JP5188779B2 - Eye size measuring device - Google Patents

Eye size measuring device Download PDF

Info

Publication number
JP5188779B2
JP5188779B2 JP2007286817A JP2007286817A JP5188779B2 JP 5188779 B2 JP5188779 B2 JP 5188779B2 JP 2007286817 A JP2007286817 A JP 2007286817A JP 2007286817 A JP2007286817 A JP 2007286817A JP 5188779 B2 JP5188779 B2 JP 5188779B2
Authority
JP
Japan
Prior art keywords
light
measurement
optical path
measurement light
eye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007286817A
Other languages
Japanese (ja)
Other versions
JP2009112430A (en
Inventor
昌明 羽根渕
雅和 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidek Co Ltd
Original Assignee
Nidek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidek Co Ltd filed Critical Nidek Co Ltd
Priority to JP2007286817A priority Critical patent/JP5188779B2/en
Publication of JP2009112430A publication Critical patent/JP2009112430A/en
Application granted granted Critical
Publication of JP5188779B2 publication Critical patent/JP5188779B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Eye Examination Apparatus (AREA)

Description

本発明は、被検眼の寸法を測定する眼寸法測定装置に関する。   The present invention relates to an eye size measuring device that measures the size of an eye to be examined.

被検眼の寸法を測定する装置としては、低コヒーレント光を発する測定光源から出射された測定光を角膜照射光と眼底照射光に分割する光路分割部材と、光路分割部材によって分割された測定光を再度合成する光路合成部材と、を有し、被検眼角膜と被検眼眼底に向けて測定光を照射する照射光学系と、眼底からの反射光と角膜からの反射光との干渉光を受光して干渉信号を得る干渉光学系と、光路変更部材と、を備え、干渉信号と光路長変更部材の位置とに基づいて被験者眼の眼軸長を測定する装置が知られている(特許文献1参照)。   As an apparatus for measuring the size of the eye to be examined, an optical path dividing member that divides measurement light emitted from a measurement light source that emits low-coherent light into corneal irradiation light and fundus irradiation light, and measurement light divided by the optical path division member An optical path synthesis member that synthesizes again, and an irradiation optical system that irradiates measurement light toward the subject's cornea and the fundus of the subject's eye, and interference light between the reflected light from the fundus and the reflected light from the cornea An apparatus that includes an interference optical system that obtains an interference signal and an optical path changing member and that measures the axial length of the subject's eye based on the interference signal and the position of the optical path length changing member is known (Patent Document 1). reference).

また、特許文献1の装置では、光路分割部材によって分割された分割光路における眼底照射光の照射光路に高屈折率の光路長変更部材を挿入して、眼底照射光と角膜照射光の光路長差を短縮することにより、被検眼の前房深度を測定する構成が開示されている。
特開平2−297332号公報
Further, in the apparatus of Patent Document 1, an optical path length changing member having a high refractive index is inserted into the irradiation light path of the fundus irradiation light in the divided optical path divided by the optical path dividing member, and the optical path length difference between the fundus irradiation light and the cornea irradiation light The structure which measures the anterior chamber depth of the eye to be examined by shortening is disclosed.
JP-A-2-297332

しかしながら、特許文献1のような手法によって前房深度を測定する場合、被検眼の眼底に照射される眼底照射光が水晶体前面を通過する際の反射光と角膜反射光による干渉光を干渉光学系により受光することで干渉信号を得るため、干渉信号の出力レベルが小さく、測定結果にばらつきが生じやすい。   However, when the anterior chamber depth is measured by the technique as described in Patent Document 1, the interference optical system uses the reflected light when the fundus irradiation light irradiated on the fundus of the eye to be examined passes through the front surface of the crystalline lens and the interference light due to the corneal reflection light. Since the interference signal is obtained by receiving the light, the output level of the interference signal is small, and the measurement results tend to vary.

本発明は、上記問題点を鑑み、被検眼の眼軸長及び前房深度を精度よく測定できる眼寸法測定装置を提供することを技術課題とする。   In view of the above problems, an object of the present invention is to provide an eye dimension measuring device capable of accurately measuring the axial length and anterior chamber depth of an eye to be examined.

上記課題を解決するために、本発明は以下のような構成を備えることを特徴とする。   In order to solve the above problems, the present invention is characterized by having the following configuration.

(1) 測定手段は、低コヒーレント光を出射する測定光源と、前記測定光源から出射された前記測定光を第1測定光として被検眼角膜に照射して角膜からの反射光を受光するための第1測定光学系と、前記測定光源から出射された前記測定光を第2測定光として被検眼眼底に照射して眼底からの反射光を受光するための第2測定光学系と、前記第1測定光学系または第2測定光学系のどちらかに配置され、前記第1測定光の光路長または前記第2測定光の光路長のいずれかを変更させるための光路長変更手段と、前記第1測定光学系及び第2測定光学系の共通光路に置かれ,前記第1測定光の反射光と前記第2測定光の反射光との合成による干渉光を受光し干渉信号を得るための受光光学系と、前記共通光路とならない前記第2測定光学系の光路中に配置される光学レンズを移動させることにより前記第2測定光の集光位置を切り換え、前記第2測定光の照射目標を被検眼眼底と被検眼の水晶体前面とに選択的に切り換える集光位置切換手段と、被検眼の眼軸長を測定する眼軸長測定モードと被検眼の前房深度を測定する前房深度測定モードを切り換えるモード切換手段と、該モード切換手段にて前記眼軸長測定モードとされているときは前記照射位置切換手段により前記第2測定光の照射目標を眼底として眼底からの反射光と角膜からの反射光との合成による前記干渉信号及び光路長変更手段の変更情報とに基づいて被検眼の眼軸長を測定し,前記前房深度測定モードとされているときは前記照射位置切換手段により前記第2測定光の照射目標を水晶体前面として、角膜からの反射光と水晶体前面からの反射光との合成による前記干渉信号及び光路長変更手段の変更情報とに基づいて被検眼の前房深度を測定する測定制御手段と、を備えることを特徴とする。
(2) (1)の眼寸法測定装置において、前記測定光源から出射された測定光の一部を透過し一部を反射することにより第1測定光と第2測定光とに分割する光路分割部材と、該光路分割部材により分割された第1測定光と第2測定光を合成する光路合成部材と、を備え、前記光路分割部材によって形成される測定光の透過光路には、前記光路分割部材を透過した測定光を反射する反射部材と,前記反射部材によって反射された測定光を前記光路合成部材へと導く導光部材と,によって形成される迂回光路が設けられていることを特徴とする。

(1) The measurement means is for measuring the measurement light source that emits low-coherent light and irradiating the eye cornea with the measurement light emitted from the measurement light source as the first measurement light to receive the reflected light from the cornea A first measurement optical system; a second measurement optical system for irradiating the fundus of the eye to be examined with the measurement light emitted from the measurement light source as second measurement light; and receiving the reflected light from the fundus. An optical path length changing unit that is arranged in either the measurement optical system or the second measurement optical system and changes either the optical path length of the first measurement light or the optical path length of the second measurement light; Light receiving optics that is placed in a common optical path of the measurement optical system and the second measurement optical system, receives interference light by combining the reflected light of the first measurement light and the reflected light of the second measurement light, and obtains an interference signal System and the second measuring optical system that does not become the common optical path. A focusing position of the second measurement light is switched by moving an optical lens disposed in the optical path, and the irradiation target of the second measurement light is selectively switched between the fundus of the eye to be examined and the front surface of the lens of the eye to be examined. Light position switching means, mode switching means for switching an axial length measurement mode for measuring the axial length of the eye to be examined, and an anterior chamber depth measurement mode for measuring the anterior chamber depth of the eye to be examined; When in the axial length measurement mode, the interference signal and optical path length changing means by combining the reflected light from the fundus and the reflected light from the cornea using the irradiation position switching means as the fundus of the second measurement light as the fundus The axial length of the eye to be examined is measured based on the change information of the eye, and when the anterior chamber depth measurement mode is set, the irradiation target of the second measurement light is set to the front surface of the crystalline lens by the irradiation position switching means from the cornea. The opposite of Characterized in that it comprises a measurement control means for measuring the anterior chamber depth of the eye on the basis of the change information of the interference signal and the optical path length changing means by synthesis and the reflected light from the optical and the lens front, the.
(2) In the eye dimension measuring apparatus according to (1), the optical path splitting that splits the first measurement light and the second measurement light by transmitting a part of the measurement light emitted from the measurement light source and reflecting a part thereof. A light path combining member that combines the first measurement light and the second measurement light split by the optical path splitting member, and the optical path splitting is provided in the transmitted optical path of the measurement light formed by the optical path splitting member A detouring optical path formed by a reflecting member that reflects measurement light transmitted through the member and a light guide member that guides the measuring light reflected by the reflecting member to the optical path combining member is provided. To do.

本発明によれば、被検眼の眼軸長及び前房深度を精度よく測定できる眼寸法測定装置を提供することを技術課題とする。   According to the present invention, it is an object of the present invention to provide an eye dimension measuring device that can accurately measure the axial length and anterior chamber depth of an eye to be examined.

以下、本発明の実施形態を図面に基づいて説明する。図1及び図2は、本実施形態に係る眼寸法測定装置の光学系の概略構成図である。図1は眼軸長測定時における光学系の配置を示す図であり、図2は前房深度測定時における光学系の配置を示す図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG.1 and FIG.2 is a schematic block diagram of the optical system of the eye dimension measuring apparatus based on this embodiment. FIG. 1 is a diagram showing the arrangement of the optical system when measuring the axial length, and FIG. 2 is a diagram showing the arrangement of the optical system when measuring the anterior chamber depth.

被検眼角膜と被検眼の所定部位に測定光を照射する照射光学系100は、低コヒーレント光を出射する測定光源1を持ち、光源1から出射された測定光を光路分割部材(例えば、偏光ブームスプリッタ3)により被検眼角膜への測定光(第1測定光)が通る第1測定光路T1と被検眼の所定部位への測定光(第2測定光)が通る第2測定光路T2とに分割すると共に、再度、光路合成部材(例えば、偏光ビームスプリッタ6)により合成する。   An irradiation optical system 100 that irradiates measurement light to predetermined regions of the eye cornea and the eye to be examined has a measurement light source 1 that emits low-coherent light, and the measurement light emitted from the light source 1 is an optical path dividing member (for example, a polarization boom). Split by the splitter 3) into a first measurement optical path T1 through which measurement light (first measurement light) to the subject's eye cornea passes and a second measurement optical path T2 through which measurement light (second measurement light) to a predetermined part of the subject's eye passes. At the same time, the light is combined again by an optical path combining member (for example, the polarization beam splitter 6).

測定光源1からビームスプリッタ3の間には、コリメータレンズ2、ハーフミラー20、1/2波長板50、が順次配置されており、測定光源1から発せられた測定光は、コリメータレンズ2によって平行光束とされた後、ハーフミラー20を透過後、1/2波長板50によって偏光方向が回転された後、偏光ビームスプリッタ3によって透過光と反射光が互いに直交する直線偏光になるように分離される。なお、入射光の偏光面に対する1/2波長板50の光学軸を変化させることにより、偏光ビームスプリッタ3によって分離される透過光と反射光の比率を調整できる。   A collimator lens 2, a half mirror 20, and a half-wave plate 50 are sequentially arranged between the measurement light source 1 and the beam splitter 3, and the measurement light emitted from the measurement light source 1 is parallel by the collimator lens 2. After being converted into a light beam, after passing through the half mirror 20, the polarization direction is rotated by the half-wave plate 50, and then the transmitted light and the reflected light are separated by the polarizing beam splitter 3 so as to be linearly polarized light orthogonal to each other. The Note that the ratio of transmitted light and reflected light separated by the polarization beam splitter 3 can be adjusted by changing the optical axis of the half-wave plate 50 with respect to the polarization plane of incident light.

ここで、ビームスプリッタ3を透過する第1測定光は、第1三角プリズム4の反射面4aで反射され、第1三角プリズム4に対して移動可能な可動三角プリズム5の反射面5a及び反射面5bによって折り返された後、第1三角プリズム4の反射面4bで反射され、ビームスプリッタ6を透過する。すなわち、第1測定光は、第1測定光路T1(ビームスプリッタ3〜可動三角プリズム5〜ビームスプリッタ6)を通過する。なお、可動三角プリズム5は、第1測定光の光路長を変更させるための光路変更部材として用いられ、駆動部71の駆動によって第1三角プリズム4に対して矢印A方向に移動される。なお、可動三角プリズム5は、三角ミラーであってもよい。   Here, the first measurement light transmitted through the beam splitter 3 is reflected by the reflecting surface 4 a of the first triangular prism 4, and the reflecting surface 5 a and the reflecting surface of the movable triangular prism 5 movable with respect to the first triangular prism 4. After being folded back by 5 b, it is reflected by the reflecting surface 4 b of the first triangular prism 4 and passes through the beam splitter 6. That is, the first measurement light passes through the first measurement optical path T1 (beam splitter 3—movable triangular prism 5—beam splitter 6). The movable triangular prism 5 is used as an optical path changing member for changing the optical path length of the first measurement light, and is moved in the arrow A direction with respect to the first triangular prism 4 by driving of the driving unit 71. The movable triangular prism 5 may be a triangular mirror.

また、ビームスプリッタ3で反射された第2測定光は、全反射ミラー11で反射された後、リレーレンズ(フォーカシングレンズ)12、全反射ミラー13を介して、ビームスプリッタ6にて反射される。すなわち、第2測定光は、第2測定光路T2(ビームスプリッタ3〜リレーレンズ12〜ビームスプリッタ6)を通過する。   The second measurement light reflected by the beam splitter 3 is reflected by the total reflection mirror 11 and then reflected by the beam splitter 6 via the relay lens (focusing lens) 12 and the total reflection mirror 13. That is, the second measurement light passes through the second measurement optical path T2 (beam splitter 3 to relay lens 12 to beam splitter 6).

ここで、ビームスプリッタ6に到達した第1測定光及び第2測定光は、第1測定光を透過して第2測定光を反射する特性を有する偏光ビームスプリッタ6によって同軸にされた後、被検眼に向かう。   Here, the first measurement light and the second measurement light that have reached the beam splitter 6 are coaxially formed by the polarization beam splitter 6 having a characteristic of transmitting the first measurement light and reflecting the second measurement light, and Head to the optometry.

すなわち、ビームスプリッタ6を透過した第1測定光は、リレーレンズ7によって一旦集光された後、全反射ミラー8、ダイクロイックミラー9、対物レンズ10、ダイクロイックミラー43を介して、被検眼角膜に照射される。なお、前述のビームスプリッタ3〜第1三角プリズム5〜対物レンズ10までの光学部材は、被検眼角膜に第1測定光を照射させるために前眼部に測定光を集光させる第1集光光学系100aとして用いられる。なお、本実施形態では、前述の第1集光光学系100aにより被検眼角膜に向けて第1測定光を照射させる際、被検眼の角膜頂点から水晶体側にずれた約3mmの位置に向かって第1測定光が入射されるように測定光を集光させる構成となっている。このとき、対物レンズ10は、測定光源1から出射された測定光を被検眼前眼部に向けて収束させる収束レンズとして用いられる。   That is, the first measurement light transmitted through the beam splitter 6 is once condensed by the relay lens 7 and then irradiated to the eye cornea through the total reflection mirror 8, the dichroic mirror 9, the objective lens 10, and the dichroic mirror 43. Is done. Note that the optical members from the beam splitter 3 to the first triangular prism 5 to the objective lens 10 described above collect the measurement light on the anterior eye part in order to irradiate the eye cornea with the first measurement light. Used as the optical system 100a. In the present embodiment, when the first measurement light is irradiated toward the eye cornea to be examined by the first condensing optical system 100a described above, the position is about 3 mm that is shifted from the apex of the cornea of the eye to the lens side. The measurement light is condensed so that the first measurement light is incident. At this time, the objective lens 10 is used as a converging lens that converges the measurement light emitted from the measurement light source 1 toward the anterior eye portion to be examined.

また、ビームスプリッタ6で反射された第2測定光は、リレーレンズ7、ミラー8を介して、一旦集光された後、ダイクロイックミラー9、対物レンズ10、ダイクロイックミラー43を介して、被検眼の眼底に集光される。また、第2測定光は、リレーレンズ12によって、ミラー13とビームスプリッタ6との間で一旦集光される。リレーレンズ12は、駆動部72の駆動により光軸方向(矢印B方向)に移動可能であり、その移動によってリレーレンズ12〜ビームスプリッタ6の光路間のいずれかに形成される集光点Cの位置が移動され、被検眼の視度が補正される。これにより、被検眼の屈折誤差にかかわらず、被検眼の眼底上に第2測定光を集光できる。すなわち、第2測定光路に配置されたリレーレンズ12は、被検眼の眼底に照射される測定光のフォーカス位置を調整するための光学部材として用いられる。なお、ビームスプリッタ3〜リレーレンズ12〜対物レンズ10までの光学部材は、第2測定光を被検眼の所定部位(例えば、被検眼眼底)に集光させるための第2集光光学系100bとして用いられる。   Further, the second measurement light reflected by the beam splitter 6 is once condensed through the relay lens 7 and the mirror 8, and is then collected through the dichroic mirror 9, the objective lens 10, and the dichroic mirror 43. Focused on the fundus. The second measurement light is once condensed by the relay lens 12 between the mirror 13 and the beam splitter 6. The relay lens 12 can be moved in the optical axis direction (arrow B direction) by driving the driving unit 72, and the focal point C formed between the relay lens 12 and the optical path of the beam splitter 6 by the movement. The position is moved, and the diopter of the eye to be examined is corrected. Accordingly, the second measurement light can be condensed on the fundus of the subject eye regardless of the refraction error of the subject eye. That is, the relay lens 12 disposed in the second measurement optical path is used as an optical member for adjusting the focus position of the measurement light irradiated on the fundus of the eye to be examined. The optical members from the beam splitter 3 to the relay lens 12 to the objective lens 10 serve as a second condensing optical system 100b for condensing the second measurement light on a predetermined part of the eye to be examined (for example, the fundus of the eye to be examined). Used.

また、照射光学系100における第2測定光路T2には、第2測定光の集光位置を切り換え、第2測定光の照射目標を被検眼眼底と水晶体前面とに選択的に切り換える集光位置切換機構70が配置されている。   In addition, the second measurement light path T2 in the irradiation optical system 100 switches the condensing position of the second measurement light, and selectively switches the irradiation target of the second measurement light between the fundus oculi and the front surface of the crystalline lens. A mechanism 70 is arranged.

より具体的には、集光位置切換機構70として、第2測定光路T2に配置された光学部材(リレーレンズ12)を挿脱させるための駆動部70が設けられている。ここで、制御部80によって駆動部70が駆動され、第2集光光学系100bの光路からリレーレンズ12が外される(図2参照)と、測定光源1から発せられビームスプリッタ3にて反射された第2測定光は、ミラー11、ミラー13、ビームスプリッタ6を介して、リレーレンズ7にて一旦集光された後、全反射ミラー8、ダイクロイックミラー9、対物レンズ10、ダイクロイックミラー43を介して、被検眼の角膜頂点から水晶体側に所定量ずれた被検眼前眼部のいずれかに第2測定光が集光される。なお、本実施形態では、前述の第2集光光学系100bにより被検眼水晶体前面に向けて第2測定光を照射させる際、被検眼の角膜頂点から水晶体側にずれた約3mmの位置に向かって第2測定光が入射されるような構成となっている。この場合、第2集光光学系100bにより被検眼前眼部に向けて第2測定光を照射させるときの入射位置は、第1集光光学系100aによって被検眼前眼部に向けて第1測定光を入射させるときの入射位置と同一になる。   More specifically, a drive unit 70 for inserting and removing the optical member (relay lens 12) arranged in the second measurement optical path T2 is provided as the condensing position switching mechanism 70. Here, when the drive unit 70 is driven by the control unit 80 and the relay lens 12 is removed from the optical path of the second condensing optical system 100 b (see FIG. 2), the light is emitted from the measurement light source 1 and reflected by the beam splitter 3. The second measurement light is once condensed by the relay lens 7 via the mirror 11, the mirror 13, and the beam splitter 6, and then passed through the total reflection mirror 8, the dichroic mirror 9, the objective lens 10, and the dichroic mirror 43. Accordingly, the second measurement light is collected on any one of the anterior eye portions of the eye to be examined that is shifted from the corneal apex of the eye to be examined by a predetermined amount toward the crystalline lens side. In the present embodiment, when the second measurement light is irradiated toward the front lens of the eye to be examined by the above-described second condensing optical system 100b, it is directed to a position of about 3 mm shifted from the corneal apex of the eye to be examined toward the lens. Thus, the second measurement light is incident. In this case, the incident position when the second measurement light is irradiated toward the anterior eye portion to be examined by the second condensing optical system 100b is the first incident position toward the anterior eye portion to be examined by the first condensing optical system 100a. This is the same as the incident position when the measurement light is incident.

干渉光学系200は、照射光学系100によって照射される被検眼角膜からの反射光と被検眼の所定部位からの反射光との干渉光を受光し、干渉信号を得るために用いられる。ここで、干渉光学系200は、対物レンズ10〜ハーフミラー20までの光路を照射光学系100と共用し、さらに、所定の偏光方向成分の光を透過する直線偏光子51、集光レンズ21、受光素子22、を有する。この場合、被検眼角膜及び被検眼前眼部の所定部位で反射された測定光は、被検眼角膜又は被検眼の所定部位(眼底又は水晶体前面)に照射されるまでの測定光の光路を逆行するように、偏光ビームスプリッタ6によって分離された後、偏光ビームスプリッタ3によって同軸にされた後、再び1/2波長板50を通過し、ハーフミラー20によって反射される。また、直線偏光子51が透過する光の偏光方向が直線偏光子51に入射されるときの第1測定光と第2測定光の各偏光方向に対して傾斜した関係(例えば、各偏光方向に対して45°の関係)となるように直線偏光子51が配置されている。   The interference optical system 200 is used to receive interference light between the reflected light from the eye cornea irradiated by the irradiation optical system 100 and the reflected light from a predetermined part of the subject eye, and obtain an interference signal. Here, the interference optical system 200 shares the optical path from the objective lens 10 to the half mirror 20 with the irradiation optical system 100, and further, a linear polarizer 51 that transmits light of a predetermined polarization direction component, a condenser lens 21, A light receiving element 22. In this case, the measurement light reflected by the predetermined part of the eye cornea and the anterior eye part of the eye to be examined reverses the optical path of the measurement light until it is irradiated to the eye cornea or the predetermined part (the fundus or the front surface of the lens) of the eye to be examined. As described above, after being separated by the polarization beam splitter 6, after being made coaxial by the polarization beam splitter 3, it passes through the half-wave plate 50 again and is reflected by the half mirror 20. Further, the polarization direction of the light transmitted through the linear polarizer 51 is inclined with respect to each polarization direction of the first measurement light and the second measurement light when entering the linear polarizer 51 (for example, in each polarization direction). The linear polarizer 51 is disposed so as to have a relationship of 45 ° with respect to the surface.

ここで、被検眼角膜から反射された第1測定光は、対物レンズ10〜ビームスプリッタ6までの光路を逆行後、ビームスプリッタ6を透過して、第1測定光路を逆行し、ビームスプリッタ3を透過後、ハーフミラー20によって反射される。そして、ハーフミラー20で反射された第1測定光の一部は、直線偏光子51を透過後、集光レンズ21にて集光され、受光素子22に入射する。   Here, the first measurement light reflected from the subject's eye cornea reverses the optical path from the objective lens 10 to the beam splitter 6, then passes through the beam splitter 6, reverses the first measurement optical path, and passes the beam splitter 3. After transmission, the light is reflected by the half mirror 20. A part of the first measurement light reflected by the half mirror 20 passes through the linear polarizer 51, is condensed by the condenser lens 21, and enters the light receiving element 22.

また、被検眼所定部位(眼底又は水晶体前面)から反射された第2測定光は、対物レンズ10〜ビームスプリッタ6までの光路を逆行後、ビームスプリッタ6で反射されて、第2測定光路を逆行し、ビームスプリッタ3で反射された後、ハーフミラー20によって反射される。そして、ハーフミラー20で反射された第2測定光の一部は、直線偏光子51を透過後、集光レンズ21にて集光され、受光素子22に入射する。   Further, the second measurement light reflected from a predetermined part of the eye to be examined (the fundus or the front surface of the crystalline lens) travels back through the optical path from the objective lens 10 to the beam splitter 6 and then is reflected by the beam splitter 6 to travel backward through the second measurement light path. Then, after being reflected by the beam splitter 3, it is reflected by the half mirror 20. A part of the second measurement light reflected by the half mirror 20 passes through the linear polarizer 51, is then collected by the condenser lens 21, and enters the light receiving element 22.

ここで、制御部80によって集光位置切換機構70が駆動制御され、被検眼の眼底に測定光が集光された状態(第2測定光の照射目標が眼底に設定されている状態)で、可動三角プリズム5の移動によって第1測定光(参照光)の光路長が変化されると、被検眼の角膜に照射された第1測定光の光路長(光源1〜角膜、角膜〜受光素子22)と被検眼の眼軸長によって変動する眼底に照射された第2測定光の光路長とが干渉が起こり得る範囲でほぼ等しい関係になるときがある。この場合、第1三角プリズム4で反射されてビームスプリッタ3を透過する第1測定光と、ミラー11で反射されてビームスプリッタ3で反射される第2測定光とが合成されて干渉光とされたのち、ハーフミラー20を介して受光素子22に受光される。   Here, the condensing position switching mechanism 70 is driven and controlled by the control unit 80, and the measurement light is condensed on the fundus of the eye to be examined (the irradiation target of the second measurement light is set on the fundus). When the optical path length of the first measurement light (reference light) is changed by the movement of the movable triangular prism 5, the optical path length of the first measurement light irradiated to the cornea of the eye to be examined (light source 1 to cornea, cornea to light receiving element 22). ) And the optical path length of the second measurement light applied to the fundus that varies depending on the axial length of the eye to be examined may be in a substantially equal relationship within a range where interference can occur. In this case, the first measurement light reflected by the first triangular prism 4 and transmitted through the beam splitter 3 and the second measurement light reflected by the mirror 11 and reflected by the beam splitter 3 are combined into interference light. Thereafter, the light is received by the light receiving element 22 through the half mirror 20.

一方、制御部80によって集光位置切換機構70が駆動制御され、被検眼前眼部に測定光が集光された状態(第2測定光の照射目標が水晶体前面に設定されている状態)で可動三角プリズム5の移動によって第1測定光の光路長が変化されると、被検眼の角膜に照射された第1測定光の光路長(光源1〜角膜、角膜〜受光素子22)と被検眼の前房深度によって変動する水晶体前面に照射された第2測定光の光路長(光源1〜水晶体前面、水晶体前面〜受光素子22)とが干渉が起こり得る範囲でほぼ等しい関係になるときがある。この場合、第1測定光は、第1三角プリズム4で反射されてビームスプリッタ3を透過する際に、ミラー11で反射されてビームスプリッタ3で反射される第2測定光と合成され干渉光とされたのち、受光素子22に受光される。   On the other hand, in the state where the condensing position switching mechanism 70 is driven and controlled by the control unit 80 and the measurement light is condensed on the anterior eye portion of the eye to be examined (the state where the irradiation target of the second measurement light is set on the front surface of the crystalline lens). When the optical path length of the first measurement light is changed by the movement of the movable triangular prism 5, the optical path length of the first measurement light (light source 1 to cornea, cornea to light receiving element 22) irradiated to the cornea of the eye to be examined and the eye to be examined. In some cases, the optical path lengths of the second measurement light (light source 1 to lens front surface, lens front surface to light receiving element 22) irradiated to the lens front surface, which fluctuate depending on the anterior chamber depth, are substantially equal in a range where interference can occur. . In this case, when the first measurement light is reflected by the first triangular prism 4 and transmitted through the beam splitter 3, the first measurement light is combined with the second measurement light reflected by the mirror 11 and reflected by the beam splitter 3. After that, the light receiving element 22 receives the light.

なお、上記構成において、第1測定光路に配置された光学部材と第2測定光路に配置された光学部材によって光路長の変更がなされ、第1測定光の光路長と第2測定光の光路長との光路差は、第1測定光と第2測定光がビームスプリッタ3によって分割されてからビームスプリッタ6で合成されるまでの分割光路での光路差によって生じる。よって、上記のように角膜に照射される第1測定光と眼底に照射される第2測定光との干渉光、及び角膜に照射される第1測定光と水晶体前面に照射される第2測定光との干渉光を発生させるためには、第1測定光路と第2測定光路との光路差をこれに対応させる必要がある。   In the above configuration, the optical path length is changed by the optical member arranged in the first measurement optical path and the optical member arranged in the second measurement optical path, and the optical path length of the first measurement light and the optical path length of the second measurement light are changed. Is caused by the optical path difference in the split optical path from when the first measurement light and the second measurement light are split by the beam splitter 3 until they are combined by the beam splitter 6. Therefore, as described above, the interference light between the first measurement light irradiated on the cornea and the second measurement light irradiated on the fundus, and the first measurement light irradiated on the cornea and the second measurement irradiated on the front surface of the crystalline lens. In order to generate interference light with light, it is necessary to correspond to the optical path difference between the first measurement optical path and the second measurement optical path.

そこで、前述のように測定光の一部を透過し測定光の一部を反射するビームスプリッタ3によって形成される測定光の透過光路には、ビームスプリッタ3を透過した測定光を反射する反射部材(例えば、三角プリズム4の反射面4a)と,反射面4aによって反射された測定光をビームスプリッタ6へと導く導光部材(例えば、可動三角プリズム5及び三角プリズム4の反射面4b)と,によって形成される迂回光路が設けられている
この場合、第1測定光は、ビームスプリッタ3を透過後に直進してビームスプリッタ6に向かうのではなく、ビームスプリッタ3の透過後、第1三角プリズム4の反射面4aによって反射され、第2反射プリズム5によって折り返した後に、可動三角プリズム4の反射面4bによって反射させてからビームスプリッタ6に到達する。
Therefore, as described above, in the transmission light path of the measurement light formed by the beam splitter 3 that transmits a part of the measurement light and reflects a part of the measurement light, a reflecting member that reflects the measurement light transmitted through the beam splitter 3 (For example, the reflective surface 4a of the triangular prism 4), a light guide member that guides the measurement light reflected by the reflective surface 4a to the beam splitter 6 (for example, the reflective surface 4b of the movable triangular prism 5 and the triangular prism 4), In this case, the first measurement light does not travel straight after passing through the beam splitter 3 and travels toward the beam splitter 6, but after passing through the beam splitter 3, the first triangular prism 4 After being reflected by the reflecting surface 4a of the first and second reflecting prisms 5 and reflected by the reflecting surface 4b of the movable triangular prism 4, the beams are reflected. It reaches the presetter 6.

すなわち、ビームスプリッタ3の透過後、第1三角プリズム4及び可動三角プリズム5によって形成された迂回経路を通過させてからビームスプリッタ6にて第2測定光の光路との合流させることにより、ビームスプリッタ3の反射方向に形成されミラー11及びミラー13による迂回光路を持つ第2測定光路の光路長と第1測定光路の光路長との光路差を短くしている。この場合、第1三角プリズム4及び可動三角プリズム5による迂回光路の光路長を調整することにより、角膜に照射された第1測定光の光路長と水晶体前面に照射された第2測定光の光路長との光路差(前房深度測定用の光路差)に対応できる。これにより、被検眼の角膜からの反射光と被検眼の水晶体前面からの反射光との干渉光を受光素子22に受光させることができる。   That is, after passing through the beam splitter 3, it passes through a detour path formed by the first triangular prism 4 and the movable triangular prism 5, and then merges with the optical path of the second measurement light by the beam splitter 6. The optical path difference between the optical path length of the second measurement optical path and the optical path length of the first measurement optical path which is formed in the reflection direction 3 and has a bypass optical path by the mirror 11 and the mirror 13 is shortened. In this case, by adjusting the optical path length of the detour optical path by the first triangular prism 4 and the movable triangular prism 5, the optical path length of the first measurement light irradiated on the cornea and the optical path of the second measurement light irradiated on the front surface of the crystalline lens. It is possible to cope with the optical path difference from the length (optical path difference for anterior chamber depth measurement). Thereby, the light receiving element 22 can receive the interference light between the reflected light from the cornea of the eye to be examined and the reflected light from the front surface of the crystalline lens of the eye to be examined.

また、第1三角プリズム4及び可動三角プリズム5による迂回光路の光路長をさらに延ばすことにより、角膜に照射された第1測定光の光路長と眼底に照射された第2測定光の光路長との光路差(眼軸長測定用の光路差)に対応できる。なお、上記構成においては、ビームスプリッタ3の透過方向を第1測定光路とするような構成としたが、これに限るものではなく、ビームスプリッタ3の透過方向を第2測定光路にするような構成であってもよい。   Further, by further extending the optical path length of the detour optical path by the first triangular prism 4 and the movable triangular prism 5, the optical path length of the first measurement light irradiated to the cornea and the optical path length of the second measurement light irradiated to the fundus Can be accommodated (optical path difference for measuring the axial length). In the above configuration, the transmission direction of the beam splitter 3 is set as the first measurement optical path. However, the configuration is not limited thereto, and the transmission direction of the beam splitter 3 is set as the second measurement optical path. It may be.

なお、上記光学系の構成において、上記照射光学系100及び干渉光学系200は、測定光源1から出射された測定光を第1測定光として被検眼角膜に照射して角膜からの反射光を受光するための第1測定光学系と、測定光源1から出射された測定光を第2測定光として被検眼眼底に照射して眼底からの反射光を受光するための第2測定光学系と、して機能する。そして、第1測定光の光路長または前記第2測定光の光路長のいずれかを変更させるための光路長変更手段は、第1測定光学系または第2測定光学系のどちらかに配置される。また、干渉光学系200におけるビームスプリッタ3〜受光素子22までの光路は、第1測定光学系及び第2測定光学系の共通光路に置かれ,第1測定光の反射光と第2測定光の反射光との合成による干渉光を受光し干渉信号を得るための受光光学系として機能する。そして、集光位置切換機構70は、第1測定光学系及び第2測定光学系の共通光路の共通光路とならない第2測定光学系の光路中に配置される所定の光学部材(リレーレンズ12)を移動させることにより、第2測定光の照射目標を被検眼眼底と被検眼の水晶体前面とに選択的に切り換える。   In the configuration of the optical system, the irradiation optical system 100 and the interference optical system 200 receive the reflected light from the cornea by irradiating the eye cornea with the measurement light emitted from the measurement light source 1 as the first measurement light. A second measurement optical system for irradiating the fundus of the subject's eye with the measurement light emitted from the measurement light source 1 as the second measurement light and receiving the reflected light from the fundus; Function. Then, the optical path length changing means for changing either the optical path length of the first measurement light or the optical path length of the second measurement light is arranged in either the first measurement optical system or the second measurement optical system. . The optical path from the beam splitter 3 to the light receiving element 22 in the interference optical system 200 is placed in the common optical path of the first measurement optical system and the second measurement optical system, and the reflected light of the first measurement light and the second measurement light It functions as a light receiving optical system for receiving interference light by combining with reflected light and obtaining an interference signal. The condensing position switching mechanism 70 is a predetermined optical member (relay lens 12) disposed in the optical path of the second measurement optical system that is not a common optical path of the common optical path of the first measurement optical system and the second measurement optical system. Is moved selectively between the fundus of the eye to be examined and the front surface of the crystalline lens of the eye to be examined.

被検眼を固視させるための固視標を被検眼に投影する固視標投影光学系40は、固視用チャートを表示する液晶ディスプレイ42、液晶ディスプレイ42に表示された固視用チャートを被検眼眼底に結像させるための結像レンズ41、可視光を反射して赤外光(測定光)を透過するダイクロイックミラー43、を含む。なお、液晶ディスプレイ42には、所定のパターン形状(例えば、十字マーク)を持つチャートが表示されるようになっており、制御部80による表示制御によってチャートの表示位置が二次元的に移動できるような構成となっている。   A fixation target projection optical system 40 that projects a fixation target for fixing the eye to be examined on the eye to be examined includes a liquid crystal display 42 that displays a fixation chart, and a fixation chart displayed on the liquid crystal display 42. An imaging lens 41 for forming an image on the fundus of the optometric eye and a dichroic mirror 43 that reflects visible light and transmits infrared light (measurement light) are included. Note that a chart having a predetermined pattern shape (for example, a cross mark) is displayed on the liquid crystal display 42, and the display position of the chart can be moved two-dimensionally by display control by the control unit 80. It has become a structure.

被検眼の前眼部を観察するために被検眼の前眼部を撮像する前眼部撮像光学系30は、対物レンズ10、リレーレンズ31、結像レンズ32、二次元撮像素子33、を含む。ここで、図示無き前眼部照明によって赤外照明された前眼部像は、ダイクロイックミラー43、対物レンズ10、測定光の大部分を反射し測定光の一部及び前眼部照明光を透過する波長特性を有するダイクロイックミラー9、リレーレンズ31、結像レンズ32を介して、二次元撮像素子33に結像される。   An anterior segment imaging optical system 30 that images the anterior segment of the subject eye to observe the anterior segment of the subject eye includes an objective lens 10, a relay lens 31, an imaging lens 32, and a two-dimensional imaging element 33. . Here, the anterior ocular segment image that is illuminated in infrared by the anterior ocular segment illumination (not shown) reflects most of the dichroic mirror 43, the objective lens 10 and the measurement light, and transmits a part of the measurement light and the anterior ocular illumination light. The image is formed on the two-dimensional image sensor 33 through the dichroic mirror 9 having the wavelength characteristics to be achieved, the relay lens 31, and the imaging lens 32.

次に、本実施形態に係る装置の制御系について説明する。制御部80は、表示モニタ81、光源1、受光素子22、駆動部70、駆動部71、駆動部72、コントロール部84、メモリ85、等が接続される。なお、駆動部71及び駆動部72には、パルスモータを用いており、各駆動部に対する駆動量が検出できるようになっている。制御部80は、受光素子22から出力される干渉信号と,光路長変更のために駆動される駆動部71に対する駆動結果(光路長の変更情報)に基づいて、被検眼の眼軸長及び前房深度を演算により求める。また、メモリ85には、求められた測定値などが記憶される。また、コントロール部84には、被検眼の眼軸長を測定する眼軸長測定モードと被検眼の前房深度を測定する前房深度測定モードとを切り換えるモード切換スイッチ84a、測定開始のトリガ信号を発する測定開始スイッチ84b、被検眼の視度を補正するために眼屈折力測定装置(例えば、特開2006−187482号公報参照)によって測定された屈折度数を入力する度数入力スイッチ84c、等の各種スイッチが設けられている。   Next, a control system of the apparatus according to the present embodiment will be described. The control unit 80 is connected to the display monitor 81, the light source 1, the light receiving element 22, the drive unit 70, the drive unit 71, the drive unit 72, the control unit 84, the memory 85, and the like. Note that a pulse motor is used for the drive unit 71 and the drive unit 72 so that the drive amount for each drive unit can be detected. Based on the interference signal output from the light receiving element 22 and the driving result (the optical path length change information) for the driving unit 71 that is driven to change the optical path length, the control unit 80 determines the axial length and the front of the eye to be examined. The tuft depth is calculated. The memory 85 stores the obtained measurement value and the like. The control unit 84 also includes a mode changeover switch 84a for switching between an axial length measurement mode for measuring the axial length of the eye to be examined and an anterior chamber depth measurement mode for measuring the anterior chamber depth of the subject eye, and a trigger signal for starting measurement. A measurement start switch 84b that emits light, a power input switch 84c that inputs a refractive power measured by an eye refractive power measurement device (see, for example, Japanese Patent Laid-Open No. 2006-187482) to correct the diopter of the eye to be examined, and the like. Various switches are provided.

以上のような構成を備える装置を用いて、被験者眼の眼軸長及び前房深度を測定する場合について説明する。なお、以下の説明では、眼軸長測定、前房深度測定、の順で測定を行う。   A case where the axial length and the anterior chamber depth of the subject's eye are measured using the apparatus having the above configuration will be described. In the following description, measurement is performed in the order of axial length measurement and anterior chamber depth measurement.

眼軸長モードに移行するようにモード切換スイッチ84aが検者によって操作されると、制御部80は、測定モードを眼軸長測定モードに切り換え、駆動部70を駆動させ、第2測定光路T2の光路中にリレーレンズ12が配置された光学配置に切り換える。これにより、被検眼に向けて照射される第2測定光が被検眼の眼底に集光可能な状態となる。   When the mode selector switch 84a is operated by the examiner so as to shift to the axial length mode, the control unit 80 switches the measurement mode to the axial length measurement mode, drives the drive unit 70, and the second measurement optical path T2. To the optical arrangement in which the relay lens 12 is arranged in the optical path. Thereby, it will be in the state which can condense the 2nd measurement light irradiated toward the eye to be examined on the fundus of the eye to be examined.

次に、検者は、モニタ81に表示される被験者眼のアライメント状態を見ながら、図示なきジョイスティック等の操作手段を用いて、装置を上下左右及び前後方向に移動させ、装置を被験者眼Eに対して所定の位置関係に置く。より具体的には、被験者眼の角膜頂点もしくは瞳孔中心と測定光軸とが略一致するように装置を上下左右に移動させると共に、装置と被験者眼との作動距離が所定の適正作動距離(例えば、WD=40mm)となるように装置を前後方向に移動させる。また、検者は、固視標投影光学系40によって投影される固視標を被験者眼に固視させる。また、検者は、度数入力スイッチ84cを用いて被検眼の眼屈折力を入力する。そして、制御部80は、入力スイッチ84cで入力された屈折度数に基づいて駆動部72を駆動させリレーレンズ12を移動させることにより、被検眼の視度を補正する。   Next, the examiner moves the apparatus up and down, right and left and back and forth using an operation means such as a joystick (not shown) while observing the alignment state of the subject eye displayed on the monitor 81, and moves the apparatus to the subject eye E. On the other hand, it is placed in a predetermined positional relationship. More specifically, the device is moved vertically and horizontally so that the corneal apex or pupil center of the subject's eye and the measurement optical axis substantially coincide with each other, and the working distance between the device and the subject's eye is a predetermined appropriate working distance (for example, , WD = 40 mm), the apparatus is moved in the front-rear direction. Further, the examiner fixes the fixation target projected by the fixation target projection optical system 40 to the subject's eye. Further, the examiner inputs the eye refractive power of the eye to be examined using the frequency input switch 84c. Then, the control unit 80 corrects the diopter of the eye to be examined by driving the driving unit 72 and moving the relay lens 12 based on the refractive power input by the input switch 84c.

ここで、測定開始のトリガ信号が発せられると、制御部80は、測定光源1を点灯させ、照射光学系100により測定光を被検眼に照射すると共に、測定光による被検眼からの反射光を干渉光学系200の受光素子22により受光する。また、制御部80は、駆動部71を駆動させることにより可動三角プリズム5を移動させていき、受光素子22から得られる干渉信号と、プリズム5の移動によって変化される第1測定光の光路長(光路長変更部材の駆動結果)、から被検眼の眼軸長を求める。   Here, when a trigger signal for starting measurement is issued, the control unit 80 turns on the measurement light source 1 and irradiates the eye with measurement light by the irradiation optical system 100, and also reflects reflected light from the eye under measurement by the measurement light. Light is received by the light receiving element 22 of the interference optical system 200. Further, the control unit 80 moves the movable triangular prism 5 by driving the driving unit 71, and the optical signal length of the first measurement light changed by the interference signal obtained from the light receiving element 22 and the movement of the prism 5. From the (result of driving the optical path length changing member), the axial length of the eye to be examined is obtained.

なお、本実施形態では、第2測定光の光路長より第1測定光の光路長が短くなるようにプリズム5の基準位置(初期位置)が設定されている。したがって、第1測定光の光路長が長くなる方向(第1三角プリズム4から離れる方向)にプリズム5が基準位置から移動されていくと、まず、第1測定光による角膜からの反射光と第2測定光による角膜からの反射光(第2測定光が眼底に向かう際の角膜反射光)との干渉光が受光素子22に検出される(眼軸長0mmの位置)。さらに、プリズム5が移動されていくと、角膜に照射された第1測定光の光路長と眼底に照射された第2測定光との光路長との光路差が少なくなっていき、第1測定光による角膜からの反射光と第2測定光による眼底からの反射光との干渉光が受光素子22に検出される。ここで、第1測定光と第2測定光による角膜からの反射光の干渉光が検出される位置から第1測定光による角膜反射光と第2測定光による眼底反射光との干渉光が検出されるまでのプリズム5の移動量M1は、被検眼の眼軸長に応じて異なる。したがって、所定の演算式を用いて、移動量M1と被検眼の眼軸長との関係を求めておくことにより、プリズム5の移動量M1に対応する眼軸長データを求めることができる。なお、取得された被験者眼の眼軸長の情報は、メモリ85に記憶されるとともに、モニタ81に表示される。また、制御部80は、測定完了後、駆動部71を駆動させることによりプリズム5の移動位置を初期位置に復帰させておく。   In the present embodiment, the reference position (initial position) of the prism 5 is set so that the optical path length of the first measurement light is shorter than the optical path length of the second measurement light. Therefore, when the prism 5 is moved from the reference position in the direction in which the optical path length of the first measurement light becomes longer (the direction away from the first triangular prism 4), first, the first reflected light from the cornea and the first reflected light. The interference light with the reflected light from the cornea due to the two measurement lights (the corneal reflection light when the second measurement light travels toward the fundus) is detected by the light receiving element 22 (position of the ocular axial length of 0 mm). Further, as the prism 5 is moved, the optical path difference between the optical path length of the first measurement light applied to the cornea and the optical path length of the second measurement light applied to the fundus is reduced, and the first measurement is performed. Interference light between the reflected light from the cornea due to the light and the reflected light from the fundus due to the second measurement light is detected by the light receiving element 22. Here, the interference light of the cornea reflection light by the first measurement light and the fundus reflection light by the second measurement light is detected from the position where the interference light of the reflection light from the cornea by the first measurement light and the second measurement light is detected. The amount of movement M1 of the prism 5 until it varies depends on the axial length of the eye to be examined. Therefore, by obtaining a relationship between the movement amount M1 and the axial length of the eye to be examined using a predetermined arithmetic expression, the axial length data corresponding to the movement amount M1 of the prism 5 can be obtained. The acquired information about the axial length of the subject's eye is stored in the memory 85 and displayed on the monitor 81. Further, after the measurement is completed, the control unit 80 drives the drive unit 71 to return the movement position of the prism 5 to the initial position.

以上のように被検眼の眼軸長測定が完了したら、前房深度測定に移行する。ここで、前房深度測定モードの移行するようにモード切換スイッチ84aが検者によって操作されると、制御部80は、測定モードを前房深度モードに切り換え、駆動部70を駆動させることにより、第2測定光路T2からリレーレンズ12が外れた光学配置に切り換える。これにより、被検眼に向けて照射される第2測定光が被検眼の前眼部に集光された状態となる。なお、上記モード切換において、制御部80は、所定の切換信号に基づいて自動的に眼軸長測定モードから前房深度測定モードに切り換えるようにしてもよい。   When the measurement of the axial length of the eye to be examined is completed as described above, the process proceeds to anterior chamber depth measurement. Here, when the mode switch 84a is operated by the examiner so as to shift to the anterior chamber depth measurement mode, the control unit 80 switches the measurement mode to the anterior chamber depth mode and drives the drive unit 70, thereby It switches to the optical arrangement | positioning which the relay lens 12 remove | deviated from 2nd measurement optical path T2. Thereby, it will be in the state where the 2nd measurement light irradiated toward the eye to be examined was condensed on the anterior eye part of the eye to be examined. In the mode switching, the control unit 80 may automatically switch from the axial length measurement mode to the anterior chamber depth measurement mode based on a predetermined switching signal.

次に、検者は、表示モニタ81上の前眼部像における測定光の角膜反射による輝点と水晶体前面による輝点を見ながら、ディスプレイ42に表示される固視灯の位置を二次元的に変化させ、モニタ81に表示される角膜輝点と水晶体前面輝点とが重なるように(測定光軸Laと被検眼の眼軸を一致させるため)、コントロール部84に設けられた固視位置変更スイッチ84cを操作する。この場合、制御部80は、スイッチ84cからの操作信号に基づいてディスプレイ42に表示される固視位置を移動させる。ここで、検者によってスイッチ84cが操作され、角膜輝点と水晶体前面輝点との重なりがモニタ81で確認されると、検者は、コントロール部84の測定開始スイッチ84bを押して、被検眼の前房深度測定を開始する。   Next, the examiner two-dimensionally determines the position of the fixation lamp displayed on the display 42 while observing the bright spot due to the cornea reflection of the measurement light in the anterior segment image on the display monitor 81 and the bright spot due to the front surface of the crystalline lens. The fixation position provided in the control unit 84 so that the corneal luminescent spot displayed on the monitor 81 and the front luminescent spot of the crystalline lens overlap (in order to make the measurement optical axis La coincide with the eye axis of the eye to be examined). The change switch 84c is operated. In this case, the control unit 80 moves the fixation position displayed on the display 42 based on the operation signal from the switch 84c. Here, when the switch 84c is operated by the examiner and the overlap between the corneal bright spot and the front face bright spot is confirmed on the monitor 81, the examiner presses the measurement start switch 84b of the control unit 84 to Start anterior chamber depth measurement.

ここで、測定開始のトリガ信号が発せられると、駆動部71を駆動させることにより可動三角プリズム5を移動させていき、受光素子22から得られる干渉信号と、プリズム5の移動によって変化される第1測定光の光路長(光路長変更部材の駆動結果)、から被検眼の前房深度を求める。   Here, when a trigger signal for starting measurement is generated, the movable triangular prism 5 is moved by driving the driving unit 71, and the interference signal obtained from the light receiving element 22 and the first change which is changed by the movement of the prism 5 are performed. The anterior chamber depth of the eye to be examined is obtained from the optical path length of one measurement light (the driving result of the optical path length changing member).

ここで、第1測定光の光路長が長くなる方向にプリズム5が基準位置から移動されていくと、まず、第1測定光による角膜からの反射光と第2測定光による角膜からの反射光(第2測定光が水晶体に向かう際の角膜反射光)との干渉光が受光素子22に検出される(前房深度0mmの位置)。さらに、プリズム5が移動されていくと、角膜に照射(集光)された第1測定光の光路長と水晶体前面に照射(集光)された第2測定光との光路長との光路差が少なくなっていき、第1測定光による角膜からの反射光と第2測定光による水晶体前面からの反射光との干渉光が受光素子22に検出される。ここで、第1測定光と第2測定光による角膜からの反射光の干渉光が検出される位置から第1測定光による角膜反射光と第2測定光による水晶体前面反射光との干渉光が検出されるまでのプリズム5の移動量M2は、被検眼の前房深度に応じて異なる。したがって、所定の演算式を用いて、移動量M2と被検眼の前房深度との関係を求めておくことにより、プリズム5の移動量M2に対応する前房深度を求めることができる。なお、取得された被験者眼の前房深度の情報は、メモリ85に記憶されるとともに、モニタ81に表示される。なお、前房深度測定モードの場合、所定の基準位置からのプリズム5の移動可能範囲は、前房深度の測定が可能な範囲内で移動されるものであればよく、眼軸長測定用に設定された移動可能範囲より短くなるように設定されたものであってもよい。この場合、プリズム5の移動可能範囲が小さい状態(光路長変更部材による光路長の変更範囲が小さい状態)で、プリズム5を往復移動させることで前房深度の測定を複数回行って測定結果の平均化を行うことにより、測定誤差の軽減、測定時間の短縮、が可能となる。   Here, when the prism 5 is moved from the reference position in the direction in which the optical path length of the first measurement light is increased, first, the reflected light from the cornea by the first measurement light and the reflected light from the cornea by the second measurement light. Interference light with (corneal reflection light when the second measurement light travels toward the crystalline lens) is detected by the light receiving element 22 (position at anterior chamber depth of 0 mm). Further, when the prism 5 is moved, the optical path difference between the optical path length of the first measurement light irradiated (condensed) on the cornea and the optical path length of the second measurement light irradiated (condensed) on the front surface of the crystalline lens. , And the interference light between the reflected light from the cornea by the first measurement light and the reflected light from the front surface of the crystalline lens by the second measurement light is detected by the light receiving element 22. Here, the interference light between the cornea reflection light by the first measurement light and the lens front reflection light by the second measurement light from the position where the interference light of the reflection light from the cornea by the first measurement light and the second measurement light is detected. The amount of movement M2 of the prism 5 until it is detected varies depending on the anterior chamber depth of the eye to be examined. Accordingly, the anterior chamber depth corresponding to the movement amount M2 of the prism 5 can be obtained by obtaining the relationship between the movement amount M2 and the anterior chamber depth of the eye to be examined using a predetermined arithmetic expression. The acquired information about the depth of the anterior chamber of the subject's eye is stored in the memory 85 and displayed on the monitor 81. In the anterior chamber depth measurement mode, the movable range of the prism 5 from the predetermined reference position is not limited as long as it can be moved within the range in which the anterior chamber depth can be measured. It may be set to be shorter than the set movable range. In this case, the anterior chamber depth is measured a plurality of times by reciprocating the prism 5 in a state where the movable range of the prism 5 is small (a state where the optical path length change range by the optical path length changing member is small). By performing averaging, measurement errors can be reduced and measurement time can be shortened.

以上のような構成とすれば、被検眼の所定部位に向けて照射される第2測定光を被検眼の眼底に集光するか被検眼の前眼部に集光させるかを切換可能な構成によって、眼底に集光された照射光による眼底反射光と角膜反射光との干渉により眼軸長測定がなされ、被検眼前眼部に集光された照射光による水晶体前面反射光と角膜反射光との干渉により前房深度測定がなされるため、被検眼の眼軸長と前房深度を精度よく測定できる。   With the above configuration, the second measurement light irradiated toward a predetermined part of the eye to be examined can be switched between focusing on the fundus of the eye to be examined or on the anterior eye portion of the eye to be examined. Is used to measure the axial length by the interference between the fundus reflection light and the cornea reflection light by the irradiation light collected on the fundus, and the front lens reflection light and the cornea reflection light by the irradiation light collected on the anterior eye portion of the eye to be examined. Since the anterior chamber depth is measured by the interference with the eye, the axial length and the anterior chamber depth of the eye to be examined can be accurately measured.

なお、以上の説明においては、第1測定光路中に光路変更部材(可動三角プリズム5)を設け、第1測定光の光路長を変更させることにより第1測定光と第2測定光との干渉を生じさせるような構成としたが、第1測定光路と第2測定光路のいずれかに光路変更部材を設け、第1測定光の光路長と第2測定光の光路長のいずれかを変更させることにより第1測定光と第2測定光との干渉を生じさせるような構成であればよい。すなわち、第1測定光と第2測定光の干渉を起こすべく、光路分割部材によって分割された分割光路中に光路長変更部材が設けられた構成により、第1測定光の光路長と第2測定光の光路長との光路差が調整されるものであればよい。この場合、第1測定光路と第2測定光路の各光路長が最も短くなるように各光路の光学部材の位置が調整されたときに(光学部材の可動範囲内)、光路長が短い方の光路に光路長変更部材が配置され、光路長変更部材が配置された光路の光路長が長くなるように光路長変更部材が移動可能な構成であればよい。   In the above description, an optical path changing member (movable triangular prism 5) is provided in the first measurement optical path, and interference between the first measurement light and the second measurement light is performed by changing the optical path length of the first measurement light. However, an optical path changing member is provided in either the first measurement optical path or the second measurement optical path to change either the optical path length of the first measurement light or the optical path length of the second measurement light. Therefore, any configuration that causes interference between the first measurement light and the second measurement light may be used. That is, in order to cause interference between the first measurement light and the second measurement light, the optical path length of the first measurement light and the second measurement light are provided by the configuration in which the optical path length changing member is provided in the divided optical path divided by the optical path dividing member. What is necessary is just to adjust the optical path difference with the optical path length of light. In this case, when the position of the optical member of each optical path is adjusted so that the respective optical path lengths of the first measurement optical path and the second measurement optical path are the shortest (within the movable range of the optical member), the shorter optical path length Any configuration is possible as long as the optical path length changing member is arranged in the optical path and the optical path length changing member is movable so that the optical path length of the optical path in which the optical path length changing member is arranged becomes long.

なお、以上の説明では、眼軸長測定モードにおける第1測定光の集光位置について、被検眼の角膜頂点から水晶体側に約3mmの位置に向けて第1測定光を入射させるような構成としたが、これに限るものではなく、被検眼前眼部のいずれかに第1測定光を入射させることにより被検眼角膜からの反射光が受光素子22に受光されるものであればよい。例えば、被検眼の角膜頂点又は角膜曲率中心に向けて第1測定光を入射させるようにしてもよい。   In the above description, the first measurement light is incident on the focusing position of the first measurement light in the axial length measurement mode from the apex of the cornea of the subject's eye toward the crystalline lens at a position of about 3 mm. However, the present invention is not limited to this, and any light beam may be used as long as the reflected light from the cornea of the eye to be examined is received by the light receiving element 22 when the first measurement light is incident on any one of the anterior eye portions of the eye to be examined. For example, the first measurement light may be incident toward the corneal apex or the corneal curvature center of the eye to be examined.

また、以上の説明では、前房深度測定モードにおける第2測定光の集光位置について、被検眼の角膜頂点から水晶体側に約3mmの位置に向けて第2測定光を入射させるような構成としたが、これに限るものではなく、被検眼前眼部のいずれかに第2測定光を入射させることにより水晶体前面からの反射光が受光素子22に受光されるものであればよい。例えば、被検眼の曲率中心に向けて第2測定光を入射させるようにしてもよい。なお、実験によれば、角膜と水晶体前面からの反射光による干渉信号を感度(効率)よく取得するためには、被検眼の角膜頂点から水晶体側に約2mm〜4mmずれた位置に第2測定光を入射させる構成が良いことがわかった(より好ましくは、約3mm)。   In the above description, the second measurement light is incident on the condensing position of the second measurement light in the anterior chamber depth measurement mode from the apex of the cornea of the eye to the lens side toward the position of about 3 mm. However, the present invention is not limited to this, and it is only necessary that the light reflected from the front surface of the crystalline lens is received by the light receiving element 22 when the second measurement light is incident on any one of the anterior eye portions to be examined. For example, the second measurement light may be incident toward the center of curvature of the eye to be examined. In addition, according to the experiment, in order to acquire an interference signal by reflected light from the cornea and the front surface of the lens with high sensitivity (efficiency), the second measurement is performed at a position shifted from the apex of the cornea of the eye to be examined by about 2 mm to 4 mm toward the lens. It turned out that the structure which injects light is good (preferably about 3 mm).

なお、以上の説明においては、プリズム5の移動量M1及びM2から眼軸長及び前房深度を求めるような構成としたが、これに限るものではなく、受光素子22から得られる干渉信号とプリズム5の駆動結果に基づいて眼軸長測定及び前房深度測定が可能な構成であればよい。例えば、第1測定光による角膜反射光と第2測定光による眼底反射光との干渉光、第1測定光による角膜反射光と第2測定光による水晶体前面反射光との干渉光、が検出されたときのプリズム5の移動位置に基づいて眼軸長及び前房深度を求めるような構成であってもよい。   In the above description, the configuration is such that the axial length and the anterior chamber depth are obtained from the movement amounts M1 and M2 of the prism 5, but the present invention is not limited to this, and the interference signal obtained from the light receiving element 22 and the prism Any configuration that can measure the axial length and the anterior chamber depth based on the driving result of 5 may be used. For example, interference light between the cornea reflection light by the first measurement light and the fundus reflection light by the second measurement light, and the interference light between the cornea reflection light by the first measurement light and the front lens reflection light by the second measurement light are detected. The configuration may be such that the axial length and the anterior chamber depth are obtained based on the movement position of the prism 5 at that time.

また、以上の説明においては、照射光学系100の測定光の光路を第1測定光路T1と第2測定光路T2に分割する光路分割部材(但し、干渉光学系200においては光路合成部材として利用される)、及び第1測定光路T1と第2測定光路T2に合成する光路合成部材(但し、干渉光学系200においては光路分割部材として利用される)として、偏光ビームスプリッタ3及び偏光ビームスプリッタ6を用いるような構成により、ハーフミラー等を用いる場合よりも、光路分割部材及び光路合成部材を通過する際の測定光の減衰を軽減できるため、測定精度を向上させることができる。   In the above description, the optical path dividing member that divides the optical path of the measurement light of the irradiation optical system 100 into the first measurement optical path T1 and the second measurement optical path T2 (however, in the interference optical system 200, it is used as an optical path combining member. The polarizing beam splitter 3 and the polarizing beam splitter 6 are used as optical path combining members (used as optical path dividing members in the interference optical system 200) for combining the first measuring optical path T1 and the second measuring optical path T2. With the configuration to be used, since the attenuation of the measurement light when passing through the optical path splitting member and the optical path combining member can be reduced as compared with the case of using a half mirror or the like, the measurement accuracy can be improved.

また、以上の説明においては、リレーレンズ12を第2測定光路T2から外すことにより第2測定光を前眼部に集光させるような構成としたが、第2測定光路中に配置される所定の光学部材を移動させることにより、第2測定光の照射目標が被検眼眼底と被検眼の水晶体前面とで選択的に切り換わるものであればよい。例えば、リレーレンズ12より対物レンズ10側に凹レンズを配置し、被検眼に照射される平行光束を収束光束に変換させることにより、被検眼前眼部に第2測定光が集光されるような構成であってもよい。また、ズームレンズ系を配置し、ズームレンズ系の移動によって被検眼に照射される平行光束を収束光束に変換するようにしてもよい。   In the above description, the second measurement light is condensed on the anterior eye portion by removing the relay lens 12 from the second measurement optical path T2, but a predetermined arrangement in the second measurement optical path. As long as the optical member is moved, the irradiation target of the second measurement light may be selectively switched between the fundus of the eye to be examined and the lens front surface of the eye to be examined. For example, a concave lens is disposed on the objective lens 10 side of the relay lens 12, and the second measurement light is focused on the anterior eye portion of the eye by converting a parallel light beam irradiated to the eye to be converged. It may be a configuration. Further, a zoom lens system may be arranged so that the parallel light beam irradiated to the eye to be examined by the movement of the zoom lens system is converted into a convergent light beam.

また、以上の説明においては、度数入力スイッチ84cの入力値を基に視度補正を行うような構成としたが、上記装置の光学系に眼屈折力測定光学系を付加し、眼屈折力測定光学系によって得られた屈折度数に基づいて視度補正を行うような構成としてもよい。また、制御部80は、第2測定光による眼底からの反射光の光量レベルを受光素子22にてモニタリングし、光量レベルがピークを示す位置に視度補正用の光学部材(例えば、リレーレンズ12)を移動させるようにしてもよい。   In the above description, the dioptric power correction is performed based on the input value of the power input switch 84c. However, an eye refractive power measurement optical system is added to the optical system of the above apparatus to measure the eye refractive power. The diopter correction may be performed based on the refractive power obtained by the optical system. Further, the control unit 80 monitors the light amount level of the reflected light from the fundus oculi by the second measurement light by the light receiving element 22, and an optical member for diopter correction (for example, the relay lens 12 at a position where the light amount level shows a peak). ) May be moved.

なお、以上の説明においては、照射光学系100に形成された分割光路を被検眼反射光が通過した後に、ハーフミラー20によって受光素子22に導くような構成としたが、ビームスプリッタ6よりも被検眼側に照射光学系100と干渉光学系200を分離する光路分割部材を設けるような構成としてもよい。この場合、眼軸長測定時に測定光による角膜反射光と眼底反射光の波面が一致され、前房深度測定時に測定光による角膜反射光と水晶体前面からの反射光の波面を一致させることができるように、干渉光学系200を構成するのが好ましい。   In the above description, the configuration is such that the reflected light from the eye to be examined is guided to the light receiving element 22 by the half mirror 20 after passing through the split optical path formed in the irradiation optical system 100. An optical path dividing member that separates the irradiation optical system 100 and the interference optical system 200 may be provided on the optometry side. In this case, the wavefronts of the corneal reflection light and fundus reflection light by the measurement light coincide with each other when measuring the axial length, and the wavefronts of the cornea reflection light by the measurement light and the reflection light from the front surface of the crystalline lens can coincide with each other when measuring the anterior chamber depth. Thus, the interference optical system 200 is preferably configured.

例えば、被検眼と対物レンズ10の間にハーフミラーを設け、ハーフミラーの反射方向に、上記に示した干渉光学系における対物レンズ10〜受光素子22までの受光光路と同様の構成を設けるようなことが考えられる。この場合、光路が分割された照射光学系と干渉光学系の両方に分割光路が配置された状態となる。   For example, a half mirror is provided between the eye to be examined and the objective lens 10, and the same configuration as the light receiving optical path from the objective lens 10 to the light receiving element 22 in the interference optical system described above is provided in the reflection direction of the half mirror. It is possible. In this case, the split optical path is arranged in both the irradiation optical system and the interference optical system in which the optical path is split.

なお、以上の説明においては、ビームスプリッタ3のような光路分割部材によって分割される分割光路中に光路変更部材が設けられるような構成としたが、所定の光路分割部材によって分割される分割光路外に、第1測定光の光路長と第2測定光の光路長の少なくともいずれかを変更させるための光路長変更部材が配置された構成であってもよい。   In the above description, the optical path changing member is provided in the split optical path divided by the optical path splitting member such as the beam splitter 3, but the split optical path split by the predetermined optical path splitting member is used. In addition, an optical path length changing member for changing at least one of the optical path length of the first measurement light and the optical path length of the second measurement light may be arranged.

すなわち、測定光源から出射される低コヒーレント光を測定光として被検眼の軸方向において異なる位置に存在する2つの所定部位に向けて照射し,2つの所定部位からの反射光を合成して干渉させることにより所定部位間の眼寸法を測定するための構成を持つ眼寸法測定装置において、異なる所定部位間の眼寸法を測定するために用いる前記測定光の集光位置を実質的に切り換えるものであればよい。   That is, the low coherent light emitted from the measurement light source is irradiated as measurement light toward two predetermined parts existing at different positions in the axial direction of the eye to be examined, and the reflected lights from the two predetermined parts are combined and interfered with each other. Thus, in an eye dimension measuring apparatus having a configuration for measuring the eye dimension between predetermined parts, the condensing position of the measurement light used for measuring the eye dimension between different predetermined parts is substantially switched. That's fine.

図3は、第2の実施形態に係る眼寸法測定装置の光学系を示す概略光学図である。この場合、第1測定光路T1及び第2測定光路T2の光路外に光路長変更部材が配置された構成となっている。なお、図3において、図1及び図2にて示した番号と同様の番号を付したものについては、特段の説明が無い限り、図1及び図2で説明した構成と同様の構成を備えるものとし、説明を省略する。   FIG. 3 is a schematic optical diagram showing an optical system of the eye dimension measuring apparatus according to the second embodiment. In this case, the optical path length changing member is arranged outside the optical path of the first measurement optical path T1 and the second measurement optical path T2. In FIG. 3, the same reference numerals as those shown in FIGS. 1 and 2 have the same configurations as those described in FIGS. 1 and 2, unless otherwise specified. The description is omitted.

照射光学系100によって被検眼に向けて照射された測定光は、第1測定光と第2測定光に分割され、第1測定光は第1集光光学系100aを介して主に被検眼角膜及び水晶体前面に照射され、第2測定光は第2集光光学系100bを介して主に被検眼眼底に照射される。この場合、第1集光光学系100aは、被検眼の角膜頂点から水晶体側に所定量ずれた被検眼前眼部のいずれかに第2測定光が集光されるように被検眼の前眼部に向けて測定光が入射されるような構成となっている。なお、三角プリズム5は、第1三角プリズム4に対して固定されている。この場合、第1測定光路T1における光路長と第2測定光路T2における光路長が異なるように設定されている。   The measurement light emitted toward the subject's eye by the irradiation optical system 100 is divided into a first measurement light and a second measurement light, and the first measurement light mainly passes through the first condensing optical system 100a. The second measurement light is mainly applied to the fundus of the eye to be examined via the second condensing optical system 100b. In this case, the first condensing optical system 100a allows the anterior eye of the eye to be focused so that the second measurement light is focused on one of the anterior eye portions of the eye that is shifted from the corneal apex of the eye to the crystalline lens side by a predetermined amount. The measurement light is incident on the part. The triangular prism 5 is fixed with respect to the first triangular prism 4. In this case, the optical path length in the first measurement optical path T1 and the optical path length in the second measurement optical path T2 are set to be different.

そして、被検眼角膜及び水晶体前面から反射された第1測定光は、被検眼角膜に照射されるまでの第1測定光の光路に対して対物レンズ10〜可動三角プリズム5〜ビームスプリッタ3までの光路を逆方向に進行し、ハーフミラー20で反射される。一方、被検眼眼底から反射された第2測定光は、被検眼眼底に照射されるまでの第2測定光の光路に対して対物レンズ10〜リレーレンズ12〜ビームスプリッタ3までの光路を逆方向に進行し、ハーフミラー20で反射される。   Then, the first measurement light reflected from the eye cornea and the front surface of the crystalline lens passes from the objective lens 10 to the movable triangular prism 5 to the beam splitter 3 with respect to the optical path of the first measurement light until the eye cornea is irradiated. The light travels in the opposite direction and is reflected by the half mirror 20. On the other hand, the second measurement light reflected from the eye fundus of the subject reverses the optical path from the objective lens 10 to the relay lens 12 to the beam splitter 3 with respect to the optical path of the second measurement light until the eye fundus is irradiated. And is reflected by the half mirror 20.

そして、ハーフミラー20で反射された第1測定光による角膜反射光は、直線偏光子51を介して、ハーフミラー103を透過した後、三角プリズム104で反射され、三角プリズム104に対して移動可能な可動三角プリズム105によって折り返された後、第1三角プリズム4で再び反射され、ハーフミラー106を透過する。そして、ハーフミラー106を透過した第1測定光は、集光レンズ21にて集光された後、受光素子22に入射する。なお、可動三角プリズム105は、測定に使用する第1測定光の光路長を変更させるための光路変更部材として用いられ、駆動部171の駆動によって三角プリズム104に対して矢印D方向に移動される。   Then, the corneal reflected light from the first measurement light reflected by the half mirror 20 passes through the half mirror 103 via the linear polarizer 51, is then reflected by the triangular prism 104, and can move with respect to the triangular prism 104. After being folded by the movable triangular prism 105, it is reflected again by the first triangular prism 4 and passes through the half mirror 106. The first measurement light transmitted through the half mirror 106 is collected by the condenser lens 21 and then enters the light receiving element 22. The movable triangular prism 105 is used as an optical path changing member for changing the optical path length of the first measurement light used for measurement, and is moved in the direction of arrow D with respect to the triangular prism 104 by driving of the driving unit 171. .

また、ハーフミラー20で反射された第2測定光による眼底反射光及び第1測定光による水晶体前面反射光は、直線偏光子51を介して、ハーフミラー103で反射され、全反射ミラー111で反射された後、全反射ミラー113を介して、ビームスプリッタ106にて第1測定光の光路と合成される。   Further, the fundus reflection light by the second measurement light reflected by the half mirror 20 and the lens front surface reflection light by the first measurement light are reflected by the half mirror 103 and reflected by the total reflection mirror 111 via the linear polarizer 51. After that, it is combined with the optical path of the first measurement light by the beam splitter 106 via the total reflection mirror 113.

なお、上記の場合、第1測定光による角膜反射光にはハーフミラー103を反射されるものが含まれ、第2測定光による眼底反射光及び第1測定光による水晶体前眼部反射光はハーフミラー103で透過されるものが含まれるが、眼寸法測定に使用するものではないため、以下の説明においては、説明を省略する。   In the above case, the corneal reflection light by the first measurement light includes light reflected from the half mirror 103, and the fundus reflection light by the second measurement light and the anterior ocular lens reflection light by the first measurement light are half. Although what is permeate | transmitted by the mirror 103 is contained, since it is not used for an eye dimension measurement, description is abbreviate | omitted in the following description.

ここで、可動三角プリズム5の移動によって角膜に照射された第1測定光の光路長が変化されると、角膜に照射された第1測定光の光路長(光源1〜角膜、角膜〜受光素子22)と眼底に照射された第2測定光の光路長が干渉が起こり得る範囲でほぼ等しい関係になるときがある。この場合、三角プリズム104で反射されてハーフミラー106を透過する第1測定光と、ミラー113で反射されてハーフミラー106で反射される第2測定光とが合成されて干渉光とされたのち、集光レンズ21を介して受光素子22に受光される。   Here, when the optical path length of the first measurement light applied to the cornea is changed by the movement of the movable triangular prism 5, the optical path length of the first measurement light applied to the cornea (light source 1 to cornea, cornea to light receiving element). 22) and the optical path length of the second measurement light applied to the fundus may be substantially equal in a range where interference can occur. In this case, the first measurement light reflected by the triangular prism 104 and transmitted through the half mirror 106 and the second measurement light reflected by the mirror 113 and reflected by the half mirror 106 are combined into interference light. The light receiving element 22 receives light through the condenser lens 21.

また、可動三角プリズム5の移動によって角膜に照射された第1測定光の光路長が変化されると、角膜に照射された第1測定光の光路長(光源1〜角膜、角膜〜受光素子22)と水晶体前面に照射された第1測定光の光路長(光源1〜水晶体前面、水晶体前面〜受光素子22)とが干渉が起こり得る範囲でほぼ等しい関係になるときがある。この場合、角膜に照射された第1測定光は、ハーフミラー106を透過する際に、ミラー11で反射されてハーフミラー106で反射される水晶体前面に照射された第1測定光と合成され干渉光とされたのち、受光素子22に受光される。   When the optical path length of the first measurement light applied to the cornea is changed by the movement of the movable triangular prism 5, the optical path length of the first measurement light applied to the cornea (light source 1 to cornea, cornea to light receiving element 22). ) And the optical path length of the first measurement light irradiated to the lens front surface (light source 1 to lens front surface, lens front surface to light receiving element 22) may be in substantially the same relationship within a range where interference can occur. In this case, the first measurement light applied to the cornea is combined with the first measurement light applied to the front surface of the crystalline lens reflected by the mirror 11 and reflected by the half mirror 106 when passing through the half mirror 106. After being made light, the light receiving element 22 receives the light.

この場合、制御部80は、駆動部171を駆動させることにより可動三角プリズム105を移動させていき、受光素子22から得られる干渉信号と、プリズム105の移動によって変化される角膜に照射された第1測定光の光路長(光路長変更部材の駆動結果)、から被検眼の眼軸長及び前房深度を求める。   In this case, the control unit 80 moves the movable triangular prism 105 by driving the driving unit 171, and the interference signal obtained from the light receiving element 22 and the first cornea irradiated to the cornea that is changed by the movement of the prism 105. The axial length and anterior chamber depth of the eye to be examined are obtained from the optical path length of one measurement light (the driving result of the optical path length changing member).

すなわち、制御部80は、角膜からの第1測定光と眼底からの第2測定光による干渉光が受光素子22に受光されるように可動三角プリズム105を移動させていき、角膜からの第1測定光と眼底からの第2測定光による干渉光の干渉信号及び光路長変更手段の駆動結果とに基づいて被検眼の眼軸長を測定する。   That is, the control unit 80 moves the movable triangular prism 105 so that the light receiving element 22 receives the interference light from the first measurement light from the cornea and the second measurement light from the fundus. The control unit 80 moves the first measurement light from the cornea. The axial length of the eye to be examined is measured based on the measurement light and the interference signal of the interference light by the second measurement light from the fundus and the driving result of the optical path length changing means.

また、制御部80は、角膜からの第1測定光と水晶体前面からの第1測定光による干渉光が受光素子22に受光されるように可動三角プリズム105を移動させていき、角膜からの第1測定光と水晶体前面からの第1測定光による干渉光の干渉信号及び光路長変更手段の駆動結果とに基づいて被検眼の前房深度を測定する。この場合、上記眼軸長測定に対して、眼寸法を測定するために用いる測定光の集光位置が眼底から前眼部に実質的に切換えられる。   Further, the control unit 80 moves the movable triangular prism 105 so that the interference light generated by the first measurement light from the cornea and the first measurement light from the front surface of the crystalline lens is received by the light receiving element 22, and the first measurement light from the cornea is moved. The anterior chamber depth of the eye to be examined is measured based on the interference signal of the interference light by the first measurement light and the first measurement light from the lens front surface and the driving result of the optical path length changing means. In this case, with respect to the measurement of the axial length, the condensing position of the measurement light used for measuring the eye dimensions is substantially switched from the fundus to the anterior eye part.

なお、上記の光学系において、第1集光光学系100aは、測定光源1から出射された測定光を第1測定光とし被検眼角膜及び水晶体前面を照射目標として照射するための光学系を持つ第1照射光学系として機能する。第2集光光学系100bは、測定光源1から出射された測定光を第2測定光とし被検眼眼底を照射目標として照射するための光学系を持つ第2照射光学系として機能する。また、ハーフミラー20〜受光素子22までの光路に配置された光学部材は、第1測定光による被検眼からの反射光と第2測定光による被検眼からの反射光とを干渉させて受光し干渉信号を得るための受光光学系であって,測定に使用する第1測定光の光路長または測定に使用する第2測定光の光路長のいずれかを受光光路における光路長の増減のみにて変更させるための光路長変更手段を持つ受光光学系として機能する。   In the optical system described above, the first condensing optical system 100a has an optical system for irradiating the subject's eye cornea and the front surface of the crystalline lens with the measurement light emitted from the measurement light source 1 as the first measurement light. It functions as a first irradiation optical system. The second condensing optical system 100b functions as a second irradiation optical system having an optical system for irradiating the fundus of the eye to be examined with the measurement light emitted from the measurement light source 1 as the second measurement light. Further, the optical member arranged in the optical path from the half mirror 20 to the light receiving element 22 receives the reflected light from the eye to be examined by the first measurement light and the reflected light from the eye to be examined by the second measurement light. A light receiving optical system for obtaining an interference signal, wherein either the optical path length of the first measurement light used for measurement or the optical path length of the second measurement light used for measurement is determined by only increasing or decreasing the optical path length in the light receiving optical path. It functions as a light receiving optical system having an optical path length changing means for changing.

そして、制御部80は、第1測定光による角膜反射光と第2測定光による眼底反射光とを干渉させて得られる干渉信号及び光路長変更手段の変更情報とに基づいて被検眼の眼軸長を測定し,第1測定光による角膜反射光及び水晶体反射光を各々干渉用の前記第1測定光及び第2測定光の反射光として干渉させて得られる干渉信号及び光路長変更手段の変更情報とに基づいて被検眼の前房深度を測定する測定制御手段として機能する。   Then, the control unit 80 determines the eye axis of the subject's eye based on the interference signal obtained by causing the corneal reflection light by the first measurement light and the fundus reflection light by the second measurement light to interfere with each other and the change information of the optical path length changing means. Changes in interference signal and optical path length changing means obtained by measuring the length and causing the cornea reflection light and lens reflection light by the first measurement light to interfere with each other as reflected light of the first measurement light and the second measurement light for interference. It functions as a measurement control means for measuring the anterior chamber depth of the eye to be examined based on the information.

なお、上記の構成の場合、前房深度測定時に受光素子22への眼底反射光の入射を回避するために、集光光学系100aにおける第2測定光路T2に遮光板を設けるような構成としてもよい。   In the case of the above configuration, a light shielding plate may be provided in the second measurement optical path T2 in the condensing optical system 100a in order to avoid incidence of fundus reflection light to the light receiving element 22 during anterior chamber depth measurement. Good.

本実施形態に係る眼寸法測定装置の光学系の概略構成図であり、眼軸長測定時における光学系の配置を示す図である。It is a schematic block diagram of the optical system of the eye dimension measuring apparatus which concerns on this embodiment, and is a figure which shows arrangement | positioning of the optical system at the time of axial length measurement. 本実施形態に係る眼寸法測定装置の光学系の概略構成図であり、前房深度測定時における光学系の配置を示す図である。It is a schematic block diagram of the optical system of the eye dimension measuring apparatus which concerns on this embodiment, and is a figure which shows arrangement | positioning of the optical system at the time of anterior chamber depth measurement. 第2の実施形態に係る眼寸法測定装置の光学系を示す概略光学図である。It is a schematic optical diagram which shows the optical system of the eye dimension measuring apparatus which concerns on 2nd Embodiment.

符号の説明Explanation of symbols

1 測定光源
2 ビームスプリッタ
4 三角プリズム
5 可動三角プリズム
6 ビームスプリッタ
10 対物レンズ
12 リレーレンズ(フォーカシングレンズ)
22 受光素子
70 集光位置切換機構(駆動部)
71 駆動部
80 制御部
84a モード切換スイッチ
100 照射光学系
100a 第1集光光学系
100b 第2集光光学系
200 干渉光学系
DESCRIPTION OF SYMBOLS 1 Measurement light source 2 Beam splitter 4 Triangular prism 5 Movable triangular prism 6 Beam splitter 10 Objective lens 12 Relay lens (focusing lens)
22 Light receiving element 70 Condensing position switching mechanism (drive unit)
71 Drive unit 80 Control unit 84a Mode changeover switch 100 Irradiation optical system 100a First condensing optical system 100b Second condensing optical system 200 Interference optical system

Claims (2)

測定手段は、
低コヒーレント光を出射する測定光源と、
前記測定光源から出射された前記測定光を第1測定光として被検眼角膜に照射して角膜からの反射光を受光するための第1測定光学系と、
前記測定光源から出射された前記測定光を第2測定光として被検眼眼底に照射して眼底からの反射光を受光するための第2測定光学系と、
前記第1測定光学系または第2測定光学系のどちらかに配置され、前記第1測定光の光路長または前記第2測定光の光路長のいずれかを変更させるための光路長変更手段と、
前記第1測定光学系及び第2測定光学系の共通光路に置かれ,前記第1測定光の反射光と前記第2測定光の反射光との合成による干渉光を受光し干渉信号を得るための受光光学系と、
前記共通光路とならない前記第2測定光学系の光路中に配置される光学レンズを移動させることにより前記第2測定光の集光位置を切り換え、前記第2測定光の照射目標を被検眼眼底と被検眼の水晶体前面とに選択的に切り換える集光位置切換手段と、
被検眼の眼軸長を測定する眼軸長測定モードと被検眼の前房深度を測定する前房深度測定モードを切り換えるモード切換手段と、
該モード切換手段にて前記眼軸長測定モードとされているときは前記照射位置切換手段により前記第2測定光の照射目標を眼底として眼底からの反射光と角膜からの反射光との合成による前記干渉信号及び光路長変更手段の変更情報とに基づいて被検眼の眼軸長を測定し,前記前房深度測定モードとされているときは前記照射位置切換手段により前記第2測定光の照射目標を水晶体前面として、角膜からの反射光と水晶体前面からの反射光との合成による前記干渉信号及び光路長変更手段の変更情報とに基づいて被検眼の前房深度を測定する測定制御手段と、
を備えることを特徴とする眼寸法測定装置。
Measuring means
A measurement light source that emits low coherent light;
A first measurement optical system for irradiating the eye cornea with the measurement light emitted from the measurement light source as first measurement light and receiving reflected light from the cornea;
A second measurement optical system for irradiating the fundus of the eye to be examined with the measurement light emitted from the measurement light source as second measurement light and receiving reflected light from the fundus;
An optical path length changing unit arranged in either the first measurement optical system or the second measurement optical system, for changing either the optical path length of the first measurement light or the optical path length of the second measurement light;
In order to obtain an interference signal that is placed in a common optical path of the first measurement optical system and the second measurement optical system and receives interference light by combining the reflected light of the first measurement light and the reflected light of the second measurement light. Light receiving optical system,
The condensing position of the second measurement light is switched by moving an optical lens arranged in the optical path of the second measurement optical system that does not become the common optical path, and the irradiation target of the second measurement light is set as the fundus of the eye to be examined. Condensing position switching means for selectively switching to the front surface of the crystalline lens of the eye to be examined;
Mode switching means for switching between an axial length measurement mode for measuring the axial length of the eye to be examined and an anterior chamber depth measurement mode for measuring the anterior chamber depth of the eye to be examined;
When the mode switching means is set to the axial length measurement mode, the irradiation position switching means uses the irradiation target of the second measurement light as a fundus to combine the reflected light from the fundus and the reflected light from the cornea. Based on the interference signal and the change information of the optical path length changing means, the axial length of the eye to be examined is measured. When the anterior chamber depth measurement mode is set, the irradiation position switching means irradiates the second measuring light. Measurement control means for measuring the anterior chamber depth of the eye to be examined based on the interference signal and the change information of the optical path length changing means by combining the reflected light from the cornea and the reflected light from the front of the lens, with the target being the front of the lens ,
Eye size measuring apparatus comprising: a.
請求項1の眼寸法測定装置において、
前記測定光源から出射された測定光の一部を透過し一部を反射することにより第1測定光と第2測定光とに分割する光路分割部材と、該光路分割部材により分割された第1測定光と第2測定光を合成する光路合成部材と、を備え、
前記光路分割部材によって形成される測定光の透過光路には、前記光路分割部材を透過した測定光を反射する反射部材と,前記反射部材によって反射された測定光を前記光路合成部材へと導く導光部材と,によって形成される迂回光路が設けられていることを特徴とする眼寸法測定装置。
In the eye dimension measuring device according to claim 1,
An optical path dividing member that splits the first measurement light and the second measurement light by transmitting a part of the measurement light emitted from the measurement light source and reflecting a part thereof, and the first divided by the optical path division member An optical path combining member that combines the measurement light and the second measurement light,
The transmission light path of the measurement light formed by the optical path dividing member includes a reflection member that reflects the measurement light transmitted through the optical path division member, and a guide that guides the measurement light reflected by the reflection member to the optical path combining member. An eye dimension measuring device comprising a detour optical path formed by an optical member .
JP2007286817A 2007-11-02 2007-11-02 Eye size measuring device Expired - Fee Related JP5188779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007286817A JP5188779B2 (en) 2007-11-02 2007-11-02 Eye size measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007286817A JP5188779B2 (en) 2007-11-02 2007-11-02 Eye size measuring device

Publications (2)

Publication Number Publication Date
JP2009112430A JP2009112430A (en) 2009-05-28
JP5188779B2 true JP5188779B2 (en) 2013-04-24

Family

ID=40780266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007286817A Expired - Fee Related JP5188779B2 (en) 2007-11-02 2007-11-02 Eye size measuring device

Country Status (1)

Country Link
JP (1) JP5188779B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5545618B2 (en) * 2009-07-06 2014-07-09 株式会社ニデック Eye size measuring device
US8295693B2 (en) * 2010-07-02 2012-10-23 Intuitive Surgical Operations, Inc. Dual optical path prism and camera in a minimally invasive surgical system
JP5500587B2 (en) * 2010-08-05 2014-05-21 株式会社ニデック Ophthalmic measuring device
JP6654378B2 (en) * 2015-08-25 2020-02-26 株式会社トプコン Ophthalmic equipment
JP6766242B2 (en) * 2019-10-23 2020-10-07 株式会社トプコン Ophthalmic equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2723967B2 (en) * 1989-05-11 1998-03-09 株式会社トプコン Living eye size measurement device
JP2994441B2 (en) * 1990-08-13 1999-12-27 株式会社トプコン Living eye size measurement device
JP2003254901A (en) * 2002-02-28 2003-09-10 Japan Science & Technology Corp Reflection type blood sugar measuring instrument using low coherent light interferometer
JP4948902B2 (en) * 2005-07-01 2012-06-06 株式会社ニデック Ophthalmic equipment

Also Published As

Publication number Publication date
JP2009112430A (en) 2009-05-28

Similar Documents

Publication Publication Date Title
JP4948902B2 (en) Ophthalmic equipment
JP4907227B2 (en) Intraocular dimension measuring device
US10076243B2 (en) Ophthalmic imaging device
US7980696B1 (en) Ophthalmic photographing apparatus
US7749216B2 (en) Corneal surgery apparatus
US9662011B2 (en) Ophthalmologic apparatus and method of controlling the same
JP5179063B2 (en) Ophthalmic equipment
JP5701660B2 (en) Fundus photographing device
JP5188779B2 (en) Eye size measuring device
JP5232038B2 (en) Eye size measuring device
JP4523338B2 (en) Ophthalmic measuring device
JP6040562B2 (en) Attachment for fundus photography device
JP2019042249A (en) OCT device
JP4619694B2 (en) Ophthalmic measuring device
JP7129162B2 (en) fundus imaging device
WO2019044180A1 (en) Microscope and function expansion unit
JP5500587B2 (en) Ophthalmic measuring device
JP2007010589A (en) Object measuring apparatus
JP4231273B2 (en) Eye characteristics measuring device
JP7123628B2 (en) Fundus imaging device and its control method
JP5249071B2 (en) Eye size measuring device
JP2016144503A (en) Optical adjustment mechanism, tomographic imaging apparatus including the same, and optical adjustment method
JP5451452B2 (en) Axial length measuring device
JP7179523B2 (en) Fundus imaging device, fundus imaging method and program
JP3221725B2 (en) Eye measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees