JP5187279B2 - Rolling bearing - Google Patents

Rolling bearing Download PDF

Info

Publication number
JP5187279B2
JP5187279B2 JP2009147642A JP2009147642A JP5187279B2 JP 5187279 B2 JP5187279 B2 JP 5187279B2 JP 2009147642 A JP2009147642 A JP 2009147642A JP 2009147642 A JP2009147642 A JP 2009147642A JP 5187279 B2 JP5187279 B2 JP 5187279B2
Authority
JP
Japan
Prior art keywords
cage
rolling bearing
bearing
bearing according
outer ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009147642A
Other languages
Japanese (ja)
Other versions
JP2011002077A (en
Inventor
美昭 勝野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2009147642A priority Critical patent/JP5187279B2/en
Publication of JP2011002077A publication Critical patent/JP2011002077A/en
Application granted granted Critical
Publication of JP5187279B2 publication Critical patent/JP5187279B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/541Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing
    • F16C19/542Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing with two rolling bearings with angular contact
    • F16C19/543Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing with two rolling bearings with angular contact in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/56Systems consisting of a plurality of bearings with rolling friction in which the rolling bodies of one bearing differ in diameter from those of another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/41Ball cages comb-shaped
    • F16C33/412Massive or moulded comb cages, e.g. snap ball cages
    • F16C33/414Massive or moulded comb cages, e.g. snap ball cages formed as one-piece cages, i.e. monoblock comb cages
    • F16C33/416Massive or moulded comb cages, e.g. snap ball cages formed as one-piece cages, i.e. monoblock comb cages made from plastic, e.g. injection moulded comb cages

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Sealing Of Bearings (AREA)

Description

本発明は、例えば、産業機械、ロボツトの関節部や旋回機構部、工作機械の主軸、回転テーブルや主軸旋回機構部、医療機器、半導体/液晶製造装置、光学及びオプトエレクトロニクス装置等の回転支持部に用いられる転がり軸受に関する。   The present invention includes, for example, industrial machinery, robot joints and turning mechanisms, machine tool spindles, rotary tables and spindle turning mechanisms, medical equipment, semiconductor / liquid crystal manufacturing apparatuses, optical and optoelectronic devices, and the like. The present invention relates to a rolling bearing used in the above.

従来の転がり軸受として、円周方向の一ヶ所に切断部を設けた合成樹脂製の冠形保持器が提案されている(例えば、特許文献1及び2参照)。特許文献1に記載の転がり軸受では、切断部を設けることで、内外輪及び玉と保持器との熱膨張係数の違い等により玉とポケットとの間に発生する突っ張り力を緩和して保持器の摩耗等を防止することが記載されている。   As a conventional rolling bearing, a synthetic resin crown-shaped cage provided with a cutting portion at one place in the circumferential direction has been proposed (for example, see Patent Documents 1 and 2). In the rolling bearing described in Patent Document 1, by providing a cutting portion, the tension force generated between the ball and the pocket due to the difference in thermal expansion coefficient between the inner and outer rings and the ball and the cage is alleviated. It is described that the wear and the like are prevented.

また、特許文献2に記載の転がり軸受では、円周方向の一ヶ所に切断部が設けられるとともに、切断部の円周方向幅を温度変化と吸水率変化による保持器の伸長分とし、軌道輪との案内すきまを確保することが記載されている。   Further, in the rolling bearing described in Patent Document 2, a cutting part is provided at one place in the circumferential direction, and the circumferential width of the cutting part is set as an extension of the cage due to a change in temperature and a change in water absorption rate. It is described to secure a guide clearance.

特開2003−336640号公報JP 2003-336640 A 特開2006−226496号公報JP 2006-226696 A

ところで、特許文献1に記載の転がり軸受では、玉案内方式を採用して、玉とポケットとの間の半径方向すきまは小さく設定されているので、軸受の回転による昇温で、軸受各部品(例えば、内輪、外輪及び玉が軸受鋼、保持器がポリアミド樹脂などの合成樹脂で形成されている場合)間の線膨張係数の差により保持器が相対的に膨張する際に、半径方向には膨張しにくく、相対膨張分は円周方向に向かう。   By the way, in the rolling bearing described in Patent Document 1, the ball guide method is adopted, and the radial clearance between the ball and the pocket is set to be small. (For example, when the inner ring, outer ring and ball are made of bearing steel, and the cage is made of synthetic resin such as polyamide resin) It is difficult to expand, and the relative expansion is directed in the circumferential direction.

その結果、保持器の切断部の円周方向すきまが小さくなり、使用環境温度も含めて軸受の昇温値が高い場合、保持器の切断部の円周方向の端面同士が突っ張り干渉して、該干渉部での発熱や摩耗、損傷が生じるという問題がある。また、保持器がポリアミド樹脂などの一般的な汎用合成樹脂で形成されている場合は、空気中の水分を吸収して膨張することもあり、吸水による膨張量が加わることも問題である。   As a result, the clearance in the circumferential direction of the cutting part of the cage is reduced, and if the temperature rise value of the bearing is high, including the operating environment temperature, the circumferential end surfaces of the cutting part of the cage are stretched and interfered, There is a problem that heat generation, wear, and damage occur in the interference portion. In addition, when the cage is formed of a general general-purpose synthetic resin such as a polyamide resin, the cage may expand by absorbing moisture in the air, and the amount of expansion due to water absorption is also a problem.

また、特許文献2に記載の転がり軸受では、切断部の円周方向幅を温度変化と吸水率変化による保持器の伸長分(温度膨張+吸水膨張)としているが、切断部の円周方向幅が広くなりすぎてしまい、温度上昇が小さい条件や乾燥した雰囲気条件では、切断部の円周方向幅の変化が小さく、切断部を挟んだ部分での玉間の円周方向の距離が他の玉間の円周方向距離より大きくなり、玉の円周方向の不等配が発生する。   Further, in the rolling bearing described in Patent Document 2, the circumferential width of the cut portion is defined as the extension of the cage (temperature expansion + water absorption expansion) due to temperature change and water absorption change. However, under conditions where the temperature rise is small or the atmosphere is dry, the change in the circumferential width of the cut part is small, and the circumferential distance between the balls at the part across the cut part is It becomes larger than the circumferential distance between the balls, and uneven distribution in the circumferential direction of the balls occurs.

玉の円周方向の不等配が生じると、軸受の径方向の剛性が円周位相で不均一(玉の円周方向の不等配部の位相で剛性低下)になるため、軸受回転時に玉の公転周期に対応した振れ回り、いわゆるNRRO値(内輪2回転に約1回の周期)が増加する。特に、回転精度が要求される工作機械の主軸、回転テーブル及び主軸の旋回機構部などの回転支持部に本軸受を使用した場合、回転軸の振れ回りが大きくなり(NRRO値が大)、フライス加工などでは加工面に縞模様が発生したり、旋盤加工などでは加工面の引き目不良や真円度悪化などが発生したりするという問題がある。   If the balls are not evenly distributed in the circumferential direction, the radial rigidity of the bearing will be non-uniform in the circumferential phase (decrease in rigidity due to the phase of the unevenly distributed portion of the ball in the circumferential direction). A swing corresponding to the revolution period of the ball, a so-called NRRO value (a cycle of about once per two rotations of the inner ring) increases. In particular, when this bearing is used in a rotation support part such as a spindle of a machine tool, a rotary table, and a turning mechanism part of the spindle that require rotational accuracy, the rotation of the rotary shaft becomes large (NRRO value is large), and milling There is a problem that a striped pattern is generated on the processed surface in machining, and a stitching defect on the processed surface or a deterioration in roundness occurs in lathe processing.

本発明は、このような不都合を解消するためになされたものであり、その目的は、転動体の円周方向の不等配を小さくして、軸受の回転精度をより良好にできると共に、軸受の使用時において、保持器のポケット部に摩耗や破損を生じることがなく、安定した回転性能を得ることができる転がり軸受を提供することにある。   The present invention has been made to eliminate such inconveniences, and the object of the present invention is to reduce the uneven distribution in the circumferential direction of the rolling elements to improve the rotation accuracy of the bearing, and to improve the bearing accuracy. It is an object of the present invention to provide a rolling bearing capable of obtaining stable rotation performance without causing wear or breakage in the pocket portion of the cage during use.

本発明の上記目的は、下記の構成により達成される。
(1) 外周面に内輪軌道面を有する内輪と、内周面に外輪軌道面を有する外輪と、前記内輪軌道面と前記外輪軌道面との間に転動自在に設けられた複数の転動体と、円周方向の少なくとも一カ所に切断部が形成され、前記複数の転動体を円周方向に略等間隔で保持する合成樹脂製の保持器と、を備えた転がり軸受において、
前記保持器は、所定の平衡含水率まで吸水した状態において、前記切断部の円周方向幅が、該保持器の所定の温度変化による伸長分未満で、且つ、該保持器の所定の温度変化による伸長分−前記保持器の半径方向動き量×円周率以上となるように形成されることを特徴とする転がり軸受。
(2) 前記保持器は、冠型保持器であることを特徴とする(1)に記載の転がり軸受。
(3) 前記転動体が、玉であることを特徴とする(1)又は(2)に記載の転がり軸受。
(4) 前記転動体が、円筒ころであることを特徴とする(1)又は(2)に記載の転がり軸受。
(5) 前記内輪と前記外輪との間の軸受空間にはグリースが封入されることを特徴とする(1)〜(4)のいずれかに記載の転がり軸受。
(6) 前記内輪及び前記外輪のうちの固定輪側の軸方向端部に配置される、接触型又は非接触型のシール部材をさらに有することを特徴とする(5)に記載の転がり軸受。
(7) 前記グリースは、前記保持器が前記所定の平衡含水率まで吸水した後に、前記軸受空間に封入されることを特徴とする(5)又は(6)に記載の転がり軸受。
(8) 前記保持器の表面には油膜が形成されることを特徴とする(1)〜(4)のいずれかに記載の転がり軸受。
(9) 外周面に内輪軌道面を有する内輪と、内周面に外輪軌道面を有する外輪と、前記内輪軌道面と前記外輪軌道面との間に転動自在に設けられた複数の転動体と、円周方向の少なくとも一カ所に切断部が形成され、前記複数の転動体を円周方向に略等間隔で保持する合成樹脂製の保持器と、を備えた転がり軸受において、
前記保持器は、前記切断部の絶乾状態の円周方向幅が、該保持器の所定の温度変化による伸長分未満で、且つ、該保持器の所定の温度変化による伸長分−前記保持器の半径方向動き量×円周率以上となるように形成されることを特徴とする転がり軸受。
(10) 前記保持器は、冠型保持器であることを特徴とする(9)に記載の転がり軸受。
(11) 前記転動体が、玉であることを特徴とする(9)又は(10)に記載の転がり軸受。
(12) 前記転動体が、円筒ころであることを特徴とする(9)又は(10)に記載の転がり軸受。
(13) 前記内輪と前記外輪との間の軸受空間にはグリースが封入されることを特徴とする(9)〜(12)のいずれかに記載の転がり軸受。
(14) 前記内輪及び前記外輪のうちの固定輪側の軸方向端部に配置される、接触型又は非接触型のシール部材をさらに有することを特徴とする(13)に記載の転がり軸受。
(15) 前記保持器の表面には油膜が形成されることを特徴とする(9)〜(12)のいずれかに記載の転がり軸受。
The above object of the present invention can be achieved by the following constitution.
(1) An inner ring having an inner ring raceway surface on an outer peripheral surface, an outer ring having an outer ring raceway surface on an inner peripheral surface, and a plurality of rolling elements provided in a freely rollable manner between the inner ring raceway surface and the outer ring raceway surface. In a rolling bearing provided with a synthetic resin cage having a cutting portion formed in at least one place in the circumferential direction and holding the plurality of rolling elements at substantially equal intervals in the circumferential direction,
In the state in which the cage has absorbed water up to a predetermined equilibrium moisture content, the circumferential width of the cut portion is less than the elongation due to the predetermined temperature change of the cage, and the predetermined temperature change of the cage The rolling bearing according to claim 1, wherein the rolling bearing is formed so as to be equal to or greater than a radial movement amount of the cage x a circumferential ratio.
(2) The rolling bearing according to (1), wherein the cage is a crown type cage.
(3) The rolling bearing according to (1) or (2), wherein the rolling element is a ball.
(4) The rolling bearing according to (1) or (2), wherein the rolling element is a cylindrical roller.
(5) The rolling bearing according to any one of (1) to (4), wherein grease is sealed in a bearing space between the inner ring and the outer ring.
(6) The rolling bearing according to (5), further comprising a contact-type or non-contact-type seal member disposed at an axial end portion on the fixed ring side of the inner ring and the outer ring.
(7) The rolling bearing according to (5) or (6), wherein the grease is enclosed in the bearing space after the cage has absorbed water up to the predetermined equilibrium moisture content.
(8) The rolling bearing according to any one of (1) to (4), wherein an oil film is formed on a surface of the cage.
(9) An inner ring having an inner ring raceway surface on an outer peripheral surface, an outer ring having an outer ring raceway surface on an inner peripheral surface, and a plurality of rolling elements provided in a freely rollable manner between the inner ring raceway surface and the outer ring raceway surface. In a rolling bearing provided with a synthetic resin cage having a cutting portion formed in at least one place in the circumferential direction and holding the plurality of rolling elements at substantially equal intervals in the circumferential direction,
In the cage, the circumferential width of the cut portion in an absolutely dry state is less than the elongation due to the predetermined temperature change of the cage, and the elongation due to the predetermined temperature change of the cage-the cage It is formed so that it may become more than the amount of radial movement x circumference ratio.
(10) The rolling bearing according to (9), wherein the cage is a crown type cage.
(11) The rolling bearing according to (9) or (10), wherein the rolling element is a ball.
(12) The rolling bearing according to (9) or (10), wherein the rolling element is a cylindrical roller.
(13) The rolling bearing according to any one of (9) to (12), wherein grease is sealed in a bearing space between the inner ring and the outer ring.
(14) The rolling bearing according to (13), further comprising a contact-type or non-contact-type seal member disposed at an axial end portion on the fixed ring side of the inner ring and the outer ring.
(15) The rolling bearing according to any one of (9) to (12), wherein an oil film is formed on a surface of the cage.

本発明の転がり軸受によれば、保持器は、所定の平衡含水率まで吸水した状態において、切断部の円周方向幅が、保持器の所定の温度変化による伸長分未満で、且つ、保持器の所定の温度変化による伸長分−保持器の半径方向動き量×円周率以上となるように形成されるので、軸受の使用時において、温度膨張により切断部が干渉した後、保持器が半径方向の膨張をしても半径方向動き量は負とならないので、ポケット部と転動体間の強い接触によってポケット部の摩耗や破損を生じることがなく、安定した回転性能を得ることができる。また、切断部の円周方向幅は、より小さくできるので、保持器の円周方向の不等配を小さくして、軸受の回転精度をより良好にできる。   According to the rolling bearing of the present invention, the cage has a circumferential width of the cutting portion that is less than an extension due to a predetermined temperature change of the cage in a state where the cage has absorbed water up to a predetermined equilibrium moisture content, and the cage The amount of elongation due to a predetermined temperature change-the amount of radial movement of the cage × circumference is greater than or equal to the circumferential ratio. Since the radial motion amount does not become negative even if the direction is expanded, the pocket portion is not worn or damaged by the strong contact between the pocket portion and the rolling element, and stable rotation performance can be obtained. Further, since the circumferential width of the cut portion can be made smaller, the uneven distribution in the circumferential direction of the cage can be reduced, and the rotation accuracy of the bearing can be improved.

本発明の第1実施形態に係る転がり軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the rolling bearing which concerns on 1st Embodiment of this invention. 図1に示す転がり軸受に組み込まれた冠形保持器の部分的斜視図である。FIG. 2 is a partial perspective view of a crown-shaped cage incorporated in the rolling bearing shown in FIG. 1. 図1に示す転がり軸受に組み込まれた冠形保持器の断面図である。FIG. 2 is a cross-sectional view of a crown-shaped cage incorporated in the rolling bearing shown in FIG. 1. (a)は、図3の矢印A方向から見た一部を破断した図であり、(b)は(a)の切断部の拡大図である。(A) is the figure which fractured | ruptured the part seen from the arrow A direction of FIG. 3, (b) is an enlarged view of the cutting part of (a). 図3の矢印B方向から見た一部を破断した図である。It is the figure which fractured | ruptured the part seen from the arrow B direction of FIG. ポリアミド66の平衡含水率と相対湿度との関係を示すグラフ図である。It is a graph which shows the relationship between the equilibrium moisture content of polyamide 66, and relative humidity. ポリアミド66の吸水による寸法変化率を示すグラフ図である。It is a graph which shows the dimensional change rate by the water absorption of the polyamide 66. FIG. 内輪の半径方向の変形量を説明するための説明図である。It is explanatory drawing for demonstrating the deformation amount of the radial direction of an inner ring | wheel. 内輪の断面2次モーメントの計算方法を説明するための説明図である。It is explanatory drawing for demonstrating the calculation method of the cross-sectional secondary moment of an inner ring | wheel. 断面寸法比(B/H)と半径方向の内外輪の変形量との関係を示すグラフ図である。It is a graph which shows the relationship between a cross-sectional dimension ratio (B / H) and the deformation amount of the inner and outer ring | wheels of radial direction. 断面寸法比(B/H)と内外輪の断面2次モーメントIとの関係を示すグラフ図である。It is a graph which shows the relationship between a cross-sectional dimension ratio (B / H) and the cross-sectional secondary moment I of an inner-outer ring. 断面寸法比(B/H)と半径方向の内外輪の変形量との関係を示すグラフ図である。It is a graph which shows the relationship between a cross-sectional dimension ratio (B / H) and the deformation amount of the inner and outer ring | wheels of radial direction. 断面寸法比(B/H)と内外輪の断面2次モーメントIとの関係を示すグラフ図である。It is a graph which shows the relationship between a cross-sectional dimension ratio (B / H) and the cross-sectional secondary moment I of an inner-outer ring. 本発明の第2実施形態に係る転がり軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the rolling bearing which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る転がり軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the rolling bearing which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る転がり軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the rolling bearing which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る転がり軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the rolling bearing which concerns on 5th Embodiment of this invention. 本発明の第6実施形態に係る転がり軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the rolling bearing which concerns on 6th Embodiment of this invention. 本発明の第7実施形態に係る転がり軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the rolling bearing which concerns on 7th Embodiment of this invention. 本発明の第8実施形態に係る転がり軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the rolling bearing which concerns on 8th Embodiment of this invention. 本発明の第9実施形態に係る転がり軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the rolling bearing which concerns on 9th Embodiment of this invention. 本発明の第10実施形態に係る転がり軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the rolling bearing which concerns on 10th Embodiment of this invention. 本発明の第11実施形態に係る転がり軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the rolling bearing which concerns on 11th Embodiment of this invention. 本発明の第12実施形態に係る転がり軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the rolling bearing which concerns on 12th Embodiment of this invention. (a)は図24に組み込まれた保持器を図24の矢印A方向から見た一部を破断した図であり、(b)は、(a)の切断部の拡大図である。(A) is the figure which fractured | ruptured a part which looked at the holder | retainer integrated in FIG. 24 from the arrow A direction of FIG. 24, (b) is an enlarged view of the cutting part of (a). 第12実施形態の変形例に係る転がり軸受の保持器の一部を示す図である。It is a figure which shows a part of cage of the rolling bearing which concerns on the modification of 12th Embodiment. 本発明の第13実施形態に係る転がり軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the rolling bearing which concerns on 13th Embodiment of this invention. 本発明の第14実施形態に係る転がり軸受を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the rolling bearing which concerns on 14th Embodiment of this invention. 冠形保持器の変形例を示す図である。It is a figure which shows the modification of a crown-shaped cage. 発明品と参考品の経過時間における動トルクの変化を示すグラフである。It is a graph which shows the change of the dynamic torque in the elapsed time of invention and a reference product. 発明品と参考品の経過時間における温度上昇の変化を示すグラフである。It is a graph which shows the change of the temperature rise in the elapsed time of an invention product and a reference product. 周囲環境温度23℃、相対湿度50%での各種樹脂の寸法変化率を示すグラフである。It is a graph which shows the dimensional change rate of various resin in the ambient environment temperature of 23 degreeC and 50% of relative humidity.

以下、本発明の各実施形態に係る転がり軸受について、図面を参照して詳細に説明する。   Hereinafter, rolling bearings according to embodiments of the present invention will be described in detail with reference to the drawings.

(第1の実施形態)
図1に示すように、本実施形態の転がり軸受10(以下、幅狭玉軸受10とも称す)は、アンギュラ玉軸受とされており、2列のアンギュラ玉軸受を背面組合せ(接触角がハの字となる配列)としている。各転がり軸受10は、外周面に内輪軌道面11aを有する内輪11と、内周面に外輪軌道面12aを有する外輪12と、内輪軌道面11aと外輪軌道面12aとの間に転動自在に設けられた複数の玉(転動体)13と、円周方向の一カ所に切断部14(図4参照)が形成され、複数の玉13を円周方向に略等間隔で保持する合成樹脂製の冠形保持器15と、を備える。また、2列の幅狭玉軸受10の各外輪12の軸方向外側の端部内周面には、それぞれ非接触型のシール部材16が装着されている。なお、シール部材16は、接触型タイプでもよく、また、材質、形状は特に限定されない。
(First embodiment)
As shown in FIG. 1, a rolling bearing 10 (hereinafter also referred to as a narrow ball bearing 10) of this embodiment is an angular ball bearing, and two rows of angular ball bearings are combined in the back (contact angle is C). Array). Each rolling bearing 10 is freely rollable between an inner ring 11 having an inner ring raceway surface 11a on an outer peripheral surface, an outer ring 12 having an outer ring raceway surface 12a on an inner peripheral surface, and an inner ring raceway surface 11a and an outer ring raceway surface 12a. A plurality of balls (rolling elements) 13 provided, and a cutting portion 14 (see FIG. 4) is formed at one place in the circumferential direction, and the plurality of balls 13 are made of synthetic resin that holds the balls 13 in the circumferential direction at substantially equal intervals. The crown-shaped cage 15 is provided. Further, non-contact type seal members 16 are mounted on the inner peripheral surfaces of the outer ends of the outer rings 12 of the two rows of narrow ball bearings 10 in the axial direction. The seal member 16 may be a contact type, and the material and shape are not particularly limited.

ここで、本実施形態では、軸方向の省スペース化を図るため、転がり軸受10の軸方向断面幅Bと半径方向断面高さH(=(外輪外径D−内輪内径d)/2)との断面寸法比(B/H)をB/H<0.63としている。   In this embodiment, in order to save space in the axial direction, the axial sectional width B and the radial sectional height H of the rolling bearing 10 (= (outer ring outer diameter D−inner ring inner diameter d) / 2) and The cross-sectional dimension ratio (B / H) is set to B / H <0.63.

なお、B/Hは、理論的にはB/H>0であるが、現実的には、使用する玉径や保持器、シール部材の設計、選定等を加味すると、B/H>0.10、好ましくはB/H>0.20、より好ましくはB/H>0.30とする。   B / H is theoretically B / H> 0, but in reality, considering the design, selection, etc. of the ball diameter, cage, and seal member to be used, B / H> 0. 10, preferably B / H> 0.20, more preferably B / H> 0.30.

また、国際標準化機構(ISO)で規定されている標準寸法玉軸受の場合、B/Hが1.0前後のものが多くを占める。したがって、B/H<0.5に設定すれば、標準玉軸受約1列分の幅方向スペースで2列分の幅狭玉軸受10を配設させることができ、省スペース化が図れる。   Further, in the case of standard size ball bearings defined by the International Organization for Standardization (ISO), those with a B / H of around 1.0 account for the majority. Therefore, if B / H <0.5 is set, the narrow ball bearings 10 for two rows can be disposed in the width direction space for about one row of standard ball bearings, and space saving can be achieved.

また、アンギュラ玉軸受の場合、1列では一方向の軸方向荷重しか受けられず、また、モーメント荷重を受けることはできないが、2列以上組合わせることで、両方向の軸方向荷重やモーメント荷重の負荷が可能となる。また、予圧を付加することもできるので、省スペース化と共にラジアル剛性やアキシャル剛性及びモーメント剛性なども大きくすることができる。   In the case of angular contact ball bearings, only one axial load can be received in one row and moment load cannot be received. However, by combining two or more rows, the axial load and moment load in both directions can be reduced. Load becomes possible. In addition, since preload can be applied, it is possible to save space and increase radial rigidity, axial rigidity, moment rigidity, and the like.

また、B/H<0.25に設定すれば、さらなる省スペース化と共に、標準玉軸受約1列分の幅方向スペースで4列の幅狭玉軸受を配設させることができ、さらに剛性の向上が可能である。   Moreover, if B / H <0.25, it is possible to arrange four rows of narrow ball bearings in a space in the width direction of about one row of standard ball bearings with further space saving, and further increase rigidity. Improvement is possible.

ここで、図10及び図11は、それぞれ標準的に使用されている極薄肉玉軸受(軸受内径:φ38.1mm、軸受外径:φ47.625mm、軸受幅:4.762mm、前記断面寸法比(B/H)=1)を基準とし、軸受外径及び軸受幅を変えずに、軸受内径を変化させた場合、即ち、(B/H)の値を変化させた場合の内外輪リングの半径方向の変形特性(図8参照:内輪を例示)及び半径方向の断面2次モーメントI(図9参照:I=bh3/12で計算)を比較した結果を示している。 Here, FIG. 10 and FIG. 11 show the ultra-thin ball bearings (bearing inner diameter: φ38.1 mm, bearing outer diameter: φ47.625 mm, bearing width: 4.762 mm, standard sectional ratio ( B / H) = 1) as a reference, the radius of the inner and outer ring rings when the bearing inner diameter is changed without changing the bearing outer diameter and bearing width, that is, when the value of (B / H) is changed. direction of deformation characteristics (see FIG. 8: an inner ring of illustration) and radial cross-sectional secondary moment I: shows the result of comparison (see FIG. 9 calculated by I = bh 3/12).

また、図12及び図13は、それぞれ標準的に使用されている極薄肉玉軸受(軸受内径:φ63.5mm、軸受外径:φ76.2mm、軸受幅:6.35mm、前記断面寸法比=1)を基準とし、軸受外径及び軸受幅を変えずに、軸受内径を変化させた場合、即ち、(B/H)の値を変化させた場合の内外輪リングの半径方向の変形特性及び半径方向の断面2次モーメントIを比較した結果を示している。   FIGS. 12 and 13 show ultra-thin ball bearings that are used as standard (bearing inner diameter: φ63.5 mm, bearing outer diameter: φ76.2 mm, bearing width: 6.35 mm, cross-sectional dimension ratio = 1). ) And the radial deformation characteristics and radius of the inner and outer ring rings when the bearing inner diameter is changed without changing the bearing outer diameter and bearing width, that is, when the value of (B / H) is changed. The result of having compared the cross-sectional secondary moment I of the direction is shown.

いずれの軸受の場合も、(B/H)=0.63未満で、剛性の増加率勾配の変化が顕著に出ている。すなわち、(B/H)=0.63未満で、断面2次モーメントIの増加は顕著になり、半径方向の内外輪リングの変形量の減少は飽和状態となる。これにより、従来の極薄肉玉軸受で問題となる内外輪製作時の旋盤加工や研磨加工時の加工力による軸受変
形を防止することができ、真円度や偏肉等の軸受精度を向上させることができる。
In any of the bearings, (B / H) = 0.63 or less, and the change in the rigidity increase rate gradient is noticeable. That is, when (B / H) = 0.63, the increase in the secondary moment I of the cross section becomes significant, and the decrease in the deformation amount of the inner and outer ring in the radial direction becomes saturated. This can prevent bearing deformation due to lathe processing and grinding processing forces when manufacturing inner and outer rings, which is a problem with conventional ultra-thin ball bearings, and improves bearing accuracy such as roundness and uneven thickness. be able to.

また、(B/H)=0.63未満とすることで、軸やハウジングに軸受を組み込んだ場合(特に、軸やハウジングとすきま嵌合で組み込んだ場合)、外輪を端面押え、内輪を軸受ナット等でそれぞれ固定した場合の内外輪の変形(特に真円度の悪化)を抑制することができると共に、変形によって生じるトルク不良や回転精度不良、あるいは、発熱増大、摩耗や焼付き等の不具合を防止することができる。   Also, by setting (B / H) to less than 0.63, when the bearing is incorporated in the shaft or housing (especially when it is assembled by clearance fitting with the shaft or housing), the outer ring is pressed against the end face, and the inner ring is the bearing. It is possible to suppress deformation of the inner and outer rings (especially worsening of roundness) when they are fixed with nuts, etc., as well as torque failure and rotation accuracy caused by deformation, or problems such as increased heat generation, wear and seizure. Can be prevented.

さらに、(B/H)=0.63未満とすることで、軸受の幅寸法が従来の標準単列玉軸受の約半分となるので、玉径も従来の玉軸受の半分程度となるが、逆に1列あたりの玉数が少なくとも2倍以上に増加し、軸受剛性は従来の玉軸受に対して増加する。   Furthermore, by setting (B / H) to less than 0.63, the width of the bearing is about half that of a conventional standard single-row ball bearing, so the ball diameter is also about half that of a conventional ball bearing. Conversely, the number of balls per row increases at least twice, and the bearing stiffness increases compared to conventional ball bearings.

また、国際標準化機構(ISO)で規定されている寸法系列が18(例えば、6820)、19(例えば、6938)、10(例えば、7016A)、02(例えば、7224C)、03(例えば、7350A)などの標準寸法玉軸受では、軸受内径寸法がφ5mm〜φ500mmにおいては、断面寸法比(B/H)はB/H=0.63〜1.17となっているが、本実施形態の幅狭玉軸受10は、軸方向に幅狭としたので、上述の断面寸法比に該当しないものとなる。   The dimension series defined by the International Organization for Standardization (ISO) is 18 (for example, 6820), 19 (for example, 6938), 10 (for example, 7016A), 02 (for example, 7224C), 03 (for example, 7350A). In the case of standard size ball bearings such as the above, when the inner diameter of the bearing is φ5 mm to φ500 mm, the cross-sectional dimension ratio (B / H) is B / H = 0.63 to 1.17. Since the ball bearing 10 is narrow in the axial direction, it does not correspond to the above-described cross-sectional dimension ratio.

本実施形態の幅狭玉軸受10では、軸受の負荷容量や剛性を上げるために、円周方向に隣り合う玉13間のピッチは極力小さくし、できる限り玉数を多くしている。通常の玉軸受では、玉数は多くとも30〜40個以下/1列程度であるが、本実施形態では、50個以上、好ましくは60個以上、より好ましくは70個以上/1列としている。   In the narrow ball bearing 10 of this embodiment, in order to increase the load capacity and rigidity of the bearing, the pitch between the balls 13 adjacent in the circumferential direction is made as small as possible, and the number of balls is increased as much as possible. In a normal ball bearing, the number of balls is at most about 30 to 40 or less per row, but in this embodiment, 50 or more, preferably 60 or more, more preferably 70 or more per row. .

アンギュラ玉軸受の場合、接触角は、大きなモーメント荷重を負荷した際に、内外輪みぞ肩部への玉と内外輪みぞ接触部の乗り上げを抑えるため、概ね60°以下、望ましくは50°以下、さらに望ましくは40°以下がよいが、20°未満の場合は、許容アキシャル荷重やモーメント剛性が低下するので好ましくない。本実施形態における適正な玉径は、シール部材等の装着有無により変化するが、剛性を増加させるため、極端に玉径を小さくすると、玉と内外輪の軌道みぞとの接触部間の面圧が増加し、耐圧痕性が低下するおそれがあるため、概ね、単列の場合、軸受幅(B)の30〜90%、複列の場合、軸受幅(B2)の15〜45%が望ましい。   In the case of an angular contact ball bearing, the contact angle is approximately 60 ° or less, preferably 50 ° or less in order to suppress the ball and the inner / outer ring groove contact portion from riding on the shoulder portion of the inner / outer ring groove when a large moment load is applied. More preferably, it is 40 ° or less, but if it is less than 20 °, the allowable axial load and moment rigidity are lowered, which is not preferable. The appropriate ball diameter in the present embodiment varies depending on whether or not a seal member or the like is mounted. However, in order to increase rigidity, if the ball diameter is extremely reduced, the surface pressure between the contact portions between the balls and the track grooves of the inner and outer rings is reduced. In general, in the case of a single row, 30 to 90% of the bearing width (B), and in the case of a double row, 15 to 45% of the bearing width (B2) is desirable. .

更に、本実施形態では、玉13の軸方向ピッチをできるだけ組合せ側端面の反対側にずらし(図1:X1>X2)、保持器15の円環部17(図2〜図5参照)が軸受組合せ端面側になるように配置しており、円環部17の軸方向肉厚を大きくし、また、モーメント剛性を上げるための作用点間距離を大きくとれるようにしている。   Furthermore, in this embodiment, the axial pitch of the balls 13 is shifted as much as possible to the opposite side of the combination side end face (FIG. 1: X1> X2), and the annular portion 17 (see FIGS. 2 to 5) of the cage 15 is a bearing. It arrange | positions so that it may become a combination end surface side, the axial direction thickness of the annular part 17 is enlarged, and the distance between action points for raising moment rigidity can be taken large.

また、軸受の材質としては、標準の軸受鋼(SUJ2やSUJ3)など、特に限定されないが、必要に応じて、これらの材料で、軸受の寸法安定性や耐摩耗性などの機械的性質を向上させるために、内輪11及び外輪12の少なくとも一方に、サブゼロ処理を施してもよい。   The material of the bearing is not particularly limited, such as standard bearing steel (SUJ2 or SUJ3), but if necessary, these materials can improve mechanical properties such as dimensional stability and wear resistance of the bearing. In order to achieve this, sub-zero processing may be performed on at least one of the inner ring 11 and the outer ring 12.

サブゼロ処理の方法としては、例えば、焼入れ直後に、液体窒素を用いて−150°C程度の雰囲気とし、本サブゼロ処理後に焼戻しを行なう。そして、サブゼロ処理と焼戻し処理とを数回繰り返す。冷却溶媒として、液体窒素使用のサブゼロ処理では、繰り返し回数は多くとも3回程度でかまわない。サブゼロ処理によって、組織中の残留オーステナイト(γR)がマルテンサイトに変態する。併せて、結晶粒の安定化も促進されるので、これにより経時寸法変化の防止と耐摩耗性などの機械的性質が向上する。   As a sub-zero treatment method, for example, immediately after quenching, an atmosphere of about −150 ° C. is formed using liquid nitrogen, and tempering is performed after the sub-zero treatment. Then, the sub-zero process and the tempering process are repeated several times. In the sub-zero treatment using liquid nitrogen as the cooling solvent, the number of repetitions may be at most about 3. Residual austenite (γR) in the structure is transformed into martensite by the sub-zero treatment. In addition, since the stabilization of the crystal grains is promoted, this improves the mechanical properties such as prevention of dimensional change with time and wear resistance.

本実施形態の場合、内輪11及び外輪12の軸方向幅が狭いので、そりや真円度不良などの経時寸法変化が発生しやすい傾向がある。したがって、サブゼロ処理により、前記経時寸法変化を抑制することができ、特に、軸受精度が必要な工作機械の回転テーブルや主軸旋回機構部、印刷機械のドラム等の回転機構部などの回転支持部に本実施形態の幅狭玉軸受10を使用する場合、軸受精度劣化による機器の精度不具合を防止でき、長期的に良好な機能を保持することができる。   In the case of the present embodiment, since the axial widths of the inner ring 11 and the outer ring 12 are narrow, there is a tendency that dimensional changes such as warpage and roundness failure tend to occur. Accordingly, the sub-zero treatment can suppress the dimensional change with time, and in particular, in rotation support parts such as a rotary table of a machine tool, a spindle turning mechanism part, and a rotary mechanism part such as a drum of a printing machine that require bearing accuracy. When the narrow ball bearing 10 of the present embodiment is used, it is possible to prevent malfunctions of the equipment due to deterioration of the bearing accuracy, and it is possible to maintain a good function in the long term.

また、例えば真空用途や腐食環境などでは、軸受鋼以外に、耐食材料であるステンレス鋼系材料(例えば、SUS440C等のマルテンサイト系ステンレス鋼材料やSUS304等のオーステナイト系ステンレス鋼材料、SUS630等の析出硬化系ステンレス鋼材料など)、チタン合金やセラミック系材料(例えば、Si3 N4 ,SiC,Al2 O3 ,ZrO2など)を採用してもよい。   For example, in vacuum applications and corrosive environments, in addition to bearing steel, stainless steel materials that are corrosion resistant materials (for example, martensitic stainless steel materials such as SUS440C, austenitic stainless steel materials such as SUS304, precipitation of SUS630, etc.) Hardened stainless steel material), titanium alloy or ceramic material (for example, Si3 N4, SiC, Al2 O3, ZrO2 etc.) may be employed.

潤滑方法も特に限定されず、一般的な使用環境では、鉱油系グリースや合成油系(例えば、リチウム系、ウレア系等)のグリースや油を使用でき、真空用途などでは、フッ素系のグリースまたは油、あるいはフッ素樹脂、MOS2 などの固体潤滑剤を使用することができる。   The lubrication method is not particularly limited, and mineral oil grease or synthetic oil grease (for example, lithium or urea) or oil can be used in a general usage environment. Oil, or a solid lubricant such as fluororesin or MOS2 can be used.

また、本実施形態に使用される冠型保持器15は、図2〜図5に示すように、円環部17と、円環部17の軸方向の一端部に円周方向に等間隔で複数箇所軸方向に突設された柱部18と、を備え、各柱部18間に玉13を円周方向に転動可能に保持する球面ポケット部19を形成する。また、円周方向の一カ所の柱部18の位置には、所定の円周方向幅を有する切断部14(図4(a)及び(b)参照)が形成されている。また、本実施形態では、ポケット部19の入り口部に玉径より若干小さくして引っかかり代(パチン代)を設けており、これにより、内輪11及び外輪12に保持器15を組み込む際、玉13の脱落を防止して、軸受の組立を容易にしている。   Further, as shown in FIGS. 2 to 5, the crown-shaped cage 15 used in the present embodiment has an annular portion 17 and one end portion in the axial direction of the annular portion 17 at equal intervals in the circumferential direction. And a spherical pocket portion 19 that holds the ball 13 so as to be able to roll in the circumferential direction between the column portions 18. Further, a cutting portion 14 (see FIGS. 4A and 4B) having a predetermined circumferential width is formed at one column portion 18 in the circumferential direction. In the present embodiment, the entrance portion of the pocket portion 19 is slightly smaller than the ball diameter and has a catching allowance (pachin allowance). Thus, when the retainer 15 is assembled to the inner ring 11 and the outer ring 12, the ball 13 The assembly of the bearing is made easy by preventing the drop of the bearing.

保持器15の材質は、例えば、ポリアミド46、ポリアミド6、ポリアミド66、ポリアミド6T、ポリアミド9Tなどのポリアミド樹脂を採用しているが、ポリアセタールやポリフェニレンサルファイド等の合成樹脂材でもよい。必要に応じて、合成樹脂材にガラス繊維や炭素繊維等の強化材を混入した材料としてもよい。なお、保持器15の形状は、本実施形態に限定されず、適時変更可能である。   For example, a polyamide resin such as polyamide 46, polyamide 6, polyamide 66, polyamide 6T, or polyamide 9T is used as the material of the cage 15, but a synthetic resin material such as polyacetal or polyphenylene sulfide may be used. As needed, it is good also as a material which mixed reinforcement materials, such as glass fiber and carbon fiber, in the synthetic resin material. The shape of the cage 15 is not limited to this embodiment, and can be changed as appropriate.

ここで、本実施形態では、保持器15は、所定の平衡含水率まで吸水した状態において、保持器15の切断部14の円周方向幅(スリット幅)ΔLは、以下のように設定される。   Here, in this embodiment, in the state where the retainer 15 has absorbed water to a predetermined equilibrium moisture content, the circumferential width (slit width) ΔL of the cutting portion 14 of the retainer 15 is set as follows. .

保持器の所定の温度変化による伸長分(ΔT)>ΔL≧保持器の所定の温度変化による伸長分(ΔT)−保持器の半径方向動き量(直径すきま)ΔR×π(円周率)   Elongation due to predetermined temperature change of cage (ΔT)> ΔL ≧ Elongation due to predetermined temperature change of cage (ΔT) −Amount of radial movement of cage (diameter clearance) ΔR × π (circumference ratio)

ここで、保持器の所定の温度変化による伸長分(ΔT)とは、軸受が所定の温度まで上昇した際に、軸受部品間(例えば、内輪11、外輪12及び玉13が軸受鋼、保持器15がポリアミド樹脂などの合成樹脂で形成されている場合)の線膨張係数差による保持器15の相対的膨張により与えられる。従って、上記式は、以下のように表される。   Here, the elongation (ΔT) due to a predetermined temperature change of the cage means that when the bearing rises to a predetermined temperature, the bearing parts (for example, the inner ring 11, the outer ring 12 and the ball 13 are made of bearing steel and cage). 15 is formed by a relative expansion of the cage 15 due to a difference in linear expansion coefficient (when 15 is formed of a synthetic resin such as a polyamide resin). Therefore, the above formula is expressed as follows.

保持器が所定の温度まで上昇した際の軸受構成部材間の線膨張係数差による保持器の相対的膨張(ΔT)>ΔL≧保持器が所定の温度まで上昇した際の軸受構成部材間の線膨張係数差による保持器の相対的膨張(ΔT)−保持器の半径方向動き量(直径すきま)ΔR×π(円周率)   Relative expansion (ΔT) of cage due to difference in linear expansion coefficient between bearing components when cage rises to a predetermined temperature> ΔL ≧ Line between bearing components when cage rises to a predetermined temperature Relative expansion of cage due to difference in expansion coefficient (ΔT) −Amount of radial movement of cage (diameter clearance) ΔR × π (circumference ratio)

即ち、スリット幅ΔLを上記のように構成することで、保持器15の温度膨張により切断部14での保持器15の円周方向の干渉が発生するものの、干渉後の円周方向の膨張量/π(円周率)=半径方向の膨張量の関係から、切断部14の干渉分により保持器15が半径方向に膨張しても、保持器15の半径方向動き量(図4に示す玉案内保持器の場合)、即ち、半径方向すきま(ΔR)は0以下(負)にはならない。従って、ポケット部19と玉13間が突っ張ることなく、摺動トルク大による発熱やポケット部19の摩耗及び損傷が生じることはない。   That is, by configuring the slit width ΔL as described above, although the circumferential expansion of the cage 15 at the cutting portion 14 occurs due to the temperature expansion of the cage 15, the circumferential expansion amount after the interference / Π (circumferential ratio) = the amount of expansion in the radial direction, the amount of movement of the cage 15 in the radial direction (the ball shown in FIG. 4) even if the cage 15 expands in the radial direction due to the interference of the cutting portion 14 In the case of a guide cage), that is, the radial clearance (ΔR) does not become 0 or less (negative). Therefore, the pocket portion 19 and the ball 13 are not stretched, and heat generation due to a large sliding torque and wear and damage to the pocket portion 19 do not occur.

また、ポリアミド66等の平衡含水率が大きい合成樹脂材料を用いる場合、周囲環境湿度の変化により軸受使用時の含水率に変動が生じやすく、仮に湿度が低い冬季など、乾燥して含水率が下がると保持器15が収縮してスリット幅が広がりやすい。しかしながら、本実施形態では、スリット幅ΔLを温度膨張による切断部14での干渉を許容する小さな値に設定したので、スリット幅ΔLの広がりを小さくして、玉13の円周方向の不等配を抑制することができ、その結果、回転軸の振れ回りを小さく(NRRO値を小さく)抑えることができる。   In addition, when using a synthetic resin material having a large equilibrium moisture content such as polyamide 66, the moisture content during use of the bearing is likely to vary due to changes in the ambient environmental humidity, and the moisture content is reduced by drying, such as in winter when humidity is low. And the retainer 15 contracts and the slit width is likely to widen. However, in this embodiment, since the slit width ΔL is set to a small value that allows interference at the cutting portion 14 due to temperature expansion, the spread of the slit width ΔL is reduced, and the balls 13 are unevenly distributed in the circumferential direction. As a result, the whirling of the rotating shaft can be reduced (NRRO value can be reduced).

ここで、保持器15にあらかじめ吸水させる際の含水率は、保持器15の材質や強化材(ガラス繊維、炭素繊維およびアラミド繊維など)の添加量によって得られる所定の平衡含水率とする。例えば、上述のポリアミド66(強化材無添加グレード)の場合、軸受が保管、あるいは使用される環境の温度を20〜25°C、平均相対湿度を50〜70%として、平衡含水率2.9%とする(図6参照)。保持器15の平衡含水率の許容差は、処理条件に応じて適正な値としてよいが、おおむね±0.5%程度が望ましい。また、図7により、このときの寸法変化率は0.5〜0.6%にも達する。   Here, the moisture content when the cage 15 absorbs water in advance is a predetermined equilibrium moisture content obtained by the material of the cage 15 and the added amount of reinforcing material (glass fiber, carbon fiber, aramid fiber, etc.). For example, in the case of the above-mentioned polyamide 66 (grade with no reinforcing material added), the temperature of the environment where the bearing is stored or used is 20 to 25 ° C., the average relative humidity is 50 to 70%, and the equilibrium moisture content is 2.9. % (See FIG. 6). The tolerance of the equilibrium moisture content of the cage 15 may be an appropriate value depending on the processing conditions, but is preferably about ± 0.5%. Further, according to FIG. 7, the dimensional change rate at this time reaches 0.5 to 0.6%.

平均相対温度は、各地域によって異なるが、本実施形態の幅狭玉軸受10が使用される製品分野から判断して、屋内の適正な空調の整った環境で使用あるいは保管されるのが常である。したがって、環境温度は、20〜30°C、相対湿度は、50〜70%と考えてよい。従って、保持器の材料として、上記の合成樹脂材料以外を適用する場合も、上記の環境温度条件下での平衡含水率に設定する。   Although the average relative temperature varies depending on each region, it is usually used or stored in an indoor environment with proper air conditioning as judged from the product field in which the narrow ball bearing 10 of this embodiment is used. is there. Therefore, it may be considered that the environmental temperature is 20 to 30 ° C. and the relative humidity is 50 to 70%. Therefore, even when a material other than the above synthetic resin material is applied as the material of the cage, the equilibrium moisture content under the above environmental temperature condition is set.

さらに、本実施形態は、保持器15を平衡含水率まで含水した後の切断部14の円周方向幅ΔLについて設定している。ただし、保持器15は絶乾状態(含水率0%)から所定の平衡含水率に至るまで吸水する際に保持器15は膨張するため、絶乾状態である射出成形時の保持器15は、平衡含水処理による円周方向の膨張分を加えて切断部14の円周方向幅ΔL´を設計する。   Further, in the present embodiment, the circumferential width ΔL of the cutting portion 14 after the retainer 15 is wetted to the equilibrium moisture content is set. However, since the cage 15 expands when water is absorbed from the absolutely dry state (water content 0%) to the predetermined equilibrium moisture content, the cage 15 at the time of injection molding in the absolutely dry state is: The circumferential width ΔL ′ of the cutting portion 14 is designed by adding the amount of expansion in the circumferential direction due to the balanced water treatment.

なお、上記した保持器15の母材に強化材を添加しない場合には、保持器15は弾力性があるので、切断部14の干渉による保持器15の径方向への膨張がスムーズに生じるため、上記効果を発揮しやすい。即ち、切断部14の円周方向の接触圧は、強化材添加品に比べて小さく、切断部14の干渉による悪影響が出にくい。
ただし、強化材添加品であっても、保持器14の円環部17の断面積が円環部17の径方向寸法に対して非常に小さくなる(本実施形態のような、B/H<0.63の幅狭軸受等)場合、円環部17の剛性が低くなるので、強化材が添加されていない場合と同様、膨張はスムーズに生じる。
In addition, when the reinforcing material is not added to the base material of the cage 15 described above, the cage 15 is elastic, and therefore, the expansion of the cage 15 in the radial direction due to the interference of the cutting portion 14 occurs smoothly. It is easy to exert the above effect. That is, the contact pressure in the circumferential direction of the cut portion 14 is smaller than that of the reinforcing material-added product, and adverse effects due to interference of the cut portion 14 are less likely to occur.
However, even if the reinforcing material is added, the cross-sectional area of the annular portion 17 of the cage 14 is very small with respect to the radial dimension of the annular portion 17 (as in this embodiment, B / H < In the case of a 0.63 narrow bearing or the like), the rigidity of the annular portion 17 is lowered, and therefore, the expansion occurs smoothly as in the case where the reinforcing material is not added.

また、ポリアセタール、ポリアミド9T、ポリフェニレンサルファイドなどの合成樹脂材料は、含水率が低く、射出成形後の絶乾状態と、使用時、即ち、平衡含水率(通常、周囲環境温度:20〜30℃、相対湿度:50〜70%での含水率)まで含水した時との膨収縮差が少ない。従って、軸受に組み込まれた状態でのスリット幅ΔLの変化も少なくなり、且つ、長期間を通じての環境湿度変化による含水率の変化も小さいので、スリット幅のばらつきも小さくなる。ゆえに、最もスリット幅が広くなる場合を想定しても、初期設定するスリット幅を小さくでき、NRROの悪化を極めて小さくできる利点がある。   In addition, synthetic resin materials such as polyacetal, polyamide 9T, and polyphenylene sulfide have a low moisture content, and are in an absolutely dry state after injection molding and in use, that is, an equilibrium moisture content (usually ambient environment temperature: 20 to 30 ° C., (Relative humidity: moisture content at 50 to 70%) There is little difference in expansion and contraction from when moisture is contained. Accordingly, the change in the slit width ΔL in the state where it is incorporated in the bearing is reduced, and the change in the moisture content due to the change in the environmental humidity over a long period is also small, so that the variation in the slit width is also reduced. Therefore, even when the case where the slit width becomes the widest is assumed, there is an advantage that the initially set slit width can be reduced and the deterioration of NRRO can be extremely reduced.

従って、このような効果を考えると、含水率の小さい樹脂材料の使用が望ましく、NRROの変化を極めて小さくするためには、含水率0.5%以下(23℃、水中24時間浸漬後の含水率(ASTM D570による))、望ましくは0.2%以下(23℃、水中24時間浸漬後の含水率(ASTM D570による))の樹脂材料を使用することが好ましい。   Therefore, considering such effects, it is desirable to use a resin material having a low water content. In order to minimize the change in NRRO, the water content is 0.5% or less (23 ° C., water content after immersion in water for 24 hours). It is preferable to use a resin material having a rate (according to ASTM D570), desirably 0.2% or less (at 23 ° C., water content after immersion in water for 24 hours (according to ASTM D570)).

本実施形態では、一度平衡含水率に達した状態の保持器15を軸受に組み込んだ場合に、大気中の一般的な環境条件においては、多少の湿度や温度変化が発生しても含水率の変化は発生しにくい性質を利用しており、保持器15を射出成形後、あるいは、切削加工後にあらかじめ、平衡含水率まで水分を樹脂内に吸収させておくことで、(使用中の)寸法変化を最小限に抑えることができる。   In the present embodiment, when the cage 15 that has reached the equilibrium moisture content is once incorporated in the bearing, the moisture content can be maintained even if some humidity and temperature changes occur under general environmental conditions in the atmosphere. The change is less likely to occur, and the dimensional change (during use) is achieved by allowing the moisture content to be absorbed into the resin up to the equilibrium moisture content after the cage 15 has been injection molded or cut. Can be minimized.

なお、軸受には油やグリースなどの潤滑剤が運転中に供給、あるいは、あらかじめ封入されており、保持器15の表面には常に油膜が形成されているので、水分の蒸発や侵入が生じにくく、含水率の変化を防止することができる。特に、グリース潤滑の場合は、軸受の内部空間にグリースが相当量充填されているので、大気中の環境条件の変化(湿度変化など)の影響は極めて受けにくい利点がある。   Note that a lubricant such as oil or grease is supplied to the bearing during operation or sealed in advance, and an oil film is always formed on the surface of the cage 15, so that moisture does not easily evaporate or enter. It is possible to prevent the moisture content from changing. In particular, in the case of grease lubrication, since a considerable amount of grease is filled in the internal space of the bearing, there is an advantage that it is extremely difficult to be affected by changes in atmospheric conditions (such as humidity changes).

潤滑剤は、保持器15を所定の平衡含水率まで吸水した状態で軸受に組み込むか、或いは、保持器15をほぼ絶乾状態のまま組み込み、所定の平衡含水率まで自然に吸水した後に封入される。平衡含水率に達しない状態の保持器が軸受に組み込まれグリースなどの潤滑剤が封入されてしまうと、逆に水分の吸収が不十分な状態で軸受が使用されることになり、切断部の円周方向幅が大きい状態であるので、NRRO値が大きくなってしまう。   The lubricant is enclosed in the bearing after the cage 15 has absorbed water up to a predetermined equilibrium moisture content, or is incorporated after the cage 15 is incorporated in an almost completely dry state and naturally absorbs water up to a predetermined equilibrium moisture content. The If a cage that does not reach the equilibrium moisture content is incorporated in the bearing and a lubricant such as grease is enclosed, the bearing will be used with insufficient moisture absorption. Since the circumferential width is large, the NRRO value becomes large.

また、上述したように、2列の幅狭玉軸受10の各外輪12の軸方向外側の端部内周面に、それぞれシール部材16を装着することで、グリースが外部に流出しにくく、また、保持器15の表面の油膜が剥れにくくなり、含水率の変化をさらに抑えることができる。   Further, as described above, by attaching the seal member 16 to the inner peripheral surface of the outer side of the outer ring 12 of each of the two rows of narrow ball bearings 10 in the axial direction, it is difficult for the grease to flow out to the outside. The oil film on the surface of the cage 15 becomes difficult to peel off, and the change in moisture content can be further suppressed.

なお、モータ内蔵の構造などで、軸受近傍に発熱源がある場合、軸受周辺で一時的に温度上昇が生じるが、この場合、保持器15は温度膨張によって伸長する反面、温度上昇により含水率が若干少なくなるため収縮が生じ、保持器15の寸法変化は相殺される。軸受が停止し、常温状態になると、保持器15の吸水率は再び平衡含水率までもどる。ただし、モータ内蔵の場合、モータのステータ周辺部に冷却油を循環させるなどの冷却構造を採用しているのが常であり、この点で、軸受部の温度はさほど上昇しないのが通常である。   In addition, when there is a heat source near the bearing due to a structure with a built-in motor, etc., the temperature temporarily rises around the bearing. In this case, the cage 15 expands due to temperature expansion, but the moisture content increases due to the temperature rise. Since it is slightly reduced, shrinkage occurs, and the dimensional change of the cage 15 is canceled out. When the bearing is stopped and the room temperature is reached, the water absorption rate of the cage 15 returns to the equilibrium water content again. However, in the case of a built-in motor, it is usual to adopt a cooling structure such as circulating cooling oil around the stator of the motor, and in this respect, the temperature of the bearing part usually does not rise so much .

また、本実施形態のような幅狭玉軸受10では、冠型保持器15の円周方向に切断部14が形成されることで、以下のような効果を奏する。   Moreover, in the narrow ball bearing 10 like this embodiment, the following effects are produced by forming the cutting part 14 in the circumferential direction of the crown type cage 15.

即ち、切断部がない円環状の冠型保持器を有する従来の幅狭玉軸受では、軸受が幅狭のため、玉径は幅方向の寸法で限定されて小さくなる。したがって、保持器の円環部の断面肉厚が小さくなり、円環部の剛性は小さい。また、寸法測定時の測定圧による変形が大きく、径方向寸法の測定ができず、保持器が適正な精度か否かを判断できない。玉ピッチ円直径に対してポケット径中心のピッチ円直径がずれていると、玉案内方式なので玉とポケット部とが直径方向で干渉する。   That is, in a conventional narrow ball bearing having an annular crown-shaped cage without a cut portion, the ball diameter is limited by the dimension in the width direction and becomes small because the bearing is narrow. Therefore, the cross-sectional thickness of the annular portion of the cage is reduced, and the rigidity of the annular portion is small. Further, the deformation due to the measurement pressure at the time of measuring the dimension is large, the measurement of the radial dimension cannot be performed, and it cannot be determined whether or not the cage has an appropriate accuracy. If the pitch circle diameter at the center of the pocket diameter is deviated from the ball pitch circle diameter, the ball and the pocket portion interfere in the diameter direction because of the ball guide method.

仮に、保持器の寸法精度が適正であった場合でも、玉径寸法が小さいため、保持器の円環部の断面肉厚が薄くなり、円環部の剛性が小さいため、真円度などの形状精度が悪くなる。また、昇温や吸水による保持器の直径方向の伸長のため、玉とポケットとの間の突っ張りなどが生じ、ポケット面の摩耗や回転中の発熱大、トルクむら、トルク大等の不具合が発生する。   Even if the dimensional accuracy of the cage is appropriate, since the ball diameter is small, the cross-sectional thickness of the annular portion of the cage is thin, and the rigidity of the annular portion is small. The shape accuracy deteriorates. In addition, due to temperature rise and water absorption, the cage expands in the diameter direction, causing tension between the ball and the pocket, causing problems such as wear on the pocket surface, large heat generation during rotation, uneven torque, and large torque. To do.

一方、本実施形態の幅狭玉軸受10では、切断部14を形成することで剛性がさらに小さくなるが、仮にピッチ円直径がずれていても、逆に、弾性変形が容易で、玉ピッチ円直径になじんでくれるので、玉13とポケット部19との間の強い接触圧を伴う干渉が生じにくい。また、保持器15を平衡含水率まで吸水させることで柔軟性が向上し、ピッチ円直径が玉ピッチ円直径にさらになじみやすくなる。   On the other hand, in the narrow ball bearing 10 of the present embodiment, the rigidity is further reduced by forming the cut portion 14, but conversely, even if the pitch circle diameter is deviated, the elastic deformation is easy, and the ball pitch circle Since it adapts to the diameter, interference with a strong contact pressure between the ball 13 and the pocket portion 19 is unlikely to occur. Further, the flexibility is improved by allowing the cage 15 to absorb water up to the equilibrium moisture content, and the pitch circle diameter becomes more easily compatible with the ball pitch circle diameter.

従って、本実施形態の幅狭玉軸受10では、例えば、射出成形によって保持器15を形成する際、切断部14の円周方向幅ΔL´は、絶乾状態から所定の平衡含水率まで吸水した状態までの保持器15の円周方向の伸長分と、保持器15の所定の温度変化による円周方向の伸長分と、該温度変化による円周方向に伸長によって干渉した際の、干渉後の半径方向の伸長分を予め考慮して設定される。そして、加工後の保持器15を所定の平衡含水率に達するまで含水し、保持器15に水分を吸収させる。   Therefore, in the narrow ball bearing 10 of the present embodiment, for example, when the cage 15 is formed by injection molding, the circumferential width ΔL ′ of the cutting portion 14 absorbs water from an absolutely dry state to a predetermined equilibrium moisture content. After the interference when the cage 15 is stretched in the circumferential direction up to the state, the cage 15 is stretched in the circumferential direction due to a predetermined temperature change, and the circumferential change due to the temperature change is caused by the elongation. It is set in consideration of the extension in the radial direction in advance. Then, the cage 15 after processing is hydrated until a predetermined equilibrium moisture content is reached, and the cage 15 absorbs moisture.

その後、所定の平衡含水率まで吸水した保持器15を軸受空間に組み込んで複数の玉13を保持させて、幅狭玉軸受10を組み立て、さらに、軸受空間にグリースや油等の潤滑剤を封入する。これにより、軸受空間内に配置された所定の平衡含水率まで吸水した保持器15は、保持器15の切断部14の円周方向幅ΔLが、保持器15の所定の温度変化による円周方向の伸長分未満で、且つ、該伸長分から保持器15の半径方向動き量×πを差し引いた値以上となっており、玉13の円周方向の不等配を小さくした状態で組み込むことができる。従って、軸受の使用時において、温度変化が所定範囲内であれば、ポケット部19と玉13間が突っ張ることなく、上述した安定した回転性能を得ることができる。   After that, the cage 15 that has absorbed water up to a predetermined equilibrium moisture content is assembled in the bearing space to hold the plurality of balls 13 to assemble the narrow ball bearing 10, and a lubricant such as grease or oil is sealed in the bearing space. To do. As a result, the cage 15 that has absorbed water up to a predetermined equilibrium moisture content disposed in the bearing space has a circumferential width ΔL of the cutting portion 14 of the cage 15 in the circumferential direction due to a predetermined temperature change of the cage 15. And is equal to or greater than the value obtained by subtracting the amount of radial movement of the cage 15 from the extension, and can be incorporated in a state in which the uneven distribution in the circumferential direction of the balls 13 is reduced. . Accordingly, when the bearing is used, if the temperature change is within a predetermined range, the stable rotation performance described above can be obtained without stretching between the pocket portion 19 and the ball 13.

なお、上記実施形態では、平衡含水率による膨張分をスリット幅の設定に加味しているが、ポリアセタール、ポリアミド9T、ポリフェニレンサルファイドなど、特に、含水率が0.2%以下(23℃、水中24時間浸漬後の含水率(ASTM D570による))のほとんど含水性を保持しない樹脂材料であれば、平衡含水率までの吸水膨張分は考慮せず、以下の式により保持器絶乾時の円周方向幅(スリット幅)ΔL1を設定してもよい。   In the above embodiment, the expansion due to the equilibrium moisture content is taken into account in the setting of the slit width, but in particular, the moisture content of polyacetal, polyamide 9T, polyphenylene sulfide, etc. is 0.2% or less (23 ° C., 24 in water If it is a resin material that retains almost no water content after moisture immersion (according to ASTM D570), the water absorption expansion up to the equilibrium water content is not taken into account, A direction width (slit width) ΔL1 may be set.

保持器の所定の温度変化による伸長分(ΔT)>保持器絶乾時の円周方向幅(ΔL1)≧保持器の所定の温度変化による伸長分(ΔT)−保持器の半径方向動き量(直径すきま)ΔR×π(円周率)   Elongation due to predetermined temperature change of cage (ΔT)> Width in circumferential direction when cage is completely dried (ΔL1) ≧ Elongation due to predetermined temperature change of cage (ΔT) −Radial movement amount of cage ( Diameter clearance) ΔR × π (circumference)

これは、上述のようなほとんど含水性を保持しない材料の場合で、射出成形後、絶乾状態のまま軸受に組み込んだり、或いは密封包装により絶乾状態を維持後、軸受に組み込む場合を想定している。また、さらには、軸受組立後、グリース封入やシールの装着により、外部からの水分に直接さらされることがないので、その後も絶乾に近い状態を維持できるからである。   This is the case of the material that hardly retains water content as described above, and it is assumed that it is incorporated into the bearing in an absolutely dry state after injection molding, or is kept in an absolutely dry state by sealed packaging and then incorporated into the bearing. ing. Furthermore, after assembly of the bearing, it is not directly exposed to moisture from the outside by enclosing grease or mounting a seal, so that a state close to absolute dryness can be maintained thereafter.

(第2実施形態)
図14に示す本発明の第2実施形態に係る転がり軸受は、第1実施形態の2列の背面組合せされた幅狭玉軸受に対して、シール部材16が省略された構成である。この実施形態では、シール部材16が設けられていないので、玉径を大きくできる。また、第1実施形態の同径の玉を使用した場合には、シール部材16を設けない分、軸受の軸方向幅をより薄くすることができる。
その他の構成及び作用は、第1実施形態のものと同様である。
(Second Embodiment)
The rolling bearing according to the second embodiment of the present invention shown in FIG. 14 has a configuration in which the seal member 16 is omitted from the two rows of narrow ball bearings combined in the back surface of the first embodiment. In this embodiment, since the seal member 16 is not provided, the ball diameter can be increased. Moreover, when the ball | bowl of the same diameter of 1st Embodiment is used, since the sealing member 16 is not provided, the axial direction width | variety of a bearing can be made thinner.
Other configurations and operations are the same as those of the first embodiment.

(第3実施形態)
図15に示す本発明の第3実施形態に係る転がり軸受は、第2実施形態のものに対して、玉ピッチ円直径を、玉ピッチ円直径>(D+d)/2としている。この実施形態では、玉ピッチ円直径=(D+d)/2に比べて、軸受1列あたりの玉数を多くすることが可能となり、軸受の負荷容量を上げ、かつ剛性をより向上することができる。
その他の構成及び作用は、第1実施形態のものと同様である。
(Third embodiment)
The rolling bearing according to the third embodiment of the present invention shown in FIG. 15 has a ball pitch circle diameter of (ball pitch circle diameter)> (D + d) / 2 with respect to that of the second embodiment. In this embodiment, compared with the ball pitch circle diameter = (D + d) / 2, it is possible to increase the number of balls per row of bearings, increase the load capacity of the bearings, and further improve the rigidity. .
Other configurations and operations are the same as those of the first embodiment.

(第4実施形態)
図16に示す本発明の第4実施形態に係る転がり軸受は、第2実施形態のものに対して、左右の幅狭玉軸受10の玉径、玉ピッチ円直径を変えている。この実施形態では、軸方向荷重が左右の軸受で不均一な場合など、大荷重が負荷する側に玉径大の軸受を配設することで、軸受の損傷防止や寿命向上が図れる。
その他の構成及び作用は、第1実施形態のものと同様である。
(Fourth embodiment)
The rolling bearing according to the fourth embodiment of the present invention shown in FIG. 16 differs from that of the second embodiment in the ball diameter and ball pitch circle diameter of the left and right narrow ball bearings 10. In this embodiment, when the axial load is uneven between the left and right bearings, a bearing having a large ball diameter is provided on the side where the large load is applied, thereby preventing damage to the bearing and improving the life.
Other configurations and operations are the same as those of the first embodiment.

(第5実施形態)
図17に示す本発明の第5実施形態に係る転がり軸受は、第1実施形態のものに対して、シール部材16が対向する内輪11の外周面にシール溝を形成しない構成である。これにより、内輪11の形状を簡素化することができる。
その他の構成及び作用は、第1実施形態のものと同様である。
(Fifth embodiment)
The rolling bearing according to the fifth embodiment of the present invention shown in FIG. 17 has a configuration in which no seal groove is formed on the outer peripheral surface of the inner ring 11 opposed to the seal member 16 with respect to that of the first embodiment. Thereby, the shape of the inner ring 11 can be simplified.
Other configurations and operations are the same as those of the first embodiment.

(第6実施形態)
図18に示す本発明の第6実施形態に係る転がり軸受は、幅狭玉軸受10の外輪12の軸方向の両端側内周部にそれぞれ非接触型のシール部材16を装着する。この実施形態では、グリースの軸受外部への流出を防止でき、軸受内への外部からの異物の侵入も起こりにくい。
その他の構成及び作用は、第1実施形態のものと同様である。
(Sixth embodiment)
In the rolling bearing according to the sixth embodiment of the present invention shown in FIG. 18, the non-contact type seal members 16 are respectively mounted on the inner peripheral portions of both ends in the axial direction of the outer ring 12 of the narrow ball bearing 10. In this embodiment, it is possible to prevent the grease from flowing out of the bearing, and it is difficult for foreign matters to enter the bearing.
Other configurations and operations are the same as those of the first embodiment.

(第7実施形態)
図19に示す本発明の第7実施形態に係る転がり軸受は、2列の幅狭玉軸受10を正面組合せとしている。この実施形態では、接触角が逆ハの字であり、背面組合せに対してモーメント剛性が小さくなるので、取り付け時の内輪11及び外輪12の相対傾きが大きくなることが避けられない場合、軸受の内部発生負荷荷重を小さくすることができる。
その他の構成及び作用は、第1実施形態のものと同様である。
(Seventh embodiment)
The rolling bearing according to the seventh embodiment of the present invention shown in FIG. 19 has two rows of narrow ball bearings 10 as the front combination. In this embodiment, the contact angle is a reverse C shape, and the moment rigidity is reduced with respect to the rear combination. Therefore, if it is inevitable that the relative inclination of the inner ring 11 and the outer ring 12 during installation is unavoidable, Internally generated load can be reduced.
Other configurations and operations are the same as those of the first embodiment.

(第8実施形態)
図20に示す本発明の第8実施形態に係る転がり軸受は、3列の幅狭玉軸受10を背面組合せとしている。この実施形態では、軸受の剛性及び負荷容量を向上させることができる。
その他の構成及び作用は、第1実施形態のものと同様である。
(Eighth embodiment)
The rolling bearing according to the eighth embodiment of the present invention shown in FIG. 20 has three rows of narrow ball bearings 10 as the back combination. In this embodiment, the rigidity and load capacity of the bearing can be improved.
Other configurations and operations are the same as those of the first embodiment.

(第9実施形態)
図21に示す本発明の第9実施形態に係る転がり軸受は、4列の幅狭玉軸受10を背面組合せとしている。この実施形態では、軸受の剛性及び負荷容量をさらに向上させることができる。
その他の構成及び作用は、第1実施形態のものと同様である。
(Ninth embodiment)
The rolling bearing according to the ninth embodiment of the present invention shown in FIG. 21 has four rows of narrow ball bearings 10 as the back combination. In this embodiment, the rigidity and load capacity of the bearing can be further improved.
Other configurations and operations are the same as those of the first embodiment.

(第10実施形態)
図22に示す本発明の第10実施形態に係る転がり軸受は、図19に示す第7実施形態のものに対して、2列の内輪11を一体の内輪101とした複列幅狭玉軸受100である。この実施形態では、2列の単列幅狭玉軸受10と置き換えることができ、また、接触角が逆ハの字であるため、背面組合せに対してモーメント剛性が小さくなる。なお、複列幅狭玉軸受100の軸方向断面幅B2と半径方向断面高さH2(=(外輪外径D2−内輪内径d2)/2)との断面寸法比(B2/H2)は、B2/H2<1.2が好ましく、より好ましくは、B 2/H2 <1.0とすることで、標準寸法玉軸受と容易に置き換えることができる。
その他の構成及び作用は、第1実施形態のものと同様である。
(10th Embodiment)
The rolling bearing according to the tenth embodiment of the present invention shown in FIG. 22 is a double-row narrow ball bearing 100 in which two rows of inner rings 11 are integrated with an inner ring 101 as compared with that of the seventh embodiment shown in FIG. It is. In this embodiment, the single row narrow ball bearing 10 can be replaced with two rows, and since the contact angle is a reverse C shape, the moment rigidity is reduced with respect to the rear combination. The cross-sectional dimension ratio (B2 / H2) between the axial cross-sectional width B2 and the radial cross-sectional height H2 (= (outer ring outer diameter D2-inner ring inner diameter d2) / 2) of the double row narrow ball bearing 100 is B2. /H2<1.2 is preferable, and more preferably, B2 / H2 <1.0 can be easily replaced with a standard size ball bearing.
Other configurations and operations are the same as those of the first embodiment.

(第11実施形態)
図23に示す本発明の第11実施形態に係る転がり軸受は、図19に示す第7実施形態のものに対して、2列の外輪12を一体の外輪102とするとともに、接触角をハの字とした複列幅狭玉軸受110である。この実施形態では、2列の単列幅狭玉軸受10と置き換えることができ、また、接触角がハの字であるため、正面組合せに対してモーメント剛性が大きくなる。なお、複列幅狭玉軸受110の軸方向断面幅B2と半径方向断面高さH2(=(外輪外径D2−内輪内径d2)/2)との断面寸法比(B2/H2)は、B2/H2<1.2が好ましく、より好ましくは、B 2/H2 <1.0とすることで、標準寸法玉軸受と容易に置き換えることができる。
その他の構成及び作用は、第1実施形態のものと同様である。なお、外輪102の軸方向両端部に接触型又は非接触型のシール部材を装着してもよい。
(Eleventh embodiment)
The rolling bearing according to the eleventh embodiment of the present invention shown in FIG. 23 has two rows of outer rings 12 as an integrated outer ring 102 and has a contact angle of C with respect to that of the seventh embodiment shown in FIG. This is a double row narrow ball bearing 110 having a letter shape. In this embodiment, the single row narrow ball bearing 10 can be replaced with two rows, and since the contact angle is a square shape, the moment rigidity is increased with respect to the front combination. The sectional dimension ratio (B2 / H2) between the axial sectional width B2 and the radial sectional height H2 (= (outer ring outer diameter D2—inner ring inner diameter d2) / 2) of the double row narrow ball bearing 110 is B2. /H2<1.2 is preferable, and more preferably, B2 / H2 <1.0 can be easily replaced with a standard size ball bearing.
Other configurations and operations are the same as those of the first embodiment. A contact type or non-contact type seal member may be attached to both ends of the outer ring 102 in the axial direction.

(第12実施形態)
図24に示す本発明の第12実施形態に係る転がり軸受は、外周面に複列の内輪軌道面121aを有する内輪121と、内周面に複列の外輪軌道面122aを有する外輪122と、内輪軌道面121aと外輪軌道面122aとの間に転動自在に設けられた複数の円筒ころ(転動体)123と、円周方向の少なくとも一カ所の柱部127の位置に切断部124(図25参照)が形成され、複数の円筒ころ123を円周方向に略等間隔で保持する合成樹脂製の冠型保持器125と、を備えた複列円筒ころ軸受120である。保持器125は、図25を参照して、ポケット部126が円筒形状とされ、ポケット部126の内周面と保持器125の内径面との交点、あるいはポケット部126の内周面と保持器126の外径面との交点のいずれかで、円筒ころ123と保持器125とが半径方向で接触するころ案内方式である。切断部124の円周方向幅ΔLの設定方法は、第1実施形態のものと同様である。
(Twelfth embodiment)
A rolling bearing according to a twelfth embodiment of the present invention shown in FIG. 24 includes an inner ring 121 having a double row inner ring raceway surface 121a on the outer peripheral surface, an outer ring 122 having a double row outer ring raceway surface 122a on the inner peripheral surface, A plurality of cylindrical rollers (rolling elements) 123 provided between the inner ring raceway surface 121a and the outer ring raceway surface 122a so as to roll freely, and a cutting portion 124 (see FIG. 5) at the position of at least one column portion 127 in the circumferential direction. 25), and a double-row cylindrical roller bearing 120 including a synthetic resin crown-shaped cage 125 that holds a plurality of cylindrical rollers 123 at substantially equal intervals in the circumferential direction. Referring to FIG. 25, the retainer 125 has a cylindrical pocket portion 126, and an intersection of the inner peripheral surface of the pocket portion 126 and the inner diameter surface of the retainer 125, or the inner peripheral surface of the pocket portion 126 and the retainer. This is a roller guide system in which the cylindrical roller 123 and the retainer 125 are in radial contact with each other at an intersection with the outer diameter surface of 126. The setting method of the circumferential width ΔL of the cutting part 124 is the same as that of the first embodiment.

なお、図26に示すように、第12実施形態の変形例に係る転がり軸受では、ポケット部126は、円筒形状の代わりに、半径方向中間部の直線部126aとし、半径方向内端部及び外端部の爪部126bとによって構成している。この場合の半径方向の動き量ΔRは、半径方向内端部の爪部126bの先端と円筒ころ123との半径方向の距離によって設定される。   As shown in FIG. 26, in the rolling bearing according to the modified example of the twelfth embodiment, the pocket portion 126 is a linear portion 126a in the radially intermediate portion instead of the cylindrical shape, and the radially inner end portion and the outer portion. It is comprised by the nail | claw part 126b of an edge part. The movement amount ΔR in the radial direction in this case is set by the radial distance between the tip of the claw portion 126b at the radially inner end and the cylindrical roller 123.

(第13実施形態)
図27に示す本発明の第13実施形態に係る転がり軸受は、図14に示す第2実施形態のものに対して、合成樹脂製の冠形保持器15に代えて合成樹脂製のもみ抜き保持器150を用い、外輪案内方式が適用されている。もみ抜き保持器150の円周方向の少なくとも1ヶ所の柱部(不図示)位置には、切断部(不図示)が設けられている。切断部の円周方向幅ΔLの設定方法は、第1実施形態のものと同様であり、保持器150を上記同様に平衡含水率まで吸水させた状態において、保持器15の所定の温度変化による円周方向の伸長分未満で、且つ、該伸長分から保持器15の半径方向動き量×πを差し引いた値以上に相当する量とする。なお、ここでの、半径方向動き量ΔRは、ΔR=外輪内径寸法(保持器案内径に相当)−保持器外径寸法となる。
(13th Embodiment)
The rolling bearing according to the thirteenth embodiment of the present invention shown in FIG. 27 differs from that of the second embodiment shown in FIG. The outer ring guide method is applied using the device 150. A cutting portion (not shown) is provided at at least one column portion (not shown) position in the circumferential direction of the machined cage 150. The setting method of the circumferential width ΔL of the cutting portion is the same as that of the first embodiment, and in a state where the cage 150 has absorbed water up to the equilibrium moisture content as described above, it depends on a predetermined temperature change of the cage 15. The amount is less than the amount of extension in the circumferential direction and equal to or more than the value obtained by subtracting the amount of radial movement of the cage 15 from the extension. Here, the radial motion amount ΔR is ΔR = outer ring inner diameter dimension (corresponding to the cage guide diameter) −the cage outer diameter dimension.

ここで、軸方向の両側部に円環部を備える従来のもみ抜きタイプの保持器の場合、比較的強度があるので、適正寸法の維持に対しては有利である。ただし、外輪案内方式の場合には、温度上昇や吸水による膨張で案内すきまがなくなり、最悪かじる可能性がある。かじらないような大きな案内すきまとすると、膨張が伴わない条件では保持器が振れ回り、騒音等の不具合が生じる。しかしながら、本実施形態のような切断部を有するもみ抜きタイプの保持器では、案内すきまの減少を最小限に抑え、案内面での食い付き等の不具合を防止できる。   Here, in the case of the conventional machined type cage having the annular portions on both sides in the axial direction, it is relatively strong, which is advantageous for maintaining appropriate dimensions. However, in the case of the outer ring guide system, there is a possibility that the guide clearance is lost due to the temperature rise or the expansion due to water absorption, and there is a possibility that the outer ring guides the worst. If the guide clearance is large enough to avoid galling, the cage swings under conditions that do not cause expansion, resulting in problems such as noise. However, in the machined type retainer having a cutting portion as in the present embodiment, it is possible to minimize the decrease in the guide clearance and prevent problems such as biting on the guide surface.

(第14実施形態)
図28に示す本発明の第14実施形態に係る転がり軸受は、図14に示す第2実施形態のものに対して、合成樹脂製の冠形保持器15に代えて合成樹脂製のもみ抜き保持器160を用い、内輪案内方式が適用されている。もみ抜き保持器160の円周方向の少なくとも1ヶ所の柱部(不図示)位置には、切断部(不図示)が設けられている。切断部の円周方向幅ΔLの設定方法は、第1実施形態のものと同様である。
なお、ここでの半径方向動き量ΔRは、ΔR=外輪内径寸法−保持器外径寸法となる。この場合、温度上昇の変化が少ない場合は、内輪案内となり、所定の温度変化が生じた場合、外輪案内方式となる。(つまり、ΔR>案内すきま(保持器内径寸法−内輪外径寸法)に設定する。)本考案を適用することで、外輪案内となった時の案内面のかじりを防止できると共に、保持器の外径寸法を大きくでき、半径方向の保持器肉厚増が可能となる。
(14th Embodiment)
The rolling bearing according to the fourteenth embodiment of the present invention shown in FIG. 28 differs from that of the second embodiment shown in FIG. The inner ring guide method is applied using the device 160. A cutting portion (not shown) is provided at at least one column portion (not shown) position in the circumferential direction of the machined cage 160. The method of setting the circumferential width ΔL of the cutting part is the same as that of the first embodiment.
Here, the radial movement amount ΔR is ΔR = outer ring inner diameter dimension−retainer outer diameter dimension. In this case, when there is little change in temperature rise, the inner ring guide is used, and when a predetermined temperature change occurs, the outer ring guide method is used. (In other words, ΔR> guide clearance (retainer inner diameter dimension−inner ring outer diameter dimension) is set.) By applying the present invention, it is possible to prevent the guide surface from being galled when it becomes the outer ring guide. The outer diameter can be increased and the cage thickness in the radial direction can be increased.

従来の内輪案内方式の切断部のない保持器の場合には、温度上昇や吸水による膨張で案内すきまが大きくなりすぎ、保持器の異常振動による騒音等が発生するが、本実施形態のような切断部を有するもみ抜きタイプの保持器では、内輪案内から外輪案内に移行することで、案内すきまの増加を最小限に抑え、保持器の異常振動や騒音を防止できる。   In the case of a cage without a cutting portion of the conventional inner ring guide system, the guide clearance becomes too large due to temperature rise or expansion due to water absorption, and noise due to abnormal vibration of the cage is generated. In a machined type retainer having a cut portion, by shifting from the inner ring guide to the outer ring guide, an increase in the guide clearance can be minimized, and abnormal vibration and noise of the retainer can be prevented.

なお、本発明は、上述した実施形態に限定されるものでなく、適宜、変更、改良等が可能である。例えば、本発明の保持器15の切断部14は、円周方向の少なくとも一カ所に形成されればよく、図29に示すように、保持器15に対して円周方向の二カ所に切断部14を形成してもよい。この場合、切断部14の円周方向幅ΔLは、△L=△LA+△LBとする。   In addition, this invention is not limited to embodiment mentioned above, A change, improvement, etc. are possible suitably. For example, the cutting part 14 of the cage 15 of the present invention may be formed at least at one place in the circumferential direction, and as shown in FIG. 14 may be formed. In this case, the circumferential width ΔL of the cutting portion 14 is ΔL = ΔLA + ΔLB.

ここでは、図1と同一構造の2列の背面組合せアンギュラ玉軸受に組み込まれる保持器15について、切断部14の円周方向幅ΔLの設定を、保持器材質が異なる2つの実施例を用いて説明する。   Here, the setting of the circumferential width ΔL of the cutting portion 14 for the cage 15 incorporated in the two rows of back-combined angular contact ball bearings having the same structure as in FIG. 1 is performed using two examples with different cage materials. explain.

(実施例1)
実施例1の軸受仕様は次の通りである。
<軸受仕様>
・軸受寸法:内径φ170mm、外径φ215mm、幅13.5mm(単体幅)、接触角35°、玉径6.35mm、玉数80個、玉ピッチ円径=φ192.5mm、B/H=0.60
・保持器材質:ポリアミド66(強化材混入なし)線膨張係数:80×10-6(K-1
・内輪、外輪及び玉材質:軸受鋼(SUJ2)線膨張係数:12.5×10-6(K-1
・保持器半径方向動き量(ΔR):0.5mm
Example 1
The bearing specifications of Example 1 are as follows.
<Bearing specifications>
Bearing dimensions: inner diameter φ170 mm, outer diameter φ215 mm, width 13.5 mm (single width), contact angle 35 °, ball diameter 6.35 mm, 80 balls, ball pitch circle diameter = φ192.5 mm, B / H = 0 .60
・ Cage material: Polyamide 66 (no reinforcement material mixed) Linear expansion coefficient: 80 × 10 −6 (K −1 )
-Inner ring, outer ring and ball material: bearing steel (SUJ2) linear expansion coefficient: 12.5 × 10 -6 (K -1 )
・ Cage radial movement (ΔR): 0.5 mm

また、軸受の使用環境が平均温度:23°C、平均湿度60%とすると、図6より平衡含水率は約2.9%となる。また、軸受の最大想定温度上昇を80°Cとする(たとえば、用途がモータ内蔵型の工作機械回転テーブルやダイレクトモータ回転支持部であるとモータ負荷回転時は、温度上昇が最大80°Cと推定される)。   Further, assuming that the use environment of the bearing is an average temperature: 23 ° C. and an average humidity of 60%, the equilibrium moisture content is about 2.9% from FIG. In addition, the maximum expected temperature rise of the bearing is set to 80 ° C. (For example, if the application is a machine tool rotary table with a built-in motor or a direct motor rotation support portion, the temperature rise is 80 ° C. Presumed).

この場合、切断部14の円周方向幅ΔLは、△L=192.5×π(円周率)×(80−12.5)×10-6×80−0.5×π(円周率)=1.695≒1.69mmとなり、平衡含水率での切断部14の円周方向幅△Lを1.69mmに設定することができる。 In this case, the circumferential width ΔL of the cut portion 14 is ΔL = 192.5 × π (circumference ratio) × (80-12.5) × 10 −6 × 80−0.5 × π (circumference) Ratio) = 1.695≈1.69 mm, and the circumferential width ΔL of the cut portion 14 at the equilibrium water content can be set to 1.69 mm.

なお、保持器を射出成形にて製作する場合、射出成形直後は絶乾状態(含水率≒0%)となっているので、成形時寸法(含水している前)は、図7より、平衡含水率2.9%のときの寸法変化率が0.45%(保持器円環部の円周方向は射出成形時の樹脂の流れ方向となるので、図7の実線が該当する)であるから、平衡含水処理による絶乾状態からの膨張分:192.5×π(円周率)×0.0045=2.72mmを見込み、射出成形時の切断部14の絶乾時の円周方向幅△L1=1.69+2.72=4.42≒4.4mmとすることができる。   When the cage is manufactured by injection molding, it is in an absolutely dry state (moisture content ≈ 0%) immediately after injection molding, so the dimensions during molding (before moisture content) are balanced from FIG. The rate of dimensional change when the water content is 2.9% is 0.45% (the circumferential direction of the retainer ring part is the resin flow direction during injection molding, so the solid line in FIG. 7 corresponds). Therefore, the expansion from the absolutely dry state due to the equilibrium water treatment: 192.5 × π (circumferential ratio) × 0.0045 = 2.72 mm is expected, and the circumferential direction of the cut portion 14 during the dry molding when dry The width ΔL1 = 1.69 + 2.72 = 4.42≈4.4 mm.

(実施例2)
実施例2では、保持器材質としてポリアミド9T(強化材混入なし)を用い、その他の軸受仕様は、実施例1と同様とする。
該ポリアミド9Tの物性データは、
・ 線膨張係数:55×10-6(K-1)(保持器温度80℃以下)
・ 含水率:0.17〜0.20% (23℃、水中24時間浸漬後の含水率(ASTM D570による))
・ 寸法変化率(0.1%以下) (環境温度:23℃、平均湿度:約50%として、図32参照)
(Example 2)
In Example 2, polyamide 9T (no reinforcing material mixed) is used as the cage material, and other bearing specifications are the same as in Example 1.
Physical property data of the polyamide 9T is
-Linear expansion coefficient: 55 × 10 −6 (K −1 ) (Cage temperature of 80 ° C. or less)
Water content: 0.17 to 0.20% (water content after immersion for 24 hours in water at 23 ° C. (according to ASTM D570))
Dimensional change rate (0.1% or less) (Environmental temperature: 23 ° C, average humidity: about 50%, see Fig. 32)

この場合、切断部14の円周方向幅ΔLは、△L=192.5×π(円周率)×(55−12.5)×10-6×80−0.5×π(円周率)=0.485≒0.48mmに設定することができる。 In this case, the circumferential width ΔL of the cut portion 14 is ΔL = 192.5 × π (circumference ratio) × (55-12.5) × 10 −6 × 80−0.5 × π (circumference) Ratio) = 0.485≈0.48 mm.

また、絶乾状態から平衡含水率に至るまでの膨張分:192.5×π(円周率)×0.001=0.605mmを見込み、射出成形時の切断部14の絶乾時の円周方向幅ΔL1は、ΔL1=0.48+0.605=1.085≒1.08mmとすることができる。   In addition, the expansion from the absolutely dry state to the equilibrium moisture content: 192.5 × π (circumferential ratio) × 0.001 = 0.605 mm is expected, and the circle when the cut portion 14 is completely dried at the time of injection molding The circumferential width ΔL1 can be set to ΔL1 = 0.48 + 0.605 = 1.085≈1.08 mm.

なお、ポリアミド9Tの場合、平衡含水率が前述のポリアミド66に比べて非常に小さいので、射出成形後、恒温恒湿槽に入れるなどの含水処理により、平衡含水率までもっていく処置は必要ない。これは、ポリアミド9Tに限らず、平衡含水率が0.5%以下(23℃、水中24時間浸漬後の含水率(ASTM D570による))の保持器材質であれば、同様である。   In the case of polyamide 9T, the equilibrium moisture content is much smaller than that of the above-mentioned polyamide 66, so that it is not necessary to take the treatment to bring the equilibrium moisture content to the equilibrium moisture content by placing it in a constant temperature and humidity chamber after injection molding. This is not limited to polyamide 9T, but is the same as long as the cage material has an equilibrium moisture content of 0.5% or less (23 ° C., moisture content after immersion in water for 24 hours (according to ASTM D570)).

つまり、軸受組み込み後のスリット幅(切断部14の円周方向幅)は、最大(周囲温度が常温で、且つ、含水率0%)でも1.08mmとなり、回転時のNRROを極めて小さくすることが可能となる。   In other words, the slit width after mounting the bearing (the circumferential width of the cutting portion 14) is 1.08 mm at the maximum (ambient temperature is normal temperature and moisture content is 0%), and the NRRO during rotation is extremely small. Is possible.

(動トルク及び温度上昇比較試験)
次に、実施例1の軸受仕様(保持器は玉案内方式、ポケット面と玉との内径寄りのすきまΔR:0.5mm)において、実施例1で示した本考案品、即ち、スリット幅が軸受回転中になくなり、負となるように設定した場合(但し、負の値としては、円周方向の突っ張り量=0.5mm(ΔR)×π(円周率)≒1.5mm近傍とし、ΔRはほぼ0の状態、つまり想定上で最も過酷な状態)と、参考品、即ち、スリット幅が軸受回転中でも残るように設定した場合を用いて、軸受の動トルク及び温度上昇について試験を行った。
(Dynamic torque and temperature rise comparison test)
Next, in the bearing specifications of Example 1 (the cage is a ball guide system, the clearance ΔR: 0.5 mm near the inner diameter between the pocket surface and the ball), the product of the present invention shown in Example 1, that is, the slit width is When it is set so as to become negative while the bearing is rotating (however, as a negative value, the amount of thrust in the circumferential direction = 0.5 mm (ΔR) × π (circumferential ratio) ≈1.5 mm), ΔR is almost zero, that is, the most severe condition on the assumption) and the reference product, ie, the case where the slit width is set to remain even while the bearing is rotating, is tested for dynamic torque and temperature rise of the bearing. It was.

図30及び図31に示す比較結果から、本考案品は、スリットを形成する端面同士が干渉してスリット幅が負となっても、ΔRが負のすきまとなっていない場合には、動トルク及び温度上昇において参考品との差異は認められず、また、試験後、保持器のスリット部やポケット内面に摩耗や損傷は見られなかった。   From the comparison results shown in FIG. 30 and FIG. 31, in the product of the present invention, when ΔR is not a negative clearance even when the slit end surfaces interfere with each other and the slit width becomes negative, the dynamic torque In addition, no difference from the reference product was observed in the temperature rise, and after the test, no wear or damage was observed on the slit portion of the cage and the inner surface of the pocket.

つまり、該試験により、NRROの悪化を最小限に抑え、且つ、保持器の損傷や動トルクの増加及び温度上昇の増加などの不具合を生じさせない本考案品の効果が確認された。   That is, the test confirmed the effect of the product of the present invention that minimizes the deterioration of NRRO and does not cause problems such as damage to the cage, increase in dynamic torque, and increase in temperature.

10 転がり軸受
11a 内輪軌道面
11 内輪
12a 外輪軌道面
12 外輪
13 転動体
14 切断部
15 保持器
16 シール部材
DESCRIPTION OF SYMBOLS 10 Rolling bearing 11a Inner ring raceway surface 11 Inner ring 12a Outer ring raceway surface 12 Outer ring 13 Rolling element 14 Cutting part 15 Cage 16 Seal member

Claims (15)

外周面に内輪軌道面を有する内輪と、内周面に外輪軌道面を有する外輪と、前記内輪軌道面と前記外輪軌道面との間に転動自在に設けられた複数の転動体と、円周方向の少なくとも一カ所に切断部が形成され、前記複数の転動体を円周方向に略等間隔で保持する合成樹脂製の保持器と、を備えた転がり軸受において、
前記保持器は、所定の平衡含水率まで吸水した状態において、前記切断部の円周方向幅が、該保持器の所定の温度変化による伸長分未満で、且つ、該保持器の所定の温度変化による伸長分−前記保持器の半径方向動き量×円周率以上となるように形成されることを特徴とする転がり軸受。
An inner ring having an inner ring raceway surface on an outer peripheral surface, an outer ring having an outer ring raceway surface on an inner peripheral surface, a plurality of rolling elements provided rotatably between the inner ring raceway surface and the outer ring raceway surface, In a rolling bearing comprising a cut portion formed in at least one place in the circumferential direction, and a cage made of synthetic resin that holds the plurality of rolling elements at substantially equal intervals in the circumferential direction,
In the state in which the cage has absorbed water up to a predetermined equilibrium moisture content, the circumferential width of the cut portion is less than the elongation due to the predetermined temperature change of the cage, and the predetermined temperature change of the cage The rolling bearing according to claim 1, wherein the rolling bearing is formed so as to be equal to or greater than a radial movement amount of the cage x a circumferential ratio.
前記保持器は、冠型保持器であることを特徴とする請求項1に記載の転がり軸受。   The rolling bearing according to claim 1, wherein the cage is a crown type cage. 前記転動体が、玉であることを特徴とする請求項1又は2に記載の転がり軸受。   The rolling bearing according to claim 1, wherein the rolling element is a ball. 前記転動体が、円筒ころであることを特徴とする請求項1又は2に記載の転がり軸受。   The rolling bearing according to claim 1, wherein the rolling element is a cylindrical roller. 前記内輪と前記外輪との間の軸受空間にはグリースが封入されることを特徴とする請求項1〜4のいずれかに記載の転がり軸受。   The rolling bearing according to claim 1, wherein grease is sealed in a bearing space between the inner ring and the outer ring. 前記内輪及び前記外輪のうちの固定輪側の軸方向端部に配置される、接触型又は非接触型のシール部材をさらに有することを特徴とする請求項5に記載の転がり軸受。   The rolling bearing according to claim 5, further comprising a contact-type or non-contact-type seal member disposed at an axial end portion on the fixed ring side of the inner ring and the outer ring. 前記グリースは、前記保持器が前記所定の平衡含水率まで吸水した後に、前記軸受空間に封入されることを特徴とする請求項5又は6に記載の転がり軸受。   The rolling bearing according to claim 5 or 6, wherein the grease is enclosed in the bearing space after the cage has absorbed water to the predetermined equilibrium moisture content. 前記保持器の表面には油膜が形成されることを特徴とする請求項1〜4のいずれかに記載の転がり軸受。   The rolling bearing according to any one of claims 1 to 4, wherein an oil film is formed on a surface of the cage. 外周面に内輪軌道面を有する内輪と、内周面に外輪軌道面を有する外輪と、前記内輪軌道面と前記外輪軌道面との間に転動自在に設けられた複数の転動体と、円周方向の少なくとも一カ所に切断部が形成され、前記複数の転動体を円周方向に略等間隔で保持する合成樹脂製の保持器と、を備えた転がり軸受において、
前記保持器は、前記切断部の絶乾状態の円周方向幅が、該保持器の所定の温度変化による伸長分未満で、且つ、該保持器の所定の温度変化による伸長分−前記保持器の半径方向動き量×円周率以上となるように形成されることを特徴とする転がり軸受。
An inner ring having an inner ring raceway surface on an outer peripheral surface, an outer ring having an outer ring raceway surface on an inner peripheral surface, a plurality of rolling elements provided rotatably between the inner ring raceway surface and the outer ring raceway surface, In a rolling bearing comprising a cut portion formed in at least one place in the circumferential direction, and a cage made of synthetic resin that holds the plurality of rolling elements at substantially equal intervals in the circumferential direction,
In the cage, the circumferential width of the cut portion in an absolutely dry state is less than the elongation due to the predetermined temperature change of the cage, and the elongation due to the predetermined temperature change of the cage-the cage It is formed so that it may become more than the amount of radial movement x circumference ratio.
前記保持器は、冠型保持器であることを特徴とする請求項9に記載の転がり軸受。   The rolling bearing according to claim 9, wherein the cage is a crown type cage. 前記転動体が、玉であることを特徴とする請求項9又は10に記載の転がり軸受。   The rolling bearing according to claim 9 or 10, wherein the rolling element is a ball. 前記転動体が、円筒ころであることを特徴とする請求項9又は10に記載の転がり軸受。   The rolling bearing according to claim 9 or 10, wherein the rolling element is a cylindrical roller. 前記内輪と前記外輪との間の軸受空間にはグリースが封入されることを特徴とする請求項9〜12のいずれかに記載の転がり軸受。   The rolling bearing according to claim 9, wherein grease is sealed in a bearing space between the inner ring and the outer ring. 前記内輪及び前記外輪のうちの固定輪側の軸方向端部に配置される、接触型又は非接触型のシール部材をさらに有することを特徴とする請求項13に記載の転がり軸受。   The rolling bearing according to claim 13, further comprising a contact-type or non-contact-type seal member disposed at an axial end portion on the fixed ring side of the inner ring and the outer ring. 前記保持器の表面には油膜が形成されることを特徴とする請求項9〜12のいずれかに記載の転がり軸受。   The rolling bearing according to any one of claims 9 to 12, wherein an oil film is formed on a surface of the cage.
JP2009147642A 2009-06-22 2009-06-22 Rolling bearing Expired - Fee Related JP5187279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009147642A JP5187279B2 (en) 2009-06-22 2009-06-22 Rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009147642A JP5187279B2 (en) 2009-06-22 2009-06-22 Rolling bearing

Publications (2)

Publication Number Publication Date
JP2011002077A JP2011002077A (en) 2011-01-06
JP5187279B2 true JP5187279B2 (en) 2013-04-24

Family

ID=43560182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009147642A Expired - Fee Related JP5187279B2 (en) 2009-06-22 2009-06-22 Rolling bearing

Country Status (1)

Country Link
JP (1) JP5187279B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167814A (en) * 2011-01-25 2012-09-06 Nsk Ltd Rolling bearing
RU2472985C1 (en) * 2011-07-19 2013-01-20 Андрей Михайлович Чумохвалов Bearing assembly
JP2014231899A (en) * 2013-05-30 2014-12-11 日本精工株式会社 Tapered roller bearing
JP2014231900A (en) * 2013-05-30 2014-12-11 日本精工株式会社 Roller bearing
CN110145546A (en) * 2019-05-30 2019-08-20 芜湖市高德保持架有限公司 A kind of long-acting retainer of high speed

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63199925A (en) * 1987-02-13 1988-08-18 Koyo Seiko Co Ltd Material for retaining ring of tapered roller bearing
JPH09144761A (en) * 1995-09-18 1997-06-03 Ntn Corp Ball bearing, and pulley and fan provided with the ball bearing
JP2003049833A (en) * 2001-08-06 2003-02-21 Nsk Ltd Bearing device
JP2003336640A (en) * 2002-05-16 2003-11-28 Nsk Ltd Multi-point contact ball bearing
JP2004019921A (en) * 2002-06-20 2004-01-22 Ntn Corp Ultrathin-walled roller bearing
JP2006226496A (en) * 2005-02-21 2006-08-31 Ntn Corp Roller bearing and resin-made retainer for roller bearing
JP2009097525A (en) * 2007-10-12 2009-05-07 Nsk Ltd Rolling bearing with cage

Also Published As

Publication number Publication date
JP2011002077A (en) 2011-01-06

Similar Documents

Publication Publication Date Title
JP3207410U (en) Rolling bearing
JP5187279B2 (en) Rolling bearing
JP2008240796A (en) Angular contact ball bearing with seal, and spindle device
US20090131235A1 (en) Ball Bearing for Spindle Turning Device of Machine Tool and Spindle Turning Device of Machine Tool Using the Same
JP2006329420A (en) Bearing device for robot arm joint part, and ball bearing
JP5034962B2 (en) Rolling bearing
JP5092383B2 (en) Ball bearing for machine tool main spindle
JP6376212B2 (en) Angular contact ball bearings
JP4743176B2 (en) Combination ball bearings and double row ball bearings
JP2007292093A (en) Deep groove ball bearing
JP2011153683A (en) Angular ball bearing
JP2006105384A (en) Double row ball bearing
JP4715961B2 (en) Rotary table device for machine tools
JP5233199B2 (en) Angular contact ball bearings
JP2003042160A (en) Angular contact ball bearing and main bearing
JP2003336640A (en) Multi-point contact ball bearing
JP2020070857A (en) Slewing bearing
JP2011247358A (en) Duplex ball bearing and double-row ball bearing
JP5724275B2 (en) Rolling bearing
JP2011226614A (en) Rolling bearing
JP2006153094A (en) Ball bearing and rotary table device for machine tool using ball bearing
JP5556590B2 (en) Rolling bearing
JP3965252B2 (en) Bearing device and spindle device
JP2005061434A (en) Multi-point contacting ball bearing
WO2018225720A1 (en) Holder for rolling bearing, and rolling bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5187279

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees