JP5187209B2 - Evaluation method of lower limit of fatigue strength of minute defect members - Google Patents

Evaluation method of lower limit of fatigue strength of minute defect members Download PDF

Info

Publication number
JP5187209B2
JP5187209B2 JP2009020684A JP2009020684A JP5187209B2 JP 5187209 B2 JP5187209 B2 JP 5187209B2 JP 2009020684 A JP2009020684 A JP 2009020684A JP 2009020684 A JP2009020684 A JP 2009020684A JP 5187209 B2 JP5187209 B2 JP 5187209B2
Authority
JP
Japan
Prior art keywords
fatigue strength
fatigue
stress
relationship
maximum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009020684A
Other languages
Japanese (ja)
Other versions
JP2010175478A (en
Inventor
洋一 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2009020684A priority Critical patent/JP5187209B2/en
Publication of JP2010175478A publication Critical patent/JP2010175478A/en
Application granted granted Critical
Publication of JP5187209B2 publication Critical patent/JP5187209B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

本発明は、航空機用ジェットエンジンのファンブレードや、圧縮機の動静翼などの部材に異物が衝突して微小欠陥が形成されたとき、その微小欠陥部材の疲労強度下限値を評価する方法に関するものである。   The present invention relates to a method for evaluating a lower limit of fatigue strength of a micro defect member when a foreign object collides with a member such as a fan blade of an aircraft jet engine or a stationary blade of a compressor to form a micro defect. It is.

航空機用ジェットエンジンでは、図16に示すように、ファン161で取り込んだ空気の一部を圧縮機162で圧縮して燃焼器163に送り込み、燃焼器163内で燃料を噴射、点火することで連続的に高温・高圧のガスを発生させ、このガスにより圧縮機162を駆動する高圧タービン164、ファン161を駆動する低圧タービン165を順次駆動させた後、ジェットノズル166からガスを高速度で後方に噴出することにより、ガスの噴流と反対方向への推進力を得ている。   In the aircraft jet engine, as shown in FIG. 16, a part of the air taken in by the fan 161 is compressed by the compressor 162 and sent to the combustor 163, and fuel is injected and ignited in the combustor 163. The high-pressure turbine 164 that drives the compressor 162 and the low-pressure turbine 165 that drives the fan 161 are sequentially driven by this gas, and then the gas is moved backward from the jet nozzle 166 at a high speed. Propulsion in the opposite direction to the gas jet is obtained by jetting.

このような航空機用ジェットエンジン160では、ファン161の空気取入口から鳥や石などの異物(Foreign Object Debris)を吸い込んでしまうことがあり、この異物の吸い込みにより、ファン161のファンブレード167や圧縮機162の動静翼168に微小な傷(微小欠陥)が発生しやすい。異物の吸い込みにより生じた傷をFOD(Foreign Object Damage)という。この微小欠陥は、その形状により、ニック(エッジ部についた鋭い傷)、デント(凹み)、スクラッチ(ひっかき傷)と呼ばれている。   In such an aircraft jet engine 160, foreign objects such as birds and stones (Foreign Object Debris) may be sucked from the air intake port of the fan 161, and the suction of the foreign matters causes the fan blade 167 of the fan 161 to be compressed. Minute scratches (minute defects) are likely to occur on the moving blade 168 of the machine 162. The damage caused by the inhalation of foreign matter is called FOD (Foreign Object Damage). This minute defect is called a nick (a sharp scratch on the edge), a dent (a dent), or a scratch (a scratch) depending on its shape.

ファンブレード167や圧縮機162の動静翼168の損傷の第1要因は、高サイクル疲労によるものである。微小欠陥を有するファンブレード167や圧縮機162の動静翼168では、その微小欠陥部に応力が集中してき裂が発生し、これが起点となってファンブレード167や動静翼168が破壊されてしまうおそれがある。   The first cause of damage to the fan blade 167 and the moving blades 168 of the compressor 162 is due to high cycle fatigue. In the fan blade 167 having minute defects and the moving blades and stator blades 168 of the compressor 162, stress concentrates on the minute defect portions and cracks are generated, which may cause the fan blades 167 and the moving blades 168 to be destroyed. is there.

したがって、このような破壊を防ぐため、微小欠陥を有するファンブレード167や動静翼168の疲労強度を評価し、健全性を確保する必要がある。   Therefore, in order to prevent such destruction, it is necessary to evaluate the fatigue strength of the fan blade 167 and the moving vane 168 having minute defects to ensure soundness.

なお、この出願の発明に関連する先行技術文献情報としては、次のものがある。   The prior art document information related to the invention of this application includes the following.

D.Nowell、他2名、「Prediction of fatigue performance in gas turbine blades after foreign object damage」、International Journal of Fatigue 25(2003)、p.963−969D. Nowell, two others, “Prediction of fatigue performance in gas turbine blade after foreign object damage”, International Journal of Fatigue 25, 200. 963-969 Steven R. Tompson、他2名、「Influence of residual stresses on high cycle fatigue strength of Ti−6Al−4V subjected to foreign object damage」、International Journal of Fatigue 23(2001)、S405−S412Steven R. Thompson, two others, "Influence of residual stresses on high cycle fatigue of Ti-6Al-4V projected to foreligible object 23, Interfigure 23 John Warren他、「Best Practices for the Mitigation and Control of Foreign Object Damage−Induced High Cycle Fatigue in Gas Turbine Engine Compression System Airfoils」、RTO TECHNICAL REPORT TR−AVT−094、RESEARCH AND TECHNOLOGY ORGANISATION、2005年6月John Warren et al., "Best Practices for the Mitigation and Control of Foreign Object Damage-Induced High Cycle Fatigue in Gas Turbine Engine Compression System Airfoils", RTO TECHNICAL REPORT TR-AVT-094, RESEARCH AND TECHNOLOGY ORGANISATION, 6 May 2005

しかしながら、FODを受けたファンブレード167や動静翼168(以下、微小欠陥部材という)の疲労強度を評価する手法は従来存在していない。   However, there is no conventional method for evaluating the fatigue strength of fan blades 167 and moving blades 168 (hereinafter referred to as minute defect members) that have undergone FOD.

そのため、現状では、経験に基づいて微小欠陥部材の疲労強度低下量を評価するしかないという問題がある。したがって、フィールドから戻ってきた微小欠陥部材に対する微小欠陥の許容限界寸法(補修せずに使用を継続できる最大の寸法)についても、経験に基づいて決定するしかなかった。このような経験に基づく方法では、評価者によって疲労強度の評価が変わってしまうこともあり、健全性を確実に確保することは困難であった。   Therefore, at present, there is a problem that there is no choice but to evaluate the amount of decrease in fatigue strength of the minute defect member based on experience. Therefore, the allowable limit dimension of the micro defect for the micro defect member that has returned from the field (the maximum dimension that can continue to be used without repair) must be determined based on experience. In such a method based on experience, the evaluation of fatigue strength may vary depending on the evaluator, and it has been difficult to ensure soundness.

さらに、従来の経験に基づく方法では、例えば、経験の蓄積していない新たに開発した翼に対して、適切に疲労強度を評価することができないという問題がある。   Furthermore, the conventional method based on experience has a problem that, for example, it is not possible to appropriately evaluate the fatigue strength of a newly developed blade that has not accumulated experience.

そこで、本発明の目的は、上記課題を解決し、微小欠陥部材の疲労強度低下量を定量的に評価することが可能な微小欠陥部材の疲労強度下限値の評価方法を提供することにある。   Accordingly, an object of the present invention is to solve the above-described problems and provide an evaluation method of a fatigue strength lower limit value of a micro defect member capable of quantitatively evaluating the amount of fatigue strength reduction of the micro defect member.

本発明は上記目的を達成するために創案されたものであり、航空機用ジェットエンジンのファンブレードや、圧縮機の動静翼などの部材に異物が衝突して微小欠陥が形成されたとき、その微小欠陥部材の疲労強度下限値を評価する方法であって、上記微小欠陥部材を模した試料に、切欠き深さ、切欠き先端半径の異なる微小欠陥をそれぞれ付与すると共に、これら試料を用いて疲労試験を行ってSN線図を作成し、他方、上記試料の微小欠陥に位置する断面での応力分布を特性距離モデルを用いて解析し、この解析結果と上記SN線図とから、特性距離平均応力に対する疲労き裂発生寿命の関係を求め、この関係を用いて、切欠き先端半径を0.01mm以下としたときのSN線図を切欠き深さごとに作成し、作成したSN線図を基に、切欠き深さごとに最小疲労強度を求めると共に、切欠きのない平滑材における疲労強度との比をとることで、上記試料における切欠き深さと疲労強度の最大減少率との関係を求めておき、上記微小欠陥部材に異物が衝突したときの最大残留応力を推定すると共に、最大残留応力による疲労強度の低下量を求め、求めた最大残留応力による疲労強度の低下量と、上記試料における切欠き深さと疲労強度の最大減少率との関係に基づき、上記微小欠陥部材における切欠き深さと疲労強度の最大減少率との関係を求めておき、この関係を用い、疲労強度下限値を評価する微小欠陥部材の切欠き深さから、疲労強度の最大減少率を求め、求めた疲労強度の最大減少率を、欠陥のない部材の疲労強度に掛け合わせることにより、微小欠陥部材の疲労強度下限値を求める微小欠陥部材の疲労強度下限値の評価方法である。   The present invention was devised to achieve the above object. When a foreign object collides with a member such as a fan blade of an aircraft jet engine or a moving blade of a compressor, a minute defect is formed. A method for evaluating the lower limit of fatigue strength of a defective member, in which a sample imitating the minute defect member is provided with minute defects having different notch depths and notch tip radii, and fatigue using these samples. An SN diagram is created by performing a test. On the other hand, the stress distribution in the cross section located at the micro defect of the sample is analyzed using a characteristic distance model, and the characteristic distance average is calculated from the analysis result and the SN diagram. The relationship of fatigue crack initiation life to stress was obtained, and using this relationship, an SN diagram was created for each notch depth when the radius of the notch tip was 0.01 mm or less. Based on the notch While obtaining the minimum fatigue strength for each depth and taking the ratio of the fatigue strength in a smooth material without notches, the relationship between the notch depth and the maximum reduction rate of fatigue strength in the sample was obtained, and the above Estimate the maximum residual stress when a foreign object collides with a minute defect member, determine the amount of decrease in fatigue strength due to the maximum residual stress, the amount of decrease in fatigue strength due to the maximum residual stress, and the notch depth in the sample Based on the relationship with the maximum reduction rate of fatigue strength, the relationship between the notch depth and the maximum reduction rate of fatigue strength in the above minute defect member is obtained, and this relationship is used to evaluate the lower limit value of fatigue strength. From the notch depth, the maximum reduction rate of fatigue strength is obtained, and by multiplying the maximum reduction rate of fatigue strength by the fatigue strength of members without defects, the lower limit of fatigue strength of minute defect members It is a method for evaluating fatigue strength lower limit of minute defects member seeking.

上記特性距離モデルを用いた解析は、数1に示す式(1)   The analysis using the characteristic distance model is based on the equation (1)

Figure 0005187209
Figure 0005187209

で定義される特性距離x0を各試料ごとに求め、上記微小欠陥に位置する断面での応力分布と特性距離x0に基づき、切欠き底から特性距離x0までの平均応力である特性距離平均応力σaveをそれぞれ求め、求めた特性距離平均応力σaveと、上記疲労試験で作成したSN線図とから、上記特性距離平均応力に対する疲労き裂発生寿命の関係を求めてもよい。 In seeking properties distance x 0, which is defined for each sample, the basis of the stress distribution and characteristics distance x 0 in a cross section which is located minute defect, characteristic distance is the average stress from the notch root to the characteristic distance x 0 The average stress σ ave may be determined, and the relationship between the fatigue distance at which the characteristic distance average stress is generated may be determined from the determined characteristic distance average stress σ ave and the SN diagram created by the fatigue test.

上記疲労試験により、上記試料の平均応力と疲労強度との関係を求めると共に、その関係における傾きを求めておき、この傾きを基に、上記平均応力が上記最大残留応力分増加したときの疲労強度の低下量を求めてもよい。   In the fatigue test, the relationship between the average stress and fatigue strength of the sample is obtained, and the slope in the relationship is obtained. Based on this slope, the fatigue strength when the average stress increases by the maximum residual stress. The amount of decrease may be obtained.

上記最大残留応力による疲労強度の低下量と、上記平滑材における疲労強度との比をとり、これを上記試料における疲労強度の最大減少率から減じることで、上記微小欠陥部材における切欠き深さと疲労強度の最大減少率との関係を求めてもよい。   By taking the ratio between the amount of decrease in fatigue strength due to the maximum residual stress and the fatigue strength in the smooth material, and subtracting this from the maximum rate of decrease in fatigue strength in the sample, the notch depth and fatigue in the microdefect member You may obtain | require the relationship with the maximum decreasing rate of intensity | strength.

上記疲労強度が、任意のサイクル数における時間強度であってもよい。   The fatigue strength may be a time strength at an arbitrary number of cycles.

上記疲労強度が、疲労限応力振幅であってもよい。   The fatigue strength may be a fatigue limit stress amplitude.

欠陥のない上記部材の疲労限応力振幅と、実際に運用する最大応力振幅との比から、疲労強度の許容限界低下率を求め、上記微小欠陥部材における切欠き深さと疲労強度の最大減少率との関係を用いて、上記疲労強度の許容限界低下率から、微小欠陥の許容限界深さを求めてもよい。   From the ratio between the fatigue limit stress amplitude of the above-mentioned member having no defect and the maximum stress amplitude actually used, the allowable limit reduction rate of fatigue strength is obtained, and the notch depth and the maximum decrease rate of fatigue strength in the above-mentioned micro defect member Using the above relationship, the allowable limit depth of the micro defect may be obtained from the allowable limit decrease rate of the fatigue strength.

上記部材が、航空機用ジェットエンジンのファンブレード、あるいは圧縮機の動静翼であってもよい。   The member may be a fan blade of an aircraft jet engine or a moving and stationary blade of a compressor.

本発明によれば、微小欠陥部材の疲労強度低下量を定量的に評価することができる。   According to the present invention, the amount of fatigue strength reduction of a minute defect member can be quantitatively evaluated.

本発明の微小欠陥部材の疲労強度下限値の評価方法のフローチャートである。It is a flowchart of the evaluation method of the fatigue strength lower limit of the micro defect member of this invention. 特性距離モデルを説明する図である。It is a figure explaining a characteristic distance model. 図3(a)は本発明で用いた試料の平面図であり、図3(b)はそのA部拡大図、図3(c)はその微小欠陥の拡大図である。FIG. 3A is a plan view of a sample used in the present invention, FIG. 3B is an enlarged view of the portion A, and FIG. 3C is an enlarged view of the minute defect. 本発明において、疲労試験で得られるSN線図である。In this invention, it is a SN diagram obtained by a fatigue test. xの座標系とrの座標系との関係を説明する図である。It is a figure explaining the relationship between the coordinate system of x, and the coordinate system of r. 本発明において、切欠き断面での応力分布、および特性距離平均応力の求め方を説明するための図である。In this invention, it is a figure for demonstrating how to obtain | require the stress distribution in a notch cross section, and characteristic distance average stress. 本発明において、特性距離平均応力に対する疲労き裂発生寿命の関係を示す図である。In this invention, it is a figure which shows the relationship of the fatigue crack generation lifetime with respect to characteristic distance average stress. 切欠き先端半径を小さくすると特性距離平均応力がある値に収束することを説明する図である。It is a figure explaining that characteristic distance average stress will be converged to a certain value when a notch tip radius is made small. 切欠き先端半径を小さくすると疲労き裂発生寿命が最小疲労き裂発生寿命に収束することを説明する図である。It is a figure explaining that the fatigue crack initiation life converges to the minimum fatigue crack initiation life when the notch tip radius is reduced. 図7の関係を用いて求めた、切欠き深さごとのSN線図である。It is SN diagram for every notch depth calculated | required using the relationship of FIG. 図7の関係を用いて求めた、切欠き先端半径ごとのSN線図である。It is SN diagram for every notch tip radius calculated | required using the relationship of FIG. 本発明において、試料における切欠き深さと疲労限応力振幅の最大減少率との関係を示す図である。In this invention, it is a figure which shows the relationship between the notch depth in a sample, and the maximum decreasing rate of fatigue limit stress amplitude. 図13(a)は、異物の衝突により形成された微小欠陥を示す図であり、図13(b)は、その微小欠陥部での残留応力分布を示す図である。FIG. 13A is a diagram showing a minute defect formed by collision of a foreign substance, and FIG. 13B is a diagram showing a residual stress distribution in the minute defect portion. 本発明において、最大残留応力による疲労強度の低下量の求め方を説明する図であり、平均応力と疲労強度の関係を示す図である。In this invention, it is a figure explaining how to obtain | require the fall amount of the fatigue strength by the maximum residual stress, and is a figure which shows the relationship between an average stress and fatigue strength. 本発明において求めた、微小欠陥部材における切欠き深さと疲労限応力振幅の最大減少率との関係を示す図である。It is a figure which shows the relationship between the notch depth in the minute defect member calculated | required in this invention, and the maximum reduction rate of fatigue limit stress amplitude. 航空機用のジェットエンジンの概略断面図と、その一部拡大図である。1 is a schematic sectional view of a jet engine for an aircraft and a partially enlarged view thereof. 本発明の微小欠陥部材の疲労強度下限値の評価方法に用いる微小欠陥部材の疲労強度下限値の評価装置の概略図である。It is the schematic of the evaluation apparatus of the fatigue strength lower limit of the micro defect member used for the evaluation method of the fatigue strength lower limit of the micro defect member of this invention.

以下、本発明の好適な実施の形態を添付図面にしたがって説明する。   Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

本発明の微小欠陥部材の疲労強度下限値の評価方法は、航空機用ジェットエンジンのファンブレードや、圧縮機の動静翼などの部材に異物(Foreign Object Debris)が衝突して微小欠陥(FOD;Foreign Object Damage)が形成されたとき、その微小欠陥部材の疲労強度下限値を評価する方法である。   The method for evaluating the lower limit of fatigue strength of a minute defect member according to the present invention is that a foreign object (Foreign Object Debris) collides with a member such as a fan blade of an aircraft jet engine or a moving blade and stator blade of a compressor to cause a minute defect (FOD). This is a method for evaluating the lower limit of fatigue strength of the minute defect member when (Object Damage) is formed.

また、本発明の微小欠陥部材の疲労強度下限値の評価方法は、特性距離モデル(Critical Distance Model)を用いて、予め試料における切欠き深さと疲労強度の最大減少率との関係を求めておき、さらに、上記部材に異物が衝突したときの残留応力を考慮して、微小欠陥部材における疲労設計線図(切欠き深さと疲労強度の最大減少率との関係)を作成し、これを基に微小欠陥部材の疲労強度下限値を評価する方法である。   In addition, the evaluation method of the fatigue strength lower limit value of the minute defect member of the present invention uses a characteristic distance model to obtain the relationship between the notch depth and the maximum reduction rate of the fatigue strength in advance. Furthermore, considering the residual stress when a foreign object collides with the above member, a fatigue design diagram (relation between notch depth and maximum reduction rate of fatigue strength) for a minute defect member is created, and based on this This is a method for evaluating the lower limit of fatigue strength of minute defect members.

まず、特性距離モデルについて簡単に説明する。   First, the characteristic distance model will be briefly described.

図2に示すように、金属材料からなり、微小欠陥22を有する微小欠陥部材21では、切欠き底Bに応力が集中する。そのため、微小欠陥部材21の微小欠陥22が位置する断面(切欠き断面)での応力分布σyは、切欠き底Bで最も大きくなり、切欠き底Bから微小欠陥部材21内部に向かって、徐々に減少する。 As shown in FIG. 2, the stress concentrates on the notch bottom B in the minute defect member 21 made of a metal material and having the minute defect 22. Therefore, the stress distribution σ y at the cross section (notch cross section) where the micro defect 22 of the micro defect member 21 is located becomes the largest at the notch bottom B, and from the notch bottom B toward the inside of the micro defect member 21. Decrease gradually.

このことから、例えば、切欠き底Bのピーク応力値が同じであっても、微小欠陥部材21内部に向かって応力分布σyが緩やかに減少する場合と、急激に低下する場合とでは、微小欠陥部材21が受ける負担に差が生じ、疲労寿命にも差が生じることが分かる。具体的には、切欠き底Bのピーク応力値が同じであっても、微小欠陥部材21内部に向かって応力分布σyが急激に低下する方が、平均応力が小さくなるため、微小欠陥部材21が受ける負担が軽くなり、疲労寿命は長くなる。 Therefore, for example, even if the peak stress value of the notch bottom B is the same, the stress distribution σ y gradually decreases toward the inside of the minute defect member 21 and the case where the stress distribution σ y gradually decreases. It can be seen that there is a difference in the burden received by the defective member 21 and a difference in fatigue life. Specifically, even if the peak stress value of the notch bottom B is the same, the average stress becomes smaller as the stress distribution σ y decreases more rapidly toward the inside of the minute defect member 21. The burden on 21 is reduced and the fatigue life is increased.

このように、微小欠陥部材21では、切欠き底Bの1点の応力で疲労強度は決まらず、微小欠陥部材21内部に向かって応力分布σyがどのように変化するかが重要な因子となる。 As described above, in the minute defect member 21, the fatigue strength is not determined by the stress at one point on the notched bottom B, and how the stress distribution σ y changes toward the inside of the minute defect member 21 is an important factor. Become.

本発明では、切欠き底Bから特性距離(Critical Distance)x0までの平均応力、すなわち特性距離平均応力(Critical Distance Stress)σaveを、微小欠陥部材21の疲労強度の評価指標として用いる。 In the present invention, the average stress from the notch bottom B to the characteristic distance (Critical Distance) x 0 , that is, the characteristic distance average stress (Critical Distance Stress) σ ave is used as an evaluation index of the fatigue strength of the minute defect member 21.

金属材料では、金属材料に含まれる不純物に起因して疲労破壊する。すなわち、金属材料では、高サイクル疲労において微小なき裂が発生し得る。この微小なき裂の最大長さ(平滑な金属材料が含みうる最大のき裂深さ)が、特性距離x0である。換言すれば、特性距離x0は、平滑材の疲労限応力振幅Δσw(これ以下の応力で何回荷重を繰り返しても疲労き裂が発生しないという限界応力)に対して、き裂が進展しない限界長さを意味する。 In a metal material, fatigue failure occurs due to impurities contained in the metal material. That is, in a metal material, a minute crack can occur in high cycle fatigue. The micro Without maximum length of crack (maximum can裂深of a smooth metallic material may comprise) is a characteristic distance x 0. In other words, the characteristic distance x 0 is that the crack propagates with respect to the fatigue limit stress amplitude Δσ w of the smooth material (a limit stress that does not generate a fatigue crack no matter how many times the load is repeated with a stress less than this). Means limit length not.

したがって、特性距離x0は、平滑材における疲労限応力振幅Δσwと、き裂が進展しなくなる下限界応力拡大係数範囲ΔKthとから求めることができ、数2に示す式(1) Therefore, the characteristic distance x 0 can be obtained from the fatigue limit stress amplitude Δσ w in the smooth material and the lower limit stress intensity factor range ΔK th at which the crack does not propagate.

Figure 0005187209
Figure 0005187209

で定義される。式(1)中の下限界応力拡大係数範囲ΔKth、疲労限応力振幅Δσwは、材料により決定される値である。 Defined by The lower limit stress intensity factor range ΔK th and the fatigue limit stress amplitude Δσ w in the equation (1) are values determined by the material.

そして、上述の金属材料が含みうる最大長さ(特性距離x0)のき裂が切欠き底Bに発生した場合の平均応力が、特性距離平均応力σaveである。特性距離平均応力σaveは、切欠き底Bから特性距離x0までの平均応力であるから、数3に示す式(3) The average stress when the crack having the maximum length (characteristic distance x 0 ) that can be included in the metal material is generated in the notch bottom B is the characteristic distance average stress σ ave . Since the characteristic distance average stress σ ave is an average stress from the notch bottom B to the characteristic distance x 0 , the equation (3)

Figure 0005187209
Figure 0005187209

で表される(図2参照)。 (See FIG. 2).

さて、図1は、本実施形態に係る微小欠陥部材の疲労強度下限値の評価方法のフローチャートである。   Now, FIG. 1 is a flowchart of the evaluation method of the fatigue strength lower limit value of the minute defect member according to the present embodiment.

図1に示すように、本実施形態に係る微小欠陥部材の疲労強度下限値の評価方法は、大きく2つのステップS101、S102に分けることができる。   As shown in FIG. 1, the evaluation method of the fatigue strength lower limit value of the microdefect member according to the present embodiment can be roughly divided into two steps S101 and S102.

ステップS101では、微小欠陥部材を模した試料を用いて疲労試験を行うと共に、特性距離モデルを用いて解析を行い、試料における切欠き深さと疲労強度の最大減少率との関係を求める。   In step S101, a fatigue test is performed using a sample simulating a minute defect member, and an analysis is performed using a characteristic distance model to obtain a relationship between the notch depth and the maximum reduction rate of fatigue strength in the sample.

ステップS102では、微小欠陥部材に異物が衝突したときの最大残留応力を推定すると共に、最大残留応力による疲労強度の低下量を求め、これを考慮して、微小欠陥部材における切欠き深さと疲労強度の最大減少率との関係を求め、この関係を用いて、微小欠陥部材の疲労強度下限値を評価する。   In step S102, the maximum residual stress when a foreign object collides with the minute defect member is estimated, the amount of decrease in fatigue strength due to the maximum residual stress is obtained, and the notch depth and fatigue strength in the minute defect member are taken into consideration. The relationship with the maximum reduction rate is obtained, and the fatigue strength lower limit value of the minute defect member is evaluated using this relationship.

以下、各ステップについて詳細に説明する。   Hereinafter, each step will be described in detail.

まず、微小欠陥部材を模した試料を用いて疲労試験を行うと共に、特性距離モデルを用いて解析を行い、特性距離平均応力σaveに対する疲労き裂発生寿命の関係を求める(ステップS1)。 First, a fatigue test is performed using a sample imitating a minute defect member, and an analysis is performed using a characteristic distance model to obtain a relationship between the fatigue crack initiation life and the characteristic distance average stress σ ave (step S1).

本実施形態で用いた試料を図3(a)〜(c)に示す。   Samples used in this embodiment are shown in FIGS.

図3(a)〜(c)に示すように、試料31は、平滑丸棒の表面にスクラッチ型の微小欠陥22が形成されたスクラッチ型丸棒試験片である。微小欠陥22は、試料31の軸方向の中心に形成され、試料31の外周に一様に形成される。   As shown in FIGS. 3A to 3C, the sample 31 is a scratch type round bar test piece in which scratch type micro defects 22 are formed on the surface of a smooth round bar. The minute defect 22 is formed at the center of the sample 31 in the axial direction, and is uniformly formed on the outer periphery of the sample 31.

試料31の微小欠陥22の深さdは、1mm以下、望ましくは0.5mm以下である。これは、実際にファンブレード等の微小欠陥部材に深さ1mm以上の大きな切欠きが発生した場合には、危険であるため無条件で交換、補修されるためである。本実施形態では、切欠き深さdをそれぞれ0.1mm、0.3mm、0.5mmとし、切欠き先端半径ρを0.05mmとした。また、切欠き深さd=0.3mmの試料31については、切欠き先端半径ρが0.2mmの試料31も作成した。   The depth d of the micro defect 22 of the sample 31 is 1 mm or less, desirably 0.5 mm or less. This is because when a large notch with a depth of 1 mm or more is actually generated in a minute defect member such as a fan blade, it is dangerously replaced and repaired unconditionally. In the present embodiment, the notch depth d is 0.1 mm, 0.3 mm, and 0.5 mm, respectively, and the notch tip radius ρ is 0.05 mm. For the sample 31 with the notch depth d = 0.3 mm, a sample 31 with a notch tip radius ρ of 0.2 mm was also prepared.

試料31は金属材料からなる。本実施形態では、試料31として、チタン合金からなるものを用いた。図3(a)に示すように、本実施形態では、疲労試験が行いやすいように、両端部の径が大きくなるよう形成された試料31を用いたが、試料31の径は全長にわたり一定であっても問題ない。   The sample 31 is made of a metal material. In the present embodiment, the sample 31 is made of a titanium alloy. As shown in FIG. 3A, in this embodiment, the sample 31 formed so that the diameters at both ends are increased so that the fatigue test can be easily performed. However, the diameter of the sample 31 is constant over the entire length. There is no problem even if it exists.

ステップS1では、まず、これら各試料31について疲労試験を行い、各試料31についてSN線図を作成する。作成したSN線図の一例を図4に示す。本実施形態では、繰返し数N(破断寿命Nf)=107サイクルにおける最大応力振幅を疲労限応力振幅Δσwとした。 In step S <b> 1, first, a fatigue test is performed on each sample 31, and an SN diagram is created for each sample 31. An example of the created SN diagram is shown in FIG. In the present embodiment, the maximum stress amplitude at the number of repetitions N (rupture life N f ) = 10 7 cycles is defined as the fatigue limit stress amplitude Δσ w .

他方、疲労試験で付与した公称応力(正味断面平均応力)σmに対して各試料31の切欠き断面での応力分布σyを推定する。切欠き断面での応力分布σyは、数4に示す式(5) On the other hand, the stress distribution σ y at the notch cross section of each sample 31 is estimated with respect to the nominal stress (net cross section average stress) σ m applied in the fatigue test. The stress distribution σ y at the notched cross section is expressed by equation (5)

Figure 0005187209
Figure 0005187209

で表される。ここで、式(5)におけるrは、図5に示すように、xの座標系から−ρ/2だけx方向に移動した座標系を示しており、r=x+ρ/2で表される。また、A,Bは未知数であり、これら未知数A,Bを求める必要がある。 It is represented by Here, r in Equation (5) indicates a coordinate system moved in the x direction by −ρ / 2 from the coordinate system of x, as shown in FIG. 5, and is represented by r = x + ρ / 2. A and B are unknown numbers, and it is necessary to obtain these unknown numbers A and B.

未知数A,Bを求めるため、試料31における力のつりあい式(試料31は丸棒試試験片であるため、軸力のつりあい式)を導出する。   In order to obtain the unknowns A and B, a force balance equation for the sample 31 (because the sample 31 is a round bar test piece, an axial force balance equation) is derived.

図6に示すように、公称応力σmによる軸力Fは、F=σm・πR2となる。他方、切欠き断面での応力分布σyによる軸力Fは、数5に示す式(6) As shown in FIG. 6, the axial force F due to the nominal stress σ m is F = σ m · πR 2 . On the other hand, the axial force F due to the stress distribution σ y in the notched cross section is expressed by Equation (6)

Figure 0005187209
Figure 0005187209

となる。よって、試料31における軸力のつりあい式は、数6に示す式(7) It becomes. Therefore, the balance formula of the axial force in the sample 31 is the formula (7) shown in Equation 6.

Figure 0005187209
Figure 0005187209

で表される。式(5)、(7)を用いて、未知数A,Bを求めると、未知数Aは数7に示す式(8) It is represented by When the unknowns A and B are obtained using the equations (5) and (7), the unknown A is expressed by the equation (8) shown in the equation (7).

Figure 0005187209
Figure 0005187209

となり、未知数Bは下式(9)
B=Kt−A …(9)
となる。求めた未知数A,Bを式(5)に代入すれば、切欠き断面での応力分布σyが得られる。
The unknown B is given by the following formula (9)
B = K t −A (9)
It becomes. By substituting the obtained unknowns A and B into Equation (5), the stress distribution σ y at the notched section can be obtained.

得られた切欠き断面での応力分布σyと、数8に示す式(1) The stress distribution σ y at the notched cross section and the formula (1) shown in Equation 8

Figure 0005187209
Figure 0005187209

で定義される特性距離x0とから、特性距離平均応力σaveをそれぞれ求める。式(1)において材料定数Fは、チタン合金に対応する値(F=1.1215×2)とする。 The characteristic distance average stress σ ave is obtained from the characteristic distance x 0 defined by In the formula (1), the material constant F is set to a value corresponding to the titanium alloy (F = 1.215 × 2).

特性距離平均応力σaveは、切欠き底Bから特性距離x0まで範囲での合計の応力Pを、その断面積Sで割ったものであるから、数9に示す式(10) Since the characteristic distance average stress σ ave is obtained by dividing the total stress P in the range from the notch bottom B to the characteristic distance x 0 by the cross-sectional area S, Equation (10)

Figure 0005187209
Figure 0005187209

で求められる(図6参照)。この式(10)に、式(5)で表される切欠き断面での応力分布σyを代入して計算すると、特性距離平均応力σaveは、数10に示す式(11) (See FIG. 6). When the stress distribution σ y at the notched cross section represented by the formula (5) is substituted into the formula (10) and calculated, the characteristic distance average stress σ ave is expressed by the formula (11) shown in the formula (10).

Figure 0005187209
Figure 0005187209

となる。 It becomes.

特性距離平均応力σaveが得られたら、その特性距離平均応力σaveと、疲労試験により得たSN線図とから、特性距離平均応力σaveに対する疲労き裂発生寿命の関係を求める。得られた特性距離平均応力σaveに対する疲労き裂発生寿命Niの関係を図7に示す。 When characteristic distance mean stress sigma ave is obtained, determine its properties distance mean stress sigma ave, and a SN diagram obtained by a fatigue test, the fatigue crack initiation life of relationship characteristics distance mean stress sigma ave. The relationship between the properties obtained distance mean stress σ Fatigue against ave crack initiation life N i shown in FIG.

図7では、縦軸を疲労き裂発生寿命Niとしている。この疲労き裂発生寿命Niは、下式(12)
i=Nf−Np …(12)
但し、Ni:疲労き裂発生寿命
f:破断寿命
p:疲労き裂進展寿命
で求めることができる。破断寿命Nfは、図4のSN線図に示すように疲労試験で求めることができ、疲労き裂進展寿命Npはき裂進展則を用いて解析を行うことにより得ることができる。
In Figure 7, and the vertical axis represents the fatigue crack initiation life N i. The fatigue crack initiation life N i is, the following equation (12)
N i = N f −N p (12)
However, N i: Fatigue Crack Initiation life
N f : Fracture life
N p : It can be obtained from the fatigue crack growth life. Rupture life N f can be obtained by performing an analysis using a can be calculated by the fatigue test as shown in SN diagram of FIG. 4, the fatigue crack growth life N p wear crack growth law.

図7は、ステップS1で作成した全ての試料31(切欠き深さd=0.1mm、0.3mm、0.5mm、切欠き先端半径ρ=0.05mm、0.2mm)をプロットしたものである。このように、特性距離平均応力σaveに対する疲労き裂発生寿命Niの関係は、切欠き深さdや切欠き先端半径ρにかかわらず、1つのSN線図として作成することができる。 FIG. 7 is a plot of all samples 31 (notch depth d = 0.1 mm, 0.3 mm, 0.5 mm, notch tip radius ρ = 0.05 mm, 0.2 mm) created in step S1. It is. Thus, the relationship between the characteristic distance fatigue to the average stress sigma ave crack initiation life N i, regardless of the tip radius ρ-out d and the notch cut-out depth, can be created as a single SN diagram.

次に、図7の関係を用いて、切欠き先端半径ρを0.01mm以下、好ましくは0.001mm以下としたときのSN線図を切欠き深さdごとに作成する(ステップS2)。   Next, using the relationship shown in FIG. 7, an SN diagram is created for each notch depth d when the notch tip radius ρ is 0.01 mm or less, preferably 0.001 mm or less (step S2).

図8に示すように、切欠き先端半径ρが0.01mm以下の小さい値になると、特性距離平均応力σaveはある値に収束する。このため、図9に示すように、切欠き先端半径ρが0.01mm以下の小さい値になると、疲労き裂発生寿命Niがあるサイクル数に収束することになる。このサイクル数が最小疲労き裂発生寿命である。 As shown in FIG. 8, when the notch tip radius ρ becomes a small value of 0.01 mm or less, the characteristic distance average stress σ ave converges to a certain value. Therefore, as shown in FIG. 9, the notch tip radius ρ is below a small value 0.01 mm, it will converge to a number of cycles there is fatigue crack initiation life N i. This cycle number is the minimum fatigue crack initiation life.

一例として、切欠き先端半径ρが0.05mmである場合のSN線図を図10に示す。図10において、プロット(□、△、○:◇は平滑材)はステップS1の疲労試験における実験値であり、実線および破線はステップS2で作成したSN線図である。図10に示すように、作成したSN線図は実験値とよく一致しており、図7の関係から精度よくSN線図を作成できていることが分かる。図10のSN線図を作成する際は、図7より得た疲労き裂発生寿命Niに疲労き裂進展寿命Npを足し合わせて、破断寿命Nf(繰返し数N)を求めるとよい。 As an example, FIG. 10 shows an SN diagram in the case where the notch tip radius ρ is 0.05 mm. In FIG. 10, plots (□, Δ, ○: ◇ are smooth materials) are experimental values in the fatigue test in step S1, and solid lines and broken lines are SN diagrams created in step S2. As shown in FIG. 10, the created SN diagram is in good agreement with the experimental value, and it can be seen that the SN diagram can be created with high accuracy from the relationship of FIG. When the SN diagram of FIG. 10 is created, the fracture life N f (repetition number N) may be obtained by adding the fatigue crack initiation life N i obtained from FIG. 7 to the fatigue crack growth life N p. .

また、図11に、切欠き深さd=0.3mmにおいて切欠き先端半径ρを0.2mm、0.05mmとしたときのSN線図を示す。図11に示すように、作成したSN線図(実線)は、実験値(□、△:◇は平滑材)とよく一致している。   FIG. 11 shows an SN diagram when the notch tip radius ρ is 0.2 mm and 0.05 mm at the notch depth d = 0.3 mm. As shown in FIG. 11, the created SN diagram (solid line) is in good agreement with the experimental values (□, Δ: ◇ are smooth materials).

また、図11には、切欠き先端半径ρを0.01mm以下の小さい値にしたときのSN線図を併せて示す。このSN線図が、切欠き深さd=0.3mmにおける、最小強度を示すSN線図となる。   FIG. 11 also shows an SN diagram when the notch tip radius ρ is set to a small value of 0.01 mm or less. This SN diagram is an SN diagram showing the minimum strength at the notch depth d = 0.3 mm.

これと同様に、各切欠き深さdについても、切欠き先端半径ρを0.01mm以下の小さい値にしたときのSN線図を作成する。   Similarly, for each notch depth d, an SN diagram is created when the notch tip radius ρ is set to a small value of 0.01 mm or less.

その後、ステップS2で作成したSN線図(切欠き先端半径ρ≦0.01mm)を基に、切欠き深さdと疲労強度の最大減少率との関係を求める(ステップS3)。   Thereafter, the relationship between the notch depth d and the maximum reduction rate of fatigue strength is obtained based on the SN diagram (notch tip radius ρ ≦ 0.01 mm) created in step S2 (step S3).

ここでは、サイクル数N=107サイクルにおける時間強度、すなわち疲労限応力振幅Δσwについて検討する。時間強度とは、任意のサイクル数における疲労強度、すなわち最大応力振幅のことである。 Here, the time strength in the cycle number N = 10 7 cycles, that is, the fatigue limit stress amplitude Δσ w is examined. The time strength is the fatigue strength at an arbitrary number of cycles, that is, the maximum stress amplitude.

まず、ステップS2で作成したSN線図(切欠き先端半径ρ≦0.01mm)より、サイクル数N=107サイクルにおける最大応力振幅、すなわち最小疲労限応力振幅(最小時間強度)を、切欠き深さdごとに求める。 First, from the SN diagram (notch tip radius ρ ≦ 0.01 mm) created in step S2, the maximum stress amplitude in the cycle number N = 10 7 cycles, that is, the minimum fatigue limit stress amplitude (minimum time strength) is notched. It calculates | requires for every depth d.

その後、得られた切欠き深さdごとの最小疲労限応力振幅と、微小欠陥22のない平滑材における疲労限応力振幅Δσwとの比(微小欠陥部材の最小疲労限応力振幅/平滑材の疲労限応力振幅Δσw)をとると、切欠き深さdごとに疲労限応力振幅の最大減少率(無次元化疲労限度、あるいは疲労強度比)が得られる。 Thereafter, the ratio between the obtained minimum fatigue limit stress amplitude for each notch depth d and the fatigue limit stress amplitude Δσ w in the smooth material without the microdefect 22 (minimum fatigue limit stress amplitude of the microdefect member / smooth material Taking the fatigue limit stress amplitude Δσ w ), the maximum reduction rate (dimensionless fatigue limit or fatigue strength ratio) of the fatigue limit stress amplitude is obtained for each notch depth d.

得られた切欠き深さdと疲労強度(疲労限応力振幅)の最大減少率との関係のを図12に実線で示す。図12では、参考のため、ρ=0.05mmとしたときの切欠き深さdと疲労限応力振幅の減少率との関係(図10のSN線図に対応)を実線で示している。   The relationship between the obtained notch depth d and the maximum reduction rate of fatigue strength (fatigue limit stress amplitude) is shown by a solid line in FIG. In FIG. 12, for reference, the relationship between the notch depth d and the reduction rate of the fatigue limit stress amplitude when ρ = 0.05 mm (corresponding to the SN diagram of FIG. 10) is shown by a solid line.

得られた図12の関係(実線)を用いることにより、平滑材の疲労強度(疲労限応力振幅)が既知であれば、試料31の微小欠陥部(FOD損傷部)の切欠き深さdから、試料31の疲労強度(疲労限応力振幅)を得ることができる。よって、図12は、試料31の切欠き深さdから疲労強度を評価する疲労設計線図として用いることができる。   If the fatigue strength (fatigue limit stress amplitude) of the smoothing material is known by using the relationship (solid line) obtained in FIG. 12, from the notch depth d of the minute defect portion (FOD damaged portion) of the sample 31. The fatigue strength (fatigue limit stress amplitude) of the sample 31 can be obtained. Therefore, FIG. 12 can be used as a fatigue design diagram for evaluating the fatigue strength from the notch depth d of the sample 31.

以上により、試料31における切欠き深さdと疲労強度の最大減少率との関係が得られる。   As described above, the relationship between the notch depth d and the maximum reduction rate of the fatigue strength in the sample 31 is obtained.

次に、ステップS101で得た関係を基に、微小欠陥部材における切欠き深さdと疲労強度の最大減少率との関係を得るステップ(ステップS102)について説明する。   Next, based on the relationship obtained in step S101, the step of obtaining the relationship between the notch depth d in the minute defect member and the maximum reduction rate of fatigue strength (step S102) will be described.

まず、微小欠陥部材に異物が衝突したときの最大残留応力を推定する(ステップS4)。   First, the maximum residual stress when a foreign object collides with a minute defect member is estimated (step S4).

一例として、微小欠陥部材に異物が衝突して図13(a)に示すような微小欠陥が形成された場合の最大残留応力を検討する。この場合の異物が衝突した部位(FODを受けた部位)の残留応力分布を図13(b)に示す。   As an example, the maximum residual stress in the case where a foreign substance collides with a minute defect member and a minute defect as shown in FIG. FIG. 13B shows the residual stress distribution at the site where the foreign matter collides (the site that has received FOD) in this case.

図13(b)に示すように、微小欠陥部材に発生する残留応力(引張)は、切欠き中央で最も高くなり、最大で200MPa弱となる。   As shown in FIG. 13B, the residual stress (tensile) generated in the minute defect member is the highest at the center of the notch and is a little less than 200 MPa at the maximum.

同様にして、微小欠陥部材に発生する最大残留応力について種々検討した結果、微小欠陥部材に異物が衝突したときの最大残留応力は、高々200MPa程度であることが分かった。よって、本実施形態では、最大残留応力を200MPaとする。   Similarly, as a result of various studies on the maximum residual stress generated in the minute defect member, it has been found that the maximum residual stress when a foreign object collides with the minute defect member is about 200 MPa at most. Therefore, in this embodiment, the maximum residual stress is set to 200 MPa.

最大残留応力が得られたら、その最大残留応力による疲労強度の低下量を求める(ステップS5)。   When the maximum residual stress is obtained, the amount of decrease in fatigue strength due to the maximum residual stress is obtained (step S5).

この最大残留応力による疲労強度の低下量を求めるため、まず、平均応力σmeanと疲労強度との関係を疲労試験により求める。得られた平均応力σmeanと疲労強度(応力振幅σalt)との関係を図14に示す。図14では、上述の試料31を用いて疲労試験を行った結果(○)と併せて、微小欠陥22のない平滑材(◇)、およびデント型試料(□)を用いて疲労試験を行った結果も示している。 In order to obtain the amount of decrease in fatigue strength due to the maximum residual stress, first, the relationship between the average stress σ mean and the fatigue strength is obtained by a fatigue test. FIG. 14 shows the relationship between the obtained average stress σ mean and fatigue strength (stress amplitude σ alt ). In FIG. 14, together with the result of the fatigue test using the above-described sample 31 (◯), the fatigue test was performed using the smooth material (◇) having no microdefects 22 and the dent type sample (□). The results are also shown.

図14において、横軸の平均応力σmeanは、微小欠陥部材の熱応力や遠心力を表すものであり、下式(13)
σmean=(σmax+σmin)/2 …(13)
但し、σmax:最大応力
σmin:最小応力
で表される。微小欠陥部材に残留応力が存在する場合、その残留応力が存在する部位(微小欠陥部)では、平均応力σmeanがその残留応力分増えることになる。
In FIG. 14, the average stress σ mean on the horizontal axis represents the thermal stress and centrifugal force of the minute defect member, and the following equation (13)
σ mean = (σ max + σ min ) / 2 (13)
Where σ max : Maximum stress
σ min : Expressed by minimum stress. When the residual stress is present in the minute defect member, the average stress σ mean is increased by the amount of the residual stress at a portion where the residual stress exists (minute defect portion).

縦軸の応力振幅σaltは、振動による応力振幅を表すものであり、ここでは107サイクルにおける最大応力振幅、すなわち疲労限応力振幅Δσwを表す。また、図14において、Rは応力比であり、下式(14)
R=σmin/σmax …(14)
で表される。
The stress amplitude σ alt on the vertical axis represents the stress amplitude due to vibration, and here represents the maximum stress amplitude in 10 7 cycles, that is, the fatigue limit stress amplitude Δσ w . Moreover, in FIG. 14, R is a stress ratio, and the following formula (14)
R = σ min / σ max (14)
It is represented by

図14に示すように、平均応力σmeanと疲労強度(ここでは、疲労限応力振幅Δσw)との関係は、直線関係で表すことができる。 As shown in FIG. 14, the relationship between the average stress σ mean and the fatigue strength (here, fatigue limit stress amplitude Δσ w ) can be expressed by a linear relationship.

よって、その傾きを求めれば、平均応力σmeanが最大残留応力だけ上昇したときの疲労強度の低下量(ここでは、疲労限応力振幅Δσwの低下量)を得ることができる。 Therefore, by obtaining the inclination, the amount of decrease in fatigue strength when the mean stress sigma mean rises by up to residual stress (here, the amount of decrease in the fatigue limit stress amplitude .DELTA..sigma w) can be obtained.

本実施形態では、安全側の評価の観点から、図14の関係のうち、最も傾きの大きいスクラッチ型(○;上述の試料31)における傾きを採用した。   In the present embodiment, from the viewpoint of evaluation on the safety side, the inclination in the scratch type (◯; sample 31 described above) having the largest inclination is employed among the relationships in FIG.

最大残留応力による疲労強度の低下量が得られたら、これをステップS101で得た図12の関係に適用し、微小欠陥部材における切欠き深さdと疲労強度の最大減少率との関係を求める(ステップS6)。   When the amount of decrease in fatigue strength due to the maximum residual stress is obtained, this is applied to the relationship of FIG. 12 obtained in step S101, and the relationship between the notch depth d and the maximum reduction rate of fatigue strength in the minute defect member is obtained. (Step S6).

具体的には、最大残留応力による疲労強度の低下量と、平滑材における疲労強度との比をとり、これを図12の疲労強度の最大減少率から減じることで、微小欠陥部材における切欠き深さdと疲労強度の最大減少率との関係を求める。得られた微小欠陥部材における切欠き深さdと疲労強度の最大減少率との関係を図15に実線で示す。   Specifically, by taking a ratio between the amount of decrease in fatigue strength due to the maximum residual stress and the fatigue strength in the smooth material, and subtracting this from the maximum reduction rate of fatigue strength in FIG. The relationship between the height d and the maximum reduction rate of fatigue strength is obtained. The relationship between the notch depth d and the maximum reduction rate of fatigue strength in the obtained minute defect member is shown by a solid line in FIG.

図15に示すように、微小欠陥部材における切欠き深さdと疲労強度の最大減少率との関係は、破線で示す試料における関係を、(残留応力による低下量/平滑材の疲労強度(ここでは、疲労限応力振幅Δσw))の分だけ下方にシフトしたものとなる。 As shown in FIG. 15, the relationship between the notch depth d in the minute defect member and the maximum reduction rate of the fatigue strength is the relationship in the sample indicated by the broken line (reduction amount due to residual stress / fatigue strength of the smooth material (here Then, it is shifted downward by the fatigue limit stress amplitude Δσ w )).

図15においてハッチングは、疲労試験で得た実験データや、文献で公表されている文献データを表す母集団である。図15に示すように、本実施形態で得た微小欠陥部材における切欠き深さdと疲労強度の最大減少率との関係は、実験データや文献データの疲労強度の下限界値となっていることが分かる。   In FIG. 15, hatching is a population representing experimental data obtained in a fatigue test and literature data published in literature. As shown in FIG. 15, the relationship between the notch depth d and the maximum reduction rate of fatigue strength in the minute defect member obtained in this embodiment is the lower limit value of the fatigue strength in the experimental data and literature data. I understand that.

次に、疲労強度下限値を評価する微小欠陥部材の切欠き深さdから、疲労強度下限値を求める(ステップS7)。   Next, the fatigue strength lower limit value is obtained from the notch depth d of the minute defect member whose fatigue strength lower limit value is evaluated (step S7).

図15の関係を求めておけば、疲労強度下限値を評価する微小欠陥部材(例えば、フィールドから戻ってきたファンブレード等の翼)の切欠き深さ(FOD深さ)dから、図15の関係を用いて、疲労強度の最大減少率を求めることができる。さらに、求めた疲労強度の最大減少率を、欠陥のない上記部材の疲労強度に掛け合わせることにより、微小欠陥部材の疲労強度下限値を求めることができる。つまり、図15は、微小欠陥部材の切欠き深さdから疲労強度を評価する疲労設計線図として用いることができる。   15 is obtained from the notch depth (FOD depth) d of a minute defect member (for example, a blade such as a fan blade returned from the field) whose fatigue strength lower limit value is evaluated. Using the relationship, the maximum reduction rate of fatigue strength can be obtained. Furthermore, the lower limit value of the fatigue strength of the minute defect member can be obtained by multiplying the maximum reduction rate of the obtained fatigue strength by the fatigue strength of the member having no defect. That is, FIG. 15 can be used as a fatigue design diagram for evaluating the fatigue strength from the notch depth d of the minute defect member.

また、図15の関係を得ることにより、微小欠陥の許容限界深さを求めることも可能となる。   Further, by obtaining the relationship shown in FIG. 15, it is possible to obtain the permissible limit depth of minute defects.

一般的に、ファンブレードや圧縮機の動静翼などの部材は、疲労限応力振幅Δσwが実際の運用における最大応力振幅σaより大きい範囲で使用される。疲労限応力振幅Δσwが最大応力振幅σa以下となる範囲で使用すると、疲労破壊が起きるためである。 In general, members such as fan blades and compressor blades are used in a range where the fatigue limit stress amplitude Δσ w is larger than the maximum stress amplitude σ a in actual operation. If the fatigue limit stress amplitude .DELTA..sigma w is used in an amount equal to or less than the maximum stress amplitude sigma a, because the fatigue fracture occurs.

よって、欠陥のない部材での疲労限応力振幅Δσwと、実際の運用における最大応力振幅(振動応力振幅)σaが既知であれば、FODにより疲労限応力振幅Δσwがどの程度低下すれば応力振幅σaを下回るかという疲労強度の許容限界低下率が得られる。この疲労強度の許容限界低下率に対応する切欠き深さdを図15の関係から求めれば、微小欠陥の許容限界深さを求めることができる。 Therefore, if the fatigue limit stress amplitude Δσ w in a member having no defect and the maximum stress amplitude (vibration stress amplitude) σ a in actual operation are known, how much the fatigue limit stress amplitude Δσ w is reduced by FOD. A permissible limit reduction rate of the fatigue strength that is below the stress amplitude σ a is obtained. If the notch depth d corresponding to the allowable limit reduction rate of the fatigue strength is obtained from the relationship shown in FIG. 15, the allowable limit depth of the minute defect can be obtained.

本実施形態では、疲労強度として、107サイクルにおける時間強度である疲労限応力振幅Δσwを用いたが、これに限定されず、任意のサイクル数における時間強度(例えば、8万回強度)についても、同様に評価することが可能である。 In the present embodiment, the fatigue limit stress amplitude Δσ w that is the time strength in 10 7 cycles is used as the fatigue strength, but the present invention is not limited to this, and the time strength at any number of cycles (for example, 80,000 times strength). Can be similarly evaluated.

以上説明したように、本実施形態に係る微小欠陥部材の疲労強度下限値の評価方法では、微小欠陥部材を模した試料31を用いて疲労試験を行うと共に、特性距離モデルにより解析を行い、試料31における切欠き深さdと疲労強度の最大減少率との関係を求めておき、他方、微小欠陥部材に異物が衝突したときの最大残留応力を推定すると共に、最大残留応力による疲労強度の低下量を求め、その最大残留応力による疲労強度の低下量を、試料31における切欠き深さdと疲労強度の最大減少率との関係に適用することで、微小欠陥部材における切欠き深さdと疲労強度の最大減少率との関係を求めている。   As described above, in the evaluation method of the fatigue strength lower limit value of the micro defect member according to the present embodiment, the fatigue test is performed using the sample 31 imitating the micro defect member, and the analysis is performed using the characteristic distance model. The relationship between the notch depth d at 31 and the maximum reduction rate of fatigue strength is obtained, and on the other hand, the maximum residual stress when a foreign object collides with a minute defect member is estimated, and the fatigue strength is reduced by the maximum residual stress. The amount of decrease in fatigue strength due to the maximum residual stress is applied to the relationship between the notch depth d in the sample 31 and the maximum reduction rate of fatigue strength, so that the notch depth d in the minute defect member The relationship with the maximum reduction rate of fatigue strength is obtained.

これにより、疲労強度下限を評価する微小欠陥部材の切欠き深さdから、疲労強度の最大減少率を求め、求めた疲労強度の最大減少率を、欠陥のない部材の疲労強度に掛け合わせることにより、微小欠陥部材の疲労強度下限値を求めることができる。すなわち、従来評価する手法がなかった微小欠陥部材の疲労強度(疲労限応力振幅Δσw、あるいは任意のサイクル数での時間強度)の下限値を定量的に評価することが可能となり、微小欠陥部材の健全性を確実に確保することが可能となる。 Thus, the maximum reduction rate of fatigue strength is obtained from the notch depth d of the minute defect member for which the lower limit of fatigue strength is evaluated, and the obtained maximum reduction rate of fatigue strength is multiplied by the fatigue strength of the member having no defect. Thus, the lower limit value of the fatigue strength of the minute defect member can be obtained. That is, it becomes possible to quantitatively evaluate the lower limit value of the fatigue strength (fatigue limit stress amplitude Δσ w , or time strength at an arbitrary number of cycles) of a minute defect member that has not been evaluated in the past. It is possible to ensure the soundness of the.

また、図15に示すような疲労強度設計線図(微小欠陥部材における切欠き深さdと疲労限応力振幅Δσwの最大減少率との関係)が得られるため、例えば、新たに開発した翼に対しても、微小欠陥の許容限界深さを得ることが可能となる。 Further, since a fatigue strength design diagram (a relation between the notch depth d and the maximum reduction rate of the fatigue limit stress amplitude Δσ w in the minute defect member) as shown in FIG. 15 is obtained, for example, a newly developed blade However, it is possible to obtain an allowable limit depth of minute defects.

本実施形態に係る微小欠陥部材の疲労強度下限値の評価方法は、例えば、図17に示す微小欠陥部材の疲労強度下限値の評価装置170により実現される。   The evaluation method of the fatigue strength lower limit value of the minute defect member according to the present embodiment is realized by, for example, the evaluation device 170 for the fatigue strength lower limit value of the minute defect member shown in FIG.

微小欠陥部材の疲労強度下限値の評価装置170は、試料31の切欠き深さd、切欠き先端半径ρ、疲労試験の結果等の解析データを入力する解析データ入力部171と、材料データや予め設定した最大残留応力などを記憶する材料データ記憶部172と、解析条件を記憶する解析条件記憶部173と、入力部171に入力された解析データと材料データ記憶部173に記憶された材料データ等を基に、解析条件記憶部173に記憶された解析条件に従って、上述のステップS1〜S6で説明した解析を行う解析部174と、解析部174で得られた微小欠陥部材における切欠き深さdと疲労強度の最大減少率との関係を記憶する解析結果記憶部175とを備える。   The evaluation device 170 for the fatigue strength lower limit value of the minute defect member includes an analysis data input unit 171 for inputting analysis data such as a notch depth d, a notch tip radius ρ, and a fatigue test result of the sample 31; Material data storage unit 172 for storing preset maximum residual stress, analysis condition storage unit 173 for storing analysis conditions, analysis data input to input unit 171 and material data stored in material data storage unit 173 Based on the above, according to the analysis conditions stored in the analysis condition storage unit 173, the analysis unit 174 that performs the analysis described in steps S1 to S6 described above, and the notch depth in the minute defect member obtained by the analysis unit 174 an analysis result storage unit 175 for storing the relationship between d and the maximum reduction rate of fatigue strength.

また、微小欠陥部材の疲労強度下限値の評価装置170は、評価対象となる微小欠陥部材の切欠き深さdを入力する評価対象データ入力部176と、微小欠陥部材を実際に用いる際に必要な疲労強度である規格データを記憶する規格記憶部177と、評価対象データ入力部176で入力された切欠き深さdを基に、解析結果記憶部175に記憶された切欠き深さdと疲労強度の最大減少率との関係を用いて評価対象の微小欠陥部材の最小疲労限応力振幅を求め、これが上記規格データを満足するか否かを出力する評価部178とを備える。   Further, the evaluation device 170 for the fatigue strength lower limit value of the minute defect member is necessary for actually using the evaluation object data input unit 176 for inputting the notch depth d of the minute defect member to be evaluated and the minute defect member. Based on the notch depth d input by the evaluation object data input unit 176, the notch depth d stored in the analysis result storage unit 175, An evaluation unit 178 is provided that obtains the minimum fatigue limit stress amplitude of the minute defect member to be evaluated using the relationship with the maximum reduction rate of the fatigue strength and outputs whether or not this satisfies the standard data.

入力部171、材料データ記憶部172、解析条件記憶部173、解析部174、解析結果記憶部175、評価対象データ入力部176、規格記憶部177、評価部178は、インターフェイス、メモリ、CPU、ソフトウェアなどを適宜組み合わせて実現される。   The input unit 171, the material data storage unit 172, the analysis condition storage unit 173, the analysis unit 174, the analysis result storage unit 175, the evaluation object data input unit 176, the standard storage unit 177, and the evaluation unit 178 are an interface, memory, CPU, software It implement | achieves combining suitably.

微小欠陥部材の疲労強度下限値の評価装置170を用いて評価を行う際は、まず、入力部171より解析データを入力すると共に解析部174で解析し、予め解析結果記憶部175に解析結果(微小欠陥部材における切欠き深さdと疲労限応力振幅の最大減少率との関係)を記憶させておく。   When the evaluation is performed using the evaluation device 170 for the fatigue strength lower limit value of the minute defect member, first, analysis data is input from the input unit 171 and analyzed by the analysis unit 174, and the analysis result ( The relationship between the notch depth d and the maximum reduction rate of the fatigue limit stress amplitude in the minute defect member) is stored.

その上で、評価対象データ入力部176より評価対象となる微小切欠き材のデータ(切欠き深さd)を入力すると、評価部178において、入力された切欠き深さdに対応する疲労強度下限値が求められると共に、求めた疲労強度下限値が予め設定した規格データを満足するか否かが判断され、その結果が外部に出力される。   After that, when data of the notch material to be evaluated (notch depth d) is input from the evaluation object data input unit 176, the evaluation unit 178 causes the fatigue strength corresponding to the input notch depth d. A lower limit value is obtained, and it is determined whether or not the obtained lower limit value of fatigue strength satisfies standard data set in advance, and the result is output to the outside.

21 微小欠陥部材
22 微小欠陥
31 試料
B 切欠き底
21 Minute Defect Member 22 Minute Defect 31 Sample B Notch Bottom

Claims (8)

部材に異物が衝突して微小欠陥が形成されたとき、その微小欠陥部材の疲労強度下限値を評価する方法であって、
上記微小欠陥部材を模した試料に、切欠き深さ、切欠き先端半径の異なる微小欠陥をそれぞれ付与すると共に、これら試料を用いて疲労試験を行ってSN線図を作成し、他方、上記試料の微小欠陥に位置する断面での応力分布を特性距離モデルを用いて解析し、この解析結果と上記SN線図とから、特性距離平均応力に対する疲労き裂発生寿命の関係を求め、
この関係を用いて、切欠き先端半径を0.01mm以下としたときのSN線図を切欠き深さごとに作成し、作成したSN線図を基に、切欠き深さごとに最小疲労強度を求めると共に、切欠きのない平滑材における疲労強度との比をとることで、上記試料における切欠き深さと疲労強度の最大減少率との関係を求めておき、
上記微小欠陥部材に異物が衝突したときの最大残留応力を推定すると共に、最大残留応力による疲労強度の低下量を求め、求めた最大残留応力による疲労強度の低下量と、上記試料における切欠き深さと疲労強度の最大減少率との関係に基づき、上記微小欠陥部材における切欠き深さと疲労強度の最大減少率との関係を求めておき、
この関係を用い、疲労強度下限値を評価する微小欠陥部材の切欠き深さから、疲労強度の最大減少率を求め、求めた疲労強度の最大減少率を、欠陥のない部材の疲労強度に掛け合わせることにより、微小欠陥部材の疲労強度下限値を求めることを特徴とする微小欠陥部材の疲労強度下限値の評価方法。
When a foreign object collides with a member and a micro defect is formed, a method for evaluating a fatigue strength lower limit value of the micro defect member,
The sample imitating the microdefect member is provided with microdefects having different notch depths and notch tip radii, and a fatigue test is performed using these samples to create an SN diagram. The stress distribution at the cross section located at the micro defect is analyzed using the characteristic distance model, and the relationship between the fatigue crack initiation life and the characteristic distance average stress is obtained from the analysis result and the SN diagram,
Using this relationship, create an SN diagram for each notch depth when the notch tip radius is 0.01 mm or less, and based on the created SN diagram, minimum fatigue strength for each notch depth And obtaining the relationship between the notch depth and the maximum reduction rate of fatigue strength in the above sample by taking the ratio with the fatigue strength in the smooth material without notches,
Estimate the maximum residual stress when a foreign object collides with the minute defect member, determine the amount of decrease in fatigue strength due to the maximum residual stress, and determine the amount of decrease in fatigue strength due to the maximum residual stress and the notch depth in the sample. And the relationship between the maximum reduction rate of fatigue strength based on the relationship between the notch depth and the maximum reduction rate of fatigue strength based on the relationship between the maximum reduction rate of fatigue strength and
Using this relationship, the maximum reduction rate of fatigue strength is determined from the notch depth of the minute defect member whose fatigue strength lower limit value is evaluated, and the maximum reduction rate of fatigue strength is multiplied by the fatigue strength of the member without defects. A method for evaluating a lower limit value of fatigue strength of a minute defect member, wherein the lower limit value of fatigue strength of the minute defect member is obtained by combining them.
上記特性距離モデルを用いた解析は、数1に示す式(1)
Figure 0005187209
で定義される特性距離x0を各試料ごとに求め、上記微小欠陥に位置する断面での応力分布と特性距離x0に基づき、切欠き底から特性距離x0までの平均応力である特性距離平均応力σaveをそれぞれ求め、求めた特性距離平均応力σaveと、上記疲労試験で作成したSN線図とから、上記特性距離平均応力に対する疲労き裂発生寿命の関係を求める請求項1記載の微小欠陥部材の疲労強度下限値の評価方法。
The analysis using the characteristic distance model is based on the equation (1)
Figure 0005187209
In seeking properties distance x 0, which is defined for each sample, the basis of the stress distribution and characteristics distance x 0 in a cross section which is located minute defect, characteristic distance is the average stress from the notch root to the characteristic distance x 0 The average stress σ ave is obtained, and the relationship between the obtained characteristic distance average stress σ ave and the SN diagram created in the fatigue test is used to determine the relationship between the fatigue crack initiation life and the characteristic distance average stress. Evaluation method of fatigue strength lower limit value of minute defect member.
上記疲労試験により、上記試料の平均応力と疲労強度との関係を求めると共に、その関係における傾きを求めておき、この傾きを基に、上記平均応力が上記最大残留応力分増加したときの疲労強度の低下量を求める請求項1または2記載の微小欠陥部材の疲労強度下限値の評価方法。   In the fatigue test, the relationship between the average stress and fatigue strength of the sample is obtained, and the slope in the relationship is obtained. Based on this slope, the fatigue strength when the average stress increases by the maximum residual stress. The evaluation method of the fatigue strength lower limit of the micro defect member of Claim 1 or 2 which calculates | requires the reduction | decrease amount. 上記最大残留応力による疲労強度の低下量と、上記平滑材における疲労強度との比をとり、これを上記試料における疲労強度の最大減少率から減じることで、上記微小欠陥部材における切欠き深さと疲労強度の最大減少率との関係を求める請求項1〜3いずれかに記載の微小欠陥部材の疲労強度下限値の評価方法。   By taking the ratio between the amount of decrease in fatigue strength due to the maximum residual stress and the fatigue strength in the smooth material, and subtracting this from the maximum rate of decrease in fatigue strength in the sample, the notch depth and fatigue in the microdefect member The evaluation method of the fatigue strength lower limit value of the minute defect member according to any one of claims 1 to 3, wherein a relationship with a maximum strength reduction rate is obtained. 上記疲労強度が、任意のサイクル数における時間強度である請求項1〜4いずれかに記載の微小欠陥部材の疲労強度下限値の評価方法。   The fatigue strength is a time strength at an arbitrary number of cycles. The method for evaluating a fatigue strength lower limit value of a minute defect member according to any one of claims 1 to 4. 上記疲労強度が、疲労限応力振幅である請求項5記載の微小欠陥部材の疲労強度下限値の評価方法。   The method for evaluating a lower limit value of fatigue strength of a minute defect member according to claim 5, wherein the fatigue strength is a fatigue limit stress amplitude. 欠陥のない上記部材の疲労限応力振幅と、実際に運用する最大応力振幅との比から、疲労強度の許容限界低下率を求め、上記微小欠陥部材における切欠き深さと疲労強度の最大減少率との関係を用いて、上記疲労強度の許容限界低下率から、微小欠陥の許容限界深さを求める請求項6記載の微小欠陥部材の疲労強度下限値の評価方法。   From the ratio between the fatigue limit stress amplitude of the above-mentioned member having no defect and the maximum stress amplitude actually used, the allowable limit reduction rate of fatigue strength is obtained, and the notch depth and the maximum decrease rate of fatigue strength in the above-mentioned micro defect member The evaluation method of the fatigue strength lower limit value of the micro defect member of Claim 6 which calculates | requires the permissible limit depth of a micro defect from the permissible limit fall rate of the said fatigue strength using this relationship. 上記部材が、航空機用ジェットエンジンのファンブレード、あるいは圧縮機の動静翼である請求項1〜7いずれかに記載の微小欠陥部材の疲労強度下限値の評価方法。   The method for evaluating a lower limit of fatigue strength of a minute defect member according to any one of claims 1 to 7, wherein the member is a fan blade of an aircraft jet engine or a moving and stationary blade of a compressor.
JP2009020684A 2009-01-30 2009-01-30 Evaluation method of lower limit of fatigue strength of minute defect members Expired - Fee Related JP5187209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009020684A JP5187209B2 (en) 2009-01-30 2009-01-30 Evaluation method of lower limit of fatigue strength of minute defect members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009020684A JP5187209B2 (en) 2009-01-30 2009-01-30 Evaluation method of lower limit of fatigue strength of minute defect members

Publications (2)

Publication Number Publication Date
JP2010175478A JP2010175478A (en) 2010-08-12
JP5187209B2 true JP5187209B2 (en) 2013-04-24

Family

ID=42706587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009020684A Expired - Fee Related JP5187209B2 (en) 2009-01-30 2009-01-30 Evaluation method of lower limit of fatigue strength of minute defect members

Country Status (1)

Country Link
JP (1) JP5187209B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5212146B2 (en) * 2009-01-30 2013-06-19 株式会社Ihi Method for evaluating the life of minute notches
CN102072926B (en) * 2010-11-30 2012-07-18 浙江大学 Method for diagnosing body fatigue crack of motor
JP7187279B2 (en) * 2018-11-16 2022-12-12 三菱重工業株式会社 Component evaluation system, its component evaluation method, and component evaluation program
CN114018698B (en) * 2021-10-20 2024-03-15 北京卫星制造厂有限公司 Method for measuring and calculating intrinsic strength of composite material by using controllable processing damage
CN115391929B (en) * 2022-07-26 2023-10-20 中国航发沈阳发动机研究所 Method for evaluating damage resistance of aero-engine fan or compressor blade to foreign objects

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735664A (en) * 1993-07-19 1995-02-07 Kawasaki Steel Corp Method for introducing fatigue crack to fracture toughness test piece
JPH11125379A (en) * 1997-10-20 1999-05-11 Mitsubishi Electric Corp Air conditioner
JP2005249590A (en) * 2004-03-04 2005-09-15 Yakichi Higo Characteristic evaluating and testing machine
EP1696220B1 (en) * 2005-02-25 2008-04-23 Snecma Method for the mechanical characterization of a metallic material
JP4799267B2 (en) * 2006-05-18 2011-10-26 川崎重工業株式会社 Fatigue sensor and fatigue damage degree estimation method
JP5081138B2 (en) * 2008-11-27 2012-11-21 株式会社神戸製鋼所 Method for evaluating spalling resistance of steel

Also Published As

Publication number Publication date
JP2010175478A (en) 2010-08-12

Similar Documents

Publication Publication Date Title
JP5187209B2 (en) Evaluation method of lower limit of fatigue strength of minute defect members
JP4202400B1 (en) Crack growth prediction method and program
Witek Numerical stress and crack initiation analysis of the compressor blades after foreign object damage subjected to high-cycle fatigue
US7810385B1 (en) Process for determining a remaining creep life for a turbine component
JP2014071053A (en) Creep damage assessment method and creep damage assessment system for high-temperature members
RU2737127C1 (en) Increased service life of power turbine disk subjected to corrosion damage during operation (embodiments)
KR102201477B1 (en) Modeling system and method for repairing turbine rotor using the modeling system
JP5059224B2 (en) Fatigue fracture evaluation apparatus for parts, fatigue fracture evaluation method for parts, and computer program
JP5212146B2 (en) Method for evaluating the life of minute notches
Witek Crack growth simulation in the compressor blade subjected to vibration using boundary element method
Poursaeidi et al. Fatigue crack growth simulation in a generator fan blade
Zhao et al. Prediction of high-cycle fatigue performance of 1Cr11Ni2W2MoV stainless steel plate after foreign object damage
Preve´ y et al. Introduction of Residual Stresses to Enhance Fatigue Performance in the Initial Design
Milana et al. Fatigue life assessment methods: the case of ship unloaders
RU2618145C2 (en) Method for inspection intervals determination for aero-derivative gas turbine engine parts in case of operation according to its technical condition
Kim et al. Dynamic test and fatigue life evaluation of compressor blades
Jia et al. Effect of the notched foreign object damage depth on the HCF strength of titanium alloy TC11
JP2006242887A (en) Crack occurrence predicting method for gas turbine component, and prediction system
Kubin et al. Determination of Crack Initiation on L-1 LP Steam Turbine Blades: Part 1—Measurements on Rotor Train, Material Specimens and Blades
JP2014178253A (en) Remaining lifetime evaluation method of high temperature machine part
Narasimhachary et al. Life assessment of large gas turbine blades
Witek Experimental and Numerical Crack Initiation Analysis of the Compressor Blades Working in Resonance Conditions
Vacchieri et al. Safe life approach considering creep-fatigue interaction and Weibull statistics for crack growth evaluation based on field feedback applied to a GT first stage blade
Abushik et al. Remaining Service Life Assessment of the Effect of Existing Defects on Turbine Rotors
Enright et al. Probabilistic fretting fatigue assessment of engine disks under combined LCF and HCF loading

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees