JP5180538B2 - Imaging device and imaging apparatus - Google Patents

Imaging device and imaging apparatus Download PDF

Info

Publication number
JP5180538B2
JP5180538B2 JP2007220349A JP2007220349A JP5180538B2 JP 5180538 B2 JP5180538 B2 JP 5180538B2 JP 2007220349 A JP2007220349 A JP 2007220349A JP 2007220349 A JP2007220349 A JP 2007220349A JP 5180538 B2 JP5180538 B2 JP 5180538B2
Authority
JP
Japan
Prior art keywords
layer
light receiving
light
imaging
receiving portions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007220349A
Other languages
Japanese (ja)
Other versions
JP2009054806A (en
Inventor
健造 久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007220349A priority Critical patent/JP5180538B2/en
Publication of JP2009054806A publication Critical patent/JP2009054806A/en
Application granted granted Critical
Publication of JP5180538B2 publication Critical patent/JP5180538B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Color Television Image Signal Generators (AREA)

Description

本発明は、撮像素子及び撮像装置に関する。   The present invention relates to an imaging element and an imaging apparatus.

近年、CCDイメージセンサ、CMOSイメージセンサ等の撮像素子を用いたデジタルビデオカメラ等の撮像装置が普及している。一般的に使用されている撮像装置のカラー撮像素子には単板方式、多板方式のものがある。   In recent years, imaging devices such as digital video cameras using imaging elements such as CCD image sensors and CMOS image sensors have become widespread. Commonly used color image pickup devices of image pickup apparatuses include a single plate type and a multi-plate type.

単板方式では、カラーフィルタを用いて色分離を行う。赤(以下「R」という。)、緑(以下「G」という。)、青(以下「B」という。)に分離する原色フィルタやシアン、イエロー、マゼンダ、グリーンに分離する補色フィルタなどがよく使用される。この方式はカラーフィルタで光を吸収しているため、光の利用効率が悪くなるという欠点がある。   In the single plate method, color separation is performed using a color filter. Primary color filters that separate into red (hereinafter referred to as “R”), green (hereinafter referred to as “G”), and blue (hereinafter referred to as “B”), and complementary color filters that separate into cyan, yellow, magenta, and green are often used. used. Since this method absorbs light with a color filter, there is a disadvantage that the light utilization efficiency is deteriorated.

多板方式では、プリズムを使用して色分離を行う。R、G、Bの全ての光が使用されるため、光の利用効率は高い。しかしながら、高精度なプリズムや色分離膜を必要とするため、高度な位置合せ技術が必要となる。その結果、コストが高くなることや、装置が大きくなってしまうという問題が生じる。   In the multi-plate method, color separation is performed using a prism. Since all R, G, and B light is used, the light utilization efficiency is high. However, since high-precision prisms and color separation films are required, advanced alignment techniques are required. As a result, there arises a problem that the cost becomes high and the apparatus becomes large.

近年、双方の問題点を解決する撮像素子が開発されてきている。多層積層型の撮像素子である。特定の波長域の光を検出する受光部を積層し、深さ方向で色の分離を行うものである。この撮像素子は同じ位置の光で色分離を行っているため単板方式のような補正による色ずれが生じない。また、カラーフィルタのように光を吸収しないので、光の利用効率が高い。また、色の分離を積層型の撮像素子で行うため、多板方式のように構造的に大きくなることはない。   In recent years, image sensors that solve both problems have been developed. This is a multi-layer image pickup device. A light receiving unit that detects light in a specific wavelength region is stacked, and color separation is performed in the depth direction. Since this image sensor performs color separation with light at the same position, color misregistration due to correction as in the single plate method does not occur. Further, since light is not absorbed unlike a color filter, the light use efficiency is high. In addition, since color separation is performed by a multilayer imaging device, the structure is not increased as in the multi-plate method.

特許文献1は、有機半導体の受光部とSi基板上の無機半導体感光層とを併用する方式を開示している。第1の受光部は有機半導体からなり、第2、第3の受光部はシリコン基板内に形成され、光の進入する深さによって色分離する構成となっている。第1の受光部では緑を受光することを特徴とし、緑の感度が向上すると共に、青と赤の色分離がよい。   Patent Document 1 discloses a method in which an organic semiconductor light receiving portion and an inorganic semiconductor photosensitive layer on a Si substrate are used in combination. The first light receiving portion is made of an organic semiconductor, and the second and third light receiving portions are formed in the silicon substrate, and are configured to separate colors according to the depth of light penetration. The first light receiving unit is characterized in that it receives green light, improving the sensitivity of green and good color separation between blue and red.

特許文献2は、多層の電磁波吸収・光電変換部位と電荷転送・電荷読み取り部位とこれらを連結する電極間コンタクト部位からなる積層型撮像素子を開示している。この撮像素子は、画素サイズよりも、画素ユニットが有する電極の最外表面間の距離が短いことを特徴としている。これにより、画素密度が高くても、高感度及び高解像力を有し、シェーディングが発生しない撮像素子を実現している。
特開2003−332551号公報 特開2005−268609号公報
Patent Document 2 discloses a multilayer image pickup element including a multilayer electromagnetic wave absorption / photoelectric conversion part, a charge transfer / charge reading part, and an inter-electrode contact part that connects these parts. This image sensor is characterized in that the distance between the outermost surfaces of the electrodes of the pixel unit is shorter than the pixel size. As a result, an image sensor that has high sensitivity and high resolution and does not generate shading even when the pixel density is high is realized.
JP 2003-332551 A JP 2005-268609 A

しかしながら、特許文献1では、色分離の更なる改善が求められている。また、受光部と無機半導体感光層との併用による厚みが問題となっている。   However, Patent Document 1 calls for further improvement of color separation. Further, the thickness due to the combined use of the light receiving portion and the inorganic semiconductor photosensitive layer is a problem.

また、近年の高画素のカメラの要求から、特許文献2の積層型撮像素子においても、更なる解像度の向上、同解像度でのS/Nの向上、感度の向上などが求められている。   Further, due to the recent demand for high-pixel cameras, the multilayer image sensor of Patent Document 2 is required to further improve resolution, improve S / N at the same resolution, and improve sensitivity.

本発明は、上記の問題点に鑑みてなされたものであり、積層型撮像素子の解像度を向上させることを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to improve the resolution of a multilayer image sensor.

本発明の第1の側面は、層ごとにそれぞれ異なる波長域の光を検出する受光部を有する3つの層が積層された積層構造と、マイクロレンズと、を備え、前記積層構造の第1の層の受光部の配列に対して、他の1つ以上の層の受光部の配列が前記第1の層の受光部のピッチの1/2ずれて配置され、前記マイクロレンズは、前記3つの層の受光部が前記積層構造の積層方向に重なる領域に、集光するように配置されていることを特徴とする。 According to a first aspect of the present invention , there is provided a laminated structure in which three layers each having a light receiving portion that detects light in a different wavelength region for each layer are laminated, and a microlens . against an array of light receiving portions of the layer are arranged 1/2 deviation of the pitch of the light receiving portion of the array is the first layer of the light receiving portion of the other one or more layers, said micro lenses, the The light receiving portions of three layers are arranged so as to collect light in a region overlapping in the stacking direction of the stacked structure .

本発明の第2の側面は、撮像装置に係り、撮像光学系と、前記撮像光学系を通った光を受光する上記の撮像素子と、を備えることを特徴とする。   According to a second aspect of the present invention, there is provided an imaging apparatus comprising: an imaging optical system; and the above-described imaging element that receives light that has passed through the imaging optical system.

本発明にすれば、積層型撮像素子の解像度を向上させることができる。   According to the present invention, the resolution of the multilayer image sensor can be improved.

(第1の実施形態)
図1は、本発明の好適な第1の実施形態に係る撮像装置の概略構成図である。撮像光学系としてのレンズ101及び絞り102を通った被写体像は、撮像素子103でR、G、Bにそれぞれ光電変換され、電気信号に変換される。ここで、レンズ101は取り外し可能に構成されてもよい。撮像素子103は、TG104から出力されたパルスにより駆動される。変換された電気信号は、AFE105でAD変換され、カメラ信号処理回路106に送られる。カメラ信号処理回路106で信号処理された信号は、例えば、半導体記憶装置で構成される静止画用記録媒体107に、静止画用の静止画データとして記録される。動画像データは、ビデオ信号処理回路108により信号処理された後、表示回路109を通り、LCDやビューファインダーなどの表示部110で表示される。また、動画撮影時には、半導体メモリや記録可能なDVDディスク等の動画用記録媒体111に記録される。CPU112は、撮像装置の各部を制御する制御手段として機能し、例えば、ユーザーの操作に応じて各種の動作を制御することができる。
(First embodiment)
FIG. 1 is a schematic configuration diagram of an imaging apparatus according to a preferred first embodiment of the present invention. The subject image that has passed through the lens 101 and the diaphragm 102 as the imaging optical system is photoelectrically converted into R, G, and B by the imaging element 103 and converted into an electrical signal. Here, the lens 101 may be configured to be removable. The image sensor 103 is driven by a pulse output from the TG 104. The converted electrical signal is A / D converted by the AFE 105 and sent to the camera signal processing circuit 106. The signal subjected to the signal processing by the camera signal processing circuit 106 is recorded as still image data for still images on a still image recording medium 107 constituted by, for example, a semiconductor storage device. After moving image data is processed by the video signal processing circuit 108, the moving image data passes through the display circuit 109 and is displayed on the display unit 110 such as an LCD or a viewfinder. In moving image shooting, the image is recorded on a moving image recording medium 111 such as a semiconductor memory or a recordable DVD disk. The CPU 112 functions as a control unit that controls each unit of the imaging apparatus, and can control various operations according to user operations, for example.

図2は、本発明の好適な第1の実施形態に係る撮像素子における受光部の各層の画素配列を示した斜視図である。図3は、図2の上面図であり、本発明の好適な第1の実施形態に係る撮像素子の各色の出力の位置を概略的に示している。本実施形態係る撮像素子103は、異なる波長域の光を検出する複数の受光部を積層した積層構造を有する。具体的には、光源側から、第1の受光部をGの波長域を検出する受光部(G層)201、第2の受光部をBの波長域を検出する受光部(B層)202、第3の受光部をRの波長域の光を検出する受光部(R層)203が積層されている。また、積層構造の第1の層の受光部の画素配列に対して、他の1つ以上の層の受光部の画素配列が一定量ずれて配置されている。具体的には、G層201の画素配列に対し、B層202及びR層203の画素配列は水平方向及び垂直方向に一定量ずれている。図2では、G層201の画素配列に対し、B層202及びR層203の画素配列が水平方向及び垂直方向に1/2ピッチそれぞれずれている。図2では、G層201の4画素に対するR層203とB層202の画素配置が示されている。各色の画素配置は、平面上では図3のように表される。各受光部を構成する材料としては、例えば、特許文献1に記載された有機半導体材料を用いることが好ましい。   FIG. 2 is a perspective view showing a pixel arrangement of each layer of the light receiving unit in the imaging device according to the preferred first embodiment of the present invention. FIG. 3 is a top view of FIG. 2, and schematically shows output positions of the respective colors of the image sensor according to the preferred first embodiment of the present invention. The image sensor 103 according to the present embodiment has a stacked structure in which a plurality of light receiving units that detect light in different wavelength ranges are stacked. Specifically, from the light source side, the first light receiving unit is a light receiving unit (G layer) 201 that detects the G wavelength range, and the second light receiving unit is a light receiving unit (B layer) 202 that detects the B wavelength range. The third light receiving unit is laminated with a light receiving unit (R layer) 203 that detects light in the R wavelength region. In addition, the pixel arrangement of the light receiving units of one or more other layers is arranged with a certain amount of deviation from the pixel arrangement of the light receiving units of the first layer of the stacked structure. Specifically, the pixel arrangement of the B layer 202 and the R layer 203 is shifted by a certain amount in the horizontal direction and the vertical direction with respect to the pixel arrangement of the G layer 201. In FIG. 2, the pixel arrangement of the B layer 202 and the R layer 203 is shifted from the pixel arrangement of the G layer 201 by ½ pitch in the horizontal direction and the vertical direction, respectively. In FIG. 2, the pixel arrangement of the R layer 203 and the B layer 202 with respect to four pixels of the G layer 201 is shown. The pixel arrangement of each color is expressed as shown in FIG. 3 on a plane. For example, an organic semiconductor material described in Patent Document 1 is preferably used as a material constituting each light receiving unit.

図4は、本発明の好適な第1の実施形態に係る多層積層型撮像素子の断面図である。多層積層型撮像素子は、光電変換部と、電荷伝送部と、光電変換部及び電荷伝送部を接続するコンタクト部と、で構成されている。光電変換部は、透明電極膜401〜406、光電変換膜407〜409、透明絶縁膜410、411で構成されている。電荷伝送部は、電荷蓄積ダイオード412、電荷転送路413及び絶縁膜414で構成されている。電荷伝送部は、電極415で構成されている。   FIG. 4 is a cross-sectional view of a multilayer stacked image sensor according to the preferred first embodiment of the present invention. The multi-layer image pickup device includes a photoelectric conversion unit, a charge transmission unit, and a contact unit that connects the photoelectric conversion unit and the charge transmission unit. The photoelectric conversion unit includes transparent electrode films 401 to 406, photoelectric conversion films 407 to 409, and transparent insulating films 410 and 411. The charge transfer unit includes a charge storage diode 412, a charge transfer path 413, and an insulating film 414. The charge transfer unit is composed of an electrode 415.

図4に示したように、光源側のG層201に対して、R層203及びB層202は画素の配置が1/2ピッチずらして積層されている。。以上のような構成で積層型撮像素子を利用することにより、Gの画素の間にRの画素及びBの画素が配置される位置関係で空間的にサンプリングされるため、これらの映像信号を混合して得られる輝度信号の解像度は同じ画素数であっても高くなる。   As shown in FIG. 4, the R layer 203 and the B layer 202 are stacked with the pixel arrangement shifted by 1/2 pitch with respect to the G layer 201 on the light source side. . By using the stacked image sensor with the above-described configuration, the R and B pixels are spatially sampled between the G pixels, so that these video signals are mixed. The resolution of the luminance signal obtained in this way is high even with the same number of pixels.

本実施形態では、G層に対して、R層及びB層の画素を水平方向及び垂直方向に1/2ピッチずらす例を示したが、本発明はこれに限定されない。例えば、R層のみ、B層のみ、又はR層及びR層の両方をずらしてもよい。また、水平方向のみ又は垂直のみをずらしてもよい。また、ずらす量に関しても適宜変更することができる。   In the present embodiment, an example in which the pixels of the R layer and the B layer are shifted by ½ pitch in the horizontal direction and the vertical direction with respect to the G layer is shown, but the present invention is not limited to this. For example, only the R layer, only the B layer, or both the R layer and the R layer may be shifted. Further, only the horizontal direction or only the vertical direction may be shifted. Further, the amount of shift can be changed as appropriate.

(第2の実施形態)
第2の実施形態は、第1の実施形態よりも更に感度を良くすることを目的としている。本実施形態の概略構成は、図1と同様である。
(Second Embodiment)
The second embodiment aims to improve the sensitivity further than the first embodiment. The schematic configuration of this embodiment is the same as that of FIG.

本実施形態では、感度を向上させるためにマイクロレンズを使用する。通常、マイクロレンズは、1画素に1つのマイクロレンズが配置される。しかしながら、本実施形態では、画素配置を層毎にずらしているため、マイクロレンズを例えばG層の中心に集光しようとすると、B層及びR層では、中心から外れた位置に集光されしまう。また、1画素と同じサイズのマイクロレンズを使用すると、1画素分の光を同じ位置に集光するため、画素をずらした効果が出ない。   In this embodiment, a microlens is used to improve sensitivity. Normally, one microlens is arranged for one pixel. However, in this embodiment, since the pixel arrangement is shifted for each layer, if the microlens is focused on, for example, the center of the G layer, the B layer and the R layer are focused at a position off the center. . If a microlens having the same size as one pixel is used, the light for one pixel is condensed at the same position, so that the effect of shifting the pixel does not appear.

そこで、本実施形態では、画素配列がずれている2つ以上の層において、両者の画素が重なり合う領域内に集光するようにマイクロレンズを配置する。すると、1画素の中にいくつかの集光ポイントが存在し、その積分値が1画素の出力となる。以下、第1の実施形態と同様に、Gの画素に対して、Rの画素及びBの画素のを水平方向及び垂直方向に1/2ピッチずらした例を用いて説明する。   Therefore, in the present embodiment, the microlens is arranged so that light is condensed in a region where the pixels overlap in two or more layers where the pixel arrangement is shifted. Then, there are several condensing points in one pixel, and the integrated value is an output of one pixel. Hereinafter, as in the first embodiment, an example in which the R pixel and the B pixel are shifted by 1/2 pitch in the horizontal direction and the vertical direction with respect to the G pixel will be described.

図5は、本発明の好適な第2の実施形態に係る多層積層型撮像素子の断面図である。図5は、図4で示した構成にマイクロレンズ501を加えたものである。図5に示したように、マイクロレンズ501の大きさは、画素ピッチの半分である。本実施形態では、水平方向及び垂直方向に画素をずらしているため、マイクロレンズ501の水平方向の長さは画素ピッチの1/2であり、マイクロレンズ501の垂直方向の長さも画素ピッチの1/2である。   FIG. 5 is a cross-sectional view of a multilayer stacked image sensor according to a preferred second embodiment of the present invention. FIG. 5 is obtained by adding a microlens 501 to the configuration shown in FIG. As shown in FIG. 5, the size of the micro lens 501 is half of the pixel pitch. In the present embodiment, since the pixels are shifted in the horizontal direction and the vertical direction, the horizontal length of the microlens 501 is ½ of the pixel pitch, and the vertical length of the microlens 501 is also 1 pixel pitch. / 2.

図6は、本発明の好適な第2の実施形態に係る画素の配置と集光との関係を示す平面図である。図6では、G層601に対して、R層及びB層602を水平方向及び垂直方向に1/2ピッチずらして配置している。マイクロレンズ501で集光する光の区切りは点線603(a〜j)で示されている。マイクロレンズ501により集光した結果、受光部に照射される位置604(1〜16)は、図6に示すようになる。例えば、点線603のa,b,f,gで囲まれた領域の光は、位置604の1に集光される。受光部に照射される光の面積は、G層601とR層及びB層602とが重なり合う領域よりも小さければよい。図6で示したように、G層601の画素605の入力は、b、d、g、iで囲まれた領域であり、その出力は、集光ポイント6,7,10,11を積分した値となる。また、R層及びB層の画素606の入力は、a、c、h、jで囲まれた領域であり、その出力は、集光ポイント3,4,7,8を積分した値となる。   FIG. 6 is a plan view showing the relationship between the arrangement of pixels and light collection according to the second preferred embodiment of the present invention. In FIG. 6, the R layer and the B layer 602 are shifted from the G layer 601 by ½ pitch in the horizontal direction and the vertical direction. A break of light collected by the microlens 501 is indicated by dotted lines 603 (a to j). As a result of focusing by the microlens 501, positions 604 (1 to 16) irradiated to the light receiving unit are as shown in FIG. For example, light in a region surrounded by a, b, f, and g on the dotted line 603 is collected at 1 at the position 604. The area of the light irradiated to the light receiving unit may be smaller than the region where the G layer 601 and the R layer and B layer 602 overlap. As shown in FIG. 6, the input of the pixel 605 of the G layer 601 is a region surrounded by b, d, g, i, and its output is obtained by integrating the condensing points 6, 7, 10, and 11. Value. The input of the pixel 606 of the R layer and the B layer is a region surrounded by a, c, h, and j, and the output thereof is a value obtained by integrating the condensing points 3, 4, 7, and 8.

以上のような構成により、多層積層型撮像素子において画素ずらしを行った際にも、マイクロレンズを利用して、集光率を高め、感度を高めることができる。   With the above-described configuration, even when pixel shifting is performed in the multilayer stacked image sensor, the light collection rate can be increased and the sensitivity can be increased using the microlens.

本実施形態においても、第1の実施形態と同様に、R層のみ、B層のみ、又はR層及びB層の両方をずらしてもよい。また、水平方向のみ又は垂直のみをずらしてもよい。また、ずらす量に関しても適宜変更することができる。   Also in this embodiment, similarly to the first embodiment, only the R layer, only the B layer, or both the R layer and the B layer may be shifted. Further, only the horizontal direction or only the vertical direction may be shifted. Further, the amount of shift can be changed as appropriate.

本発明の好適な第1の実施形態に係る撮像装置の概略構成図である。1 is a schematic configuration diagram of an imaging apparatus according to a preferred first embodiment of the present invention. 本発明の好適な第1の実施形態に係る撮像素子における受光部の各層の画素配列を示した斜視図であるIt is the perspective view which showed the pixel arrangement | sequence of each layer of the light-receiving part in the image pick-up element which concerns on suitable 1st Embodiment of this invention. 図2の上面図であり、本発明の好適な第1の実施形態に係る撮像素子の各色の出力の位置を概略的に示した図である。FIG. 3 is a top view of FIG. 2, schematically showing output positions of respective colors of the image sensor according to the preferred first embodiment of the present invention. 本発明の好適な第1の実施形態に係る多層積層型撮像素子の断面図である。1 is a cross-sectional view of a multilayer stacked image sensor according to a preferred first embodiment of the present invention. 本発明の好適な第2の実施形態に係る多層積層型撮像素子の断面図である。It is sectional drawing of the multilayer lamination type image pick-up element concerning the suitable 2nd Embodiment of this invention. 本発明の好適な第2の実施形態に係る画素の配置と集光との関係を示す平面図である。It is a top view which shows the relationship between pixel arrangement | positioning and condensing based on suitable 2nd Embodiment of this invention.

符号の説明Explanation of symbols

105 撮像素子
201 G層(第1の層)
202 R層(他の1つ以上の層)
203 B層(他の1つ以上の層)
105 Image sensor 201 G layer (first layer)
202 R layer (one or more other layers)
203 B layer (one or more other layers)

Claims (5)

層ごとにそれぞれ異なる波長域の光を検出する受光部を有する3つの層が積層された積層構造と、
マイクロレンズと、を備え、
前記積層構造の第1の層の受光部の配列に対して、他の1つ以上の層の受光部の配列が前記第1の層の受光部のピッチの1/2ずれて配置され
前記マイクロレンズは、前記3つの層の受光部が前記積層構造の積層方向に重なる領域に、集光するように配置されていることを特徴とする撮像素子。
A laminated structure in which three layers each having a light receiving portion for detecting light in different wavelength ranges for each layer are laminated ;
A microlens, and
Against an array of light receiving portions of the first layer of the laminated structure is placed 1/2 deviation of the pitch of the light receiving portion of the array is the first layer of the light receiving portion of the other one or more layers ,
The image pickup device , wherein the microlens is arranged so that the light receiving portions of the three layers are condensed in a region overlapping in a stacking direction of the stacked structure .
前記マイクロレンズは、前記積層方向に直交する方向の長さが前記第1の層の受光部のピッチの1/2であることを特徴とする請求項1に記載の撮像素子。2. The image pickup device according to claim 1, wherein the microlens has a length in a direction orthogonal to the stacking direction being ½ of a pitch of the light receiving portions of the first layer. 前記積層構造の前記第1の層の受光部の配列に対して、他の1つ以上の層の受光部の配列が、前記積層構造の積層方向と直交する第1の方向のみ前記第1の層の受光部のピッチの1/2ずれて配置されていることを特徴とする請求項1又は2に記載の撮像素子。With respect to the arrangement of the light receiving portions of the first layer of the stacked structure, the arrangement of the light receiving portions of one or more other layers is the first direction only in a first direction orthogonal to the stacking direction of the stacked structure. The imaging device according to claim 1, wherein the imaging element is arranged with a deviation of ½ of the pitch of the light receiving portions of the layers. 前記積層構造の前記第1の層の受光部の配列に対して、他の1つ以上の層の受光部の配列が、前記積層構造の積層方向と直交する第1及び第2の方向に前記第1の層の受光部のピッチの1/2ずれて配置されていることを特徴とする請求項1又は2に記載の撮像素子。With respect to the arrangement of the light receiving portions of the first layer of the stacked structure, the arrangement of the light receiving portions of one or more other layers is arranged in the first and second directions orthogonal to the stacking direction of the stacked structure. The imaging device according to claim 1, wherein the imaging element is arranged with a deviation of ½ the pitch of the light receiving portions of the first layer. 撮像光学系と、
前記撮像光学系を通った光を受光する請求項1乃至請求項4の何れか1項に記載の撮像素子と、
を備えることを特徴とする撮像装置。
An imaging optical system;
The imaging device according to any one of claims 1 to 4, which receives light that has passed through the imaging optical system;
An imaging apparatus comprising:
JP2007220349A 2007-08-27 2007-08-27 Imaging device and imaging apparatus Expired - Fee Related JP5180538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007220349A JP5180538B2 (en) 2007-08-27 2007-08-27 Imaging device and imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007220349A JP5180538B2 (en) 2007-08-27 2007-08-27 Imaging device and imaging apparatus

Publications (2)

Publication Number Publication Date
JP2009054806A JP2009054806A (en) 2009-03-12
JP5180538B2 true JP5180538B2 (en) 2013-04-10

Family

ID=40505625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007220349A Expired - Fee Related JP5180538B2 (en) 2007-08-27 2007-08-27 Imaging device and imaging apparatus

Country Status (1)

Country Link
JP (1) JP5180538B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110139698A (en) 2009-03-09 2011-12-29 스미토모 베이클리트 컴퍼니 리미티드 Catheter and method of manufacturing catheter
JP5117523B2 (en) 2010-03-09 2013-01-16 株式会社東芝 Solid-state imaging device
JP5724309B2 (en) * 2010-11-12 2015-05-27 富士通株式会社 Infrared image sensor and infrared imaging device
JP6157341B2 (en) * 2013-12-19 2017-07-05 野洲メディカルイメージングテクノロジー株式会社 Active matrix array substrate, signal processing device, light receiving device, and display device
TWI709340B (en) 2014-11-27 2020-11-01 日商索尼半導體解決方案公司 Solid-state imaging device and electronic equipment
US10256269B2 (en) 2015-03-12 2019-04-09 Sony Corporation Solid-state imaging element, imaging device, and electronic apparatus
WO2017163435A1 (en) * 2016-03-25 2017-09-28 株式会社ニコン Light-receiving element array and light field recording apparatus
GB201704203D0 (en) * 2017-03-16 2017-05-03 Pixquanta Ltd An electromagnetic radiation detection device
KR102550831B1 (en) * 2017-03-31 2023-07-04 소니 세미컨덕터 솔루션즈 가부시키가이샤 Solid-state imaging device, electronic device, and manufacturing method
CN113474893A (en) * 2019-04-26 2021-10-01 松下知识产权经营株式会社 Image pickup device
JPWO2021084994A1 (en) * 2019-10-30 2021-05-06
JP2022177339A (en) * 2019-10-30 2022-12-01 パナソニックIpマネジメント株式会社 Imaging device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4533667B2 (en) * 2004-05-28 2010-09-01 富士フイルム株式会社 Photoelectric conversion film stack type solid-state imaging device
JP4700947B2 (en) * 2004-10-20 2011-06-15 富士フイルム株式会社 Single layer color solid-state imaging device with photoelectric conversion film
JP4724414B2 (en) * 2004-12-02 2011-07-13 富士フイルム株式会社 Imaging apparatus, digital camera, and color image data generation method

Also Published As

Publication number Publication date
JP2009054806A (en) 2009-03-12

Similar Documents

Publication Publication Date Title
JP5180538B2 (en) Imaging device and imaging apparatus
JP6789820B2 (en) Solid-state image sensor, its manufacturing method, and electronic equipment
JP5232118B2 (en) Imaging device and electronic camera
TWI460520B (en) Solid-state imaging device and camera module
JP2023120273A (en) Imaging element and imaging device
KR102028813B1 (en) Solid-state image pickup device and electronic camera
JP5538553B2 (en) Solid-state imaging device and imaging apparatus
JP5547349B2 (en) Digital camera
JP5947217B2 (en) Color separation filter array, solid-state imaging device, imaging device, and display device
JP2008091841A (en) Solid state imaging device and imaging device
WO2015115204A1 (en) Solid-state imaging element and electronic apparatus
JP2006303995A (en) Solid imaging device and imaging apparatus
JP2010212649A (en) Image sensor
JP2012211942A (en) Solid-state image sensor and image pickup apparatus
JP5634614B2 (en) Imaging device and imaging apparatus
JP2007047569A (en) Microlens device, solid state image pickup element, display device, and electronic information equipment
JP4027116B2 (en) Imaging device and imaging apparatus
JP2005175893A (en) Two-plate type color solid-state image pickup device and digital camera
JP2005286700A (en) Imaging apparatus
JP4491352B2 (en) Solid-state image sensor
JP2016012642A (en) Solid-state image pickup device and control method for the same
JP2005259750A (en) Multiple-disk color solid state imaging device and digital camera
JP2008016481A (en) Single-plate solid-state imaging element and digital camera
JP2018107517A (en) Imaging apparatus and signal processing method
JP2010193502A (en) Imaging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160118

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees