JP2008019164A - Superfine particulate cubic boron nitride sintered compact - Google Patents

Superfine particulate cubic boron nitride sintered compact Download PDF

Info

Publication number
JP2008019164A
JP2008019164A JP2007206653A JP2007206653A JP2008019164A JP 2008019164 A JP2008019164 A JP 2008019164A JP 2007206653 A JP2007206653 A JP 2007206653A JP 2007206653 A JP2007206653 A JP 2007206653A JP 2008019164 A JP2008019164 A JP 2008019164A
Authority
JP
Japan
Prior art keywords
sintered body
cbn
boron nitride
pressure
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007206653A
Other languages
Japanese (ja)
Inventor
Takashi Taniguchi
尚 谷口
Minoru Akaishi
實 赤石
Yasushi Sugaya
康 菅家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2007206653A priority Critical patent/JP2008019164A/en
Publication of JP2008019164A publication Critical patent/JP2008019164A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high purity superfine particulate cubic boron nitride (cBN) having a fine structure of ≤0.1 μm constituent particle diameter which can not be attained by a conventional high purity cBN synthetic technology, containing 100% cBN and having light transmissivity. <P>SOLUTION: The sintered compact having 100% cBN content, ≤0.1 μm average particle diameter and light transmissivity is obtained by sintering a hexagonal boron nitride used as a raw material under a condition of a 95,000 atm and ≥1,700°C and ≤1,900°C, in which the hexagonal boron nitride is thermodynamically stable, with the high pressure phase transition to the cubic system without adding any auxiliary agent. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ダイヤモンドに次ぐ硬度を持ち、鉄系金属に対してはダイヤモンドよりも安定であり、鉄系金属の切削工具、研削材等として従来の機械加工分野に技術革新をもたらすことが期待できる高純度超微粒子透光性立方晶窒化ホウ素(cBN)焼結体とその製造方法に関する。 The present invention has hardness next to diamond, is more stable than diamond for iron-based metals, and can be expected to bring technological innovation to conventional machining fields as iron-based metal cutting tools, abrasives, etc. The present invention relates to a high-purity ultrafine particle translucent cubic boron nitride (cBN) sintered body and a method for producing the same.

従来の技術Conventional technology

鉄系金属の切削工具、研削材として多様な形態のcBN焼結体が用いられてきた。これらは鉄系材料の機械加工に優れた特徴を有し、現代の産業基盤である機械加工分野で重要な位置を占めている。これまでに用いられてきたcBN焼結体は4〜5万気圧領域において種々の焼結助剤と共に焼結した複合焼結体であり、cBNの含有量は約40〜90wt%程度まで種々のものが開発されている。切削工具として用いる際には被削材の特性に応じてcBNの含有量が制御されているが、近年、cBN含有量が100%の高純度焼結体により優れた切削性能が現れることが見いだされている(非特許文献1)。 Various forms of cBN sintered bodies have been used as ferrous metal cutting tools and abrasives. These have excellent characteristics in machining of iron-based materials and occupy an important position in the machining field, which is the modern industrial base. The cBN sintered body that has been used so far is a composite sintered body that is sintered together with various sintering aids in the region of 40 to 50,000 atm. The content of cBN varies from about 40 to 90 wt%. Things are being developed. When used as a cutting tool, the content of cBN is controlled according to the characteristics of the work material, but in recent years, it has been found that excellent cutting performance appears with a high-purity sintered body having a cBN content of 100%. (Non-Patent Document 1).

cBN含有量が100%の高純度cBN焼結体の合成方法として、六方晶などの低圧相窒化ホウ素を原料として、高圧高温度下で高圧相であるcBNへの相転移を進めながら同時に焼結反応を進行させる反応焼結法と、予め調製したcBN結晶粒子を原料として焼結助剤無添加で焼結する直接焼結法が知られている。これらにより現在までに、7.7万気圧、2000℃領域において構成粒子径が0.5μm程度までの緻密な透光性のcBN焼結体の合成が報告されている(非特許文献2,3)。 As a method for synthesizing a high-purity cBN sintered body having a cBN content of 100%, a low-pressure boron nitride such as hexagonal crystal is used as a raw material, and simultaneously sintering while proceeding a phase transition to a high-pressure phase cBN under high pressure and high temperature. There are known a reactive sintering method in which the reaction proceeds and a direct sintering method in which cBN crystal particles prepared in advance are used as a raw material and sintered without adding a sintering aid. Thus, synthesis of a dense translucent cBN sintered body having a constituent particle diameter of about 0.5 μm in the region of 77,000 atm and 2000 ° C. has been reported so far (Non-patent Documents 2 and 3). ).

一方、焼結体の強度は構成粒子径に依存することが知られているが、微粒子が緻密に焼結した組織では内在する微小亀裂のサイズが小さくなるために焼結体としての強度が向上することが知られている。また、焼結体を切削工具として使用する際には被削材の加工面の面粗さは焼結体の構成粒子径の大きさの影響を受ける。このため、材料の鏡面加工などの精密加工を目的とした場合、焼結体の粒子径は可能な限り微小であることが望まれる。 On the other hand, it is known that the strength of the sintered body depends on the constituent particle diameter. However, in the structure in which fine particles are densely sintered, the size of the microcrack is small, so the strength of the sintered body is improved. It is known to do. Further, when the sintered body is used as a cutting tool, the surface roughness of the work surface of the work material is affected by the size of the constituent particle diameter of the sintered body. For this reason, when aiming at precision processing, such as mirror finishing of materials, it is desirable that the particle diameter of the sintered body be as small as possible.

さらに、透光性のcBN焼結体の高強度化を図ることは、工業的な応用として切削工具のみならず、高強度の窓材等への応用など実用上の意義がある。しかしながら、現在までに得られている透光性の高純度cBN焼結体の粒子径は微粒径のものでも0.5μm程度までであり、これより小さい粒子径の緻密な高純度焼結体の合成は報告されていない。 Furthermore, increasing the strength of a translucent cBN sintered body has practical significance such as application to not only cutting tools but also high-strength window materials as industrial applications. However, the particle size of the translucent high-purity cBN sintered body obtained so far is up to about 0.5 μm even if the particle size is fine, and the dense high-purity sintered body having a smaller particle diameter is smaller than this. The synthesis of has not been reported.

H.SumiyaandS.Uesaka,J.Mater.Res.,35,1181(2000)H. SumiyaandS. Uesaka, J .; Mater. Res. , 35, 1181 (2000) M.Akaishi、他、J.Mater.Sci.Let.,12,1883(1993)M.M. Akaishi, et al. Mater. Sci. Let. , 12, 1883 (1993) T.Taniguchi他J.Mater.Res.,14,162(1999)T.A. Taniguchi et al. Mater. Res. , 14, 162 (1999)

自動車産業に代表される機械加工工程の高効率化、環境保全を実現する上で、既存のcBN焼結体工具の特性向上が求められている。cBN焼結体工具の特性向上には、焼結体構造の微細な制御が不可欠であり、そのためには微粒子が緻密に焼結したcBN含有量が100%の高純度cBN焼結体の供給が不可欠である。   In order to improve the efficiency of machining processes represented by the automobile industry and to preserve the environment, it is required to improve the characteristics of existing cBN sintered body tools. In order to improve the characteristics of the cBN sintered body tool, fine control of the structure of the sintered body is indispensable. For this purpose, the supply of a high-purity cBN sintered body having a cBN content of 100%, in which fine particles are densely sintered, is required. It is essential.

既存の技術による高純度cBN焼結体の合成は7.7万気圧領域で進められているが、この際に合成可能な透光性高純度cBN焼結体の構成粒子径は微粒径のものでも、0.5μm程度以上である。粒径0.1μm以下の微細な組織の高純度cBN焼結体は得られておらず、精密切削用の高性能切削工具や高強度の窓材等への応用が進められていない。   The synthesis of the high-purity cBN sintered body by the existing technology is proceeding in the region of 77,000 atmospheres, but the constituent particle size of the translucent high-purity cBN sintered body that can be synthesized at this time is a fine particle size. Even a thing is about 0.5 micrometer or more. A high-purity cBN sintered body having a fine structure with a particle size of 0.1 μm or less has not been obtained, and its application to high-performance cutting tools for precision cutting, high-strength window materials, etc. has not been promoted.

すなわち、本発明が解決しようとする課題は、従来の高純度cBN焼結体の合成技術ではなし得なかった、構成粒子径が0.1μm以下の微細な構造を有し、かつcBN含有量が100%の高純度超微粒子cBN焼結体に透光性を有さしめることにある。   That is, the problem to be solved by the present invention is a fine structure having a constituent particle diameter of 0.1 μm or less, which cannot be achieved by the conventional synthesis technique of high-purity cBN sintered bodies, and has a cBN content of The purpose is to make the 100% high-purity ultrafine particle cBN sintered body have translucency.

本発明のcBN含有量が100%で、焼結体の平均粒子径が0.1μm以下の高純度超微粒子cBN焼結体は、透光性を有していることを特徴とする。 The high-purity ultrafine particle cBN sintered body having a cBN content of 100% and an average particle diameter of the sintered body of 0.1 μm or less according to the present invention is translucent.

本発明では、密切削用の高性能切削工具や高強度の窓材等への応用が可能となった。   The present invention can be applied to high-performance cutting tools for dense cutting, high-strength window materials, and the like.

焼結体の構成粒子径は焼結温度の増加と共に粒成長により増大するため、ナノスケールオーダーの微細な粒子の焼結体を合成するためには焼結条件を低く抑えることが必要となる。7.7万気圧領域におけるこの合成温度下限は約2000℃であり、この条件下で粒径0.5μm程度の高純度の透光性cBN焼結体が合成されている。これより微細な粒径の焼結体を合成するためには粒成長を抑制する必要があり、このためには焼結温度を低減する必要がある。
物質の低圧相から高圧相への相転換挙動は圧力と温度に依存するが、窒化ホウ素の相転換挙動を6万気圧から9万気圧の領域にかけて吟味した。その結果、残留する低圧相が全て高圧相である立方晶相に転換する温度は圧力の上昇と共に減少することが見いだされた。すなわち、7.7万気圧よりも高い圧力のもとでは六方晶相から立方晶へ相転移完了温度が低減することになる。これにより合成温度を低減し、粒成長を抑制した超微粒子焼結体の合成が期待できる。そこで、圧力9.5万気圧領域で六方晶窒化ホウ素を原料としてcBN焼結体の合成実験を行った。
Since the constituent particle diameter of the sintered body increases with grain growth as the sintering temperature increases, it is necessary to keep the sintering conditions low in order to synthesize a sintered body of fine particles of nanoscale order. The lower limit of the synthesis temperature in the region of 77,000 atmospheres is about 2000 ° C., and a high-purity translucent cBN sintered body having a particle size of about 0.5 μm is synthesized under this condition. In order to synthesize a sintered body having a finer particle size than this, it is necessary to suppress grain growth, and for this purpose, it is necessary to reduce the sintering temperature.
The phase transformation behavior of the substance from the low pressure phase to the high pressure phase depends on the pressure and temperature, but the phase transformation behavior of boron nitride was examined in the region of 60,000 to 90,000 atmospheres. As a result, it has been found that the temperature at which the remaining low-pressure phase is converted into the cubic phase, which is the high-pressure phase, decreases with increasing pressure. That is, under the pressure higher than 77,000 atm, the phase transition completion temperature from the hexagonal phase to the cubic crystal is reduced. Thereby, synthesis | combination of the ultrafine particle sintered compact which reduced the synthesis temperature and suppressed grain growth can be expected. Then, the synthetic | combination experiment of the cBN sintered compact was performed by using hexagonal boron nitride as a raw material in the pressure range of 95,000 atm.

六方晶窒化ホウ素原料は焼結体又は六方晶窒化ホウ素粉末として市販されているものを使用できる。しかし、通常、原料である六方晶窒化ホウ素には主たる不純物として酸化ホウ素が含まれており、これは得られる焼結体の強度の低下の原因となる。このため、窒素気流中、2000℃で2時間の熱処理を原料の六方晶窒化ホウ素に施し、原料中の酸素不純物濃度を当初の0.5%から一桁程度低減した。この脱酸素処理を施した六方晶窒化ホウ素を原料として、9.5万気圧、1000℃から2000℃の範囲で高圧処理し、得られた焼結体の特性を評価した。得られた焼結体は合成温度が1700℃以上でcBN単相であり、透光性を呈していた。走査型電子顕微鏡(SEM)及び透過型電子顕微鏡(IEM)観察によると構成粒子径は0.1μm以下であり、均一な組織であった。X線回折ではcBN以外のいかなる相も観測されず、ビッカース硬度は試験荷重49Nにおいて55GPaであり、通常の焼結助剤を用いたcBN焼結体を大きく上回る特性であった。   As the hexagonal boron nitride raw material, a commercially available sintered body or hexagonal boron nitride powder can be used. However, hexagonal boron nitride as a raw material usually contains boron oxide as a main impurity, which causes a decrease in strength of the obtained sintered body. For this reason, a heat treatment for 2 hours at 2000 ° C. was performed on the raw material hexagonal boron nitride in a nitrogen stream, and the oxygen impurity concentration in the raw material was reduced by an order of magnitude from the initial 0.5%. The hexagonal boron nitride subjected to the deoxygenation treatment was subjected to high pressure treatment in the range of 95,000 atm and 1000 ° C. to 2000 ° C., and the characteristics of the obtained sintered body were evaluated. The obtained sintered body had a synthesis temperature of 1700 ° C. or higher, was a cBN single phase, and exhibited translucency. According to observation with a scanning electron microscope (SEM) and a transmission electron microscope (IEM), the constituent particle diameter was 0.1 μm or less, and the structure was uniform. In X-ray diffraction, no phase other than cBN was observed, and the Vickers hardness was 55 GPa at a test load of 49 N, which was a characteristic greatly surpassing that of a cBN sintered body using a normal sintering aid.

なお、合成温度が1700℃未満では低圧相BN成分が残留し、透過率の減少と共に硬度の減少が見られた。また、合成温度が1900℃を超えると焼結体の透過率は増加するが、硬度の減少が見られた。組織観察によると粒子径1μm以上までの粒成長が観察された。   When the synthesis temperature was less than 1700 ° C., the low-pressure phase BN component remained, and a decrease in hardness was observed as the transmittance decreased. Further, when the synthesis temperature exceeded 1900 ° C., the transmittance of the sintered body increased, but a decrease in hardness was observed. According to the structure observation, grain growth up to a particle diameter of 1 μm or more was observed.

以上の実験から、六方晶窒化ホウ素を原料として、立方晶窒化ホウ素熱力学的に安定な9.5万気圧、1700℃以上1900℃以下の圧力、温度条件で、立方晶相への高圧相転移を伴いながら助剤無添加で焼結することにより、平均粒子径0.1μm以下の緻密な組織を有する高純度高硬度透光性cBN超微粒子焼結体が合成できることを見いだした。本発明は、この知見に基づいて成されたものである。なお、当該微粒焼結体を合成するための最適温度条件は、低圧相から高圧相への転換を完了させるための温度下限と粒成長を抑制するための温度上限の間となる。
この最適条件は圧力に依存しており、圧力が高いほど最適温度の幅を広く取ることができるため、9.5万気圧以上の圧力領域であれば当該微粒焼結体の合成が可能となる。通常、この種の高圧装置としては、ベルト型超高圧力発生装置が適するが、このような装置では10万気圧程度までの高圧を発生することが可能である。他の方式の高圧発生装置(たとえば多面体型高圧装置など)を用いれば、より高い圧力発生は可能であるが、この場合の試料容積は10mm程度以下と小さくなる。このため工業生産としての経済性を考慮すれば、当該焼結体の合成条件の上限としては、ベルト型高圧装置を用いた10万気圧程度でよい。
From the above experiment, using hexagonal boron nitride as a raw material, cubic boron nitride is thermodynamically stable at 95,000 atmospheres, at a pressure of 1700 ° C. to 1900 ° C., and a high pressure phase to the cubic phase. It has been found that a high-purity, high-hardness translucent cBN ultrafine particle sintered body having a dense structure with an average particle diameter of 0.1 μm or less can be synthesized by sintering without adding an auxiliary agent while being accompanied by a transition. The present invention has been made based on this finding. The optimum temperature condition for synthesizing the fine grain sintered body is between the lower temperature limit for completing the conversion from the low pressure phase to the high pressure phase and the upper temperature limit for suppressing grain growth.
This optimum condition depends on the pressure, and the higher the pressure, the wider the range of the optimum temperature. Therefore, the fine sintered body can be synthesized in the pressure range of 95,000 atm or more. . Normally, a belt-type ultrahigh pressure generator is suitable as this type of high-pressure device, but such a device can generate a high pressure up to about 100,000 atmospheres. If another type of high-pressure generator (for example, a polyhedral high-pressure device) is used, higher pressure can be generated, but the sample volume in this case is as small as about 10 mm 3 or less. For this reason, considering the economical efficiency as industrial production, the upper limit of the synthesis condition of the sintered body may be about 100,000 atm using a belt-type high-pressure apparatus.

すなわち、本発明は、低圧相窒化ホウ素を従来技術よりも高い圧力条件で処理することにより、従来技術、先行技術では得ることのできなかった、高純度超微粒子透光性焼結体を提供するものである。
以下、本発明を実施例及び図面に基づいて説明する。
That is, the present invention provides a high-purity ultrafine particle translucent sintered body that cannot be obtained by the prior art and the prior art by treating low-pressure phase boron nitride under a higher pressure condition than the prior art. Is.
Hereinafter, the present invention will be described based on examples and drawings.

真空中で1500℃、窒素気流中で2000℃の熱処理による脱酸素処理を施した六方晶窒化ホウ素焼結体(粒径約0.5μm)を高圧容器内のタンタルカプセルに充填し、ベルト型超高圧力発生装置により9.5万気圧、1700℃、の圧力、温度条件で30分間焼結した。この際に、いっさいのcBN焼結助剤は添加しなかった。昇温速度は5℃/分程度であった。500℃/分程度で冷却後、除圧し試料を圧力容器内のタンタルカプセルと共に回収した。 A hexagonal boron nitride sintered body (particle size: about 0.5 μm) that has been deoxygenated by heat treatment at 1500 ° C. in a vacuum and 2000 ° C. in a nitrogen stream is filled into a tantalum capsule in a high-pressure vessel. Sintering was performed for 30 minutes under a pressure and temperature conditions of 95,000 atm and 1700 ° C. using a high pressure generator. At this time, no cBN sintering aid was added. The heating rate was about 5 ° C./min. After cooling at about 500 ° C./min, the pressure was released and the sample was collected together with the tantalum capsule in the pressure vessel.

機械的又は化学処理(弗酸−硝酸混液)によりタンタルカプセルを除去し試料を回収した。試料の評価はダイヤモンド砥粒による研磨を施した後に硬度測定、破面のSEM観察、TEM観察、並びにX線回折による相の同定を行った。図1に示した焼結体のX線回折図形より、焼結体はcBN単相であり、図2及び図3のSEM及びTEM観察写真が示すように平均粒子径0.1μm以下の均一な組織を呈し、異常粒成長等による粗大な粒子は見られなかった。 The tantalum capsule was removed by mechanical or chemical treatment (hydrofluoric acid-nitric acid mixture), and the sample was collected. The samples were evaluated by hardness measurement, SEM observation of the fracture surface, TEM observation, and phase identification by X-ray diffraction after polishing with diamond abrasive grains. From the X-ray diffraction pattern of the sintered body shown in FIG. 1, the sintered body is a single phase of cBN, and as shown in the SEM and TEM observation photographs of FIGS. No coarse particles due to abnormal grain growth or the like were observed.

また、硬度試験により、ビッカース硬度55GPa(荷重49N)程度の高硬度高純度のcBN微粒子焼結体であることが示された。焼結体は図4に示すような光透過率の波長依存性を示した。焼結体の厚さが0.6mmの場合、可視光領域(波長500〜800nm)から赤外領域(波長3000nm)における光透過率が10%程度であった。図4に併せて示した焼結体の光学顕微鏡写真に見られるような透光性を呈する。 In addition, the hardness test showed that it was a cBN fine particle sintered body having a high hardness and a high purity of about 50 GPa hardness (load 49 N). The sintered body showed the wavelength dependence of the light transmittance as shown in FIG. When the thickness of the sintered body was 0.6 mm, the light transmittance from the visible light region (wavelength 500 to 800 nm) to the infrared region (wavelength 3000 nm) was about 10%. It exhibits translucency as seen in the optical micrograph of the sintered body also shown in FIG.

比較例1
実施例1記載のプロセスにおいて焼結条件9.5万気圧、1600℃以下では低圧相窒化ホウ素の成分が焼結体中に残留し、cBN単相の焼結体とならなかった。また、焼結温度が1900℃を超えると得られる焼結体はcBN単相で高純度であり、高い透光性を呈するが、組織には粒成長が観察され、焼結体の硬度も低下が見られた。
Comparative Example 1
In the process described in Example 1, under the sintering conditions of 95,000 atm and 1600 ° C. or lower, the low-pressure phase boron nitride component remained in the sintered body and did not become a cBN single-phase sintered body. In addition, when the sintering temperature exceeds 1900 ° C., the obtained sintered body is a single phase of cBN and is highly pure and exhibits high translucency, but grain growth is observed in the structure, and the hardness of the sintered body is also reduced. It was observed.

本発明の高純度微粒cBN焼結体の製造法において、良好な焼結体組織を得るためには焼結温度が重要であることが比較例から明らかとなった。実施例並びに比較例は本発明において高純度超微粒透光性cBN焼結体を作製する際に、従来技術よりも高い圧力条件で焼結温度を最適化することが重要であることを示している。 In the method for producing a high-purity fine grain cBN sintered body according to the present invention, it was revealed from a comparative example that the sintering temperature is important in order to obtain a good sintered body structure. The examples and comparative examples show that it is important to optimize the sintering temperature under higher pressure conditions than in the prior art when producing a high purity ultrafine translucent cBN sintered body in the present invention. Yes.

実施例1において合成した高純度透光性超微粒子cBN焼結体のX線回折図形である。2 is an X-ray diffraction pattern of a high-purity translucent ultrafine particle cBN sintered body synthesized in Example 1. FIG. 実施例1において合成した高純度透光性超微粒子cBN焼結体の破断面の図面代用走査型電子顕微鏡写真である。2 is a drawing-substitute scanning electron micrograph of a fracture surface of a high-purity translucent ultrafine particle cBN sintered body synthesized in Example 1. FIG. 実施例1において合成した高純度透光性超微粒子cBN焼結体の破断面の図面代用透過型電子顕微鏡写真である。2 is a drawing-type transmission electron micrograph of a fracture surface of a high-purity translucent ultrafine particle cBN sintered body synthesized in Example 1. FIG. 実施例1において合成した高純度透光性超微粒子cBN焼結体の光透過率の波長依存性と焼結体の透光性を示す図面代用光学顕微鏡写真である。2 is a drawing-substituting optical micrograph showing the wavelength dependence of the light transmittance of the high-purity translucent ultrafine particle cBN sintered body synthesized in Example 1 and the translucency of the sintered body.

Claims (1)

cBN含有量が100%で、焼結体の平均粒子径が0.1μm以下の高純度超微粒子cBN焼結体であって、透光性を有していることを特徴とする高純度超微粒子cBN焼結体。 A high-purity ultrafine particle having a cBN content of 100% and an average particle diameter of the sintered body of 0.1 μm or less, and having high transparency cBN sintered body.
JP2007206653A 2007-08-08 2007-08-08 Superfine particulate cubic boron nitride sintered compact Pending JP2008019164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007206653A JP2008019164A (en) 2007-08-08 2007-08-08 Superfine particulate cubic boron nitride sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007206653A JP2008019164A (en) 2007-08-08 2007-08-08 Superfine particulate cubic boron nitride sintered compact

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003041715A Division JP4061374B2 (en) 2003-02-19 2003-02-19 Method for producing ultrafine particle cBN sintered body

Publications (1)

Publication Number Publication Date
JP2008019164A true JP2008019164A (en) 2008-01-31

Family

ID=39075419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007206653A Pending JP2008019164A (en) 2007-08-08 2007-08-08 Superfine particulate cubic boron nitride sintered compact

Country Status (1)

Country Link
JP (1) JP2008019164A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009214213A (en) * 2008-03-10 2009-09-24 Institute Of Physical & Chemical Research Cutting tool, and cutting method using the same
WO2013031681A1 (en) * 2011-08-30 2013-03-07 住友電気工業株式会社 Cubic boron nitride complex polycrystalline substance, method for manufacturing same, cutting tool, wire-drawing die, and grinding tool
JP2014080322A (en) * 2012-10-16 2014-05-08 Sumitomo Electric Ind Ltd Cubic boron nitride composite polycrystal, production method thereof, and cutting tool, abrasion resistance tool and grinding tool each equipped with the cubic boron nitride composite polycrystal
CN105019026A (en) * 2014-04-18 2015-11-04 住友电气工业株式会社 Cubic boron nitride polycrystal, cutting tool, wear-resistant tool, grinding tool, and method of producing cubic boron nitride polycrystal
JP2016141609A (en) * 2015-02-04 2016-08-08 住友電気工業株式会社 Cubic boron nitride polycrystalline material, cutting tool, abrasion-resistant tool, grinding tool, and production method of cubic boron nitride polycrystalline material
CN107207364A (en) * 2015-02-09 2017-09-26 住友电气工业株式会社 Cubic boron nitride polycrystal, cutting element, wear resistant tools, the manufacture method of milling tool and cubic boron nitride polycrystal
CN110357047A (en) * 2019-07-03 2019-10-22 郑州中南杰特超硬材料有限公司 A kind of cubic boron nitride purification processing method
WO2020009117A1 (en) * 2018-07-03 2020-01-09 住友電工ハードメタル株式会社 Cutting insert and manufacturing method thereof
JPWO2022013910A1 (en) * 2020-07-13 2022-01-20

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3212852A (en) * 1962-07-30 1965-10-19 Gen Electric Method for converting hexagonal boron nitride to a new structure
JPH03159964A (en) * 1989-11-17 1991-07-09 Natl Inst For Res In Inorg Mater Production of transparent, high-purity boron nitride sintered body of cubic system
JPH05221730A (en) * 1992-02-04 1993-08-31 Toshiba Tungaloy Co Ltd Cubic boron nitride sintered body and production thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3212852A (en) * 1962-07-30 1965-10-19 Gen Electric Method for converting hexagonal boron nitride to a new structure
JPH03159964A (en) * 1989-11-17 1991-07-09 Natl Inst For Res In Inorg Mater Production of transparent, high-purity boron nitride sintered body of cubic system
JPH05221730A (en) * 1992-02-04 1993-08-31 Toshiba Tungaloy Co Ltd Cubic boron nitride sintered body and production thereof

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009214213A (en) * 2008-03-10 2009-09-24 Institute Of Physical & Chemical Research Cutting tool, and cutting method using the same
US9416304B2 (en) 2011-08-30 2016-08-16 Sumitomo Electric Industries, Ltd. Cubic boron nitride complex polycrystal and manufacturing method therefor, and cutting tool, wire-drawing die and grinding tool
WO2013031681A1 (en) * 2011-08-30 2013-03-07 住友電気工業株式会社 Cubic boron nitride complex polycrystalline substance, method for manufacturing same, cutting tool, wire-drawing die, and grinding tool
CN103764597A (en) * 2011-08-30 2014-04-30 住友电气工业株式会社 Cubic boron nitride complex polycrystalline substance, method for manufacturing same, cutting tool, wire-drawing die, and grinding tool
JPWO2013031681A1 (en) * 2011-08-30 2015-03-23 住友電気工業株式会社 Cubic boron nitride composite polycrystal and manufacturing method thereof, cutting tool, drawing die, and grinding tool
EP2752398A4 (en) * 2011-08-30 2015-10-21 Sumitomo Electric Industries Cubic boron nitride complex polycrystalline substance, method for manufacturing same, cutting tool, wire-drawing die, and grinding tool
KR101915828B1 (en) * 2011-08-30 2018-11-06 스미토모덴키고교가부시키가이샤 Cubic boron nitride complex polycrystalline substance, method for manufacturing same, cutting tool, wire-drawing die, and grinding tool
JP2014080322A (en) * 2012-10-16 2014-05-08 Sumitomo Electric Ind Ltd Cubic boron nitride composite polycrystal, production method thereof, and cutting tool, abrasion resistance tool and grinding tool each equipped with the cubic boron nitride composite polycrystal
CN105019026A (en) * 2014-04-18 2015-11-04 住友电气工业株式会社 Cubic boron nitride polycrystal, cutting tool, wear-resistant tool, grinding tool, and method of producing cubic boron nitride polycrystal
CN107207363B (en) * 2015-02-04 2020-10-16 住友电气工业株式会社 Cubic boron nitride polycrystalline material, cutting tool, wear-resistant tool, abrasive tool, and method for producing cubic boron nitride polycrystalline material
CN107207363A (en) * 2015-02-04 2017-09-26 住友电气工业株式会社 Cubic boron nitride polycrystalline material, cutting element, wear resistant tools, milling tool and the method for manufacturing cubic boron nitride polycrystalline material
WO2016125548A1 (en) * 2015-02-04 2016-08-11 住友電気工業株式会社 Cubic boron nitride polycrystalline body, cutting tool, abrasion resistant tool, grinding tool and method for producing cubic boron nitride polycrystalline body
JP2016141609A (en) * 2015-02-04 2016-08-08 住友電気工業株式会社 Cubic boron nitride polycrystalline material, cutting tool, abrasion-resistant tool, grinding tool, and production method of cubic boron nitride polycrystalline material
CN107207364A (en) * 2015-02-09 2017-09-26 住友电气工业株式会社 Cubic boron nitride polycrystal, cutting element, wear resistant tools, the manufacture method of milling tool and cubic boron nitride polycrystal
WO2020009117A1 (en) * 2018-07-03 2020-01-09 住友電工ハードメタル株式会社 Cutting insert and manufacturing method thereof
JPWO2020009117A1 (en) * 2018-07-03 2021-07-08 住友電工ハードメタル株式会社 Cutting insert and its manufacturing method
US20210268589A1 (en) * 2018-07-03 2021-09-02 Sumitomo Electric Hardmetal Corp. Cutting insert and method for manufacturing the same
EP3819051A4 (en) * 2018-07-03 2022-05-04 Sumitomo Electric Hardmetal Corp. Cutting insert and manufacturing method thereof
CN110357047A (en) * 2019-07-03 2019-10-22 郑州中南杰特超硬材料有限公司 A kind of cubic boron nitride purification processing method
CN110357047B (en) * 2019-07-03 2020-11-24 郑州中南杰特超硬材料有限公司 Cubic boron nitride purification treatment method
JPWO2022013910A1 (en) * 2020-07-13 2022-01-20
JP7420254B2 (en) 2020-07-13 2024-01-23 日本電信電話株式会社 Manufacturing method of light emitting device

Similar Documents

Publication Publication Date Title
JP2008019164A (en) Superfine particulate cubic boron nitride sintered compact
CN107207364B (en) Cubic boron nitride polycrystal, cutting tool, wear-resistant tool, grinding tool, and method for producing cubic boron nitride polycrystal
WO2018066261A1 (en) Method for producing boron nitride polycrystal, boron nitride polycrystal, cutting tool, wear-resistant tool, and grinding tool
JP5838289B2 (en) Ultra-hard nano-twinned boron nitride bulk material and synthesis method thereof
JP6291995B2 (en) Cubic boron nitride polycrystal, cutting tool, wear-resistant tool, grinding tool, and method for producing cubic boron nitride polycrystal
WO2013031681A1 (en) Cubic boron nitride complex polycrystalline substance, method for manufacturing same, cutting tool, wire-drawing die, and grinding tool
CN112334434B (en) Polycrystalline cubic boron nitride and method for producing same
JP6958563B2 (en) Diamond polycrystal manufacturing method, diamond polycrystal, cutting tool, abrasion resistant tool and grinding tool
JP2007070148A (en) Producing method of high purity cubic boron nitride sintered compact
JP2004196595A (en) Heat-resistant diamond compound sintered compact and method for manufacturing the same
US10858292B2 (en) Method for making an Al2O3—cBN composite
JP4061374B2 (en) Method for producing ultrafine particle cBN sintered body
JP6772743B2 (en) Manufacturing method of diamond polycrystal, diamond polycrystal, cutting tool, abrasion resistant tool and grinding tool
WO2014013715A1 (en) Superhard alloy imparted with low friction ability, method for producing same, and superhard tool
TW201512099A (en) Chromium metal powder
JP3882078B2 (en) Manufacturing method of high purity ultrafine cubic boron nitride sintered body
JP2018058731A (en) Manufacturing method of boron nitride polycrystalline, boron nitride polycrystalline, cutting tool, wear resistant tool and grinding tool
JP6288117B2 (en) Boron nitride polycrystals and tools
JP2014141359A (en) Sialon-base sintered compact
JP2000042807A (en) Precision cutting tool
JP5880389B2 (en) Method for producing boron nitride polycrystal
WO2021059700A1 (en) Polycrystal cubic crystal boron nitride and tool
JPH10265269A (en) Heat treatment of silicon nitride sintered compact
JP2011057492A (en) Powder for translucent alumina and method for producing the same and method for producing translucent alumina sintered compact using the same
JPH01183468A (en) Cubic boron nitride sintered body

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110927