode / separator roll of (3), an electrode / separator roll was prepared, and then evaluated based on the can / insertability of the electrode / separator roll (4). It was good.

[比較例3]
Mv200万の超高分子量ポリエチレン12重量%、Mv15万の高密度ポリエチレン12重量%、Mv15万の直鎖状低密度ポリエチレン16重量%、フタル酸ジオクチル(DOP)42.4重量%、微粉シリカ17.6重量%を混合造粒した後、Tダイを装着した二軸押出機にて混練・押出し厚さ90μmのシート状に成形した。該成形物からDOPと微粉シリカを抽出除去し微多孔膜とした。該微多孔膜を2枚重ねて118℃に加熱のもと、縦方向に5.3倍(延伸速度1000%/秒)延伸した後、横方向に1.8倍(延伸速度2%/秒)延伸した。横幅0.96m、膜厚み22μmの微多孔膜を得た。また、微多孔膜のTD方向の動摩擦係数は0.7であった。
得られたポリオレフィン製微多孔膜を同軸スリッターで巾60mmにスリットした。d、Lはそれぞれ102mm、1000mであった。
11本のマザーロールをスリットして176巻のポリオレフィン製微多孔膜捲回物を製造したところ、5mm以上の巻きずれが発生したものは4巻だった。巻きずれが5mm以内の捲回スリット物を150巻抽出し、D、T、tを測定・算出したところ、Dは193〜200mm、Tは21.1〜23.2μm、tは21.5〜23.8μmであり、|T−t|の最大値は1.6μmで、標準偏差は0.8μmであった。
なお、スリッターにおける繰り出し張力はマザーロールの全幅0.96m幅に対し80Nとし、捲回物の巻き取り張力は各回転軸に対して40Nとなるようにして、捲回物毎の巻き取り張力制御は行わなかった。
実施例1と同様にして捲回物缶挿入性を評価したところ、5巻不良が起こり、不良であった。
[Comparative Example 3]
12. Mv 2 million ultra high molecular weight polyethylene 12% by weight, Mv 150,000 high density polyethylene 12% by weight, Mv 150,000 linear low density polyethylene 16% by weight, dioctyl phthalate (DOP) 42.4% by weight, fine powder silica 17. After 6% by weight of the mixture was granulated, it was kneaded and extruded into a sheet having a thickness of 90 μm by a twin screw extruder equipped with a T die. DOP and fine silica were extracted and removed from the molded product to form a microporous membrane. Two microporous membranes are stacked and heated to 118 ° C., stretched 5.3 times in the machine direction (stretching speed 1000% / second), and then 1.8 times in the transverse direction (stretching speed 2% / second). ) Stretched. A microporous membrane having a lateral width of 0.96 m and a membrane thickness of 22 μm was obtained. The dynamic friction coefficient in the TD direction of the microporous film was 0.7.
The obtained polyolefin microporous membrane was slit to a width of 60 mm with a coaxial slitter. d and L were 102 mm and 1000 m, respectively.
When 11 mother rolls were slit to produce 176 rolls of polyolefin microporous film, 4 rolls were found to have a winding slip of 5 mm or more. When 150 winding rolls with a winding deviation of 5 mm or less were extracted and D, T, and t were measured and calculated, D was 193 to 200 mm, T was 21.1 to 23.2 μm, and t was 21.5 to The maximum value of | T−t | was 1.6 μm, and the standard deviation was 0.8 μm.
In addition, the feeding tension in the slitter is 80 N with respect to the total width of the mother roll of 0.96 m, and the winding tension of the wound product is 40 N with respect to each rotating shaft, so that the winding tension for each wound product is controlled. Did not.
When the wound product can insertability was evaluated in the same manner as in Example 1, a 5-roll defect occurred and was defective.

[実施例4]
Mv27万のポリエチレン14.4重量%、Mv300万の超高分子量ポリエチレン9.6重量%、フタル酸ジオクチル(DOP)56重量%、微粉シリカ20重量%を混合造粒した後、先端にTダイを装着した2軸押出機にて溶融混練した後に押出し、両側から加熱したロールで圧延し、厚さ110μmのシート状に成形した。該成形物からDOP、微粉シリカを抽出除去し微多孔膜を作製した。該微多孔膜を115℃で5.5倍縦方向に延伸した後、最後に120℃にて熱処理した。横幅0.96m、膜厚み30μm、気孔率70%、孔径0.1μmの微多孔膜を得た。MDの引張強度は190MPa、TDの引張強度は18MPaで、(MD引張強度/TD引張強度)比は10.6だった。また、微多孔膜のTD方向の動摩擦係数は0.5であった。
[ポリオレフィン製微多孔膜捲回物の作製]
上記方法により作製したポリオレフィン製微多孔膜を個別駆動スリッターで巾60mmにスリットし、プラスチック製管(サイズ等:3B)に捲回してポリオレフィン製微多孔膜捲回物を得た。d、Lはそれぞれ102mm、1000mであった。
11本のマザーロールをスリットして176巻のポリオレフィン製微多孔膜捲回物を製造したところ、5mm以上の巻きずれが発生したものは2巻だった。巻きずれが5mm以内の捲回スリット物を150巻抽出し、D、T、tを測定・算出したところ、Dは214.2〜224mm、Tは27.9〜31.2μm、tは28.2〜32.5μmであり、|T−t|の最大値は1.4μmで、標準偏差は0.5μmであった。また、F(5)の平均値は25N、F(10)−F(20)の平均値は2Nだった。
なお、スリッターにおける繰り出し張力はマザーロールの全幅0.96m幅に対し96Nとし、60mm幅の各捲回物の巻芯の張力はいずれも6Nとなるように制御した。
[電極・セパレータ捲回物の作製・評価]
(3)の電極・セパレータ捲回物の作製に基づき、電極・セパレータ捲回物を作成し、次に(4)電極・セパレータ捲回物の缶挿入性に基づき評価したところ、不良は1で良好であった。
[ポリオレフィン製微多孔膜捲回物の異物による傷つきやすさの評価]
マザーロール1本を用意し、図2に示す外径測定器を用いてその外径をマザーロールの幅方向について測定し、外径の値が一番大きくなる付近に印をつけた。次に前述のポリオレフィン製微多孔膜捲回物の作製と同様にして、該マザーロールをスリットし、スリットされた各ポリオレフィン微多孔膜の捲回を行い、100m捲回したところで、印をつけた付近から繰り出されるポリオレフィン微多孔膜を捲回した捲回物に、予め用意しておいた0.1mm角のアルミナ切片が挿入されるようにして、スリットを継続した。1000m巻き取った後、捲回物をほぐし、アルミナ切片によって生じたポリオレフィン製微多孔膜の穴のあき具合をみたところ、2層にわたって穴があいていた。
[Example 4]
After mixing and granulating 14.4% by weight of polyethylene with an Mv of 270,000, 9.6% by weight of ultra high molecular weight polyethylene with an Mv of 3 million, 56% by weight of dioctyl phthalate (DOP), and 20% by weight of fine silica, a T die is attached to the tip. It melt-kneaded with the equipped biaxial extruder, extruded, rolled with the roll heated from both sides, and shape | molded in the 110-micrometer-thick sheet form. DOP and fine silica were extracted and removed from the molded product to prepare a microporous membrane. The microporous membrane was stretched 5.5 times in the longitudinal direction at 115 ° C., and finally heat treated at 120 ° C. A microporous membrane having a width of 0.96 m, a membrane thickness of 30 μm, a porosity of 70%, and a pore diameter of 0.1 μm was obtained. The tensile strength of MD was 190 MPa, the tensile strength of TD was 18 MPa, and the (MD tensile strength / TD tensile strength) ratio was 10.6. The dynamic friction coefficient in the TD direction of the microporous film was 0.5.
[Production of polyolefin microporous membrane wound product]
The polyolefin microporous membrane produced by the above method was slit to a width of 60 mm with an individual drive slitter and wound into a plastic tube (size, etc .: 3B) to obtain a polyolefin microporous membrane wound product. d and L were 102 mm and 1000 m, respectively.
When 11 mother rolls were slit to produce 176 rolls of polyolefin microporous membrane, there were 2 rolls with a winding deviation of 5 mm or more. When 150 winding rolls with a winding deviation of 5 mm or less were extracted and D, T, and t were measured and calculated, D was 214.2 to 224 mm, T was 27.9 to 31.2 μm, and t was 28. The maximum value of | T−t | was 1.4 μm, and the standard deviation was 0.5 μm. Moreover, the average value of F (5) was 25N, and the average value of F (10) -F (20) was 2N.
The feeding tension in the slitter was 96 N with respect to the total width of the mother roll of 0.96 m, and the tension of the wound core of each 60 mm width was controlled to be 6 N.
[Production and evaluation of wound electrode and separator]
Based on the preparation of the electrode / separator roll of (3), an electrode / separator roll was prepared, and then evaluated based on the can / insertability of the electrode / separator roll (4). It was good.
[Evaluation of susceptibility of polyolefin microporous film wound material to scratches]
One mother roll was prepared, and the outer diameter was measured in the width direction of the mother roll using the outer diameter measuring device shown in FIG. 2, and the vicinity where the value of the outer diameter was the largest was marked. Next, in the same manner as the preparation of the polyolefin microporous film wound product described above, the mother roll was slitted, and each slitted polyolefin microporous film was wound. The slit was continued so that a 0.1 mm square alumina slice prepared in advance was inserted into the wound product obtained by winding the polyolefin microporous film drawn from the vicinity. After winding up 1000 m, the wound product was loosened, and when the degree of perforation of the microporous membrane made of polyolefin produced by the alumina piece was observed, there were holes in two layers.

[比較例4]
実施例4で作製したポリオレフィン製微多孔膜を同軸スリッターで巾60mmにスリットした。d、Lはそれぞれ102mm、1000mであった。
11本のマザーロールをスリットして176巻のポリオレフィン製微多孔膜捲回物を製造したところ、5mm以上の巻きずれが発生したものは8巻だった。巻きずれが5mm以内の捲回スリット物を150巻抽出し、D、T、tを測定・算出したところ、Dは214.5〜223.5mm、Tは28.0〜31.0μm、tは28.2〜32.5μmであり、|T−t|の最大値は1.9μmで、標準偏差は0.5μmであった。
なお、スリッターにおける繰り出し張力はマザーロールの全幅0.96m幅に対し80Nとし、捲回物の巻き取り張力は各回転軸に対して40Nとなるようにして、捲回物毎の巻き取り張力制御は行わなかった。
実施例4と同様にして捲回物缶挿入性を評価したところ、10巻不良が起こり、不良であった。また、実施例4と同様にしてポリオレフィン微多孔膜捲回物の異物による傷つきやすさの評価を行ったところ、5層にわたって穴があいていた。
[Comparative Example 4]
The polyolefin microporous membrane produced in Example 4 was slit to a width of 60 mm with a coaxial slitter. d and L were 102 mm and 1000 m, respectively.
When 11 mother rolls were slit to produce 176 rolls of polyolefin microporous film, 8 rolls with 5 mm or more of winding slip occurred. When 150 winding rolls with a winding deviation of 5 mm or less were extracted and D, T, and t were measured and calculated, D was 214.5 to 223.5 mm, T was 28.0 to 31.0 μm, and t was The maximum value of | Tt | was 1.9 μm, and the standard deviation was 0.5 μm.
In addition, the feeding tension in the slitter is 80 N with respect to the total width of the mother roll of 0.96 m, and the winding tension of the wound product is 40 N with respect to each rotating shaft, so that the winding tension for each wound product is controlled. Did not.
When the wound product can insertability was evaluated in the same manner as in Example 4, a 10-roll defect occurred and was defective. Moreover, when the ease of being damaged by the foreign material of the polyolefin microporous film winding thing was evaluated similarly to Example 4, it had a hole over five layers.

本発明のポリオレフィン製微多孔膜捲回物及びその製造方法によれば、缶挿入時の挿入不良が低減された電極・セパレータ一体型捲回物を提供できるので、電池用セパレータ、特に大型のリチウムイオン2次電池用として有用である。   According to the polyolefin microporous membrane wound product of the present invention and the method for producing the same, it is possible to provide an electrode / separator integrated wound product with reduced insertion failure at the time of can insertion. Useful for ion secondary batteries.

本発明の捲回物の外径を測定する装置の一例を示す概略図である。It is the schematic which shows an example of the apparatus which measures the outer diameter of the winding thing of this invention. 本発明の捲回物群の外径を測定する装置の一例を示す概略図である。It is the schematic which shows an example of the apparatus which measures the outer diameter of the winding thing group of this invention. 複数の捲回物を同時に寸法測定した結果の一例を示す線図である。It is a diagram which shows an example of the result of having measured the dimension of the several winding thing simultaneously. 本発明の製造方法の一例の巻取アームの概略図であるIt is the schematic of the winding arm of an example of the manufacturing method of this invention. 本発明の製造方法の一例を示す概略図である。It is the schematic which shows an example of the manufacturing method of this invention. 微多孔膜の膜厚みを測定する部分についての基本構成部分を示す模式図である。It is a schematic diagram which shows the basic composition part about the part which measures the film thickness of a microporous film. 好適な膜厚測定装置を示す模式図(正面図)である。It is a schematic diagram (front view) which shows a suitable film thickness measuring apparatus. 好適な膜厚測定装置を示す模式図(正面図)である。It is a schematic diagram (front view) which shows a suitable film thickness measuring apparatus. 捲回物の固さ測定装置の一例を示す模式図であるIt is a schematic diagram which shows an example of the hardness measuring apparatus of a wound thing.

符号の説明Explanation of symbols

1A 光学式寸法測定機の投光機
1B 光学式寸法測定機の受光機
2 ポリオレフィン製微多孔膜捲回物
3 信号処理部
5 検査結果出力部
6 駆動伝達部
7 タイミングベルト
8 管チャック部
9 駆動軸
10 歯車
11 マザーロール
12 ポリオレフィン製微多孔膜捲回物
13 個別アーム部
14 カッター
21 支持台
22 支柱
23 試料台
24 測定端子ロッド
25 測定端子ロッド手動上下指示ロッド
26 アナログ表示部
27 端子平行度調整機能
28 面圧調整部
29 光学式検知部固定部
30 光学式検知部
31 光学式検知部固定部高さ調整部
32 面圧調整部固定部
37 試料
DESCRIPTION OF SYMBOLS 1A Light projector of an optical dimension measuring machine 1B Light receiver of an optical dimension measuring machine 2 Polyolefin microporous film wound object 3 Signal processing part 5 Inspection result output part 6 Drive transmission part 7 Timing belt 8 Pipe chuck part 9 Drive Axis 10 Gear 11 Mother roll 12 Polyolefin microporous wound product 13 Individual arm 14 Cutter 21 Support base 22 Support base 23 Sample base 24 Measurement terminal rod 25 Measurement terminal rod Manual up / down instruction rod 26 Analog display section 27 Terminal parallelism adjustment Function 28 Surface pressure adjusting unit 29 Optical detecting unit fixing unit 30 Optical detecting unit 31 Optical detecting unit fixing unit height adjusting unit 32 Surface pressure adjusting unit fixing unit 37 Sample

Claims (23)

巻芯にポリオレフィン製微多孔膜を捲回した捲回物であって、下記式(1)により算出される膜厚みT(μm)と一枚で評価した膜厚みt(μm)との差(膜厚みの差)の絶対値(μm)が1.5μm以下であることを特徴とする電池用セパレータ用ポリオレフィン製微多孔膜捲回物。
T(μm)=π(D2−d2)/4L (1)
(上記式(1)中、Dは多孔膜を含めた巻芯に捲回した捲回物の外径(mm)を、dは巻芯の外径(mm)を、Lは捲回物の巻長(m)を各々指す)
A wound product obtained by winding a polyolefin microporous film on a core, and the difference between the film thickness T (μm) calculated by the following formula (1) and the film thickness t (μm) evaluated by one sheet ( A polyolefin microporous membrane wound product for battery separators , characterized in that the absolute value (μm) of the difference in membrane thickness is 1.5 μm or less.
T (μm) = π (D 2 −d 2 ) / 4L (1)
(In the above formula (1), D is the outer diameter (mm) of the wound product wound around the core including the porous membrane, d is the outer diameter (mm) of the wound core, and L is the wound product. (Each refers to the winding length (m))
マザーロールに捲回されたポリオレフィン製微多孔膜をその全幅にわたって所定幅にスリットした後、該所定幅にスリットされた各ポリオレフィン製微多孔膜を、各捲回物毎に巻き取り張力を制御しつつ捲回することにより製造された、請求項1記載の電池用セパレータ用ポリオレフィン製微多孔膜捲回物。After slitting the polyolefin microporous membrane wound around the mother roll to a predetermined width over its entire width, the winding tension of each polyolefin microporous membrane slit to the predetermined width is controlled for each wound product. The polyolefin microporous membrane wound product for battery separators according to claim 1, which is produced by winding while winding. 個別駆動式スリット機によりスリットされた、請求項1又は2に記載の電池用セパレータ用ポリオレフィン製微多孔膜捲回物。The polyolefin microporous membrane wound product for a battery separator according to claim 1, which is slit by an individually driven slitting machine. 巻芯から5mmの距離の固さが、34N以下である、請求項1〜3のいずれか一項に記載の電池用セパレータ用ポリオレフィン製微多孔膜捲回物。The polyolefin microporous membrane wound product for battery separator according to any one of claims 1 to 3, wherein the hardness at a distance of 5 mm from the core is 34 N or less. 巻芯から10mmの距離の固さ(F(10))と巻芯から20mmの距離の固さ(F(20))との差(F(10)−F(20))が、0.05N以上2N以下である、請求項4記載の電池用セパレータ用ポリオレフィン製微多孔膜捲回物。The difference (F (10) −F (20)) between the hardness at a distance of 10 mm from the core (F (10)) and the hardness at a distance of 20 mm from the core (F (20)) is 0.05N. The polyolefin microporous membrane wound product for battery separator according to claim 4, which is 2N or less. 巻長が、500m以上である、請求項1〜5のいずれか一項に記載の電池用セパレータ用ポリオレフィン製微多孔膜捲回物。The microporous membrane wound product made of polyolefin for battery separator according to any one of claims 1 to 5, wherein the winding length is 500 m or more. ポリオレフィン製微多孔膜の幅方向の動摩擦係数が、0.6以下である、請求項1〜のいずれか一項に記載の電池用セパレータ用ポリオレフィン製微多孔膜捲回物。The polyolefin microporous membrane wound product for a battery separator according to any one of claims 1 to 6 , wherein a dynamic friction coefficient in the width direction of the polyolefin microporous membrane is 0.6 or less. ポリオレフィン製微多孔膜の縦方向の引張強度(MD引張強度)と幅方向の引張強度(TD引張強度)との比(MD引張強度/TD引張強度)が、10以上である、請求項1〜のいずれか一項に記載の電池用セパレータ用ポリオレフィン製微多孔膜捲回物。The ratio (MD tensile strength / TD tensile strength) of the tensile strength in the machine direction (MD tensile strength) and the tensile strength in the width direction (TD tensile strength) of the polyolefin microporous membrane is 10 or more. cell separator polyolefin microporous membrane wound product according to any one of 7. ポリオレフィン製微多孔膜の、
孔径が、0.001μm以上1μm以下、
気孔率が、25%以上75%以下、
膜厚みが、3μm以上200μm以下である、
請求項1〜のいずれか一項に記載の電池用セパレータ用ポリオレフィン製微多孔膜捲回物。
Of polyolefin microporous membrane,
The pore diameter is 0.001 μm or more and 1 μm or less,
The porosity is 25% or more and 75% or less,
The film thickness is 3 μm or more and 200 μm or less,
A polyolefin microporous membrane wound product for a battery separator according to any one of claims 1 to 8 .
マザーロールに捲回されたポリオレフィン製微多孔膜をスリットして得られる請求項1〜9のいずれか一項に記載の電池用セパレータ用ポリオレフィン製微多孔膜捲回物2個以上からなる捲回物群であって、巻きずれが5mm以内であり、かつ請求項1に記載の膜厚みの差(μm)の標準偏差が0.7μm以下である電池用セパレータ用ポリオレフィン製微多孔膜捲回物群。A winding comprising two or more polyolefin microporous film windings for battery separators according to any one of claims 1 to 9, obtained by slitting a polyolefin microporous film wound on a mother roll. A microporous membrane wound product made of polyolefin for battery separator , wherein the winding deviation is within 5 mm and the standard deviation of the difference in membrane thickness (µm) according to claim 1 is 0.7 µm or less. group. マザーロールに捲回されたポリオレフィン製微多孔膜をその全幅にわたって所定幅にスリットした後、該所定幅にスリットされた各ポリオレフィン製微多孔膜を、各捲回物毎に巻き取り張力を制御しつつ捲回することにより製造された捲回物群であって、各捲回物の巻きずれが5mm以内であり、かつ、各捲回物の下記式(1)により算出される膜厚みT(μm)と一枚で評価した膜厚みt(μm)との差(膜厚みの差)の標準偏差が、0.7μm以下であることを特徴とする電池用セパレータ用ポリオレフィン製微多孔膜捲回物群。
T(μm)=π(D2−d2)/4L (1)
(上記式(1)中、Dは多孔膜を含めた巻芯に捲回した捲回物の外径(mm)を、dは巻芯の外径(mm)を、Lは捲回物の巻長(m)を各々指す)
After slitting the polyolefin microporous membrane wound around the mother roll to a predetermined width over its entire width, the winding tension of each polyolefin microporous membrane slit to the predetermined width is controlled for each wound product. A wound product group manufactured by winding while winding, the winding deviation of each wound product is within 5 mm, and the film thickness T ( The standard deviation of the difference (film thickness difference) between the film thickness t (μm) evaluated by one sheet and the film thickness t (μm) is 0.7 μm or less, and is a polyolefin microporous film wound for battery separators Group of things.
T (μm) = π (D 2 −d 2 ) / 4L (1)
(In the above formula (1), D is the outer diameter (mm) of the wound product wound around the core including the porous membrane, d is the outer diameter (mm) of the wound core, and L is the wound product. (Each refers to the winding length (m))
個別駆動式スリット機によりスリットされた、請求項10又は11に記載の捲回物群。The wound product group according to claim 10 or 11 , which is slit by an individually driven slitting machine. 各ポリオレフィン製微多孔膜捲回物の巻長が、500m以上である、請求項1012のいずれか一項に記載の電池用セパレータ用ポリオレフィン製微多孔膜捲回物群。The polyolefin microporous membrane winding product group for battery separators according to any one of claims 10 to 12 , wherein the winding length of each polyolefin microporous membrane winding product is 500 m or more. ポリオレフィン製微多孔膜の、
孔径が、0.001μm以上1μm以下、
気孔率が、25%以上75%以下、
膜厚みが、3μm以上200μm以下である、
請求項1013のいずれか一項に記載の電池用セパレータ用ポリオレフィン製微多孔膜捲回物群。
Of polyolefin microporous membrane,
The pore diameter is 0.001 μm or more and 1 μm or less,
The porosity is 25% or more and 75% or less,
The film thickness is 3 μm or more and 200 μm or less,
The polyolefin microporous membrane wound product group for battery separators according to any one of claims 10 to 13 .
マザーロールに捲回されたポリオレフィン製微多孔膜を個別駆動式スリット機によりスリットしてポリオレフィン製微多孔膜捲回物を製造する方法であって、マザーロール全幅にわたってスリットされた巻きずれが5mm以内である捲回物群において、下記式(1)により算出される膜厚みT(μm)と一枚で評価した膜厚みt(μm)との差(膜厚みの差)の標準偏差が0.7μm以下である請求項1〜9のいずれか一項に記載の電池用セパレータ用ポリオレフィン製微多孔膜捲回物の製造方法。
T(μm)=π(D2−d2)/4L (1)
(上記式(1)中、Dは多孔膜を含めた巻芯に捲回した捲回物の外径(mm)を、dは巻芯の外径(mm)を、Lは捲回物の巻長(m)を各々指す)
A method of manufacturing a polyolefin microporous membrane wound product by slitting a polyolefin microporous membrane wound around a mother roll with an individually driven slitting machine, and the winding deviation slit across the entire width of the mother roll is within 5 mm. The standard deviation of the difference (film thickness difference) between the film thickness T (μm) calculated by the following formula (1) and the film thickness t (μm) evaluated by one sheet is 0. method for producing a cell separator polyolefin microporous membrane wound as claimed in any one of claims 1-9 is 7μm or less.
T (μm) = π (D 2 −d 2 ) / 4L (1)
(In the above formula (1), D is the outer diameter (mm) of the wound product wound around the core including the porous membrane, d is the outer diameter (mm) of the wound core, and L is the wound product. (Each refers to the winding length (m))
マザーロールに捲回されたポリオレフィン製微多孔膜をその全幅にわたって所定幅にスリット分断する工程と、
該所定幅にスリットされた各ポリオレフィン製微多孔膜を、各捲回物毎に巻き取り張力を制御しつつ捲回する工程と、
を含む、
巻きずれが5mm以内であり、かつ、下記式(1)により算出される膜厚みT(μm)と一枚で評価した膜厚みt(μm)との差(膜厚みの差)の標準偏差が0.7μm以下である電池用セパレータ用ポリオレフィン製微多孔膜捲回物の製造方法。
T(μm)=π(D2−d2)/4L (1)
(上記式(1)中、Dは多孔膜を含めた巻芯に捲回した捲回物の外径(mm)を、dは巻芯の外径(mm)を、Lは捲回物の巻長(m)を各々指す)
A step of slitting a polyolefin microporous film wound around a mother roll into a predetermined width over its entire width;
Winding each polyolefin microporous membrane slit to the predetermined width while controlling the winding tension for each wound product;
including,
The standard deviation of the difference (film thickness difference) between the film thickness T (μm) calculated by the following formula (1) and the film thickness t (μm) evaluated by one sheet is within 5 mm. The manufacturing method of the polyolefin microporous film winding thing for battery separators which is 0.7 micrometer or less.
T (μm) = π (D 2 −d 2 ) / 4L (1)
(In the above formula (1), D is the outer diameter (mm) of the wound product wound around the core including the porous membrane, d is the outer diameter (mm) of the wound core, and L is the wound product. (Each refers to the winding length (m))
マザーロールに捲回されたポリオレフィン製微多孔膜をその全幅にわたって所定幅にスリットする工程と、
該所定幅にスリットされた各ポリオレフィン製微多孔膜を、巻き取り張力を各捲回物毎に制御しつつ捲回する工程と、
を含む電池用セパレータ用ポリオレフィン製微多孔膜捲回物の製造方法であって、
ポリオレフィン製微多孔膜捲回物の下記式(1)により算出される膜厚みT(μm)と一枚で評価した膜厚みt(μm)との差(膜厚みの差)の絶対値(μm)が、1.5μm以下である電池用セパレータ用ポリオレフィン製微多孔膜捲回物の製造方法。
T(μm)=π(D2−d2)/4L (1)
(上記式(1)中、Dは多孔膜を含めた巻芯に捲回した捲回物の外径(mm)を、dは巻芯の外径(mm)を、Lは捲回物の巻長(m)を各々指す)
Slitting a polyolefin microporous film wound around a mother roll into a predetermined width over its entire width;
Winding each polyolefin microporous membrane slit to the predetermined width while controlling the winding tension for each wound product;
A method for producing a polyolefin microporous membrane wound product for battery separators comprising:
Absolute value (μm) of the difference (film thickness difference) between the film thickness T (μm) calculated by the following formula (1) of the polyolefin microporous film wound product and the film thickness t (μm) evaluated by one sheet ) Is 1.5 μm or less, a method for producing a microporous membrane wound product made of polyolefin for battery separators .
T (μm) = π (D 2 −d 2 ) / 4L (1)
(In the above formula (1), D is the outer diameter (mm) of the wound product wound around the core including the porous membrane, d is the outer diameter (mm) of the wound core, and L is the wound product. (Each refers to the winding length (m))
電池用セパレータ用ポリオレフィン製微多孔膜捲回物の巻芯から5mmの距離の固さが、34N以下である、請求項1517のいずれか一項に記載の電池用セパレータ用ポリオレフィン製微多孔膜捲回物の製造方法。Hardness of the distance from the core of 5mm of cell separator polyolefin microporous membrane wound material is less than or equal to 34N, the polyolefin microporous battery separator according to any one of claims 15-17 Manufacturing method of membrane wound product . 巻芯から10mmの距離の固さ(F(10))と巻芯から20mmの距離の固さ(F(20))との差(F(10)−F(20))が、0.05N以上2N以下である、請求項1518のいずれか一項に記載の電池用セパレータ用ポリオレフィン製微多孔膜捲回物の製造方法。The difference (F (10) −F (20)) between the hardness at a distance of 10 mm from the core (F (10)) and the hardness at a distance of 20 mm from the core (F (20)) is 0.05N. The method for producing a polyolefin microporous film wound product for battery separator according to any one of claims 15 to 18 , wherein the content is 2N or less. 電池用セパレータ用ポリオレフィン製微多孔膜捲回物の巻長が、500m以上である、請求項1519のいずれか一項に記載の電池用セパレータ用ポリオレフィン製微多孔膜捲回物の製造方法。 The method for producing a polyolefin microporous membrane roll for a battery separator according to any one of claims 15 to 19 , wherein the winding length of the polyolefin microporous membrane roll for a battery separator is 500 m or more. . ポリオレフィン製微多孔膜の幅方向の動摩擦係数が、0.6以下である、請求項1520のいずれか一項に記載の電池用セパレータ用ポリオレフィン製微多孔膜捲回物の製造方法。Dynamic friction coefficient in the width direction of the polyolefin microporous membrane is 0.6 or less, the production method according to claim 15 cell separator polyolefin microporous membrane wound as claimed in any one of 1-20. ポリオレフィン製微多孔膜の縦方向の引張強度(MD引張強度)と幅方向の引張強度(TD引張強度)との比(MD引張強度/TD引張強度)が、10以上である、請求項1521のいずれか一項に記載の電池用セパレータ用ポリオレフィン製微多孔膜捲回物の製造方法。The ratio of the longitudinal tensile strength of the polyolefin microporous membrane (MD tensile strength) and the width direction tensile strength (TD tensile strength) (MD tensile strength / TD tensile strength) is 10 or more, claim 15 to The manufacturing method of the polyolefin microporous film winding thing for battery separators as described in any one of 21 . ポリオレフィン製微多孔膜の、
孔径が、0.001μm以上1μm以下、
気孔率が、25%以上75%以下、
膜厚みが、3μm以上200μm以下である、
請求項1522のいずれか一項に記載の電池用セパレータ用ポリオレフィン製微多孔膜捲回物の製造方法。
Of polyolefin microporous membrane,
The pore diameter is 0.001 μm or more and 1 μm or less,
The porosity is 25% or more and 75% or less,
The film thickness is 3 μm or more and 200 μm or less,
The process according to claim 15 to cell separator polyolefin microporous membrane wound as claimed in any one of 22.
JP2008526746A 2006-07-25 2007-07-20 Polyolefin microporous film wound product for battery separator and method for producing the same Active JP5188970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008526746A JP5188970B2 (en) 2006-07-25 2007-07-20 Polyolefin microporous film wound product for battery separator and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006201716 2006-07-25
JP2006201716 2006-07-25
PCT/JP2007/064349 WO2008013114A1 (en) 2006-07-25 2007-07-20 Roll of polyolefin microporous film
JP2008526746A JP5188970B2 (en) 2006-07-25 2007-07-20 Polyolefin microporous film wound product for battery separator and method for producing the same

Publications (2)

Publication Number Publication Date
JPWO2008013114A1 JPWO2008013114A1 (en) 2009-12-17
JP5188970B2 true JP5188970B2 (en) 2013-04-24

Family

ID=38981426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008526746A Active JP5188970B2 (en) 2006-07-25 2007-07-20 Polyolefin microporous film wound product for battery separator and method for producing the same

Country Status (5)

Country Link
JP (1) JP5188970B2 (en)
KR (1) KR101050023B1 (en)
CN (1) CN101495552B (en)
TW (1) TW200831278A (en)
WO (1) WO2008013114A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016056256A1 (en) * 2014-10-10 2016-04-14 住友化学株式会社 Manufacturing method for separator wound body for battery, separator wound body for battery, and apparatus for manufacturing separator wound body for battery
US20180205057A1 (en) * 2015-07-14 2018-07-19 Asahi Kasei Kabushiki Kaisha Microporous Membrane, Battery Separator, and Battery

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5562523B2 (en) * 2008-02-12 2014-07-30 旭化成イーマテリアルズ株式会社 Polyolefin microporous film wound product
JP5160314B2 (en) * 2008-06-06 2013-03-13 旭化成イーマテリアルズ株式会社 Microporous membrane wound product
JP5639578B2 (en) * 2008-08-15 2014-12-10 東レバッテリーセパレータフィルム株式会社 Microporous membrane manufacturing method and microporous membrane manufacturing apparatus
JP2010100845A (en) * 2008-09-29 2010-05-06 Toray Ind Inc Method for producing porous polyolefin film
JP5062783B2 (en) * 2008-12-26 2012-10-31 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane
JP5546144B2 (en) * 2009-03-05 2014-07-09 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane
JP5189048B2 (en) * 2009-08-07 2013-04-24 旭化成イーマテリアルズ株式会社 Wound body
JP4846882B2 (en) * 2009-08-25 2011-12-28 旭化成イーマテリアルズ株式会社 Microporous membrane wound body and method for producing the same
WO2013172249A1 (en) * 2012-05-14 2013-11-21 東レ株式会社 Film roll
JP2015017249A (en) * 2013-06-14 2015-01-29 積水化学工業株式会社 Olefinic resin microporous film roll, and method for producing the same
JP6729366B2 (en) * 2014-03-24 2020-07-22 東レ株式会社 Polyolefin microporous membrane and coating substrate using polyolefin microporous membrane
JP6487160B2 (en) * 2014-07-22 2019-03-20 旭化成株式会社 Porous film roll
JP6416542B2 (en) * 2014-08-19 2018-10-31 旭化成株式会社 Wound body
KR101764522B1 (en) 2014-12-25 2017-08-02 스미또모 가가꾸 가부시키가이샤 Method for producing slit separator, method for producing separator roll, and method for slitting separator
KR20170089435A (en) * 2014-12-25 2017-08-03 스미또모 가가꾸 가부시키가이샤 Method for producing separator and method for slitting
JP6627222B2 (en) * 2015-02-05 2020-01-08 東レ株式会社 Method for producing battery separator and wound body of battery separator
KR101915344B1 (en) * 2015-04-30 2018-11-05 주식회사 엘지화학 Polyolefin separator and the method of preparing the same
JP6081517B2 (en) * 2015-04-30 2017-02-15 住友化学株式会社 Separator winding body and method of manufacturing separator winding body
KR101915345B1 (en) * 2015-04-30 2018-11-05 주식회사 엘지화학 A method of manufacturing separator for electrochemical device and separator for electrochemical device manufactured thereby
JP6158370B2 (en) * 2015-06-11 2017-07-05 住友化学株式会社 Film winding body and manufacturing method thereof
CN106252740B (en) 2015-06-11 2019-12-27 住友化学株式会社 Film roll, method for manufacturing the same, and method for inspecting the same
CN105199137B (en) * 2015-09-08 2018-03-16 哈尔滨工业大学 A kind of preparation method of porous composite polymer electrolyte membrane material
US10457520B2 (en) 2016-01-25 2019-10-29 Sumitomo Chemical Company, Limited Film roll and method for producing film roll
JP6636974B2 (en) * 2017-03-02 2020-01-29 住友化学株式会社 Core, wound separator, and method of manufacturing wound separator
CN108878734B (en) * 2017-05-12 2022-03-22 住友化学株式会社 Insulating porous layer for nonaqueous electrolyte secondary battery
CN110165123B (en) * 2019-05-15 2022-03-04 乐凯胶片股份有限公司 Polyethylene microporous membrane and preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10237201A (en) * 1997-02-24 1998-09-08 Mitsui Chem Inc Manufacture of porous high molecular weight polyolefin film
JPH10306168A (en) * 1995-07-18 1998-11-17 Mitsui Chem Inc Microporous high-molecular-weight polyolefin film and production thereof
JP2002037491A (en) * 2000-07-21 2002-02-06 Nakamura Slitter Co Ltd Winding device for slitter
JP2002273684A (en) * 2001-03-14 2002-09-25 Sumitomo Chem Co Ltd Resin film for battery separator and slitting method for resin film
JP2003165128A (en) * 2001-11-29 2003-06-10 Ube Ind Ltd Method and apparatus for continuously manufacturing porous film
JP2004099799A (en) * 2002-09-11 2004-04-02 Asahi Kasei Chemicals Corp Rolled item of fine porous membrane made of polyolefin
JP2004137024A (en) * 2002-10-17 2004-05-13 Toray Ind Inc Method for manufacturing film roll body

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002028972A (en) * 2000-07-17 2002-01-29 Teijin Ltd Method for producing film roll
JP4711653B2 (en) * 2004-08-31 2011-06-29 三洋電機株式会社 battery
JP4531507B2 (en) * 2004-09-22 2010-08-25 旭化成イーマテリアルズ株式会社 Slit roll manufacturing method and slit roll outer diameter measuring device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10306168A (en) * 1995-07-18 1998-11-17 Mitsui Chem Inc Microporous high-molecular-weight polyolefin film and production thereof
JPH10237201A (en) * 1997-02-24 1998-09-08 Mitsui Chem Inc Manufacture of porous high molecular weight polyolefin film
JP2002037491A (en) * 2000-07-21 2002-02-06 Nakamura Slitter Co Ltd Winding device for slitter
JP2002273684A (en) * 2001-03-14 2002-09-25 Sumitomo Chem Co Ltd Resin film for battery separator and slitting method for resin film
JP2003165128A (en) * 2001-11-29 2003-06-10 Ube Ind Ltd Method and apparatus for continuously manufacturing porous film
JP2004099799A (en) * 2002-09-11 2004-04-02 Asahi Kasei Chemicals Corp Rolled item of fine porous membrane made of polyolefin
JP2004137024A (en) * 2002-10-17 2004-05-13 Toray Ind Inc Method for manufacturing film roll body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016056256A1 (en) * 2014-10-10 2016-04-14 住友化学株式会社 Manufacturing method for separator wound body for battery, separator wound body for battery, and apparatus for manufacturing separator wound body for battery
US9786884B2 (en) 2014-10-10 2017-10-10 Sumitomo Chemical Company, Limited Method and apparatus for producing battery separator roll
US10411235B2 (en) 2014-10-10 2019-09-10 Sumitomo Chemical Company, Limited Method for stocking battery separator roll, method for producing same, method for carrying same, and carrier for same
US20180205057A1 (en) * 2015-07-14 2018-07-19 Asahi Kasei Kabushiki Kaisha Microporous Membrane, Battery Separator, and Battery
US10720622B2 (en) * 2015-07-14 2020-07-21 Asahi Kasei Kabushiki Kaisha Microporous Membrane, Battery Separator, and Battery

Also Published As

Publication number Publication date
KR20090034910A (en) 2009-04-08
CN101495552A (en) 2009-07-29
TWI334825B (en) 2010-12-21
TW200831278A (en) 2008-08-01
JPWO2008013114A1 (en) 2009-12-17
WO2008013114A1 (en) 2008-01-31
CN101495552B (en) 2012-02-08
KR101050023B1 (en) 2011-07-19

Similar Documents

Publication Publication Date Title
JP5188970B2 (en) Polyolefin microporous film wound product for battery separator and method for producing the same
KR101266607B1 (en) Polyolefin microporous membrane and products of winding
JP4846882B2 (en) Microporous membrane wound body and method for producing the same
JP5062783B2 (en) Polyolefin microporous membrane
EP3098256B1 (en) Polyolefin microporous membrane and method for producing same
KR20160094942A (en) Polyolefin microporous film, separator for non-aqueous electrolyte secondary battery, wound product of polyolefin microporous film, non-aqueous electrolyte secondary battery, and method for producing polyolefin microporous film
KR102264032B1 (en) Method for producing polyolefin microporous membrane and polyolefin microporous membrane
JP6659755B2 (en) Wound body
JP2012014914A (en) Microporous film, method of manufacturing the same, and separator for nonaqueous electrolyte secondary cell
JP2017152214A (en) Core, separator roll, and method for producing separator roll
JP5724329B2 (en) Porous polypropylene film roll
JP2014012857A (en) Microporous film, method for producing the same, and separator for nonaqueous electrolyte secondary battery
CN115023460B (en) Microporous membrane and method for producing same
JP5160314B2 (en) Microporous membrane wound product
TW201819198A (en) Laminated polyolefin microporous membrane, separator membrane for batteries and manufacturing method thereof, and method for manufacturing laminated polyolefin microporous membrane winder having excellent shutdown characteristics and suiting to provide a uniform thickness to a porous layer
JP5562523B2 (en) Polyolefin microporous film wound product
US20190033066A1 (en) Method for measuring curl in separator, slit device, and curl measurement device
JP2013219053A (en) Microporous membrane wound body made of polyolefin
JP2024060490A (en) Microporous membrane roll, manufacturing method thereof, and separator for secondary battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5188970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350