JP2010212649A - Image sensor - Google Patents

Image sensor Download PDF

Info

Publication number
JP2010212649A
JP2010212649A JP2009203482A JP2009203482A JP2010212649A JP 2010212649 A JP2010212649 A JP 2010212649A JP 2009203482 A JP2009203482 A JP 2009203482A JP 2009203482 A JP2009203482 A JP 2009203482A JP 2010212649 A JP2010212649 A JP 2010212649A
Authority
JP
Japan
Prior art keywords
focus detection
photoelectric conversion
conversion unit
microlens
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009203482A
Other languages
Japanese (ja)
Other versions
JP5532766B2 (en
Inventor
Satoshi Suzuki
智 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2009203482A priority Critical patent/JP5532766B2/en
Publication of JP2010212649A publication Critical patent/JP2010212649A/en
Application granted granted Critical
Publication of JP5532766B2 publication Critical patent/JP5532766B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an image sensor that outputs a high precision focus detection signal by eliminating noise component such as stray light and the like which is received by a non-light receiving region of a photoelectric conversion unit. <P>SOLUTION: The image sensor includes: a microlens; and a plurality of focus detection pixels having the photoelectric conversion unit that receives a luminous flux by which the microlens is transmitted so as to output a focus detection signal. In the image sensor, a light receiving region that receives the luminous flux by which the microlens is transmitted on a light receiving surface of the photoelectric conversion unit is elliptical. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、撮像素子に関する。   The present invention relates to an image sensor.

撮像素子の多数の撮像画素中に焦点検出画素を混在させて、撮像画素から撮像信号を得ると共に、焦点検出画素から焦点検出信号を得る撮像装置が知られている(例えば、特許文献1参照)。その撮像装置の有する撮像素子に配置された焦点検出画素においては、フォトダイオードが、撮影レンズの射出瞳の領域からの光束を選択的に受光し、光電変換を行う。   2. Description of the Related Art An imaging device is known in which a focus detection pixel is mixed in a large number of imaging pixels of an imaging element to obtain an imaging signal from the imaging pixel and obtain a focus detection signal from the focus detection pixel (see, for example, Patent Document 1). . In the focus detection pixel arranged in the image pickup element of the image pickup apparatus, the photodiode selectively receives the light beam from the exit pupil region of the photographing lens and performs photoelectric conversion.

特開2008−312073号公報JP 2008-312073 A

しかし、焦点検出画素位置が撮影レンズの光軸から離間するにつれて、すなわち、撮影光学系のF値に依存して、フォトダイオードの受光領域は、射出瞳の形状と共に楕円形に変形する。その場合、フォトダイオードの受光領域も楕円形となる一方、従来のフォトダイオードの受光部の形状は円形、半円形、または矩形等であるため、非受光領域部分には迷光等のノイズ成分を受光することから、精度の高い焦点検出信号を得るためには、焦点検出画素出力に対する補正量が大きくなるという問題があった。   However, as the focus detection pixel position moves away from the optical axis of the photographing lens, that is, depending on the F value of the photographing optical system, the light receiving region of the photodiode is deformed into an ellipse together with the shape of the exit pupil. In that case, the light receiving area of the photodiode is also elliptical, while the light receiving portion of the conventional photodiode is circular, semicircular, or rectangular, so that noise components such as stray light are received in the non-light receiving area. Therefore, in order to obtain a focus detection signal with high accuracy, there has been a problem that a correction amount with respect to the focus detection pixel output becomes large.

請求項1に記載の発明による撮像素子は、マイクロレンズと、マイクロレンズを透過したマイクロレンズ透過光束を受光して焦点検出信号を出力する光電変換部を有する複数の焦点検出画素を備え、光電変換部の受光面上でマイクロレンズ透過光束を受光する受光領域が楕円形状であることを特徴とする。   An image pickup device according to a first aspect of the present invention includes a microlens and a plurality of focus detection pixels each having a photoelectric conversion unit that receives a microlens transmitted light beam that has passed through the microlens and outputs a focus detection signal. The light receiving area for receiving the light transmitted through the microlens on the light receiving surface of the part is elliptical.

本発明によれば、精度の高い焦点検出信号を出力することができる。   According to the present invention, it is possible to output a focus detection signal with high accuracy.

一実施の形態の撮像素子を搭載したレンズ交換式のデジタルスチルカメラの全体構成を示した断面図である。It is sectional drawing which showed the whole structure of the digital still camera of an interchangeable lens mounting the image pick-up element of one Embodiment. 本デジタルスチルカメラの撮影画面を模式的に示した正面図である。It is the front view which showed typically the imaging | photography screen of this digital still camera. 撮像素子の一部を示した正面図である。It is the front view which showed a part of imaging device. 図3に示した焦点検出画素の焦点検出光学系の要部を示した断面図である。It is sectional drawing which showed the principal part of the focus detection optical system of the focus detection pixel shown in FIG. 図3の撮像画素の構成を示した断面図である。It is sectional drawing which showed the structure of the imaging pixel of FIG. 図3の焦点検出画素の構成を示した断面図である。It is sectional drawing which showed the structure of the focus detection pixel of FIG. 焦点検出画素における遮光部材を有している光電変換部の正面図である。It is a front view of the photoelectric conversion part which has the light shielding member in a focus detection pixel. 焦点検出画素における遮光部材を有していない光電変換部の正面図である。It is a front view of the photoelectric conversion part which does not have the light shielding member in a focus detection pixel. 焦点検出画素列を形成する各焦点検出画素の光電変換部の形状の特徴を模式的に示した図である。It is the figure which showed typically the characteristic of the shape of the photoelectric conversion part of each focus detection pixel which forms a focus detection pixel row | line.

本発明の一実施の形態の撮像素子を説明する。図1は、一実施の形態の撮像素子を搭載したレンズ交換式のデジタルスチルカメラの全体構成を示した断面図である。図1におい
て、デジタルスチルカメラ100は、交換式の撮影レンズ110とカメラボディ120と
を有し、この交換レンズ110はマウント部130を介して、カメラボディ120に着脱可能に装着される。
An image sensor according to an embodiment of the present invention will be described. FIG. 1 is a cross-sectional view showing the overall configuration of a lens interchangeable digital still camera equipped with an image sensor according to an embodiment. In FIG. 1, a digital still camera 100 has an interchangeable photographic lens 110 and a camera body 120, and the interchangeable lens 110 is detachably attached to the camera body 120 via a mount portion 130.

交換レンズ110は、ズームレンズとして構成された撮影光学系111と、この撮影光学系111内に配置された絞り装置112と、レンズ駆動制御装置113等とを備える。撮影光学系111は、ズーミング用レンズ111aとフォーカシング用レンズ111bとを有する。レンズ駆動制御装置113は、不図示のマイクロコンピューターやメモリや駆動制御回路などから構成され、フォーカシング用レンズ111bの焦点調節の為の駆動制御と絞り装置112の開口径調節の為の駆動制御とを行うと共に、ズーミング用レンズ111aの位置検出とフォーカシング用レンズ111bの位置検出と絞り装置112の開口径の検出などを行う。   The interchangeable lens 110 includes a photographing optical system 111 configured as a zoom lens, a diaphragm device 112 disposed in the photographing optical system 111, a lens drive control device 113, and the like. The photographing optical system 111 includes a zooming lens 111a and a focusing lens 111b. The lens drive control device 113 includes a microcomputer (not shown), a memory, a drive control circuit, and the like, and performs drive control for adjusting the focus of the focusing lens 111b and drive control for adjusting the aperture diameter of the aperture device 112. In addition, detection of the position of the zooming lens 111a, detection of the position of the focusing lens 111b, detection of the aperture diameter of the diaphragm 112, and the like are performed.

カメラボディ120は、本発明の一実施の形態の固体撮像素子121と、ボディ駆動制御装置122と、液晶表示素子駆動回路123と、駆動回路123によって駆動される液晶表示素子124と、この液晶表示素子124を観察する接眼レンズ125と、撮像素子121で撮像された画像データを記録するメモリカード126とを備える。   The camera body 120 includes a solid-state image sensor 121, a body drive control device 122, a liquid crystal display element drive circuit 123, a liquid crystal display element 124 driven by the drive circuit 123, and the liquid crystal display according to an embodiment of the present invention. An eyepiece 125 for observing the element 124 and a memory card 126 for recording image data captured by the image sensor 121 are provided.

撮像素子121は、後に詳述するように、撮像信号、即ち画像信号を出力する複数の撮像画素と、焦点検出信号を出力する複数の焦点検出画素とを有する。複数の焦点検出画素と複数の焦点検出画素とは、複数の焦点検出画素が複数の焦点検出画素中に散在又は混在するように、2次元的に配置されている。なお、焦点検出画素は、後に詳述するように、瞳分割位相差式の焦点検出装置用の焦点検出画素である。   As will be described in detail later, the imaging element 121 includes a plurality of imaging pixels that output an imaging signal, that is, an image signal, and a plurality of focus detection pixels that output a focus detection signal. The plurality of focus detection pixels and the plurality of focus detection pixels are two-dimensionally arranged such that the plurality of focus detection pixels are scattered or mixed in the plurality of focus detection pixels. The focus detection pixel is a focus detection pixel for a pupil division phase difference type focus detection device, as will be described in detail later.

液晶表示素子124と接眼レンズ125とは、電子ビューファインダーを構成し、撮影者は、接眼レンズ125を介して液晶表示素子124に表示される被写体のスルー画像を観察することができる。   The liquid crystal display element 124 and the eyepiece lens 125 constitute an electronic viewfinder, and the photographer can observe a through image of the subject displayed on the liquid crystal display element 124 via the eyepiece lens 125.

ボディ駆動制御装置122は、不図示のマイクロコンピューターやメモリや駆動制御回路などから構成され、撮像素子121の駆動制御と、撮像素子121の撮像信号や焦点検出信号の読み出しと、画像信号の画像処理及び記録と、焦点検出信号に基づく焦点検出演算と、露出制御などのカメラ全体の動作制御等とを行う。   The body drive control device 122 includes a microcomputer (not shown), a memory, a drive control circuit, and the like. And recording, focus detection calculation based on the focus detection signal, and overall camera operation control such as exposure control.

ボディ駆動制御装置122とレンズ駆動制御装置113とは、マウント部130に設けられた電気接点131を介して、カメラボディ120と交換レンズ110との間でのレンズ情報信号とカメラ情報信号との授受を行う。   The body drive control device 122 and the lens drive control device 113 exchange lens information signals and camera information signals between the camera body 120 and the interchangeable lens 110 via electrical contacts 131 provided on the mount unit 130. I do.

次に、このレンズ交換式デジタルスチルカメラの動作の概略を説明する。交換レンズ110の撮影光学系111は、被写体像を撮像素子121に形成し、撮像素子121は、撮像画素から撮像信号を出力すると共に焦点検出画素から焦点検出信号を出力して、これらの撮像信号と焦点検出信号とをボディ駆動制御装置122に送出する。ボディ駆動制御装置122は、焦点検出信号に基づきデフォーカス量を算出し、このデフォーカス量を、電気接点131を介してレンズ駆動制御装置113に送出する。レンズ駆動制御装置113は、このデフォーカス量に基づいてフォーカシング用レンズ111bのレンズ駆動量を算出して、このレンズ駆動量に応じてフォーカシング用レンズ111bを合焦位置に駆動する。   Next, an outline of the operation of the interchangeable lens digital still camera will be described. The imaging optical system 111 of the interchangeable lens 110 forms a subject image on the imaging device 121. The imaging device 121 outputs an imaging signal from the imaging pixel and outputs a focus detection signal from the focus detection pixel, and these imaging signals. And a focus detection signal are sent to the body drive control device 122. The body drive control device 122 calculates a defocus amount based on the focus detection signal, and sends this defocus amount to the lens drive control device 113 via the electrical contact 131. The lens drive control device 113 calculates the lens drive amount of the focusing lens 111b based on this defocus amount, and drives the focusing lens 111b to the in-focus position according to this lens drive amount.

ボディ駆動制御装置122は、更に撮像信号に基づいてスルー画像を作成して液晶表示素子駆動回路123を介して液晶表示素子124に表示させると共に、シャッターレリーズ信号に応じて撮像信号に所定の画像処理を施して画像データを作成し、これをメモリカード126に記録する。   The body drive control device 122 further creates a through image based on the imaging signal and displays it on the liquid crystal display element 124 via the liquid crystal display element driving circuit 123, and performs predetermined image processing on the imaging signal in accordance with the shutter release signal. To create image data and record it on the memory card 126.

図2は、本デジタルスチルカメラ100の撮影画面を示したものである。図2において、撮影画面200には全面に渡り複数の焦点検出エリアが形成されている。この例では17個の焦点検出エリアが形成され、具体的には、焦点検出エリア201、201a、201b、202、202a、202b、206、206a、206b、207、207a、207bが図2において横方向に延在し、焦点検出エリア203、203a、203b、204、204a、204b、205、205a、205b、208、208a、208b、209、209a、209bが縦方向に延在している。この撮影画面200は撮像素子121の撮像面に対応しており、焦点検出エリア201〜207bの各々に対応する撮像素子121の領域には、複数の焦点検出画素が配列されている。   FIG. 2 shows a shooting screen of the digital still camera 100. In FIG. 2, a plurality of focus detection areas are formed over the entire surface of the shooting screen 200. In this example, 17 focus detection areas are formed. Specifically, the focus detection areas 201, 201a, 201b, 202, 202a, 202b, 206, 206a, 206b, 207, 207a, and 207b are horizontal in FIG. The focus detection areas 203, 203a, 203b, 204, 204a, 204b, 205, 205a, 205b, 208, 208a, 208b, 209, 209a, and 209b extend in the vertical direction. The photographing screen 200 corresponds to the imaging surface of the image sensor 121, and a plurality of focus detection pixels are arranged in the area of the image sensor 121 corresponding to each of the focus detection areas 201 to 207b.

図3は、撮像素子121の一部を示した正面図である。図3において、撮像素子121の一部121aには、多数の撮像画素210が2次元状に配置されている。撮像画素210は、赤(R)画素と緑(G)画素と青(B)画素とを含み、これらの赤画素と緑画素と青画素とはベイヤー配列に従い規則的に配列されている。各撮像画素210は光電変換部210aを有する。複数の焦点検出画素220は縦方向に配列され、焦点検出画素列215でを形成する。撮像素子121における焦点検出画素列215は、例えば図2に示した撮影画面200の縦方向の焦点検出エリア205に対応する。この場合、焦点検出画素列215は、撮影レンズの光軸から離間した位置に配置されていることとなる。なお、複数の焦点検出画素220は、ベイヤー配列された撮像画素210の一部を焦点検出画素220によって置き換えたように、配置されている。   FIG. 3 is a front view showing a part of the image sensor 121. In FIG. 3, a large number of imaging pixels 210 are two-dimensionally arranged on a part 121 a of the imaging element 121. The imaging pixel 210 includes a red (R) pixel, a green (G) pixel, and a blue (B) pixel, and the red pixel, the green pixel, and the blue pixel are regularly arranged according to a Bayer arrangement. Each imaging pixel 210 has a photoelectric conversion unit 210a. The plurality of focus detection pixels 220 are arranged in the vertical direction and form a focus detection pixel row 215. The focus detection pixel column 215 in the image sensor 121 corresponds to, for example, the focus detection area 205 in the vertical direction of the shooting screen 200 illustrated in FIG. In this case, the focus detection pixel row 215 is arranged at a position separated from the optical axis of the photographing lens. The plurality of focus detection pixels 220 are arranged such that a part of the image pickup pixels 210 arranged in the Bayer array is replaced with the focus detection pixels 220.

複数の焦点検出画素220は、複数の焦点検出画素220Aと複数の焦点検出画素220Bとから構成され、これらの焦点検出画素220A、220Bは互いに、縦方向に交互に配置されている。焦点検出画素220Aは、画素の上方位置に位置する小型の光電変換部220aを有し、焦点検出画素220Bは画素の下方位置に位置する小型の光電変換部220bを有する。このように、焦点検出画素220Aの光電変換部220a及び焦点検出画素220Bの光電変換部220bの大きさは、それぞれ撮像画素210の光電変換部210aの大きさのほぼ半分程度に定められている。   The plurality of focus detection pixels 220 includes a plurality of focus detection pixels 220A and a plurality of focus detection pixels 220B, and these focus detection pixels 220A and 220B are alternately arranged in the vertical direction. The focus detection pixel 220A has a small photoelectric conversion unit 220a located above the pixel, and the focus detection pixel 220B has a small photoelectric conversion unit 220b located below the pixel. As described above, the size of the photoelectric conversion unit 220a of the focus detection pixel 220A and the size of the photoelectric conversion unit 220b of the focus detection pixel 220B are determined to be approximately half the size of the photoelectric conversion unit 210a of the imaging pixel 210, respectively.

なお、焦点検出画素列215が撮影レンズの光軸から離間しているため、光電変換部220aの形状は楕円形となり、撮影レンズの光軸からの距離に依存した形状、すなわち、撮影光学系のF値に応じた形状となる。その楕円形の短径の延伸方向は、焦点検出画素列215の延伸方向、すなわち焦点検出画素列215を形成する焦点検出画素220の並び方向と一致する。また、撮像素子121は有限領域であるから、楕円の長径と短径との比の値は所定の範囲内の値であり、具体的には凡そ1〜4である。従来の光電変換部の形状は、円形、半円形、または矩形等であったが、非受光領域部分には迷光等のノイズ成分を受光することから、光電変換部220aの形状を、後述する射出瞳の第1の部分または第2の部分の形状に合わせて楕円形とし、焦点検出画素出力の補正量を従来よりも低減している。   Since the focus detection pixel row 215 is separated from the optical axis of the photographing lens, the photoelectric conversion unit 220a has an elliptical shape, which depends on the distance from the optical axis of the photographing lens, that is, the photographing optical system. The shape corresponds to the F value. The extending direction of the elliptical minor axis coincides with the extending direction of the focus detection pixel column 215, that is, the alignment direction of the focus detection pixels 220 forming the focus detection pixel column 215. Further, since the imaging element 121 is a finite region, the value of the ratio between the major axis and the minor axis of the ellipse is a value within a predetermined range, specifically about 1 to 4. The shape of the conventional photoelectric conversion unit is circular, semi-circular, rectangular or the like, but noise components such as stray light are received in the non-light-receiving region portion, so that the shape of the photoelectric conversion unit 220a will be described later. An elliptical shape is formed in accordance with the shape of the first part or the second part of the pupil, and the correction amount of the focus detection pixel output is reduced as compared with the prior art.

図9は、撮像素子121における焦点検出画素列を形成する各焦点検出画素の光電変換部の形状の特徴を模式的に示した図である。説明の便宜上、図9は、各焦点検出画素列には4個ずつの焦点検出画素が配置される図とした。上述したように、焦点検出画素列が撮影レンズの光軸から離間するにつれて、光電変換部の受光領域は、射出瞳の形状と共に楕円形に変形する。そこで、図9に示すように、焦点検出画素の光電変換部の楕円形状を、焦点検出画素列が撮影レンズの光軸から離間するにつれて、受光領域に合わせて扁平率が高くなるように構成する。たとえば、撮影レンズの光軸付近の焦点検出画素列214においては、焦点検出画素の光電変換部の形状は略円形であるが、撮影レンズの光軸からやや離間した焦点検出画素列215においては、焦点検出画素220A、220Bの光電変換部220a、220bの形状は扁平な楕円形である。   FIG. 9 is a diagram schematically illustrating the characteristics of the shape of the photoelectric conversion unit of each focus detection pixel forming the focus detection pixel row in the image sensor 121. For convenience of explanation, FIG. 9 is a diagram in which four focus detection pixels are arranged in each focus detection pixel column. As described above, as the focus detection pixel array is separated from the optical axis of the photographing lens, the light receiving region of the photoelectric conversion unit is deformed into an ellipse together with the shape of the exit pupil. Therefore, as shown in FIG. 9, the elliptical shape of the photoelectric conversion unit of the focus detection pixel is configured so that the flatness increases in accordance with the light receiving region as the focus detection pixel row is separated from the optical axis of the photographing lens. . For example, in the focus detection pixel row 214 near the optical axis of the photographing lens, the shape of the photoelectric conversion unit of the focus detection pixel is substantially circular, but in the focus detection pixel row 215 slightly separated from the optical axis of the photographing lens, The photoelectric conversion units 220a and 220b of the focus detection pixels 220A and 220B have a flat elliptical shape.

このように、同一の撮像素子における焦点検出画素の光電変換部の形状は、その焦点検出画素が配置される焦点検出画素列に応じて異なる。焦点検出画素列が撮影レンズの光軸から離間するにつれて扁平率が高くなる焦点検出画素の光電変換部の楕円形状の長径と短径の比の値は、通常のデジタルスチルカメラの撮像素子では凡そ2〜3であることが好ましい。   As described above, the shape of the photoelectric conversion unit of the focus detection pixel in the same image sensor varies depending on the focus detection pixel array in which the focus detection pixel is arranged. The ratio of the major axis to the minor axis of the elliptical shape of the photoelectric conversion unit of the focus detection pixel, in which the flatness increases as the focus detection pixel array moves away from the optical axis of the photographic lens, is approximately the value of an image sensor of a normal digital still camera. It is preferable that it is 2-3.

図4は、図3に示した焦点検出画素220の焦点検出光学系の要部を示した断面図である。図4において、焦点検出画素220aの光電変換部220aは、撮影光学系の射出瞳240の第1の部分240aを透過した光束241をマイクロレンズアレイ250を介して受光し、焦点検出画素220bの光電変換部220bは、射出瞳240の第2の部分240bを透過した光束242をマイクロレンズアレイ250を介して受光する。こうして、複数の焦点検出画素220aの光電変換部220aの焦点検出信号列と複数の焦点検出画素220bの光電変換部220bの焦点検出信号列との位相差を測定することによって、デフォーカス量を算出することができる。   FIG. 4 is a cross-sectional view showing the main part of the focus detection optical system of the focus detection pixel 220 shown in FIG. In FIG. 4, the photoelectric conversion unit 220a of the focus detection pixel 220a receives the light beam 241 transmitted through the first portion 240a of the exit pupil 240 of the photographing optical system via the microlens array 250, and the photoelectric conversion of the focus detection pixel 220b. The conversion unit 220 b receives the light beam 242 transmitted through the second portion 240 b of the exit pupil 240 through the microlens array 250. In this way, the defocus amount is calculated by measuring the phase difference between the focus detection signal sequence of the photoelectric conversion unit 220a of the plurality of focus detection pixels 220a and the focus detection signal sequence of the photoelectric conversion unit 220b of the plurality of focus detection pixels 220b. can do.

次に、本発明に係る撮像素子の実施の形態を図5〜図7を用いて説明する。図5は図3の撮像画素の構成を示した断面図である。撮像画素210は、光電変換部210aと遮光マスク261と平坦化層262と色フィルター263と平坦化層264とマイクロレンズ265とを有する。   Next, an embodiment of an image sensor according to the present invention will be described with reference to FIGS. FIG. 5 is a cross-sectional view showing the configuration of the imaging pixel of FIG. The imaging pixel 210 includes a photoelectric conversion unit 210a, a light shielding mask 261, a planarization layer 262, a color filter 263, a planarization layer 264, and a microlens 265.

この構成を詳述すると、半導体基板260には光電変換部210aが形成され、この光電変換部210aの直ぐ上には遮光マスク261が設けられている。この遮光マスク261は光電変換部210aの外周囲を遮光して、光電変換部210aの受光領域を規定する。こうして、遮光マスク261の開口部261aは、光電変換部210aの受光領域を規定するので、図3の撮像画素210の光電変換部210aの大きさに相当している。遮光マスク261の上には平坦化層262が積層され、この平坦化層262の上には色フィルター263が形成されている。これらの色フィルター263は図3に示した赤(R)画素210、緑(G)画素210、青(B)画素210に応じた分光特性を有する。色フィルター263の上には平坦化層264が積層され、この平坦化層264の上には図4に示したマイクロレンズアレイ250の各マイクロレンズ265が配置されている。   More specifically, the photoelectric conversion unit 210a is formed on the semiconductor substrate 260, and a light shielding mask 261 is provided immediately above the photoelectric conversion unit 210a. The light shielding mask 261 shields the outer periphery of the photoelectric conversion unit 210a and defines a light receiving region of the photoelectric conversion unit 210a. Thus, the opening 261a of the light shielding mask 261 defines the light receiving area of the photoelectric conversion unit 210a and corresponds to the size of the photoelectric conversion unit 210a of the imaging pixel 210 in FIG. A planarizing layer 262 is stacked on the light shielding mask 261, and a color filter 263 is formed on the planarizing layer 262. These color filters 263 have spectral characteristics corresponding to the red (R) pixel 210, the green (G) pixel 210, and the blue (B) pixel 210 shown in FIG. A planarizing layer 264 is laminated on the color filter 263, and each microlens 265 of the microlens array 250 shown in FIG. 4 is disposed on the planarizing layer 264.

色フィルター263は、高屈折の無機材料と低屈折の無機材料とを多層積層したフォトニック結晶色フィルターである。高屈折の無機材料としてはTiOが使用され、低屈折無機材料としてはSiOが使用される。このフォトニック結晶色フィルターにあっては、多層構造の高屈折材料TiOと低屈折材料SiOとのそれぞれの膜厚を調整することによって、赤、緑及び青の分光特性を持った色フィクターを作成することができる。なお、高屈折の無機材料及び低屈折無機材料は、それぞれ、TiO及びSiOが限るものではなく、その他の無機材料を使用することもできる。例えば、TiOの代わりにSiNを使用することもできる。 The color filter 263 is a photonic crystal color filter in which a high refractive inorganic material and a low refractive inorganic material are laminated in multiple layers. TiO 2 is used as the high refractive inorganic material, and SiO 2 is used as the low refractive inorganic material. In this photonic crystal color filter, color fractors having spectral characteristics of red, green and blue are adjusted by adjusting the film thicknesses of the high refractive material TiO 2 and the low refractive material SiO 2 having a multilayer structure. Can be created. The high refractive inorganic material and the low refractive inorganic material are not limited to TiO 2 and SiO 2 , and other inorganic materials can be used. For example, SiN can be used instead of TiO 2 .

図6は図3の焦点検出画素の構成を示した断面図である。焦点検出画素220a、220bは、光電変換部220a、220bと遮光マスク261と平坦化層262と減光フィルター266と平坦化層264とマイクロレンズ265とを有する。   6 is a cross-sectional view showing the configuration of the focus detection pixel of FIG. The focus detection pixels 220a and 220b include photoelectric conversion units 220a and 220b, a light shielding mask 261, a planarization layer 262, a neutral density filter 266, a planarization layer 264, and a microlens 265.

この構成を詳述すると、半導体基板260には焦点検出画素220aの光電変換部220aと焦点検出画素220bの光電変換部220bがそれぞれ形成され、これらの光電変換部220a、220bの直ぐ上には遮光マスク261が設けられている。この遮光マスク261は光電変換部220aのほぼ半分と光電変換部220bのほぼ半分とを遮光して、光電変換部220a、220bの受光領域を規定する。こうして、遮光マスク261の開口部261aは、光電変換部220a、220bの受光領域を規定するので、図3の焦点検出画素220a、220bの光電変換部220a、220bの大きさに相当している。   More specifically, the photoelectric conversion unit 220a of the focus detection pixel 220a and the photoelectric conversion unit 220b of the focus detection pixel 220b are respectively formed on the semiconductor substrate 260, and light shielding is performed immediately above these photoelectric conversion units 220a and 220b. A mask 261 is provided. The light shielding mask 261 shields approximately half of the photoelectric conversion unit 220a and approximately half of the photoelectric conversion unit 220b, thereby defining the light receiving regions of the photoelectric conversion units 220a and 220b. Thus, the opening 261a of the light shielding mask 261 defines the light receiving area of the photoelectric conversion units 220a and 220b, and thus corresponds to the size of the photoelectric conversion units 220a and 220b of the focus detection pixels 220a and 220b in FIG.

遮光マスク261の上には平坦化層262が積層され、この平坦化層262の上には減光フィルター266が形成されている。この減光フィルター266は、撮像画素210の色フィルター263と同一の層に形成されている、即ち、色フィルター263の高さと同一の高さ位置に形成されている。この減光フィルター266もフォトニック結晶フィルターであり、色フィルター263と同一の無機材料の多層構造体である。即ち、減光フィルター266は高屈折の無機材料TiOと低屈折の無機材料SiOとの多層積層体である。減光フィルター266は、可視光域の全体を透過する分光特性を有する、即ち、赤画素の色フィルターの分光特性と緑画素の色フィルターの分光特性と青画素の色フィルターの分光特性とを加算したような分光特性を有する。 A planarizing layer 262 is stacked on the light shielding mask 261, and a neutral density filter 266 is formed on the planarizing layer 262. The neutral density filter 266 is formed in the same layer as the color filter 263 of the imaging pixel 210, that is, is formed at the same height position as the height of the color filter 263. The neutral density filter 266 is also a photonic crystal filter, and is a multilayer structure of the same inorganic material as the color filter 263. That is, the neutral density filter 266 is a multilayer laminate of a high refractive inorganic material TiO 2 and a low refractive inorganic material SiO 2 . The neutral density filter 266 has spectral characteristics that transmit the entire visible light range, that is, adds the spectral characteristics of the color filter of the red pixel, the spectral characteristics of the color filter of the green pixel, and the spectral characteristics of the color filter of the blue pixel. Spectral characteristics as described above.

この減光フィルター266の働きは、次の通りである。即ち、撮像画素210は色フィルター263が存在するので、撮像画素210の光電変換部210aへの入射光量がこの色フィルター263によって低減される。他方、焦点検出画素220a、220bには色フィルターが存在しない為に、焦点検出画素220a、220bの出力信号レベルが撮像画素210の出力信号レベルを上回り、撮像画素210に先立って飽和する虞がある。このような焦点検出画素220a、220bの出力信号レベルの飽和を防止する為に、減光フィルター266は、焦点検出画素220a、220bの光電変換部220a、220bへの入射光量が撮像画素210の光電変換部210aへの入射光量以下になるように、光電変換部220a、220bへの入射光量を低減する。   The function of the neutral density filter 266 is as follows. That is, since the imaging pixel 210 has the color filter 263, the amount of light incident on the photoelectric conversion unit 210 a of the imaging pixel 210 is reduced by the color filter 263. On the other hand, since there is no color filter in the focus detection pixels 220a and 220b, the output signal level of the focus detection pixels 220a and 220b may exceed the output signal level of the imaging pixel 210 and may be saturated prior to the imaging pixel 210. . In order to prevent such saturation of the output signal level of the focus detection pixels 220 a and 220 b, the neutral density filter 266 has a light incident on the photoelectric conversion units 220 a and 220 b of the focus detection pixels 220 a and 220 b so The amount of incident light on the photoelectric conversion units 220a and 220b is reduced so as to be equal to or less than the amount of incident light on the converter 210a.

なお、撮像画素210と焦点検出画素220a、220bの製造は、以下の通りである。先ず、半導体基板260に光電変換部210a、220a、220bが同時に形成される。その後に遮光マスク261が形成され、更に平坦化層262が積層される。その後に、R、G、Bの色フィルター263が順次、高屈折無機材料と低屈折無機材料との積層によって作成される。その後に、減光フィルター266が色フィルター263と同一の無機材料の積層によって作成される。勿論、先に減光フィルター266を作成した後に、色フィルター263を作成することもできる。その後に、平坦化層264とマイクロレンズ265が作成される。このように、色フィルター263と減光フィルター266とを同一の無機材料で作成することができるので、撮像素子121の製造工程が単純化される。   The manufacturing of the imaging pixel 210 and the focus detection pixels 220a and 220b is as follows. First, the photoelectric conversion units 210 a, 220 a, and 220 b are simultaneously formed on the semiconductor substrate 260. Thereafter, a light shielding mask 261 is formed, and a planarization layer 262 is further laminated. Thereafter, R, G, and B color filters 263 are sequentially formed by stacking a high refractive inorganic material and a low refractive inorganic material. Thereafter, the neutral density filter 266 is formed by laminating the same inorganic material as the color filter 263. Of course, the color filter 263 can be created after the neutral density filter 266 is created first. Thereafter, a planarization layer 264 and a microlens 265 are formed. In this way, the color filter 263 and the neutral density filter 266 can be made of the same inorganic material, so that the manufacturing process of the image sensor 121 is simplified.

図7に示したように、焦点検出画素220A、220Bの遮光マスク261は、射出瞳240の第1の部分240aまたは第2の部分240bの形状に合わせた楕円形の開口261aを有し、マイクロレンズ265を透過した光束284の外縁部を遮光している。したがって、光電変換部は、開口261aからの入射光を受光すると、受光領域の形状が射出瞳240の第1の部分240aまたは第2の部分240bの形状に合わせて楕円形となる。これにより、迷光を受光して焦点検出信号にノイズが重畳されることを防止する効果を奏する。   As shown in FIG. 7, the light-shielding mask 261 of the focus detection pixels 220A and 220B has an elliptical opening 261a that matches the shape of the first portion 240a or the second portion 240b of the exit pupil 240, and is microscopic. The outer edge of the light beam 284 that has passed through the lens 265 is shielded from light. Therefore, when the photoelectric conversion unit receives incident light from the opening 261a, the shape of the light receiving region becomes an elliptical shape in accordance with the shape of the first portion 240a or the second portion 240b of the exit pupil 240. This produces an effect of receiving stray light and preventing noise from being superimposed on the focus detection signal.

なお、焦点検出画素220A、220Bの光電変換部220a、220bは、入射光を受光するに際して、受光領域の形状が射出瞳240の第1の部分240aまたは第2の部分240bの形状に合わせて楕円形となれば良いので、図8(a)および(b)に示したように、遮光マスク261を用いずに、光電変換部220a、220bの形状自体を楕円形としても良い。また、焦点検出画素220Aについては、図8(a)に示した態様で構成する代わりに、図8(c)に示したように、遮光マスク261によって下半分を被覆した態様で構成し、被覆されていない光電変換部220aの形状自体を楕円形としても良い。同様に、焦点検出画素220Bについても、遮光マスク261によって上半分を被覆した態様で構成し、被覆されていない光電変換部220bの形状自体を楕円形としても良い。   Note that when the photoelectric conversion units 220a and 220b of the focus detection pixels 220A and 220B receive incident light, the shape of the light receiving region is elliptical according to the shape of the first portion 240a or the second portion 240b of the exit pupil 240. 8A and 8B, the photoelectric conversion units 220a and 220b may have an elliptical shape without using the light shielding mask 261. As shown in FIGS. Further, the focus detection pixel 220A is configured in a mode in which the lower half is covered with a light shielding mask 261, as shown in FIG. 8C, instead of being configured in the mode shown in FIG. The shape of the photoelectric conversion unit 220a that is not used may be an ellipse. Similarly, the focus detection pixel 220B may be configured in such a manner that the upper half is covered with the light shielding mask 261, and the shape of the photoelectric conversion unit 220b that is not covered may be an ellipse.

上述した実施の形態によると、焦点検出画素220A、220Bの光電変換部220a、220bにおける受光領域の形状を射出瞳の第1の部分240a、第2の部分240bの形状に合わせたことにより、迷光等のノイズ成分を受光する非受光領域を排除したので、撮像素子121は精度の高い焦点検出信号を出力することができるという作用効果が得られる。   According to the above-described embodiment, stray light is obtained by matching the shape of the light receiving region in the photoelectric conversion units 220a and 220b of the focus detection pixels 220A and 220B with the shapes of the first portion 240a and the second portion 240b of the exit pupil. Since the non-light-receiving region that receives the noise component such as the above is excluded, the imaging element 121 can output a focus detection signal with high accuracy.

なお、上述した実施の形態においては、遮光マスクによって被覆された光電変換部の受光領域の形状、または被覆されていない光電変換部の形状自体を、円形を含む楕円形としたが、正多角形を含む多角形のような近似した形状としても良い。   In the above-described embodiment, the shape of the light receiving region of the photoelectric conversion unit covered by the light shielding mask or the shape of the photoelectric conversion unit not covered itself is an ellipse including a circle, but is a regular polygon. An approximate shape such as a polygon including

121 撮像素子、210 撮像画素、210a 光電変換部、214、215 焦点検出画素列、220 焦点検出画素、220a、220b 光電変換部、260 半導体基板、261 遮光マスク、261a 開口、263 色フィルター、265 マイクロレンズ、266 減光フィルター
121 imaging element, 210 imaging pixel, 210a photoelectric conversion unit, 214, 215 focus detection pixel array, 220 focus detection pixel, 220a, 220b photoelectric conversion unit, 260 semiconductor substrate, 261 light shielding mask, 261a aperture, 263 color filter, 265 micro Lens, 266 neutral density filter

Claims (6)

マイクロレンズと、前記マイクロレンズを透過したマイクロレンズ透過光束を受光して焦点検出信号を出力する光電変換部を有する複数の焦点検出画素を備え、
前記光電変換部の受光面上で前記マイクロレンズ透過光束を受光する受光領域が楕円形状であることを特徴とする撮像素子。
A plurality of focus detection pixels having a microlens and a photoelectric conversion unit that receives a microlens transmission light beam that has passed through the microlens and outputs a focus detection signal;
An image pickup device, wherein a light receiving region for receiving the light beam transmitted through the microlens on the light receiving surface of the photoelectric conversion unit has an elliptical shape.
請求項1に記載の撮像素子において、
前記焦点検出画素は、前記マイクロレンズ及び前記光電変換部の間に配置された、楕円形上の開口を有する遮光部材をさらに有し、
前記遮光部材が前記マイクロレンズ透過光束の外縁部分を遮光することにより、前記受光領域が楕円形状であることを特徴とする撮像素子。
The imaging device according to claim 1,
The focus detection pixel further includes a light shielding member having an elliptical opening disposed between the microlens and the photoelectric conversion unit,
The imaging device, wherein the light-shielding member shields an outer edge portion of the light beam transmitted through the microlens so that the light-receiving region has an elliptical shape.
請求項1に記載の撮像素子において、
前記受光面の形状が楕円形状であることを特徴とする撮像素子。
The imaging device according to claim 1,
An image sensor, wherein the light receiving surface has an elliptical shape.
請求項1〜3のいずれか1項に記載の撮像素子において、
前記複数の焦点検出画素は、配置される位置に応じて前記楕円形状が異なることを特徴とする撮像素子。
The imaging device according to any one of claims 1 to 3,
The imaging device, wherein the plurality of focus detection pixels have different elliptical shapes depending on positions where they are arranged.
請求項4に記載の撮像素子において、
前記複数の焦点検出画素は、前記マイクロレンズ透過光束を射出する撮影光学系の光軸からの距離に応じて、前記楕円形状が扁平になることを特徴とする撮像素子。
The imaging device according to claim 4,
The imaging element, wherein the plurality of focus detection pixels are flattened according to a distance from an optical axis of an imaging optical system that emits the microlens transmitted light beam.
請求項5に記載の撮像素子において、
前記楕円形状の長径と短径との比の値が2以上3以下であることを特徴とする撮像素子。
The imaging device according to claim 5,
The ratio of a major axis to a minor axis of the elliptical shape is 2 or more and 3 or less.
JP2009203482A 2009-02-13 2009-09-03 Imaging device and imaging apparatus Expired - Fee Related JP5532766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009203482A JP5532766B2 (en) 2009-02-13 2009-09-03 Imaging device and imaging apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009031334 2009-02-13
JP2009031334 2009-02-13
JP2009203482A JP5532766B2 (en) 2009-02-13 2009-09-03 Imaging device and imaging apparatus

Publications (2)

Publication Number Publication Date
JP2010212649A true JP2010212649A (en) 2010-09-24
JP5532766B2 JP5532766B2 (en) 2014-06-25

Family

ID=42972486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009203482A Expired - Fee Related JP5532766B2 (en) 2009-02-13 2009-09-03 Imaging device and imaging apparatus

Country Status (1)

Country Link
JP (1) JP5532766B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027507A1 (en) * 2011-08-23 2013-02-28 富士フイルム株式会社 Imaging device
WO2013145886A1 (en) * 2012-03-28 2013-10-03 富士フイルム株式会社 Image capture element and image capture device and image capture method employing same
JP2016178341A (en) * 2016-06-15 2016-10-06 キヤノン株式会社 Imaging element and imaging device
WO2018196704A1 (en) * 2017-04-28 2018-11-01 Oppo广东移动通信有限公司 Dual-core focusing image sensor, focusing control method thereof, and imaging device
JP2018174542A (en) * 2018-06-07 2018-11-08 株式会社ニコン Image pickup device and image pickup apparatus
JP2021015984A (en) * 2014-12-18 2021-02-12 ソニー株式会社 Solid-state image pickup device and electronic equipment
JP2022031322A (en) * 2016-04-22 2022-02-18 株式会社ニコン Imaging element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102556A (en) * 1999-09-27 2001-04-13 Fuji Film Microdevices Co Ltd Solid-state image pickup device
JP2004228476A (en) * 2003-01-27 2004-08-12 Konica Minolta Holdings Inc Solid-state imaging device and optical apparatus having the device
JP2006344880A (en) * 2005-06-10 2006-12-21 Nikon Corp Imaging apparatus comprising microlens
JP2008312073A (en) * 2007-06-16 2008-12-25 Nikon Corp Solid-state imaging element, and imaging apparatus using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102556A (en) * 1999-09-27 2001-04-13 Fuji Film Microdevices Co Ltd Solid-state image pickup device
JP2004228476A (en) * 2003-01-27 2004-08-12 Konica Minolta Holdings Inc Solid-state imaging device and optical apparatus having the device
JP2006344880A (en) * 2005-06-10 2006-12-21 Nikon Corp Imaging apparatus comprising microlens
JP2008312073A (en) * 2007-06-16 2008-12-25 Nikon Corp Solid-state imaging element, and imaging apparatus using the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5525109B2 (en) * 2011-08-23 2014-06-18 富士フイルム株式会社 Imaging device
JPWO2013027507A1 (en) * 2011-08-23 2015-03-19 富士フイルム株式会社 Imaging device
US9124876B2 (en) 2011-08-23 2015-09-01 Fujifilm Corporation Pupil-dividing imaging apparatus
WO2013027507A1 (en) * 2011-08-23 2013-02-28 富士フイルム株式会社 Imaging device
WO2013145886A1 (en) * 2012-03-28 2013-10-03 富士フイルム株式会社 Image capture element and image capture device and image capture method employing same
US10003731B2 (en) 2012-03-28 2018-06-19 Fujifilm Corporation Image element, and imaging device and imaging method using the same for achieving improved image quality regardless of an incident angle of light
JP2021015984A (en) * 2014-12-18 2021-02-12 ソニー株式会社 Solid-state image pickup device and electronic equipment
US11711629B2 (en) 2014-12-18 2023-07-25 Sony Group Corporation Solid-state image pickup device and electronic apparatus
JP7180658B2 (en) 2014-12-18 2022-11-30 ソニーグループ株式会社 Solid-state image sensor and electronic equipment
US11252360B2 (en) 2014-12-18 2022-02-15 Sony Corporation Solid-state image pickup device and electronic apparatus
JP2022031322A (en) * 2016-04-22 2022-02-18 株式会社ニコン Imaging element
JP7476874B2 (en) 2016-04-22 2024-05-01 株式会社ニコン Image pickup element and image pickup device
JP2016178341A (en) * 2016-06-15 2016-10-06 キヤノン株式会社 Imaging element and imaging device
US10893187B2 (en) 2017-04-28 2021-01-12 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Dual-core focusing image sensor, control-focusing method therefor, and mobile terminal
WO2018196704A1 (en) * 2017-04-28 2018-11-01 Oppo广东移动通信有限公司 Dual-core focusing image sensor, focusing control method thereof, and imaging device
JP2018174542A (en) * 2018-06-07 2018-11-08 株式会社ニコン Image pickup device and image pickup apparatus

Also Published As

Publication number Publication date
JP5532766B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
CN111508983B (en) Solid-state image sensor, solid-state image sensor manufacturing method, and electronic device
KR100875938B1 (en) Optics and Beam Splitters
JP5552214B2 (en) Focus detection device
JP5879549B2 (en) Light field imaging apparatus and image processing apparatus
US8988584B2 (en) Imaging apparatus
US8749696B2 (en) Image pickup apparatus having an exit pupil with divided areas
JP5404693B2 (en) IMAGING ELEMENT, IMAGING DEVICE HAVING THE SAME, AND CAMERA SYSTEM
JP4973478B2 (en) Imaging device and imaging apparatus
JP2011176715A (en) Back-illuminated image sensor and imaging apparatus
JP5532766B2 (en) Imaging device and imaging apparatus
WO2010035616A1 (en) Imaging element and imaging device
JP4992481B2 (en) Focus detection apparatus and imaging apparatus
JP4798270B2 (en) Image pickup device, image pickup apparatus, and image pickup device manufacturing method
JP2010160314A (en) Imaging element and imaging apparatus
JP4983271B2 (en) Imaging device
JP2011197080A (en) Image pickup apparatus and camera
JP2013157442A (en) Image pickup element and focal point detection device
JP2010169709A (en) Imaging element and imaging apparatus
JP2006126652A (en) Imaging apparatus
JP2023159224A (en) Imaging element and imaging apparatus
JP5476731B2 (en) Image sensor
JP2008176114A (en) Focus detecting device and imaging apparatus
JP2007140176A (en) Electronic camera
JP5800573B2 (en) Imaging apparatus, camera system, and focus detection method
US6965134B2 (en) Image pick-up unit including an image pick-up device and optical filter layers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

R150 Certificate of patent or registration of utility model

Ref document number: 5532766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140414

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees